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ABSTRACT
We investigate the performance of spherical wavelets in discriminating between standard in-
flationary (Gaussian) and non-Gaussian models. For the latter we consider small perturbations
of the Gaussian model in which an artificially specified skewness or kurtosis is introduced
through the Edgeworth expansion. By combining all the information present in all the wavelet
scales with the Fisher discriminant, we find that the spherical Mexican Hat wavelets are clearly
superior to the spherical Haar wavelets. The former can detect levels of skewness and kurtosis
of ≈1 per cent for 33-arcmin resolution, an order of magnitude smaller than the latter. Also,
as expected, both wavelets are better for discriminating between the models than the direct
consideration of moments of the temperature maps. The introduction of instrumental white
noise in the maps, S/N = 1, does not change the main results of this paper.

Key words: methods: data analysis – cosmic microwave background.

1 I N T RO D U C T I O N

Most of the analyses of cosmic microwave background (CMB) data
focus on the measurement of the power spectrum of temperature
fluctuations. Information on this second-order moment is crucial to
determine the fundamental parameters of the cosmological model
corresponding to our Universe. However, this determination relies
on the Gaussian hypothesis for the temperature distribution. Estab-
lishing the statistical character of the CMB fluctuations will provide
crucial evidence about the physical origin of the primordial density
fluctuations in the early universe. Simple inflationary models predict
a Gaussian, homogeneous and isotropic random field for the temper-
ature fluctuations. On the contrary, non-standard inflation and cos-
mic defects generically predict non-Gaussian random fields. Recent
CMB observations by Boomerang, DASI and MAXIMA-1 (Hanani
et al. 2000; Halverson et al. 2002; Netterfield et al. 2002) have es-
tablished the presence of multiple acoustic peaks in the CMB power
spectrum for the first time. As a consequence, cosmic defects can-
not be the dominant source of density perturbations in the Universe.
Even if cosmic defects are present as sub-dominant components,
confirmation of their existence will be best made by appropriate
techniques searching for non-Gaussian features in the CMB maps.

Because a random field can depart from a Gaussian one in many
different ways, there is no unique way to detect and characterize
deviations from Gaussianity. Thus, depending on the kind of fea-
tures one is looking for some specific methods will prove to be
more efficient than others. Efficient methods are able to extract rel-
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evant information on the non-Gaussian nature of the data which
is otherwise hidden in the temperature fluctuation maps. A large
number of methods have been already proposed to search for non-
Gaussianity in CMB maps. The methods can be grouped by the
spaces (real, Fourier, . . .) in which they act. In real space, standard
quantities used are the cumulants which contain information on
the one-dimensional probability distribution function (1-pdf ) only.
Information on the n-pdf can be obtained through the Edgeworth
expansion (Contaldi et al. 2000) or alternative expansions with a
proper normalization (Rocha et al. 2001). Other quantities focus
on topological and geometric statistics, e.g. Minkowski functionals
implemented on the sphere (Schmalzing & Górski 1998); statistics
of excursion sets, e.g. characteristics of peaks (Barreiro, Martı́nez-
González & Sanz 2001), extrema correlation function (Heavens &
Gupta 2001); geometrical characteristics of polarization have also
already been investigated (Naselsky & Novikov 1998). Multifractal
analysis and roughness have been applied to the COBE-Differential
Microwave Radiometer (DMR) data (Diego et al. 1999; Mollerach
et al. 1999). In Fourier space, the bispectrum has been applied in
several occasions to analyse the COBE-DMR data (see e.g. Ferreira,
Magueijo & Górski 1998) as well as an extension to include possi-
ble correlations among multipoles (Magueijo 2000). An alternative
approach is to work in eigen space, extracting the eigenmodes from
a principal component analysis. This approach has been taken by
Bromley & Tegmark (1999) for the COBE-DMR data and by Wu et
al. (2001) for the MAXIMA-1 data. In spite of all this effort there is
not any strong evidence of deviations from Gaussianity in the CMB
up to date (see however Magueijo 2000 for a possible deviation).
More definitive conclusions about the statistical distribution of the
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CMB fluctuations are expected from data analyses of present and
future sensitive experiments at arcmin resolution.

In this work we concentrate on wavelet analyses. As it is often
pointed out, wavelet analysis is a very useful tool for data analysis
as a result of its space-frequency localization. It has already been
demonstrated in many applications in a wide variety of scientific
fields. In particular in relation to the CMB the COBE-DMR data has
been studied with several wavelet bases acting on the faces of the
QuadCube COBE pixelization (Pando, Valls-Gabaud & Fang 1998;
Mukherjee, Hobson & Lasenby 2000; Aghanim et al. 2001). More
appropriate analyses should involve the use of spherical wavelets,
as in Tenorio et al. (1999). More recently, Barreiro et al. (2000)
and Cayón et al. (2001) have convolved the COBE-DMR data with
spherical wavelets in the HEALPIX pixelization (Górski, Hivon &
Wandelt 1999) to test the Gaussianity of these data. Those works
used the Spherical Haar wavelets (SHW) and the Spherical Mexican
Hat wavelets (SMHW), respectively.

It is our aim in this work to confront the performance of these
two spherical wavelet bases proposed for discriminating between
standard inflationary (Gaussian) and non-Gaussian models which
contain artificially specified moments (skewness or kurtosis) in the
temperature distribution. Physically motivated non-Gaussian fea-
tures can enter the CMB maps in many ways. Cosmic defects can
produce linear discontinuities (cosmic strings, Kaiser & Stebbins
1986), hot spots (global monopoles Coulson et al. 1994) or cold and
hot spots (cosmic textures, Turok & Spergel 1992). Non-standard
inflationary models, e.g. with several interacting scalar fields, are
expected to produce a qualitatively different non-Gaussianity. In par-
ticular, models with an extra quadratic term in the potential (Linde
& Mukhanov 1997) generate a clear signal in the third moment
(Verde et al. 2000; Komatsu & Spergel 2001). In any case, it is very
difficult to imagine a non-Gaussian primordial model producing no
significant amount of neither of the two low-order moments.

