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Summary. Dorazio and Royle (2003, Biometrics 59, 351–364) investigated the behavior of three mix-
ture models for closed population capture–recapture analysis in the presence of individual heterogeneity
of capture probability. Their simulations were from the beta-binomial distribution, with analyses from the
beta-binomial, the logit-normal, and the finite mixture (latent class) models. In this response, simulations
from many different distributions give a broader picture of the relative value of the beta-binomial and the
finite mixture models, and provide some preliminary insights into the situations in which these models are
useful.
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1. Introduction
Dorazio and Royle (2003), henceforth D&R, explored the be-
havior of three mixture models for the probability of capture
of animals sampled from a closed population. These models
are used to allow for heterogeneity of capture among animals
as the primary source of variation in capture rates, model
Mh in Otis et al. (1978). The number of times animal i is
caught is assumed to have a binomial distribution, with cap-
ture probability pi for this animal over k independent samples.
The objective is to estimate the total number of animals, N,
including those not seen in any sample.

D&R tested models in which pi had a beta, a logit-normal,
or a finite mixture distribution (in which animal i is in class c
with probability πc, c = 1, . . . ,C, where within class c the cap-
ture probability is a constant θc). Details of these models and
their multinomial likelihoods are in D&R, Norris and Pollock
(1996), and Pledger (2000). However, D&R’s recommendation
to use the beta distribution was based on restricted simula-
tions, from the beta distribution. Since analysis using a distri-
bution that matches the generating distribution is doomed to
success, simulations from a wider range of generating distri-
butions are needed to give a more comprehensive view of the
issues of bias and precision of N̂ and the coverage of nominal
95% confidence intervals.

Section 2 reports on N estimates from simulations with 18
generating distributions and Section 3 gives interval estimates
and further details. Real data sets are considered in Section 4,
and Section 5 has discussion of the simulation findings and
other comments.

2. All Models Are Wrong
Simulations were done with 18 different generating distri-
butions, covering a wide range of shapes and moments.

An appropriate heterogeneity coefficient, used by D&R,
is

η =
σ2

µ(1 − µ)
,

the variance as a proportion of the maximum variance for a
distribution on [0,1] with mean µ. The skewness coefficient is

γ1 =
E [(X − µ)3]

σ3 .

Each simulation had true N = 100, k = 6 samples, and 1000
replicated data sets; each generated data set was fitted using
models M(0) (null model, no heterogeneity of capture, pi =
constant p), M(hβ) (beta model, individual capture probabili-
ties from a beta distribution model, parameters α and β), and
M(h2) and M(h3) (the two- and three-point finite mixture, or
latent class, models). The generating distributions for individ-
ual pi are shown in Table 1. In Group A, both µ and η are low.
The beta distribution (A1) has probability density function
(pdf) f(x) → 0 as x → 0 (as the first parameter α is greater
than 1). The three two-point mixtures A2–A4 cover cases
with skewness coefficient γ1 less than and greater than the
skewness of the corresponding beta distribution (with match-
ing mean and variance). A data-generating distribution with
more parameters is tried (the four-point mixture, A5, with
seven parameters), and A6, the Uniform[0,0.3] distribution,
is included as it is continuous but not a beta distribution.
Group B has similar generating distributions but with higher
mean and heterogeneity; a quadratic rather than uniform dis-
tribution is needed for B6 to obtain a high enough variance.
An enormous challenge to capture–recapture analysis is pro-
vided in the Group C distributions, which have low mean and
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Table 1
Generating distributions for individual capture probability pi . The mean (µ), variance (σ2),

heterogeneity coefficient (η), and skewness coefficient (γ1) are given.

Distribution Details µ σ2 η γ1

Group A
A1. Beta B(1.76, 9.99) 0.15 0.010 0.08 1.02
A2. Two-point π = (0.942, 0.058), θ = (0.125, 0.552) 0.15 0.010 0.08 3.78
A3. Two-point π = (0.5, 0.5), θ = (0.05, 0.25) 0.15 0.010 0.08 0.00
A4. Two-point π = (0.964, 0.036), θ = (0.131, 0.669) 0.15 0.010 0.08 5.00
A5. Four-point π = (0.4, 0.1, 0.1, 0.4) 0.15 0.009 0.07 0.00

θ = (0.05, 0.1, 0.2, 0.25)
A6. Uniform a = 0, b = 0.3 on [0,b] 0.15 0.010 0.08 0.00

Group B
B1. Beta B(1.31, 3.94) 0.25 0.030 0.16 0.80
B2. Two-point π = (0.866, 0.134), θ = (0.182, 0.690) 0.25 0.030 0.16 2.14
B3. Two-point π = (0.5, 0.5), θ = (0.077, 0.423) 0.25 0.030 0.16 0.00
B4. Two-point π = (0.916, 0.084), θ = (0.198, 0.822) 0.25 0.030 0.16 3.00
B5. Four-point π = (0.4, 0.1, 0.1, 0.4) 0.25 0.029 0.15 0.00

θ = (0.06, 0.2, 0.3, 0.44)
B6. Quadratic f(x) = 85.7(x − 0.4)2 on (0.1, 0.6) 0.26 0.030 0.16 1.04

