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Abstract

We consider the model averaged tail area (MATA) confidence interval proposed

by Turek and Fletcher, CSDA, 2012, in the simple situation in which we average over

two nested linear regression models. We prove that the MATA for any reasonable

weight function belongs to the class of confidence intervals defined by Kabaila and

Giri, JSPI, 2009. Each confidence interval in this class is specified by two functions

b and s. Kabaila and Giri show how to compute these functions so as to optimize

these intervals in terms of satisfying the coverage constraint and minimizing the

expected length for the simpler model, while ensuring that the expected length has

desirable properties for the full model. These Kabaila and Giri “optimized” intervals

provide an upper bound on the performance of the MATA for an arbitrary weight

function. This fact is used to evaluate the MATA for a broad class of weights based

on exponentiating a criterion related to Mallows’ C
P

. Our results show that, while

far from ideal, this MATA performs surprisingly well, provided that we choose a

member of this class that does not put too much weight on the simpler model.
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1 Introduction

The Turek and Fletcher (2012) model averaged tail area confidence interval (MATA)

endpoints are obtained by solving a weighted average of the tail area equations for

the confidence interval endpoints for each model. Turek and Fletcher first consider

giving a weight to each model by exponentiating AIC/2, where AIC is the Akaike

Information Criterion for the model. This is the earliest form of weight used in

frequentist model averaging and was first proposed by Buckland et al. (1997). Turek

and Fletcher also consider MATA for weights obtained by replacing AIC by either

the Akaike Information Criterion corrected for small samples, AIC
c

, or the Bayesian

Information Criterion, BIC. They provide some comparison of the performance of

MATA for these three weights in particular examples using simulation.

We evaluate the performance of the MATA, with nominal coverage 1 � ↵ and

specified weight function, by focusing on the coverage and the scaled expected

length, where the expected length is scaled with respect to the length of the standard

confidence interval (based on the full model) with coverage equal to the minimum

coverage probability of the MATA. We consider a simple situation in which we av-

erage over a linear regression model with independent and identically distributed

normal errors (M2) and the same model with a linear constraint on the regression

parameters (M1). Kabaila, Welsh and Abeysekera (2015) derive computationally

convenient, exact expressions for the coverage probability and the scaled expected

length of the MATA, so that we can readily obtain highly-accurate numerical results

without resorting to simulations. In the same simple situation, we consider MATA

with any reasonable weight function. We prove that the MATA with any reasonable

weight function belongs to a subclass of the class of confidence intervals, denoted by

J(b, s), defined by Kabaila and Giri (2009). Each confidence interval in this class

is specified by two functions: b and s. These authors show how to compute these

functions so that the scaled expected length is minimized under model M1, subject

to the constraints that (a) the coverage probability of this confidence interval never

falls below 1� ↵, (b) the maximum scaled expected length under model M2 is not

too large and (c) as the data becomes less consistent with the model M1, the scaled

expected length approaches 1. They found that (to within computational accuracy)
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the coverage probability of the resulting confidence interval is 1�↵ throughout the

parameter space. These Kabaila and Giri optimized confidence intervals then pro-

vide an upper bound on the performance of the MATA for any reasonable weight

function. Knowing how the Kabaila and Giri optimized confidence intervals perform

enables us to formulate four key scenarios within which we structure our examina-

tion of the performance of the MATA with specified weight. These scenarios are

used to evaluate the MATA for a broad class of weights based on exponentiating

criteria related to Mallows’ C
P

. Our results show that, while far from ideal, this

MATA performs surprisingly well, provided that we choose a member of this class

that does not put too much weight on the simpler model M1.

2 The MATA with a general weight function

2.1 The models

Suppose that the model M2 is given by

Y = X� + ",

where Y is a random n-vector of responses, X is a known n ⇥ p model matrix

with p linearly independent columns, � is an unknown p-vector parameter and

" ⇠ N(0,�2
I

n

), with �2 an unknown positive parameter. We write m = n � p

throughout the paper. Suppose that we are interested in making inference about

the parameter ✓ = a

>
�, where a is a specified nonzero p-vector. Suppose also that

we define the parameter ⌧ = c

>
�� t, where c is a specified nonzero p-vector that is

linearly independent of a and t is a specified number. The model M1 is M2 with

⌧ = 0.