The paper is structured as follows. In Section 2 we introduce
the SMHW. Section 3 summarizes the main properties of the SHW
and the procedure to calculate their coefficients. All-sky simulated
non-Gaussian CMB maps at arcmin resolution, with a given power
spectrum and artificially specified skewness or kurtosis, are gener-
ated in Section 4. In Section 5 we present optimal statistics based
on the wavelet coefficients to get a maximum discriminating power
between the Gaussian and non-Gaussian temperature maps. The
main results are given in Section 6 and we summarize the main
conclusions of the paper in Section 7.

2 T H E S P H E R I C A L M E X I C A N
H AT WAV E L E T S

Future CMB missions will provide temperature data covering all or
almost all the sphere at arcmin resolution. It is thus necessary to have
convenient pixelization of the sphere which allows efficient analyses
of the data. Wavelets defined on the plane have been widely used
in astrophysical applications during the last years. In particular, the
Mexican Hat wavelet family has been successfully used to extract
point sources from CMB maps (Cayón et al. 2000; Vielva et al.
2001). However, applications of spherical wavelets have been very
scarce and limited to a few families of wavelets. Below we describe
a procedure to extend the Mexican Hat wavelets to the sphere.

2.1 The MEXHAT on R2

A continuous wavelet family on the plane R2 is a set of filters built
from a mother wavelet ψ(x), �(x; b, R) = (1/R)ψ[(|x − b|)/R]

(we only consider isotropic wavelets). ψ(x) satisfies the following
conditions:∫

dx ψ(x) = 0 (compensation), (1)

Cψ ≡ (2π)2

∫
dq q−1ψ2(q) < ∞ (admissibility), (2)

where b defines a translation and R a scale, i.e. we consider a three-
parameter family of filters. ψ(q) is the Fourier transform of ψ and
we have introduced the standard normalization∫

dx�2(x; R) = 1

R2

∫
dxψ2(x) = 1, x ≡ |x|. (3)

(i) Analysis. Let us consider a function on the plane f (x). The
continuous wavelet transform with respect to � is defined as the
linear operation

w(b, R) = ∫
dx f (x)�(x; b, R) = 1

R

∫
dx f (x + b)ψ(x/R). (4)

w(b, R) are the wavelet coefficients dependent on three parameters.
(ii) Synthesis. It can be proven that for any ψ the following

equality holds:∫
dR d bR−5ψ

( |x − b|
R

)
ψ

( |x′ − b|
R

)
= Cψδ(x − x′), (5)

where δ(x) is the Dirac distribution.
A straightforward calculation based on the previous equation

leads to the continuous reconstruction formula

f (x) = 1

Cψ

∫
dR db R−4w (b, R) ψ

( |x − b|
R

)
. (6)

(iii) The MEXHAT wavelets. A particular example is the
MEXHAT wavelet, defined by

�(x ; R) ≡ �(x; 0, R)

= 1

(2π)1/2 R

[
2 −

( x

R

)2
]

e−x2/2R2
, x ≡ |x|

. (7)

This wavelet (introduced by Marr & Hildreth 1980) is proportional
to the 2D Laplacian of the Gaussian function. It has been extensively
used in the literature to detect structure on a 2D image (e.g. in
astrophysics to detect point sources in a noisy background).

2.2 The MEXHAT on S2

For CMB analyses, we are interested in the extension of these
isotropic wavelets to the sphere. Recently, Antoine & Vandergheynst
(1998) have followed a group theory approach to deal with this prob-
lem. This extension incorporates four basic properties: (i) the basic
function is a compensated filter, (ii) translations, (iii) dilations and
(iv) Euclidean limit for small angles. They conclude that the stere-
ographic projection on the sphere is the appropriate one to translate
the mentioned properties from the plane to the sphere. Such a pro-
jection is defined by (x) �→ (θ, φ)

x1 = 2 tan
θ

2
cos φ, x2 = 2 tan

θ

2
sin φ, (8)

where (θ, φ) represent polar coordinates on S2 and (y ≡ 2 tan θ/2, φ)
are polar coordinates in the tangent plane to the north pole
(see Fig. 1).
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θ

X

Figure 1. Stereographic projection to translate the properties of the Mexican
Hat wavelet from the plane to the sphere.

Therefore, the isotropic wavelet �(x ; R) transforms to

�S(θ ; R) ∝
(

cos
θ

2

)−4

�

(
x ≡ 2 tan

θ

2
; R

)
. (9)

It can be proven that the new wavelet on S2 incorporates the basic
properties, i.e. (i) it is a compensated filter (

∫
dθ dφ sin θ�S(θ ; R) =

0), (ii) translations are defined by translations along the sphere, i.e.
rotations about the centre of the sphere, (iii) the dilations are defined
by the stereographic projection of dilations on the plane and (iv) for
small angles one recovers the Euclidean limit.

(i) Analysis. Let us consider a function on the sphere f (θ, φ).
The continuous wavelet transform with respect to �S(θ ; R) is de-
fined as the linear operation

w̃(x, R) =
∫

dθ ′dφ′ sin θ ′ f̃ (x + µ)�S(θ ′; R). (10)

x ≡ 2 tan
θ

2
(cos φ, sin φ),

µ ≡ 2 tan
θ ′

2
(cos φ′, sin φ′),

f̃ (x) ≡ f (θ, φ), (11)

where w(θ, φ; R) ≡ w̃(x, R) are the wavelet coefficients dependent
on three parameters.