Group C
C1. Beta B(0.49, 2.76) 0.15 0.030 0.24 1.54
C2. Two-point π = (0.935, 0.065), θ = (0.104, 0.807) 0.15 0.030 0.24 3.53
C3. Exponential λ = 6, truncated to (0,1] 0.16 0.030 0.22 1.68
C4. Log f(x) = − log (x) on (0,1] 0.25 0.050 0.27 0.89
C5. Beta mix 50:50 B(0.43, 8.08) and B(9.13, 27.38) 0.15 0.015 0.12 0.27
C6. Beta mix 50:50 B(0.81, 4.57) and B(3.63, 6.74) 0.25 0.030 0.16 0.48

high heterogeneity (C1–C3) and/or f(x) → ∞ as x → 0 (C1,
C4–C6). The truncated exponential distribution, C3, has pdf

f(x) =
λe−λx

1 − e−λ

on (0,1], λ = 6.
The N estimates, averaged over the 1000 simulated popu-

lations, are given in Table 2, with the M(h3) results omitted
as they largely duplicated the M(h2) results. As one might
expect, with the beta generating distribution the beta model
shows less bias in N̂ than the two-point, while with the two-
point generating distribution the two-point model shows less
bias than the beta. Details of the relative importance of the
shapes and moments of the generating distributions in pre-
dicting bias were obtained from analyses of covariance with
response variable the relative bias, (N̂ −N)/N . The covari-
ates tried were mean µ, variance σ2, skewness coefficient γ1,
and heterogeneity coefficient η. The first factor tried in the
analysis of covariance classified the distributions by distribu-
tion type (DT). This factor DT grouped the generating distri-
butions by the amount of probability near zero, with DT = 1
for distributions bounded away from zero (A2–A5, B2–B6,
C2), DT = 2 for f(x) → c (finite) as x → 0 (A1, A6, B1, C3),
and DT = 3 for f(x) → ∞ as x → 0 (C1, C4–C6). An alterna-
tive factor was tried, using an indicator of whether or not the
generating distribution was bounded away from zero. This was
labeled DB (for “distribution bounded”) with DB = 1 for sim-
ulations A2–A5, B2–B6, and C2, otherwise DB = 0. A third
alternative factor used an indicator of whether the generating
distribution was continuous or discrete. This was labeled DC

Table 2
Average N estimates and their average estimated standard

errors over 1000 replications. The generating distributions, all
with true N = 100 and k = 6 samples, are specified in

Table 1. Analysis was by three models, M(0), M(hβ), and
M(h2), and by model averaging (Mod. Av.) over those three

models.

Mean N̂ and (mean ŝe(N̂))
Generating

distribution M(0) M(hβ) M(h2) Mod. Av.

Group A
A1. Beta 75 (8) 110 (59) 111 (99) 108 (86)
A2. Two-point 84 (10) 213 (170) 125 (78) 141 (109)
A3. Two-point 72 (7) 87 (30) 101 (79) 96 (63)
A4. Two-point 86 (10) 252 (202) 120 (57) 138 (93)
A5. Four-point 75 (6) 88 (22) 99 (55) 94 (65)
A6. Uniform 78 (8) 90 (27) 106 (94) 98 (67)

Group B
B1. Beta 76 (3) 103 (33) 92 (29) 96 (34)
B2. Two-point 84 (4) 286 (255) 103 (17) 137 (88)
B3. Two-point 73 (3) 83 (13) 103 (72) 100 (63)
B4. Two-point 87 (5) 418 (371) 102 (10) 127 (61)
B5. Four-point 73 (3) 82 (12) 96 (56) 93 (49)
B6. Quadratic 82 (4) 128 (57) 108 (41) 115 (54)

Group C
C1. Beta 51 (4) 114 (101) 76 (58) 87 (80)
C2. Two-point 67 (6) 596 (436) 107 (28) 120 (53)
C3. Exponential 62 (5) 161 (147) 91 (57) 109 (95)
C4. Log 67 (2) 109 (55) 82 (22) 92 (39)
C5. Beta mix 63 (5) 72 (22) 81 (89) 77 (44)
C6. Beta mix 75 (3) 91 (20) 94 (38) 95 (38)
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for “distribution continuous,” with DC = 1 for simulations
A1, A6, B1, B6, C1, and C3–C6, and DC = 0 otherwise.
Using the Akaike Information Criterion (AIC; Akaike, 1973;
Burnham and Anderson, 2002), we find that models M(hβ)

and M(h2) have their bias in N̂ dominated by different as-
pects of the generating distribution. For the beta model, the
most important single predictor of bias is the “true” skewness
coefficient (AIC 11.0 lower than for the null model), with un-
derestimation of N if the skewness is zero, and an increase to
zero bias and then overestimation of N as skewness increases
(as seen in Tables 1 and 2). After allowing for skewness, no
further predictors are supported by the modeling. For the two-
point model, the most important single effect for predicting
bias is the DT (AIC lower than for the null model by 11.3).
Underestimation of N is well known to be associated with
DT = 3, a large proportion of animals with very low capture
probability (see, e.g., Otis et al., 1978; Coull and Agresti,
1999), and this is confirmed here (Table 2, C1, C4–C6). Af-
ter this, inclusion of skewness lowers AIC by 5.6. No further
predictors are supported.

Underestimation by the two-point model can occur because
it does not adequately model a lot of mass of f(x) near 0; this
occurs in simulations B1, C1, and C3–C5 in Table 2. D&R’s
simulations were similar to cases B1 and C1, and they noted
this bias of the two-point model and the better performance
of the beta model. However, the extra simulations here show
that the beta model overestimates N and the two-point model
is preferable when the generating distribution is clear of zero
but has high skewness coefficient (cases A2, A4, B2, B4, and
C2). In other cases N̂ has more serious underestimation from
the beta model than from the two-point model, possibly be-
cause of low true skewness (A3, A5, B3, B5, C5, and C6).
In all the simulations, we note that the heterogeneous mod-
els have much higher estimated standard errors of N̂ than
M(0).