Let b� be the least squares estimator of � and let b�2 = (Y �X

b

�)>(Y �X

b

�)/m

be the usual unbiased estimator of �2. Set b✓ = a

>
b

� and b⌧ = c

>
b

� � t. Define

v
✓

= a

>(X>
X)�1

a and v
⌧

= c

>(X>
X)�1

c. Then two important quantities are

the known correlation ⇢ = a

>(X>
X)�1

c/(v
✓

v
⌧

)1/2 between b✓ and b⌧ and the scaled

unknown parameter � = ⌧
��

�v
1/2
⌧

�

. We denote the estimator of � by b� = b⌧
��

b�v
1/2
⌧

�

.
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2.2 The MATA

The MATA is obtained by averaging the equations defining the tail area confidence

intervals under the models M2 and M1. Suppose that the weight function w :

[0,1) ! [0, 1] is a decreasing continuous function, such that w(z) approaches 0

as z ! 1. Any reasonable weight function must be of this form. For each a and

� 2 R, define

k(a, �) = w(�2)G
m+1

(

✓

m+ 1

m+ �2

◆1/2 a� ⇢ �

(1� ⇢2)1/2

)

+
�

1� w(�2)
 

G
m

(a),

where G
m

denotes the distribution function of the Student t distribution with m

degrees of freedom. The MATA, with nominal coverage 1� ↵, is
h

b✓
`

, b✓
u

i

, where b✓
l

and b✓
u

are the solutions for ✓ of

k
n

(b✓ � ✓)/(b�v1/2
✓

), b�
o

= 1� ↵/2 and k
n

(b✓ � ✓)/(b�v1/2
⌧

), b�
o

= ↵/2,

respectively. Equivalently, if we let a
`

(�) and a
u

(�) be the solutions for a of k(a, �) =

1� ↵/2 and k(a, �) = ↵/2, respectively, then the endpoints of the MATA are given

by

b✓
`

= b✓ � v
1/2
✓

b� a
`

(b�)

b✓
u

= b✓ � v
1/2
✓

b� a
u

(b�).
(1)

The notation is slightly di↵erent from that used in Kabaila, Welsh and Abeysekara

(2015), but the interval is the same.

2.3 The Kabaila and Giri optimized confidence

intervals

The MATA, with nominal coverage 1 � ↵, is a member of the class of confidence

intervals J(b, s) defined by Kabaila and Giri (2009). To see this, note that the centre

and half-width of the MATA (1) are b✓�v
1/2
✓

b�
�

a
`

(b�)+a
u

(b�)
 

/2 and v
1/2
✓

b�
�

a
`

(b�)�

a
u

(b�)
 

/2, respectively. As shown in Appendix A, a
`

(�) + a
u

(�) and a
`

(�) � a
u

(�)

are odd and even functions of �, respectively, and a
`

(�) + a
u

(�) and a
`

(�)� a
u

(�)

approach 0 and 2G�1
m

(1�↵/2), respectively, as � ! 1. Now define the functions b

and s by b(�) = {a
`

(�)+ a
u

(�)}/2 and s(�) = {a
`

(�)� a
u

(�)}/2. Then the MATA,

4



with nominal coverage 1� ↵, can be written as

h

b✓ � v
1/2
✓

b� b(b�)� v
1/2
✓

b� s(|b�|), b✓ � v
1/2
✓

b� b(b�) + v
1/2
✓

b� s(|b�|)
i

,

which is of the form J(b, s) considered by Kabaila and Giri (2009). As proved by

these authors, for given 1�↵ and given functions b and s, the coverage probability

and the scaled expected length of J(b, s) are functions of the known quantities (m, ⇢)

and the unknown parameter �. Since Kabaila and Giri (2009) optimized the choice

of b and s separately for each given value of (m, ⇢), we cannot expect that, for

any given weight function w, the MATA will perform better than the optimized

confidence interval of Kabaila and Giri (2009).