(ii) Synthesis:. A straightforward calculation based on equation
(5) leads, after stereographic projection, to the continuous recon-
struction formula:

f (θ, φ) ≡ f̃ (x)

= 1

Cψ

∫
d θ ′dφ′ sin θ ′ dR

R3
w̃(x + µ, R)�S(θ ′; R), (12)

where w̃(x, R) ≡ w(θ, φ; R).
(iii) The MEXHAT wavelets. A particular example is the MEX-

HAT wavelet, defined by (see Fig. 2)

�(θ ; R) = 1

(2π)1/2 RN

[
1 +

( y

2

)2
]2 [

2 −
( y

R

)2
]

e−y2/2R2
,

(13)

N (R) ≡
(

1 + R2

2
+ R4

4

)1/2

, y ≡ 2 tan
θ

2
. (14)

We remark that the normalization constant has been chosen such
that

∫
dθ dφ sin θ�2(θ ; R) = 1. This is the wavelet we are going to

use in this paper to analyse non-Gaussianity associated to different
models.

Figure 2. Mexican Hat wavelet as deformed on the sphere (solid line) from
the plane (dashed line). The scale of the wavelet is chosen to be R = 1 rad.

We comment that the stereographic projection of the MEXHAT
wavelet has been recently used to analyse maps of the cosmic mi-
crowave background radiation (CMB) (Cayón et al. 2001).

3 S P H E R I C A L H A A R WAV E L E T S

SHW were introduced by Sweldens (1996) as a generalization of pla-
nar Haar wavelets to the pixelized sphere. They are orthogonal and
adapted to a given pixelization of the sky which must be hierarchi-
cal, contrary to the SMHW which are non-orthogonal and redundant.
However they are not obtained from dilations and translations of a
mother wavelet, contrary to planar Haar wavelets and SMHW. As
for the planar Haar wavelets, they possess a good space-frequency
localization. However, their frequency localization is not as good
as that of the SMHW. Two applications of SHW to the analysis of
CMB maps have already been performed. Tenorio et al. (1999) apply
them to simulated CMB skies on the QuadCube pixelization. They
study the CMB spatial structure by defining a position-dependent
measure of power. Also they show their efficiency in denoising and
compressing CMB data. Barreiro et al. (2000) tested the Gaussian-
ity of the COBE-DMR data on the HEALPIX pixelization. One of the
advantages of HEALPIX over QuadCube is that there is no need to
correct for the pixel area.

As detailed descriptions of the SHW transform have already been
given in the previous papers, we here describe the main features of
the wavelet decomposition. The SHW decomposition is based on
one scaling φ j,k and three wavelet functions ψm, j,k at each resolution
level j and position on the grid k. For HEALPIX the resolution is given
in terms of the number of divisions in which each side of the basic
12 pixels is divided, Nside = 2 j−1. Thus, for level j the total number
of pixels with area µ j is given by n j = 12 × 4 j−1. Each pixel k at
resolution j, Sj,k is divided into four pixels Sj+1,k0 , . . . , Sj+1,k3 at
resolution j+1. For computational reasons the maximum resolution
we will consider in our simulations is J = 9, which corresponds to
Nside = 256. The scaling and wavelet functions are simply given by

φ j,k(x) =
{

1 if x ∈ Sj,k

0 otherwise,
(15)

ψ1, j,k = φ j+1,k0 + φ j+1,k2 − φ j+1,k1 − φ j+1,k3

4µ j+1
(16)

ψ2, j,k = φ j+1,k0 + φ j+1,k1 − φ j+1,k2 − φ j+1,k3

4µ j+1
(17)
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Figure 3. Hierarchical structure of wavelet coefficients for the Spherical
Haar wavelet.

ψ3, j,k = φ j+1,k0 + φ j+1,k3 − φ j+1,k1 − φ j+1,k2

4µ j+1
(18)

where k0, k1, k2, k3 are the four pixels at resolution level j + 1 in
which the pixel k at level j is divided. Please note that the three
wavelet functions so defined differ from the ones used by Tenorio
et al. (1999) and Barreiro et al. (2000). We choose those expres-
sions by similarity with the diagonal, vertical and horizontal details
defined on the plane. The reconstruction of the temperature field is
obtained by

�T

T
(xi ) =

n j0 −1∑
l=0

λ j0,lφ j0, j (xi ) +
∑

m

J−1∑
j= j0

n j −1∑
l=0

γm, j,lψm, j,l (xi ), (19)

where λ j0,k and γm, j,k are the approximation and detail coefficients,
respectively. The level index j goes from the finest resolution J to
the coarsest one considered j0.

The wavelet coefficients at level j can be obtained from the four
corresponding approximation coefficients at level j + 1, λ j+1,ki as
follows (see Fig. 3):

λ j,k = 1

4

3∑
i=0

λ j+1,ki (20)

γ1, j,k = µ j+1(λ j+1,k0 + λ j+1,k2 − λ j+1,k1 − λ j+1,k3 ) (21)

γ2, j,k = µ j+1(λ j+1,k0 + λ j+1,k1 − λ j+1,k2 − λ j+1,k3 ) (22)

γ3, j,k = µ j+1(λ j+1,k0 + λ j+1,k3 − λ j+1,k1 − λ j+1,k2 ). (23)

The generation of coefficients start with the original map, finest
resolution j = J , for which the coefficients λJ,k are identified with
the temperature fluctuation at pixel k.

Finally, from the definition of the SHW, it is easily seen that this
wavelet is not rotationally invariant, contrary to the SMHW.

4 N O N - G AU S S I A N S I M U L AT I O N S

There are many ways in which physically motivated non-Gaussian
features can enter in the CMB temperature distribution. However,
up to now there is no evidence of their existence, as all experimental
data is consistent with Gaussianity (Kogut et al. 1996; Barreiro
et al. 2000; Aghanim et al. 2001; Cayón et al. 2001; Wu et al. 2001;
see however Magueijo 2000, for a possible positive signal in the
COBE-DMR data, although that detection has not been confirmed

by any of the other analyses). If departures from Gaussianity of
cosmological origin really exist they will more likely be small and
all-sky, sensitive, arcmin-resolution experiments will be needed for
their detection.