Model selection by AIC (Akaike, 1973; Burnham and
Anderson, 2002) was used on each generated data set to se-
lect a “best” model from M(0), M(hβ), M(h2), and M(h3)
(the three-point model). Using the best model for the N esti-
mate gave slightly less bias and narrower intervals throughout.
However, this method tends to lead to standard errors that are
too low, due to overfitting, so model averaging, which incor-
porates model uncertainty into the estimation, was also tried
(Burnham and Anderson, 2002). This also gave a slight reduc-
tion in the bias of N̂ , compared with the individual models,
as shown in Table 2.

Confidence intervals are discussed next.

3. Some Models Are Useful
However, broader considerations show a less gloomy picture
of closed population abundance estimation by heterogeneous
capture–recapture models.

The simulations in Section 2 have generating distributions
and parameters deliberately chosen to make unbiased N esti-
mation difficult for the heterogeneous models (and virtually
impossible for the homogeneous null model). Many of the gen-
erating distributions had a large proportion of animals with
near-zero capture probability, which has long been recognized
as treacherous territory for capture–recapture analysis. This

Table 3
Coverage of nominal 95% profile likelihood intervals from

three models, and confidence intervals from model averaging
(Mod. Av.). The poor coverage from the model averaging

results from the use of Wald-type confidence intervals, which
are not shown for the three basic models. True N is 100, there

are 6 samples, and 1000 replications in each simulation.

Coverage of 95% PLIGenerating 95% CI
distribution M(0) M(hβ) M(h2) Mod. Av.

Group A
A1. Beta 0.313 0.959 0.976 0.719
A2. Two-point 0.622 0.886 0.950 0.943
A3. Two-point 0.233 0.906 0.987 0.513
A4. Two-point 0.674 0.809 0.952 0.971
A5. Four-point 0.306 0.917 0.989 0.505
A6. Uniform 0.423 0.959 0.995 0.583

Group B
B1. Beta 0.014 0.927 0.865 0.717
B2. Two-point 0.203 0.589 0.961 0.984
B3. Two-point 0.001 0.723 0.946 0.555
B4. Two-point 0.377 0.337 0.956 0.985
B5. Four-point 0.001 0.680 0.948 0.512
B6. Quadratic 0.082 0.928 0.966 0.919

Group C
C1. Beta 0.000 0.953 0.762 0.588
C2. Two-point 0.132 0.296 0.955 0.990
C3. Exponential 0.013 0.958 0.827 0.766
C4. Log 0.000 0.926 0.668 0.613
C5. Beta mix 0.023 0.764 0.965 0.303
C6. Beta mix 0.007 0.848 0.881 0.582

is signaled in the model fitting by very flat profile likelihood
curves for N with associated wide profile likelihood intervals,
and by high standard errors for N̂ (as in Table 2).

It is not enough to look only at the point estimate of N and
its average bias, as in Section 2. Users of capture–recapture
models should be encouraged to look at the standard errors
in N̂ and the profile likelihood intervals (PLIs), and not place
too much emphasis on a single point estimate. Wald-type con-
fidence intervals (N̂ ± zα/2ŝe(N̂)) can be nonsense, with the
lower limit below the number of animals actually observed
(see the size of the estimated standard errors in Table 2);
profile likelihood intervals are recommended (Cormack, 1992;
Coull and Agresti, 1999). Table 3 gives the coverage (pro-
portion of PLIs covering the true value of N = 100) for the
simulations in Section 2. As we might expect, the beta model
gives the best coverage with beta-generated data (as in D&R),
and the two-point model is better with a two-point gener-
ating distribution. Overall Table 3 shows remarkably good
coverage from the heterogeneous models, even in these test-
ing conditions, and especially when compared with the null
model M(0).

The Wald-type confidence intervals (N̂ ± zα/2ŝe(N̂)) gave
poor coverage. Since this is the type of confidence interval
currently available with model averaging, the poor coverage
carried over to the model-averaging estimation (Table 3). A
reviewer suggested that an improvement is likely if a log-based
interval is used, and that there are other ways to fix this
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problem. The development of a profile likelihood type of in-
terval for model-averaged estimates would be very useful.

With many data sets, there will be some heterogeneity, but
the extreme conditions of the simulations in Section 2 will not
apply. Six more simulations (not shown here) were done, still
with N = 100 and k = 6 occasions, but with less heterogeneity.
Both the beta and the two-point models performed better,
with the same patterns of bias in N̂ as before, but less severe.

If we have higher N, more samples, and/or higher capture
probabilities than in the Section 2 simulations, the PLIs are
narrower and the heterogeneous models provide useful es-
timates. Simulations from distributions A1–A6 in Table 1
were repeated with N = 200 and k = 10 samples. The re-
sults (not shown here) when compared with A1–A6 showed
small reductions in relative bias and substantial reductions in
ŝe(N̂) (overall, 36% reduction with M(hβ), 37% with M(h2),
although only 14% with M(0)). There was a concomitant
sharper peaking of the profile likelihood curves and narrowing
of the PLIs for N.