3 Weight functions based on Mallows’ C
P

For the models M2 and M1 the Generalized Information Criteria (GIC; Nishii,

1984, Rao and Wu, 1989) are

GIC2 = n log{mb�2/n}+ dp

and

GIC1 = n log[{(b⌧2/v
⌧

) +mb�2}/n] + d(p� 1),

respectively, where d is a specified nonnegative number. The choices d = 2 and

d = log(n) yield AIC and BIC, respectively. The corresponding weight function is

w⇤
�

b�2; d
�

=
exp

�

� 1
2(GIC1 �GICmin)

 

exp
�

� 1
2(GIC1 �GICmin)

 

+ exp
�

� 1
2(GIC2 �GICmin)

 

=
1

1 +
n

1 + b�2/m
o

n/2
exp(�d/2)

,

where GICmin = min(GIC1,GIC2).

We now motivate the use of this weight function, with the power n/2 replaced

by m/2. Define the criteria

MIC2 = m log{mb�2/n}+ dp

and

MIC1 = m log[{(b⌧2/v
⌧

) +mb�2}/n] + d(p� 1),
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for the models M2 and M1, respectively. As we show in Appendix C, choosing

M2 if and only if (Mallows’ C
P

for M2)  (Mallows C
P

for M1) is equivalent to

choosing M2 if and only if MIC2  MIC1, for d = m log(1 + (2/m)). The criteria

MIC2 and MIC1 lead to the weight function

w(b�2; d) =
exp

�

� 1
2(MIC1 �MICmin)

 

exp
�

� 1
2(MIC1 �MICmin)

 

+ exp
�

� 1
2(MIC2 �MICmin)

 

=
1

1 +
⇣

1 + b�2/m
⌘

m/2
exp(�d/2)

,

where MICmin = min(MIC1,MIC2). The criteria MIC2 and MIC1 are close to the

criteria GIC2 and GIC1, respectively, for p fixed and n large, but replacing n/2 by

m/2 achieves a useful simplification; the coverage probability and scaled expected

length of the MATA, with nominal coverage 1 � ↵, are determined by the known

quantities (d,m, ⇢) and the unknown parameter � (as in Kabaila and Giri, 2009)

rather than by (d, n, p, ⇢) and � (as shown in Theorems 1 and 2 of Kabaila, Welsh

and Abeysekera, 2015). The reduction from the 4 known quantities (d, n, p, ⇢) to

the 3 known quantities (d,m, ⇢) represents a considerable gain in simplicity.

As also noted in Appendix C, using the MIC to choose between the models M1

and M2 is equivalent to testing the null hypothesis ⌧ = 0 (i.e. M1) against the

alternative hypothesis ⌧ 6= 0 with level of significance

2

 

1�G
m

"

m1/2

⇢

exp

✓

d

m

◆

� 1

�1/2
#!

.

Large values of d correspond to small values of this level of significance and so can

be interpreted as putting more weight on the simpler model M1.

The interpretation of d is quite di↵erent in the model selection and model av-

eraging contexts. In the model selection context, setting d = 0 means that there

is no penalty on the number of parameters and so, for the models M1 and M2,

we always choose model M2. By contrast, in the model averaging context, setting

d = 0 leads to w(b�2; 0) = 1
��

1 + (1 + b�2/m)m/2
 

so we still average over the two

models.
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4 How well can we expect MATA to perform?

The performance of the Kabaila and Giri (2009, 2013) optimized confidence interval

relative to the standard 1�↵ Student t confidence interval under model M2 can be

described under four di↵erent scenarios defined by the values of m and ⇢, as set out

in Table 1. The MATA cannot perform better than the Kabaila and Giri optimized

confidence interval so, for each of the four scenarios, we compare the coverage and

scaled expected length properties of the MATA against the best we can hope for

from the Kabaila and Giri optimized confidence interval. Details of the methods

used to compute the coverage and scaled expected length of the MATA are given in

Appendix A.

|⇢| is small |⇢| is not small

m is not small Scenario 1 Scenario 2

Cannot do better than the Some improvement over the

standard 1� ↵ t interval standard 1� ↵ t interval

for ✓ for ✓

m is small Scenario 3 Scenario 4

(i.e. 1, 2 or 3) Some improvement over the Maximum improvement over

standard 1� ↵ t interval standard 1� ↵ t interval

for ✓ for ✓

Table 1: Performance of the optimized confidence interval of Kabaila and Giri (2009) for

various values of the known quantities m and ⇢.