Here the spherical wavelets will be tested against non-Gaussian
simulations of artificially specified moments that will be assumed
to be small. In this case a useful way to construct non-Gaussian
distributions is by perturbing the Gaussian one through a sum of
moments, the Edgeworth expansion. For simplicity we will con-
sider the two lowest cumulants to characterize the deviations from
normality: skewness and kurtosis. As discussed in the introduction
alternative models to standard inflation, e.g. cosmic defects as a sub-
dominant source of density perturbations or non-standard inflation,
can produce significant levels of at least one of the two moments.

4.1 Edgeworth expansion

For small deviations from Gaussianity, there is a wide class of dis-
tributions that can be given in terms of a Gaussian distribution times
an infinite sum of its cumulants. This is the well known Edgeworth
expansion. The problem with this expansion is that setting all cumu-
lants to zero except one does not guarantee the positive definiteness
and normalization that a distribution has to satisfy. However, for
small deviations from normality the resulting function is always
positive at least up to many sigmas in the tail of the distribution and
the normalization factor required for the function to become a well
defined distribution is very small and does not appreciably disturb
the non-zero moments (i.e. skewness or kurtosis) introduced in the
first place.

The Edgeworth expansion can be obtained from the characteris-
tic function φ(t) by considering the linear terms in the cumulants
and performing the inverse Fourier transform to recover the density
function f (x):

f (x) = G(x)

{
1 +

∞∑
n=3

kn

n!2n/2
Hn

(
x√
2

)
+ O(knkn′ )

}
, (24)

where Hn is the Hermite polynomial. Considering the perturbations
corresponding to the skewness and kurtosis and keeping only the
first terms in the corresponding Hermite polynomials, we have

fS(x) = e−(x2/2)

√
2π

{
1 + S

6
[x(x2 − 3)]

}
, (25)

fK (x) = e−(x2/2)

√
2π

[
1 + K

24
(x4 − 6x2 + 3)

]
, (26)

where S and K denote skewness and kurtosis, respectively. We
will use these equations to generate our artificially specified non-
Gaussian distributions. Because the resulting distribution is not well
defined even for the case of small skewness and kurtosis, we set the
function to zero when it becomes negative and we also normalize
it appropriately. We remark that the zero cuts of the distribution, if
present, appear far away in the tails of the distribution for the case of
small values of skewness and kurtosis that we consider here. Also,
as a consequence, the normalization value required is very close to
1. In this way we checked that the initial values of the skewness and
kurtosis we start with in the Edgeworth expansion do not apprecia-
bly change after the necessary changes introduced to obtain a well
defined probability density function (pdf).

In order to make the simulations resemble the CMB data observed
by a given experiment we smooth them with a Gaussian filter. For
practical reasons we use a full width at half maximum (FWHM) of
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26 E. Martı́nez-González et al.

33 arcmin, which may correspond to some of the channels in all-sky
experiments such as MAP and Planck (e.g. the 30-GHz channel of
the Planck mission). We choose to work on the HEALPIX pixelization
of the sphere with a resolution Nside = 256. We use the HEALPIX

package to perform the analysis of our simulated CMB data. How-
ever, it is not adequate to use that package to convolve our unfiltered
independent temperature data with the Gaussian 33-arcmin FWHM
beam in Fourier space, instead we perform the convolution in real
space. After that, in order to make the simulations more realistic
we normalize the CMB power spectrum Cl of both Gaussian and
non-Gaussian simulations to that of a CDM flat �-model using the
HEALPIX package. As a consequence of the beam convolution and
the introduction of correlations in the temperature maps the origi-
nal levels of skewness and kurtosis injected through the Edgeworth
expansion are reduced (compare columns 1 and 2 in Table 2, later).
The performance of spherical wavelets will be tested with these
simulations in Section 5.

4.2 Distribution of spherical wavelet coefficients

Since wavelet coefficients represent linear transformations of the
original data, in the case of a Gaussian distribution the wavelet
coefficients remain Gaussian distributed. This a very nice property
of wavelets and all we have to do to test Gaussianity in wavelet
space is to look from deviations from normality.

However, for the case of the sphere any given pixelization scheme
will introduce biases. The specific bias introduced will depend on,
for instance, whether the pixels are not of equal area or the dis-
tances between one pixel and its neighbours vary with the position
on the sphere. This is in fact the situation for the two pixelizations al-
ready used to analyse all-sky CMB temperature fluctuations. For the
COBE-DMR experiment the pixelization used was the Quad-Cube
and in this projection of the cube on the sphere equal-area pixels
on the sides of the cube appear with different area when projected
on the sphere. For present satellite experiments such as MAP and
Planck, the HEALPIX pixelization is now widely used. While this
pixelization possesses very nice properties, such as equal area iso-
latitude pixels, the distances between one pixel and its neighbours,
however, vary with latitude. Pixels near the equator tend to be more
uniformly distributed than those near the poles. As we will compute
in next section, this property produces a bias in the kurtosis of the
wavelet coefficients for the case of the SHW (see Table 1, Gaussian
case which corresponds to a null injected value for the kurtosis).
For the Gaussian and non-Gaussian simulations which will be per-
formed in the next section, we will compute the first cumulants
of the coefficients of the two spherical wavelets considered in this
paper for the HEALPIX scheme. For the SHW the coefficients corre-
spond to three different details: diagonal, vertical and horizontal. As
those details are directly obtained from linear operations of the four
neighbouring pixels (as we saw in the previous section) and pixels
are not equally separated all over the sphere, correlations present
in the temperature fluctuations make the wavelet coefficients to be
biased. This bias produces a peaked distribution with respect to a
Gaussian and therefore a positive kurtosis in the three details of the
SHW coefficients even for temperature realizations derived from
normal distributions (as can be seen from Table 1, the mean value
of the kurtosis for the finest resolution of the Gaussian model is
displaced about 10σ from zero).