4. Analyses of Real Data
We now consider the real data sets discussed by D&R, and
one extra data set.

4.1 Snowshoe Hares
The snowshoe hare data (Otis et al., 1978) discussed by D&R
had N̂ at 76.7 for the two-point model, and 90.8 for the
beta model. With AIC for the two-point model being only
1.5 lower than for the beta model, a clear choice between
these two models is not possible. One scenario could have
“truth” with a beta distribution, and the two-point model un-
derestimating N (cf. simulation run B1), while another could
have the “true” distribution bounded away from zero but
with high positive skewness, making the beta model over-
estimate N (cf. B2 and B4). More data would be needed
to distinguish among these and other scenaria. Interest-
ingly, Cormack (1992) analyzed this data set by remov-
ing the two animals seen every time, analyzing the remain-
ing data with the null model, then reincluding the two
high-capture hares, giving N̂ = 77 and a PLI of [70, 87].
The two-point model has N̂ = 76.7 and a PLI of [71, 87],
almost a perfect match. A check of the posterior allocation of
hares to the two groups shows the two high-capture hares al-
located to one group with capture probability p = 0.973, and
the remaining 66 hares to the other group, with p = 0.295;
this is effectively the same as Cormack’s ad hoc model, which
predated the finite mixture models by several years. This does
not of course confirm the latent class model as any more cor-
rect than the beta model (D&R) or the logit-normal model
employed by Coull and Agresti (1999). With only 68 hares
caught and six samples, the data set is sparse (as noted by
Cormack, 1992), and more samples would be desirable. The
sensitivity of the heterogeneous models to sampling fluctua-
tions in the vector of capture frequencies is easily seen if we
pretend that one hare caught every time was caught only five
times, changing the capture frequency vector from n = (25,
22, 13, 5, 1, 2) to (25, 22, 13, 5, 2, 1). For the modified data,
the beta model now has N̂ = 86.5 with PLI [73, 162], and the
two-point model has N̂ = 77.5 with PLI [71, 112]. These two
models are now giving a more consistent picture. The sensi-

tivity of the N estimates to minor sampling fluctuation in the
capture frequencies is reduced with more data. Since increas-
ing N is scarcely an option, more samples could be used to
try to resolve the analysis.

4.2 Species of Breeding Birds
The North American Breeding Bird Survey data in D&R has
similarly sparse data with sampling fluctuations in the cap-
ture frequency vectors. AIC values are too close to distinguish
between M(hβ) and M(hC ) (where C is the number of latent
classes indicated by the method of Norris and Pollock, 1996).
For the five data sets, M(hβ) has α estimates ranging from
0.296 to 0.409, all less than one, and in all cases M(hβ) is giv-
ing higher N estimates than M(hC ). We cannot distinguish
among (i) a scenario with a lot of species virtually unde-
tectable (with the finite mixture underestimating N, and the
bias from the beta model depending on “true” skewness, cf.
simulation runs C1 and C4), (ii) a scenario with no very low
detection probabilities but possibly some other feature such
as high enough skewness to make M(hβ) overestimate N (cf.
runs A2, A4, B2, B4, and C2), or (iii) some other scenario not
simulated here which could have either or both models giving
biased point estimates for N.

4.3 Cottontail Rabbits
Another data set traditionally used to test heterogeneous
models is that of the cottontail rabbits (Edwards and
Eberhardt, 1967; Otis et al., 1978). Here N is known to be
135, as the penned rabbits were able to be counted. The null
model gives N̂ = 96.3 (se 6.9) with PLI [88, 107], the beta
model gives N̂ = 247.1 (se 204.0) with PLI [111, 6947], and
the two-point latent class model gives N̂ = 135.5 (se 36.6)
with PLI [104, 347]. The beta model has α̂ = 0.389, the value
below one indicating it is fitting a distribution with a large
proportion of animals with capture probability near zero; this
accords with the high N estimate and PLI upper limit. Since
N is known, we may construct an empirical probability distri-
bution for pi , in which each animal (caught or uncaught) has
its pi taken to be no. captures/k. For example, the 43 rabbits
caught once in the 18 samples give a proportion 43/135 hav-
ing capture probability X = 1/18. This distribution of X has
µ = 0.0584, σ2 = 0.0056, and γ1 = 1.8317. For comparison,
the fitted beta distribution has µ̂ = 0.0319, σ̂2 = 0.0016, and
γ̂1 = 10.3890, indicating reasonable estimates of µ and pos-
sibly σ2 but a complete mismatch of skewness. By contrast,
the two-point model (which has an accurate N estimate) has

µ̂ = 0.0582, σ̂2 = 0.0027, and γ̂1 = 1.9097, a much better fit
for the skewness. This looks like a case where the lack of a
third parameter in the beta distribution counts against it. It
is interesting that the model with only two support points is
so effective in representing an empirical distribution with 19
support points. A similar effect is observed when the simu-
lating distribution has four points but a two-point model is
used (Tables 2 and 3, distributions A5 and B5). There are
often diminishing returns in adding extra components to the
finite mixture after the first few moments have been allowed
for, as suggested by Lindsay (1995) and Norris and Pollock
(1996). However, I am not suggesting the two-point model is
“correct” for these data, or any other data set. For this ex-
ample, there is an element of luck in the latent class model
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giving such an accurate point estimate of N, as the data are
sparse and the profile likelihood curve is quite flat. The M(h2)
N estimate would have been far more impressive if the profile
likelihood curve had been more peaked and if ŝe(N̂) had been
lower.

5. Discussion
5.1 Simulation Findings
The simulations in Sections 2 and 3 by no means represent
a broad sample of possible generating distributions; rather,
they have been chosen to investigate the importance of true
distribution shape when fitting the beta and two-point finite
mixture models. I did not include a big range of µ and σ2

values, even though these are important—with higher µ and
lower σ2 the heterogeneous models give less biased and more
precise N estimates.

The simulations confirmed that (with low µ and moderate
to high heterogeneity) if the generating distribution has a lot
of probability near zero, the latent class models will under-
estimate N (as found by D&R) and may have poor coverage.
However, D&R’s recommendation of using the beta model
should be treated with caution, as the bias and coverage de-
pend crucially on the skewness of the “true” distribution. The
importance of skewness is not surprising, as we are estimating
the number of unseen animals, which are mainly clustered at
the low end of the distribution of pi .

It is essentially an artifact to assume there are two groups
of animals, but assuming the generating distribution is of a
particular shape (e.g., beta) is equally artificial. However, al-
though these models are wrong, they may give realistic and
useful PLIs for N, even in the unfavorable circumstances cho-
sen for these simulations (Table 3), and in more favorable
simulations with higher µ (not shown here) the bias in N̂ is
much reduced.