In all our numerical work, we fix the nominal coverage 1�↵ = 0.95 and vary the

values of ⇢ and m according to the di↵erent scenarios (other than the first which

we are able to treat theoretically). As in Kabaila, Welsh and Abeysekera (2015),

for each scenario we can compute and plot the coverage and scaled expected length

of the MATA for fixed d as functions of �. Typically, for fixed d, the coverage is

greater than 0.95, decreases to a minimum value and then increases to asymptote at

0.95 as � increases; the scaled expected length is less than one for � = 0, increases

to a maximum and then decreases to an asymptote (often greater than one) as �
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increases. Some examples of these kinds of figures are included in Kabaila, Welsh

and Abeysekera (2015). For our present purposes, it is useful to summarise the above

results over di↵erent choices of d 2 [0, 8] by presenting the minimum coverage and

maximum scaled expected length over � for each fixed d and the scaled expected

length at � = 0 for each fixed d as functions of d. We make these quantities

positive with a baseline value of zero by computing the coverage loss (cov loss),

scaled expected length loss (sel loss) and the scaled expected length gain (sel gain),

defined as follows

cov loss = (1� ↵)� (minimum coverage)

sel loss = (maximum scaled expected length)� 1

sel gain = 1� (scaled expected length at � = 0).

Ideally, one would have a high sel gain together with small cov loss and sel loss.

4.1 Scenario 1

This scenario includes the cloud seeding example in Section 3 of Kabaila, Welsh

and Abeysekera (2015) where ⇢ = 0.2472 and m = 11. For Scenario 1 we cannot

expect the MATA, with nominal coverage 1 � ↵, to perform any better than the

standard 1�↵ confidence interval for ✓ based on model M2 so the best hope is that

MATA recovers the standard 1 � ↵ confidence interval for ✓ based on model M2.

That is, that

k(a, b�) ⇡ G
m

(a). (2)

Indeed, if |⇢| is small, then

k(a, b�) ⇡ w(b�2)G
m+1

(

✓

m+ 1

m+ b�2

◆1/2

a

)

+ {1� w(b�2)}G
m

(a).

If, in addition, m is not small, then G
m+1 ⇡ G

m

and, since w is a decreasing

continuous function, such that w(z) approaches 0 as z ! 1,

k(a, b�) ⇡ w(b�2)G
m

(a) + {1� w(b�2)}G
m

(a) = G
m

(a),

so (2) holds. In Scenario 1, for given ⇢ and m, as d increases MATA is less likely

to recover the standard 1� ↵ confidence interval for ✓ based on model M2. So, in

Scenario 1 a good choice of d is 0.
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4.2 Scenario 2

Graphs of cov loss, sel loss and sel gain as functions of d 2 [0, 4] for ⇢ = 0.8 and

m 2 {10, 50, 200} are shown in Figure 1. These functions are displayed only for

d 2 [0, 4] because cov loss and sel loss are both increasing functions and sel gain is

a decreasing function of d in [4, 8]. In other words, when searching for a good value

of d there is no point in considering values of d in [4, 8]. For m = 10, as we increase

d from 0 to 4, the cov loss is an increasing function of d, sel gain changes slowly

and sel loss increases. In this circumstance, a good choice of d is 0. Similarly, for

m = 50 and m = 200, a good choice of d is 0. These results show that there is not

much gain from using the MATA in Scenario 2.

4.3 Scenario 3

Graphs of cov loss, sel loss and sel gain as functions of d 2 [0, 4] for ⇢ = 0 and

m 2 {1, 2, 3} are shown in Figure 2. For m = 2 and m = 3, the cov loss is a

decreasing function of d in [4, 8]. Also, for m = 1, the cov loss is initially an

increasing function and then a decreasing function of d in [4, 8]. However, the cov

loss remains small for all d in [0, 8] and sel loss is an increasing function of d in

[0, 8]. Therefore, when searching for a good value of d, it seems reasonable to

restrict consideration to values of d in [4, 8]. For m = 1, as we increase d from 0

to 4, the sel gain increases slowly and sel loss increases much more quickly. In this

circumstance, a good choice of d is 0. Similarly, for m = 2 and m = 3, a good choice

of d is 0. In Scenario 3, there is a small gain from using the MATA, provided that

we choose d near 0.