In the case of the SMHW we only have a type of coefficients
for each scale. Because this is a continuous, rotationally invariant
wavelet – and thus not adapted to the pixelization – no bias is pro-
duced in this case.

5 D I S C R I M I NAT I N G P OW E R

The discriminating power of the spherical wavelets will be tested us-
ing Gaussian and non-Gaussian simulations with different amounts
of either skewness or kurtosis introduced using the Edgeworth ex-
pansion, and normalized to a power spectrum Cl consistent with
observations (as discussed above). Because the skewness and kur-
tosis are introduced at the highest resolution through the Edgeworth
expansion (as described above), we expect to detect them with the
skewness and kurtosis of the spherical wavelet coefficients also at
the highest resolutions. Thus we will consider for the analysis the
first five resolution scales starting from the finest one. The scales go
up in powers of 2 for the SHW, and for comparison we choose the
same values for the SMHW parameter R: 1, 2, 4, 8 and 16 pixels.
We can relate the scales of the two wavelets by looking to the scal-
ing functions. The relation between the side, s, of the step function
(scaling function for the Haar wavelet) and the dispersion R of the
Gaussian is: s = √

2πR. Then the finest scale s = 2 pixels, which
corresponds to an R ≈ 0.8 pixels, which is approximately 1 pixel.

Results obtained in Fourier space are equivalent to those obtained
in real space if the functions considered are bandwidth-limited
(with the bandwidth included in the one covered by the pixeliza-
tion). We have checked this for the finest resolution of the SMHW.
The average difference between the SMHW coefficients computed
by direct convolution in real space and going to Fourier space is
<1 per cent.

Given the five values of skewness or kurtosis corresponding to
the five resolution scales for the SMHW and the 15 values for the
SHW (five scales for each of the three details), we would like to
construct a test statistic which, combining all this information, can
best distinguish between the two hypotheses: (i) H0: the data are
drawn from a Gaussian model; (ii) H1: the data are drawn from a
non-Gaussian model with either skewness or kurtosis. The best test
statistic in the sense of maximum power for a given significance
level is given by the likelihood ratio:

t(x) = f (x|H0)

f (x|H1)
(27)

where f (x|H0) and f (x|H1) are the pdf of the data given hypothe-
ses H0 and H1, respectively. Because we do not know those multi-
variate pdfs, and it would be tremendously costly in CPU time to
determine them by Monte Carlo simulations, we use as test statis-
tic the simpler Fisher linear discriminant function (Fisher 1936;
see also Cowan 1998). This discriminant has been recently used by
Barreiro & Hobson (2001) to study the discriminanting power of pla-
nar wavelets to detect non-Gaussianity in the CMB in small patches
of the sky. The Fisher discriminant is a linear function of the data that
maximizes the distance between the two pdfs, g(t |H0) and g(t |H1),
such a distance defined as the ratio (τ0 −τ1)2/(�2

0 +�2
1 ). τk and �2

k ,
k = 0, 1, are the mean and the variance of g(t |Hk), respectively.
The Fisher discriminant is given by:

t(x) = (µ0 − µ1)T W −1x (28)

with W = V0 + V1 and Vk the covariance matrix and µk the mean
values of f (x|Hk). In the particular case that f (x|H0) and f (x|H1)
are both multidimensional Gaussians with the same covariance ma-
trix, the Fisher discriminant is equivalent to the likelihood ratio.

The mean values and covariance matrices of the skewness and
kurtosis at each resolution level for the Gaussian and non-Gaussian
models are obtained from a large number of simulations. In the next
section we use those simulations to compare the power of the test
p ≡ 1 − β to discriminate against the alternative hypothesis H1 at
a given significance level α for the two spherical wavelets. α and
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Detecting non-Gaussianity in the CMB sky 27

Table 1. Mean and standard deviation, within parenthesis, for the different wavelet scales.

Wavelet SHW
Injected scale SMHW vert diag hori Temperature

SKEWNESS
0.00 1 pix −1.0 × 10−4(5.6 × 10−3) −1.3 × 10−4(7.6 × 10−3) 1.7 × 10−4(5.5 × 10−3) −2.1 × 10−4(7.3 × 10−3) −1.1 × 10−3(2.3 × 10−2)

2 pix −1.0 × 10−4(6.3 × 10−3) −3.0 × 10−4(1.1 × 10−2) 7.3 × 10−5(9.8 × 10−3) 7.2 × 10−5(1.1 × 10−2)
0.00∗ 1 pix −2.1 × 10−5(3.4 × 10−3) 2.1 × 10−4(5.6 × 10−3) −3.1 × 10−4(5.3 × 10−3) −1.0 × 10−5(5.5 × 10−3) −4.8 × 10−4(6.7 × 10−3)

2 pix −1.7 × 10−4(5.9 × 10−3) −7.8 × 10−4(1.1 × 10−2) 8.8 × 10−4(1.1 × 10−2) 1.1 × 10−4(1.1 × 10−2)
0.05 1 pix 1.3 × 10−2(5.0 × 10−3) −2.7 × 10−4(6.9 × 10−3) −1.7 × 10−3(5.5 × 10−3) 2.8 × 10−4(7.2 × 10−3) 9.0 × 10−3(2.4 × 10−2)