5.2 Finite versus Infinite Mixtures
D&R in their Section 5.1 suggested it was the finite support
of the latent class models which made them perform poorly
with their beta-based simulations, saying that “adding sup-
port points potentially allows finite mixtures to better ap-
proximate a highly variable, latent distribution of capture
rates,” that “as heterogeneity in capture rates increases,” fi-
nite mixture models with an “insufficient number of support
points” may produce biased estimates of N or interval esti-
mates of N that are too narrow and have poor coverage, and
that “the beta-binomial and logistic-normal models obviously
have an advantage in this situation. Such continuous mixtures
are able to specify large variation in capture rates without
increasing the number of parameters to be estimated and,
in doing so, provide more accurate, if less precise, estimates
of N.”

There seem to be two concepts of heterogeneity here, one
related to variance and the other being the number of support
points. If heterogeneity is variance related (η = σ2/[µ(1 − µ)]
as in D&R Section 2), the two-point finite mixture can pro-
vide high heterogeneity without increasing the number of sup-
port points. In fact, for a distribution on [0,1] with mean µ,
the highest variance µ(1 − µ) is attained by the two-point
Bernoulli distribution with proportion µ at one and 1 − µ at

zero. Increasing the number of support points (e.g., using the
decision method in Norris and Pollock, 1996) occurs not to
increase variance but to match moments of higher order than
skewness; this is especially useful for a multimodal underlying
distribution.

The number of support points is less relevant than variance
in these heterogeneous models. With data generated by the
infinite-support beta mixture (C5 and C6), the finite-support
two-point mixture model is providing less bias and better cov-
erage than the infinite-support beta model. Also, the factor
of continuous versus discrete generating distribution for gen-
erating capture probabilities was not selected as important in
the analyses of covariance, either for the beta or the two-point
model. The two-point mixture does not in general fail when
the true distribution has infinite support; it fails in the subset
of such distributions where f(x) → ∞ as x → 0.

I prefer the heterogeneity measure to be based on vari-
ance, and not on the number of support points. This implies,
for example, that a 50:50 finite mixture on support points
(0.1, 0.9) has more heterogeneity than a uniform distribu-
tion on [0.49, 0.51], despite the latter having infinite sup-
port. Coull and Agresti (1999) also use variance to represent
heterogeneity.

In view of simulations A5 and B5 (four-point mixtures), C5
and C6 (beta mixtures), and the representation of a 19-point
empirical distribution by two points in the cottontail rabbit
example, I suggest that the two-point support is often able
to provide enough variability to model data from a distribu-
tion with more support points, even infinitely many. I am not
suggesting that this model is correct, or that we need not try
other models.

5.3 Theoretical Issues
All capture–recapture models for abundance estimation are
sensitive to model structure; essentially it is a forecasting
problem, estimating the number of uncaught animals based
on some model for the capture patterns of the caught ani-
mals. We are not including in the N estimate any animals
with zero capture probability; the animals must be “available
for capture,” although efforts to pin down this concept more
precisely have not yet succeeded.

For animals with a very low capture probability, taking
more samples (if this can be done while retaining closure)
increases the chance of at least one capture. It has been sug-
gested for M(h) that assuming the underlying distribution of
pi is bounded away from zero will remove the problem of dif-
ferent models fitting equally well but giving different N̂ . How-
ever Link (2003) has shown that with this bound on pi , for
a fixed number of samples k, distributions exist which have
exactly matched probabilities of 1, 2, . . . , k captures condi-
tional on at least one capture, but different (unconditional)
probabilities of zero captures. This means that for a given k we
could have two models giving identically good fit but different
N estimates, even if N is large. The impact of these findings
on capture–recapture analysis has yet to be determined.

The main failures of the beta distribution detected in these
simulations are associated with a mismatch of skewness. Per-
haps a move to a generalized beta distribution on [a, b] ⊂
[0, 1] would be useful, with two extra parameters. At least five
samples would be needed for this model to be feasible. The
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two-point distribution can allow for skewness, and we may
increase the number of support points if the data warrant it
(Norris and Pollock, 1996), which is effective with a multi-
modal true distribution. However, the finite mixture models
(along with other capture–recapture models) fail if the true
distribution of capture probabilities has a large mass near zero
(f(x) → ∞ as x → 0).

Profile likelihoods provide useful information with the het-
erogeneous models; they tend to have appropriate coverage,
and will be realistically wide if more data are needed for accu-
rate estimates. PLIs are asymmetric, often with unusably high
upper bounds; however, the more stable lower bound may be
of greater interest (e.g., for endangered species studies, where
there could be serious consequences if N is overestimated).

5.4 The Way Forward?
It is important to be aware of the possible failings of capture–
recapture models. There are circumstances in which the mod-
els will fail to adequately estimate N, for example, a high
proportion of animals having zero or very small probability
of capture. Nevertheless, there are real data sets where the
true value of N was later determined, and in which the het-
erogeneous models give profile likelihood intervals including
N while the homogeneous models do not.

The particular problems discussed in this article will not
be solved by abandoning heterogeneous models and reverting
to M(0), M(t), M(b), and M(t + b), as an assumption of no
heterogeneity has more impact than an assumption about the
shape of the heterogeneity (Table 3).