4.4 Scenario 4

Graphs of cov loss, sel loss and sel gain as functions of d 2 [0, 4] for ⇢ = 0.8 and

m 2 {1, 2, 3} are shown in Figure 3. These functions are displayed only for d 2 [0, 4]

because cov loss and sel loss are both increasing functions and sel gain is a decreasing

function of d in [4, 8]. In other words, when searching for a good value of d there

is no point in considering values of d in [4, 8]. For m = 1, as we increase d from

0 to 4, the cov loss is a nondecreasing function of d, sel gain increases slowly and
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sel loss increases much more quickly. In this circumstance, a good choice of d is 0.

Similarly, for m = 2 and m = 3, a good choice of d is 0.

5 Conclusion

We have examined the exact coverage and scaled expected length of the MATA for

a parameter ✓, with nominal level 1 � ↵, in a particular simple situation in which

there are two linear regression models (di↵ering in only a single parameter ⌧) to

average over. For weight functions based on Mallows’ C
P

(specified by d 2 [0, 8]), we

showed that both the coverage and the scaled expected length depend on m = n�p,

the correlation ⇢ between the least squares estimators b✓ and b⌧ , and the unknown

parameter � = ⌧
��

�v
1/2
⌧

�

. We assess the MATA according to two losses, using the

minimum coverage and the maximum scaled expected length over � and a gain,

using the scaled expected length at � = 0 i.e. when the simpler model M1 is true.

The results show that, although the MATA is far from ideal, it performs surprisingly

well, provided that we do not put too much weight on the model M1.
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Appendix A: The MATA is in the class of

confidence intervals J(b, s)

We show that a
`

(�) + a
u

(�) and a
`

(�) � a
u

(�) are odd and even functions of �,

respectively, as follows. Recall that a
u

(��) is the solution for a of k(a,��) = ↵/2

i.e. a
u

(��) is the solution for a of

w(�2)G
m+1

(

✓

m+ 1

m+ �2

◆1/2 a+ ⇢ �

(1� ⇢2)1/2

)

+
�

1� w(�2)
 

G
m

(a) =
↵

2
.

Using the fact that the probability density function of a Student t distribution is

an even function, we can show that

w(�2)G
m+1

(

✓

m+ 1

m+ �2

◆1/2 a
u

(��) + ⇢ �

(1� ⇢2)1/2

)

+
�

1� w(�2)
 

G
m

{a
u

(��)}

= w(�2)

"

1�G
m+1

(

�
✓

m+ 1

m+ �2

◆1/2 a
u

(��) + ⇢ �

(1� ⇢2)1/2

)#

+
�

1� w(�2)
 

[1�G
m

{�a
u

(��)}]

= 1 � w(�2)G
m+1

(

✓

m+ 1

m+ �2

◆1/2 �a
u

(��)� ⇢ �

(1� ⇢2)1/2

)

� {1� w(�2)}G
m

{�a
u

(��)}

so a
u

(��) = �a
`

(�). Thus a
`

(��) = �a
u

(�) and it follows that a
`

(�) + a
u

(�) and

a
`

(�)� a
u

(�) are odd and even functions of �, respectively.

We now show that a
`

(�)+a
u

(�) and a
`

(�)�a
u

(�) approach 0 and 2G�1
m

(1�↵/2),

respectively, as � ! 1. As � ! 1, k(a, �) approaches G
m

(a). Therefore a
`

(�)

and a
u

(�) approach the solutions for a of G
m

(a) = 1 � ↵/2 and G
m

(a) = ↵/2,

respectively. Thus a
`

(�) + a
u

(�) and a
`

(�)� a
u

(�) approach 0 and 2G�1
m

(1� ↵/2),

respectively, as � ! 1.
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Appendix B: Computational methods

The computation of the coverage and the scaled expected length of the MATA are

implemented using Theorems 1 and 2 of Kabaila, Welsh and Abeysekera (2015).

In the following two sections, we establish results which are needed to support the

computations.