2 pix 7.5 × 10−3(6.1 × 10−3) −1.6 × 10−3(1.1 × 10−2) −4.7 × 10−4(9.3 × 10−3) 2.0 × 10−6(1.2 × 10−2)
0.10 1 pix 2.7 × 10−2(5.2 × 10−3) 2.8 × 10−4(7.1 × 10−3) −3.9 × 10−3(5.6 × 10−3) 6.0 × 10−5(7.3 × 10−3) 1.6 × 10−2(2.3 × 10−2)

2 pix 1.5 × 10−2(6.1 × 10−3) 5.7 × 10−4(1.1 × 10−2) −1.4 × 10−3(9.6 × 10−3) −6.3 × 10−4(1.1 × 10−2)
0.30 1 pix 7.6 × 10−2(5.4 × 10−3) 2.6 × 10−4(7.3 × 10−3) −1.0 × 10−2(5.6 × 10−3) 3.8 × 10−4(7.7 × 10−3) 4.6 × 10−2(2.4 × 10−2)

2 pix 4.3 × 10−2(6.0 × 10−3) 6.7 × 10−5(1.1 × 10−2) −3.3 × 10−3(9.5 × 10−3) 5.6 × 10−4(1.1 × 10−2)
0.30∗ 1 pix 9.5 × 10−3(3.5 × 10−3) 3.5 × 10−5(5.4 × 10−3) −4.0 × 10−4(5.7 × 10−3) −2.0 × 10−4(5.8 × 10−3) 1.1 × 10−2(6.8 × 10−3)

2 pix 3.1 × 10−2(6.2 × 10−3) 2.4 × 10−4(1.0 × 10−2) 4.6 × 10−6(1.1 × 10−2) 9.9 × 10−5(1.1 × 10−2)
0.50 1 pix 1.2 × 10−1(5.4 × 10−3) −5.6 × 10−4(7.6 × 10−3) −1.6 × 10−2(5.6 × 10−3) −6.4 × 10−6(7.4 × 10−3) 6.9 × 10−2(2.4 × 10−2)

2 pix 6.6 × 10−2(6.2 × 10−3) −5.9 × 10−4(1.1 × 10−2) −5.4 × 10−3(9.6 × 10−3) 2.1 × 10−5(1.1 × 10−2)

KURTOSIS
0.00 1 pix −3.6 × 10−4(1.0 × 10−2) 1.7 × 10−1(2.0 × 10−2) 1.8 × 10−1(1.8 × 10−2) 1.7 × 10−1(1.9 × 10−2) −3.4 × 10−3(2.6 × 10−2)

2 pix −4.1 × 10−4(1.2 × 10−2) 1.0 × 10−1(2.7 × 10−2) 3.9 × 10−2(2.5 × 10−2) 1.0 × 10−1(2.7 × 10−2)
0.00∗ 1 pix −8.7 × 10−5(6.4 × 10−3) 4.1 × 10−3(1.6 × 10−2) −5.7 × 10−5(1.1 × 10−2) 4.4 × 10−3(1.5 × 10−2) −1.1 × 10−3(6.9 × 10−3)

2 pix −9.7 × 10−4(9.5 × 10−3) 1.9 × 10−2(2.3 × 10−2) 1.9 × 10−3(2.2 × 10−2) 2.1 × 10−2(2.3 × 10−2)
0.10 1 pix 9.9 × 10−3(1.0 × 10−2) 1.7 × 10−1(1.9 × 10−2) 1.8 × 10−1(1.8 × 10−2) 1.7 × 10−1(2.0 × 10−2) 3.2 × 10−3(2.6 × 10−2)

2 pix 3.9 × 10−3(1.3 × 10−2) 1.1 × 10−1(2.7 × 10−2) 4.1 × 10−2(2.6 × 10−2) 1.1 × 10−1(2.8 × 10−2)
0.30 1 pix 2.9 × 10−2(1.0 × 10−2) 1.8 × 10−1(2.0 × 10−2) 1.9 × 10−1(1.8 × 10−2) 1.8 × 10−1(1.9 × 10−2) 7.7 × 10−3(2.7 × 10−2)

2 pix 1.2 × 10−2(1.3 × 10−2) 1.1 × 10−1(2.7 × 10−2) 4.8 × 10−2(2.6 × 10−2) 1.1 × 10−1(2.8 × 10−2)
0.40 1 pix 3.8 × 10−2(1.1 × 10−2) 1.9 × 10−1(2.0 × 10−2) 1.9 × 10−1(1.8 × 10−2) 1.9 × 10−1(2.0 × 10−2) 1.1 × 10−2(2.7 × 10−2)

2 pix 1.7 × 10−2(1.3 × 10−2) 1.1 × 10−1(2.8 × 10−2) 5.3 × 10−2(2.6 × 10−2) 1.2 × 10−1(2.8 × 10−2)
0.50 1 pix 4.8 × 10−2(1.1 × 10−2) 1.9 × 10−1(2.0 × 10−2) 2.0 × 10−1(1.8 × 10−2) 1.9 × 10−1(2.0 × 10−2) 1.4 × 10−2(2.6 × 10−2)

2 pix 2.1 × 10−2(1.3 × 10−2) 1.2 × 10−1(2.8 × 10−2) 5.3 × 10−2(2.5 × 10−2) 1.2 × 10−1(2.8 × 10−2)
0.50a 1 pix 2.8 × 10−3(6.2 × 10−3) 1.6 × 10−3(1.1 × 10−2) −5.7 × 10−4(1.2 × 10−2) −8.1 × 10−4(1.1 × 10−2) 2.3 × 10−3(7.2 × 10−3)

2 pix 1.2 × 10−2(9.1 × 10−3) 2.3 × 10−2(2.2 × 10−2) 1.4 × 10−3(2.2 × 10−2) 2.3 × 10−2(2.4 × 10−2)

aThese models include the addition of noise to the maps with S/N = 1.