Fitting a range of models relying on differently shaped dis-
tributions is important—a commitment to one model (such
as the beta) is unnecessarily limiting, and may result in seri-
ously wrong estimates (as in the cottontail rabbit data). For
likelihood-based models, the AIC will indicate whether there
is heterogeneity (M(h) versus M(0)), and will compare dif-
ferent heterogeneous models. Model averaging could be used
rather than just selecting one best-fitting model. If different
models seem to fit equally well, for example with similar AIC,
but give very different N estimates or PLIs, the abundance
estimates cannot be trusted (cf. Link, 2003). More samples
could help to distinguish the models, provided closure of the
population is maintained.

If k is large, finite mixtures with more components may
be selected (Norris and Pollock, 1996); their nonparametric
flavor gives a range of shapes and copes with multimodality
of the true distribution. However, underestimation of N will
still occur if a large proportion of the population has near-zero
capture probability.

We need more investigations of the situations in which var-
ious models perform well. Since capture–recapture models do
not give useful abundance estimates if a large proportion of
the animals are uncaught, it would be useful to identify signals
from the data to warn us of such cases. Possible signals could
be (i) α̂ < 1 when the beta model is fitted, (ii) the smaller
capture probability from M(h2) being below some threshold
(see Norris and Pollock, 1996), (iii) N̂2pt << N̂β , or (iv) either

model having N̂/n > Q (where n animals were actually seen,
and Q is some threshold). To overcome these problems, we
need proper study design, sufficient effort to increase the low-

est capture probabilities, and attempts to meet assumptions
such as closure.

Despite all the problems raised in this article, heteroge-
neous models are working well for many data sets, and pro-
vide a distinct improvement over the homogeneous null model.
The price we pay for moving to heterogeneous models is wider
PLIs and higher standard errors in N̂ . I believe this is intrin-
sic to the heterogeneity situation, a view also taken by Coull
and Agresti (1999). If the profile likelihood curve is too flat
and the PLI too wide, more data will be needed to provide a
more precise estimate of N.
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The authors replied as follows:

1. Introduction
Estimating the size N of a closed population in the presence
of heterogeneity in detection probability p among individuals
has a long history. In an earlier paper on this topic, Burnham
(1972) suggested a natural candidate model wherein p is as-
sumed to have a beta distribution. Burnham concluded that
this model had poor operating characteristics and instead sug-
gested a jackknife procedure (Burnham and Overton, 1978).
Subsequently, other models were developed to specify la-
tent variation in p including logistic-normal mixtures (Coull
and Agresti, 1999; Fienberg, Johnson, and Junker, 1999)
and finite-mixtures of discrete support points (Agresti, 1994;
Norris and Pollock, 1996; Pledger, 2000). In our earlier pa-
per (Dorazio and Royle, 2003), we suggested that Burnham’s
(1972) assessment of the beta-binomial (BB) mixture was
overly pessimistic, and we demonstrated that the BB mix-
ture performs reasonably well across a wide range of situa-
tions. This was the primary point of our paper. We assessed
the performance of the BB estimator by fitting the BB model
to data generated under that model. This approach is widely
used throughout statistics as a means of evaluating the perfor-
mance of model-based estimators of parameters, particularly
in small samples. Furthermore, this approach has also been
used to assess the performance of other models developed for
estimating N in the presence of heterogeneous detection prob-
abilities (e.g., Norris and Pollock, 1996; Coull and Agresti,
1999).

Pledger (2005) takes offense at this approach, noting that
“Since analysis using a distribution which matches the gen-
erating distribution is doomed to success, simulations from a
wider range of generating distributions are needed . . . .” We
plead guilty on this count but emphasize that our primary
intent was to evaluate the performance of the BB model’s
estimator of N. Regardless, Pledger’s statement is not en-
tirely accurate. We did not only consider data simulated from
the BB mixture, but also simulated data from logistic-normal
models and finite-mixture models (see Section 3.1, Dorazio
and Royle, 2003). These simulations were used to illustrate
the difficulty in selecting among classes of mixture models for
computing accurate estimates of N. In particular, we showed
that conventional goodness-of-fit statistics, such as deviance,
cannot be relied on for selecting a model that produces valid
inferences about N.

Pledger also states “D&R’s recommendation to use the
beta distribution was based on restricted simulations . . . .”
In fact, we did not recommend use of the BB mixture to
the exclusion of other classes of mixture models. Instead, we
demonstrated that because estimates of N can be sensitive to
model-specific assumptions about the latent distribution of
p, certain circumstances should lead an investigator to favor
continuous mixtures over finite mixtures, and on this point
our opinion remains unchanged. (We will have more to say
about this issue in Section 3.)

2. Pledger’s Simulations
Now that we have clarified the fundamental misunderstand-
ings that motivated Pledger’s (2005) commentary, we would
like to provide some insights and alternative interpretations

of her simulation results. In these simulations, 18 data-
generating models were used to compare the performance of
the BB and 2-point finite mixture (2PT) models in estimat-
ing N. A discrete support of 2 or 4 mass points was used in 9
of the 18 data-generating models; the remaining models used
a continuously varying but compact support ([0, 1] or a sub-
set of this interval) to specify variation in capture probability
among N = 100 individuals observed on T = 6 sampling occa-
sions. The data-generating models were “deliberately chosen
to make unbiased N estimation difficult for the heterogeneous
models” in the sense that “many of the generating distribu-
tions had a large proportion of animals with near-zero capture
probability . . .” (Pledger, 2005).

Using simulation-based estimates of bias and confidence in-
terval coverage for N, Pledger (2005) concludes that the 2PT
model is superior to the BB model in those cases where there
is substantial skewness in the true latent distribution of p
and where the probability density of p does not approach ∞
as p → 0. We disagree with this conclusion and with its im-
plied generality. Among the 18 data-generating models used
in the simulation study, we demonstrate here that neither
the BB model nor the 2PT model provides a clear inferen-
tial advantage in terms of N estimation. In particular, we use
Link’s (2003) approach and reasoning to evaluate the bias of
an approximating model (BB or 2PT) relative to each data-
generating model. An advantage of this approach is that it
isolates the component of bias in N that arises solely from
differences in model-specific assumptions about the form of
the latent distribution of p. Additional sources of bias (such
as small sample size or method of estimation) that may oc-
cur in analysis of data (actual or simulated) are conveniently
excluded.