Truncation of integrals

To compute the coverage and the scaled expected length of the MATA, we need

to truncate the integrals in Theorems 1 and 2 of Kabaila, Welsh and Abeysekera

(2015). The coverage probability integral in Theorem 1 is relatively easy to handle

because cumulative distribution functions are bounded. If we write the integrand

in Theorem 1 as �
m

(x, y, ⇢, �), we have
�

�

�

�

Pr(b✓
`

 ✓  b✓
u

)�
Z

yu

y`

Z

xu

x`

�
m

(x, y, ⇢, �)dxdy

�

�

�

�


�

�

�

�

Z 1

0

Z 1

�1
�

m

(x, y, ⇢, �)dxdy �
Z

yu

y`

Z 1

�1
�

m

(x, y, ⇢, �)dxdy

�

�

�

�

+

�

�

�

�

Z

yu

y`

Z 1

�1
�

m

(x, y, ⇢, �)dxdy �
Z

yu

y`

Z

xu

x`

�
m

(x, y, ⇢, �)dxdy

�

�

�

�


Z 1

yu

Z 1

�1
|�

m

(x, y, ⇢, �)|dxdy +
Z

y`

0

Z 1

�1
|�

m

(x, y, ⇢, �)|dxdy

+

Z

yu

y`

Z 1

xu

|�
m

(x, y, ⇢, �)|dxdy +
Z

yu

y`

Z

x`

�1
|�

m

(x, y, ⇢, �)|dxdy.

Now |�
m

(x, y, ⇢, �)|  �(x� �)g
m

(y) so

Z 1

yu

Z 1

�1
|�

m

(x, y, ⇢, �)|dxdy  1�G
m

(y
u

),

Z

y`

0

Z 1

�1
|�

m

(x, y, ⇢, �)|dxdy  G
m

(y
`

),

Z

yu

y`

Z 1

xu

|�
m

(x, y, ⇢, �)|dxdy  {G
m

(y
u

)�G
m

(y
`

)}{1� �(x
u

� �)}

and
Z

yu

y`

Z

x`

�1
|�

m

(x, y, ⇢, �)|dxdy  {G
m

(y
u

)�G
m

(y
`

)}�(x
`

� �).

For any given small positive number ✏, set y
`

= G�1
m

(✏/4) and y
u

= G�1
m

(1� ✏/4) so

the first two terms are both less than or equal to ✏/4. If we also set x
`

= ��1(✏/4)+�

and x
u

= ��1(1 � ✏/4) + �, the last two terms are both less than or equal to
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(1� ✏/2)✏/4  ✏/4 and the sum of all the terms is less than or equal to ✏. Thus the

e↵ect of the truncation can be made as small as we want.

The scaled expected length is more di�cult to handle because the integrand is

unbounded. Nonetheless, �1�↵/2(x, y) � �
↵/2(x, y) is approximately constant in x

and linear in y and we can use this approximation to similarly find truncation values

for the integrals in Theorem 2 so that the e↵ect of the truncation is arbitrarily small.

Computation of �
u

(x, y)

The formulae for the coverage probability and the scaled expected length of the

MATA, with nominal coverage probability 1 � ↵, given by Kabaila, Welsh and

Abeysekera (2015) require the computation of �
u

(x, y), which is defined to be the

solution for � of

h(�, x, y) = u,

where 0 < u < 1 and

h(�, x, y) = w(x2/y2)G
m+1(r1(�, x, y)) + {1� w(x2/y2)}G

m

(r2(�, y)). (3)

The definitions of r1(�, x, y) and r2(�, y) are given on p.6 of Kabaila, Welsh and

Abeysekera (2015). The numerical computation of �
u

(x, y) typically requires the

provision of an interval known to contain �
u

(x, y). The following result provides

just such an interval.

Result A1. Let �(1)
u

(x, y) denote the solution for � of

G
m+1(r1(�, x, y)) = u.

Also, let �(2)
u

(y) denote the solution for � of

G
m

(r2(�, y)) = u.

The following are explicit expressions for �(1)
u

(x, y) and �
(2)
u

(y):

�(1)
u

(x, y) = ⇢x+G�1
m+1(u) y

✓

m+ (x2/y2)

m+ 1

◆1/2

(1� ⇢2)1/2

�(2)
u

(y) = G�1
m

(u) y.