β account for the probability of rejecting the null hypothesis H0

when it is actually true (error of the first kind) and the probability
of accepting H0 when the true hypothesis is H1 and not H0 (error of
the second kind), respectively. The decision to accept or reject H0

is made by defining a critical region for the statistic t; if the value of
t is greater than a cut value tcut the hypothesis H0 is rejected. Thus,
α and β are given by:

α =
∫ ∞

tcut

dtg(t |H0), (29)

β =
∫ tcut

−∞
dtg(t |H1). (30)

This kind of analysis is very much along the lines of the one per-
formed by Barreiro & Hobson (2001) for planar wavelets. From now
on a value for the sensitivity of α = 1 per cent will be adopted.

6 R E S U LT S

For both, Gaussian and non-Gaussian models, we perform 1000
simulations. As commented above, to make the simulations more
realistic, each simulation is convolved with a Gaussian filter of
33 arcmin. In addition, its power spectrum Cl is normalized to that
of a CDM flat �-model using the HEALPIX package. For each of
the simulations the wavelet coefficients for both the SMHW and

the SHW are computed. The SMHW coefficients are computed by
convolving the CMB map with the SMHW given in equation (13).
We again use the HEALPIX package to perform such a convolution
in Fourier space, having previously calculated the Legendre coef-
ficients of the SMHW at the specified resolution. The SHW detail
coefficients are computed by performing the linear combinations
of 4 pixels as described in Section 3. Computation time of wavelet
coefficients using HEALPIX scale as N 3

Nside
and N 2

Nside
for SMHW and

SHW, respectively.
In Fig. 4 we show the mean values and dispersion of the skewness

and kurtosis of the Gaussian and non-Gaussian models for the tem-
perature map, and for the first five resolution levels of the SHW di-
agonal, vertical and horizontal coefficients and SMHW coefficients.
As expected the differences are best seen in the finer resolutions.
It is clear from Fig. 4 that the differences in the skewness for the
two models are more remarkable for the SMHW than for the SHW
and the temperature map. This is also the case for the kurtosis. As
we pointed out in Section 4.2, there is a strong bias in the kurto-
sis of the three details of the SHW coefficients due to the slightly
non-uniform distribution of pixels on the sphere in the HEALPIX

pixelization. This kind of bias is expected for any pixelization of
the sphere due to the impossibility of having a uniform pixelization.
The specific bias introduced will depend on the pixelization scheme
used. On the contrary, no bias is present for the SMHW coefficients
due to its continuous nature. The Fisher discriminant t can still be
applied to distinguish between the two models even in the pres-
ence of that bias in the kurtosis. As seen in the previous section,
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Figure 4. Comparison of Mexican Hat wavelet (black circle) and the Haar wavelet details: vertical (diamond), diagonal (triangle) and horizontal (square) for
kurtosis (left) and skewness (right) values of 0.1, 0.3 and 0.5 (from top to bottom). Each point represents the number of sigmas deviated from the Gaussian
model. Also plotted is the stripe for the non-Gaussianity determined from the temperature map (in this case only the pixel scale is meaningful, the stripe is
drawn only for illustrative purposes).

what enters in the linear coefficients to compute the statistic t is the
difference between the means from the two models, cancelling out
the bias term. In Figs 5 and 6 we show the pdfs of the statistic t
for three values of the skewness and kurtosis of the non-Gaussian
models. It is clear that for both non-Gaussian models, with either
positive skewness or kurtosis, the SMHW is able to distinguish be-
tween the Gaussian and non-Gaussian models much better than the
SHW.

In Table 2 the power p of the Fisher discriminant constructed
from the skewness or kurtosis of the SMHW, SHW and temperature
is given for several values of the cumulants. For the case of the
temperature of the map the statistic is given directly by its cumulants.

Again, the performance of the SMHW is superior to the SHW and
the temperature in all cases.

Because the SHW is affected by the non-uniform pixelization of
the sphere, one might wonder if its failure to detect non-Gaussianity
is a feature of the Haar wavelet in general or a consequence of
the pixel-dependent scale mixing. In order to answer this question
we have made the same comparison between Gaussian and non-
Gaussian models, one with skewness 0.3 and the other with kurtosis
0.3, but now on the plane. (We have considered simulated 12.◦8 ×
12.◦8 maps with 1.5-arcmin pixels and a beam of 5 arcmin FWHM.
The steps of the simulation and analysis are the same as for the
sphere.) The result is very similar to the one found on the sphere.
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Figure 5. Fisher discriminant for skewness from SHW (left) and SMHW (right). From top to bottom, the values of skewness in the original maps are 0.1, 0.3
and 0.5. The solid line is the Gaussian model, while the dashed one represents the non-Gaussian case.

Therefore, the failure of the Haar wavelet to detect non-Gaussianity
is an intrinsic caracteristic of this wavelet and not a consequence
of the pixel-dependent scale mixing due to its implementation on
the sphere. (Notice, however, that its performance can be similar
to other planar wavelets for some specific features more adapted to
its shape, e.g. cosmic strings; see Barreiro & Hobson 2001.) The
pixel-dependent scale mixing basically induces a bias which has
been taken into account in the analysis.

In order to know the effect of instrumental noise (white) on the
discriminating power of the spherical wavelets, we have also added
noise to the temperature maps with an amplitude equals to the signal,
S/N = 1. In this case 500 simulations were generated. As shown in
Fig. 7, the first resolution scale is the most affected and now the sec-

ond scale is the most relevant for discrimination between models. In
this figure it is also plotted the new pdfs for the Fisher discriminant
for 30 per cent injected skewness and 50 per cent injected kurtosis.
The noise effect is shown in the narrowing of the separation be-
tween distributions as compared to the no-noise case. We see that
the SMHW is still able to discriminate with a high power for the
skewness model with a skewness value in the analysed map of 1.1
per cent. For the kurtosis model, the addition of noise with the same
amplitude as the signal reduces the level of kurtosis in the analysed
map from 1.4 per cent to 0.2 per cent, a level too low to be detectable.