To apply Link’s approach, we computed the unconditional
probability of being captured x times (π(x), x = 0, . . . ,T )
given a data-generating model M(h) of the latent variation
in p. Using these probabilities, we computed the conditional
probability of being observed x times given that an animal has
been captured at least once (πC(x) = π(x)/(1 − π(0)), x =
1, . . . ,T ). We then computed the parameter values of the ap-
proximating model M(hm) (where m = β denotes BB and m =
2 denotes 2PT) that minimizes the Kullback–Leibler distance
between its conditional probabilities of capture, say πC

m(x),
and those of the data-generating model. These parameter val-
ues then were used to calculate the unconditional probabil-
ities of capture πm(x) of the approximating model and the
noncentrality of the comparison between models M(h) and

M(hm) as follows: λm/n = 2
∑T

x=1 π
C(x) log(πC(x)/πC

m(x)).
The noncentrality parameter λm may be used to calculate
the power of an α-level test for distinguishing the approxi-
mating model M(hm) from the data-generating model M(h),
given n, the total number of animals captured (Link, 2003).
We computed power by substituting (for n) the expected num-
ber of animals captured under the data-generating model, i.e.,
E(n) = N(1 − π(0)) where N = 100. We evaluated the bias
of the approximating model by computing the discrepancy
between πm(0), the probability of not being captured under
model M(hm), and π(0), the “true” probability of not being
captured.

Our assessment of the BB and 2PT models is summa-
rized in Tables 1 and 2, respectively. Comparisons, where
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Table 1
Comparison of the BB approximating model and various

data-generating models M(h) considered in Table 1 of Pledger
(2005). log (πβ(0)/π(0)) indicates the relative bias in

estimating π(0) that is produced by using model M(hβ) to
approximate model M(h). Power corresponds to an α = 0.05

test for distinguishing model M (hβ) from each data-generating
model.

M(h) π(0) πβ(0) log (πβ(0)/π(0)) λβ/n Power

A2 0.423 0.871 0.72 0.00577 0.067
A3 0.457 0.334 −0.31 0.00081 0.052
A4 0.415 >0.999 0.88 0.01876 0.111
A5 0.445 0.352 −0.23 0.00050 0.051
A6 0.437 0.358 −0.20 0.00032 0.051
B2 0.260 0.752 1.06 0.01277 0.102
B3 0.328 0.186 −0.56 0.00999 0.086
B4 0.244 0.972 1.38 0.05215 0.316
B5 0.326 0.181 −0.59 0.00632 0.072
B6 0.262 0.377 0.36 0.00146 0.055
C2 0.484 >0.999 0.73 0.14020 0.556
C3 0.480 0.623 0.26 0.00164 0.054
C4 0.370 0.394 0.06 0.00001 0.050
C5 0.492 0.287 −0.54 0.00020 0.050
C6 0.316 0.237 −0.29 0.00027 0.051

approximating and data-generating models are identical, are
deliberately omitted because in those cases the noncentrality
of the comparison is zero (which implies a constant power of
α) and there is no bias induced by model misspecification.
Our analysis of the BB and 2PT models suggests that there
is virtually no power (above the nominal α level) to distin-
guish either of these models from the data-generating models,
with the exception of two data-generating models (B4 and
C2) where inadequacy of the BB model’s approximation can
be detected with a power of 0.316 and 0.556, respectively. Our
power calculations indicate that the BB and 2PT models are
often indistinguishable in terms of the observable data, i.e.,

Table 2
Comparison of the 2PT approximating model and various

data-generating models M(h) considered in Table 1 of Pledger
(2005). log (π2(0)/π(0)) indicates the relative bias in

estimating π(0) that is produced by using model M(h2) to
approximate model M(h). Power corresponds to an α = 0.05
test for distinguishing model M(h2) from each data-generating

model.

M(h) π(0) π2(0) log (π2(0)/π(0)) λ2/n Power

A1 0.447 0.367 −0.20 0.00008 0.050
A5 0.445 0.425 −0.05 1.2e-7 0.050
A6 0.437 0.370 −0.17 0.00019 0.051
B1 0.306 0.195 −0.45 0.00134 0.055
B5 0.326 0.259 −0.23 0.00002 0.050
B6 0.262 0.240 −0.09 0.00039 0.052
C1 0.551 0.275 −0.69 0.00314 0.058
C3 0.480 0.286 −0.52 0.00449 0.064
C4 0.370 0.175 −0.75 0.00605 0.073
C5 0.492 0.286 −0.54 0.00003 0.050
C6 0.316 0.181 −0.56 0.00066 0.053

one can often find parameter values of either model that im-
ply a nearly identical set of conditional capture probabilities
πC
m(x) (x = 1, . . . ,T ). In this situation, an inferential problem

occurs in terms of N estimation if the BB and 2PT models
have different unconditional capture probabilities for the un-
observed individuals because a difference in these probabilities
implies a difference in N estimates. This was the main point
of Link’s (2003) illuminating article. In Tables 1 and 2, it is
clear that when the BB and 2PT models are indistinguishable
(in the sense described earlier), they often have very different
unconditional probabilities of capture πm(0). In these cases,
either model may be used as a data-generating model and in-
duce a “bias” in the other (approximating) model’s estimate of
N; therefore, one cannot claim inferential superiority for either
model in these cases.