13



Then

�
u

(x, y) 2
h

min
�

�(1)
u

(x, y), �(2)
u

(y)
�

,max
�

�(1)
u

(x, y), �(2)
u

(y)
�

i

(4)

Proof Suppose that (x, y) is given. Since r1(�, x, y) is a continuous increasing func-

tion of �, G
m+1(r1(�, x, y)) is also a continuous increasing function of �. Also, since

r2(�, y) is a continuous increasing function of �, G
m

(r2(�, y)) is also a continuous

increasing function of �. It follows from (3) that h(�, x, y) is a continuous increasing

function of � and that

min
�

G
m+1(r1(�, x, y)), Gm

(r2(�, y))
�

 h(�, x, y)  max
�

G
m+1(r1(�, x, y)), Gm

(r2(�, y))
�

.

It follows from this that (4) is satisfied.

Appendix C: Weights based on Mallows’ C
P

Let RSS = (Y �X

b

�)T (Y �X

b

�) = mb�2. Also, let RSS⇤ = (Y �X

b

�⇤)
T (Y �X

b

�⇤),

where b�⇤ denotes the least squares estimator of � subject to the constraint ⌧ = 0.

Note that RSS⇤ = b⌧2/v⌧ +mb�2. Mallows’ C
P

for M2 is

RSS

RSS/m
� n+ 2p = n� p� n+ 2p = p

and Mallows’ C
P

for M1 is

RSS⇤
RSS/m

� n+ 2(p� 1) =
(b⌧2/v

⌧

) +mb�2

b�2
� n+ 2p� 1.

Result C1. Choosing M2 if and only if (Mallows’ C
P

for M2)  (Mallows C
P

for

M1) is equivalent to choosing M2 if and only if MIC2  MIC1, for d = m log(1 +

(2/m)).

Proof : The result follows from the fact that (Mallows’ C
P

for M2)  (Mallows C
P

for M1) is equivalent to the following four statements

m+ 2  (b⌧2/v
⌧

) +mb�2

b�2
,

m log(b�2/n) +m log(m+ 2)  m log[{(b⌧2/v
⌧

) +mb�2}/n],

m log(b�2/n) +m log(m) +m log(1 + 2/m)  m log[{(b⌧2/v
⌧

) +mb�2}/n],

m log(mb�2/n)  m log[{(b⌧2/v
⌧

) +mb�2}/n]� d,

14



where d = m log(1 + (2/m)), and the last of these is equivalent to MIC2  MIC1.

Result C2. Choosing M2 if and only if MIC2  MIC1 is equivalent to testing

the null hypothesis ⌧ = 0 against the alternative hypothesis ⌧ 6= 0 with level of

significance

2

 

1�G
m

"

m

⇢

exp

✓

d

m

◆

� 1

�1/2
#!

.

Proof : The null hypothesis H0 : ⌧ = 0 corresponds to choosing M1 so the level of

significance of the test is the probability of choosing M2 under the null hypothesis

H0 and

Pr(MIC1 � MIC2)

= Pr
�

m log[{(b⌧2/v
⌧

) +mb�2}/n]� d � m log(mb�2/n)
�

= Pr

⇢

(b⌧2/v
⌧

) +mb�2

mb�2
� exp

✓

d

m

◆�

= Pr



b�2 � m

⇢

exp

✓

d

m

◆

� 1

��

= 1� Pr

"

�m1/2

⇢

exp

✓

d

m

◆

� 1

�1/2

 b�  m1/2

⇢

exp

✓

d

m

◆

� 1

�1/2
#

= 1�G
m

"

m1/2

⇢

exp

✓

d

m

◆

� 1

�1/2
#

+G
m

"

�m1/2

⇢

exp

✓

d

m

◆

� 1

�1/2
#

under H0

= 2

 

1�G
m

"

m1/2

⇢

exp

✓

d

m

◆

� 1

�1/2
#!

under H0.
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Figure 1: Graphs of the cov loss, sel loss and sel gain of the MATA, with weight determined by

d and nominal coverage 95%. Here, ⇢ = Corr(b✓, b⌧) = 0.8 and m 2 {10, 50, 200}.
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Figure 2: Graphs of the cov loss, sel loss and sel gain of the MATA, with weight determined by

d and nominal coverage 95%. Here, ⇢ = Corr(b✓, b⌧) = 0 and m 2 {1, 2, 3}.
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Figure 3: Graphs of the cov loss, sel loss and sel gain of the MATA, with weight determined by

d and nominal coverage 95%. Here, ⇢ = Corr(b✓, b⌧) = 0.8 and m 2 {1, 2, 3}.
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