We were puzzled initially that some of our analytical re-
sults appear to be inconsistent with Pledger’s (2005; see
Table 2) simulation results. Specifically, our analysis indicates
that the 2PT model’s estimate of π(0) (and thus N) is nega-
tively biased for each of the non-2PT, data-generating models
(Table 2). In contrast, Pledger’s simulation-based estimates of
the mean N̂ for these same data-generating models are either
positively biased, negatively biased, or approximately unbi-
ased. To discover the source of the discrepancy between our
results, we repeated Pledger’s simulation experiments. For the
cases under consideration, we found that the sampling distri-
bution of N̂ (= the MLE of N under the 2PT model) is so
highly skewed that the mean provides a poor measure of cen-
tral tendency. Furthermore, a nonignorable proportion of sim-
ulated samples either failed to converge or produced an MLE
near a boundary of the parameter space (e.g., a support point
for p near 0 that contains almost all the mass). The latter
problem produces estimates N̂ that are orders of magnitude
higher than N and that can profoundly influence a simulation-
based mean if not removed. As an illustration, we simulated
20,000 samples using the Uniform(0,0.3) as a latent distribu-
tion for p (i.e., data-generating model A6). After collecting
these samples into batches of 1000 replicates (= Pledger’s
sample size), we computed a mean N̂ of 92.4 (Monte Carlo
error = 1.1) by excluding 2.3% (on average) of the simulated
samples owing to the estimation problems described earlier.
We also calculated a median N̂ of 82.9 (Monte Carlo error =
0.5), which is substantially lower than the mean owing to the
high level of skewness in the sampling distribution of the es-
timates. The discrepancy between our simulated mean (92.4)
and that reported by Pledger (106) exceeds Monte Carlo error
and probably reflects differences in the criteria used to diag-
nose convergence failure and ill-conditioning of the parame-
ter estimates. (Pledger, 2005 does not report these criteria in
her simulation study.) Regardless, the important point is that
the median N̂ , a better measure of central tendency, suggests
that the 2PT model’s estimator of N is negatively biased for
data-generating model A6. This particular result, as well as
results obtained by simulating samples from each of the other
data-generating models (not reported here), is consistent
with our analytical findings even though the simulation-based
estimates of N no doubt contain additional sources of bias,
such as those due to small sample size.

Our assessment of the BB and 2PT models indicates that
for the data-generating models under consideration, neither
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approximating model provides superior inferences about N.
As population size N increases, however, we expect that the
power to distinguish between these two approximating mod-
els and the data-generating models eventually will increase.
But what is the value of these comparisons? For example,
it should not be surprising that in sufficiently large popula-
tions a 2-point mixture will do a better job of fitting a bi-
modal generating distribution (e.g., C5 and C6) than a beta
distribution—the 2-point mixture places a support point un-
der each mode, whereas the beta distribution splits the dif-
ference. Is it really necessary to simulate these pathologies in
order to confirm the obvious? We do not deny the relative
advantage of the 2PT model in such pathological situations
or in other situations where latent classes of individuals de-
tected with different probabilities are thought to provide the
primary sources of heterogeneity in p. We simply believe that
analysts should carefully consider the sensibility of a model
(and its underlying assumptions) within the context of the
scientific problem before using the model for inference. We
elaborate on this issue in the next section.

3. Choosing Sensible Mixture Models
It is well known that inferences about population size N can
be sensitive to model-specific assumptions about the pat-
tern of variation in individual capture probabilities (Coull
and Agresti, 1999). An estimator of N essentially amounts to
an extrapolation of the number of individuals that have not
been captured using only information from those individuals
observed in the sample (Fienberg, 1972); therefore, it is not
surprising that the extrapolated estimate of the unobserved
individuals can be sensitive to model structure.

In data analysis, an inferential problem occurs if different
models can appear to fit the observed data reasonably well
but yield dramatically different estimates of N. In this situa-
tion, we believe that conventional diagnostics used in model
selection (such as deviance or Akaike’s information criterion)
cannot be relied on for selecting a class of mixture models that
produces valid inferences about N (Dorazio and Royle, 2003).
This view is supported by Link’s (2003) thoughtful analysis
which proves that N is not identifiable unless one assumes a
particular class of distributions to specify the latent variation
in p among individuals. Therefore, to compute a valid infer-
ence for N, we believe an analyst should carefully consider the
distributional form of p (an unverifiable modeling assumption)
prior to the analysis of data. An alternative strategy of fitting
an arbitrary list of candidate models and then computing an
estimate of N that averages over model uncertainty is, in our
opinion, scientifically indefensible.

How should an analyst develop one or more plausible mod-
els for the heterogeneity in capture probabilities? A useful
starting point involves careful consideration of the mecha-
nisms that are likely to have produced different capture rates
for different individuals. For example, if the population com-
prises different age classes or sexes that cannot be observed
but are likely to have been captured at different rates, then
finite mixtures of discrete support may provide reasonable
models of the latent variation in p. On the other hand, if
heterogeneity in p is caused by behavioral differences (e.g.,
activity patterns, habitat preferences, foraging preferences),
differences in exposure of individuals to sampling relative to
their territories, or other phenomena that are impractical or

impossible to observe but likely to vary among individuals,
then mixture models of continuous support are needed. In
these populations, we reject the idea that a finite mixture
of two support points provides a satisfactory approximation
of the potentially infinite variation in capture probabilities, as
suggested by Pledger (2000, 2005). However, it is conceivable
that finite mixtures of continuous support can provide sensi-
ble models of latent heterogeneity in p if different groups of
individuals are thought to have different capture rates and if
heterogeneity in capture rates is thought to exist within each
group. Fitting such models would no doubt present some chal-
lenges to an analyst.
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