Finally, even if future experiments such as MAP and Planck ob-
serve the full sky, probably only the fraction outside the Galac-
tic plane will be used to test non-Gaussianity. This problem has
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Figure 6. Fisher discriminant for kurtosis from SHW (left) and SMHW (right). From top to bottom, the values of kurtosis in the original maps are 0.1, 0.3 and
0.5. The solid line is the Gaussian model, while the dashed one represents the non-Gaussian case. Please note the bias in the distribution of the SHW kurtosis
as discussed in the text.

already been considered in previous papers analysing the Gaussian-
ity of the COBE-DMR data with the SHW and the SMHW (Barreiro
et al. 2000; Cayón et al. 2001). As can be seen from those papers
the impact on the two methods is similar (in both cases one looses
all the coefficients computed from pixels intersecting the cut). In
any case, for future missions like MAP or Planck, the Galactic cut
should be much smaller than for COBE because of the much better
resolution and the much larger frequency information, implying a
smaller impact on the analysis.

7 C O N C L U S I O N S

We have compared the performance of the two spherical wavelet
families already used to test the Gaussianity of the COBE-DMR

CMB data: Mexican Hat (Cayón et al. 2001) and Haar (Barreiro
et al. 2000). As a test-bed we use non-Gaussian simulations of all-
sky arcmin-resolution CMB maps, with a power spectrum Cl that
was consistent with observations and artificially specified amounts
of skewness or kurtosis. Most, if not all, physically motivated non-
Gaussian primordial models of structure formation proposed in the
literature show some amounts of either of these two moments in
the CMB maps. These simulated sky maps are pixelized using the
widely used HEALPIX package. As commented in Section 4.2, any
pixelization scheme of the sphere will introduce a bias because of
the impossibility of a uniform pixelization. In particular, for the
HEALPIX scheme this bias shows up as a positive kurtosis in the
Spherical Haar wavelets (SHW) coefficients even for temperature
realizations derived from normal distributions. The bias represents
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Figure 7. Top panels: comparison of Mexican Hat wavelet (black circle) and the Haar wavelet details: vertical (diamond), diagonal (triangle) and horizontal
(square); for skewness 0.3 (right) and kurtosis 0.5 (left) with added noise. Each point represents the number of sigmas deviated from the Gaussian model with
noise. Also plotted is the stripe for the non-Gaussianity determined from the temperature map (in this case only the pixel scale is meaninful, the stripe is drawn
only for illustrative purposes). Centre and bottom panels: Fisher discriminant for skewness (right) and kurtosis (left) from Spherical Haar (centre) and Mexican
Hat (bottom) wavelets.

a ≈ 10σ effect for the finest resolution, as can be seen from the first
row of the kurtosis in Table 1. On the contrary, no bias is present in
the case of the Spherical Mexican Hat wavelet (SMHW) due to its
continues nature, i.e. not adapted to the pixelization scheme.

The main conclusion of this paper is that the SMHW bases are
much more efficient to discriminate between Gaussian and non-
Gaussian models with either skewness or kurtosis present in the
CMB maps than the Spherical Haar wavelet (SHW) ones. More
specifically, the SMHW is able to discriminate a 1.6 per cent skew-
ness with a power of 100 per cent at the 1 per cent significance level
whereas the SHW can weakly discriminate a 6.9 per cent skew-
ness with a power of only 78 per cent at the same significance. In
the case of kurtosis, the SMHW detects a 1.4 per cent level with
a power of 99.9 per cent whereas for the SHW the power is only

28 per cent, at the same 1 per cent significance level. The fail-
ure of the Haar wavelet to detect non-Gaussianity is not a con-
sequence of the pixel-dependent scale mixing due to its imple-
mentation on the sphere but an intrinsic property of this wavelet
(as has been demonstrated by performing a similar analysis on
the plane). If we were to use the temperature map instead of the
wavelet coefficients, the power would always be smaller than for
the wavelets (only comparable to the SHW in the case of skew-
ness). An interesting property of the SMHW is that an injected
skewness/kurtosis in the temperature maps produces an amplified
skewness/kurtosis in the SMHW coefficients and a negligible kur-
tosis/skewness. On the contrary, the SHW is not able to amplify any
injected skewness/kurtosis with neither skewness nor kurtosis of its
coefficients.

C© 2002 RAS, MNRAS 336, 22–32

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/336/1/22/992480 by U
.S. D

epartm
ent of Justice user on 16 August 2022



32 E. Martı́nez-González et al.

Table 2. Power of the fisher discriminant at 1 per cent significance level.

Injected Truea SMHW SHW Temperature
×10−2 P(per cent) P(per cent) P(per cent)

SKEWNESS 0.05 0.9(2.4) 66.8 1.51 2.51
0.10 1.6(2.3) 100 7.09 4.67
0.30 4.6(2.4) 100 36.12 36.85
0.302 1.1(0.7) 99.6 1.80 2.83
0.50 6.9(2.4) 100 78.46 73.6

KURTOSIS 0.10 0.3(2.6) 15.35 3.00 1.42
0.30 0.8(2.7) 86.89 9.00 3.40
0.40 1.1(2.7) 98.10 16.11 4.90
0.50 1.4(2.6) 99.90 28.43 3.50
0.50b 0.2(0.7) 20.84 1.00 0.32

aTrue refers to the mean value obtained in the analysed maps. The standard
deviation is given within parenthesis. bThese models include the addition
of noise to the maps with S/N = 1.

Finally, we have also tested the performance of the spherical
wavelets in the more realistic case, in which instrumental noise
(white) is present in the maps. In this case, the highest resolution
scale is the most affected, being the best scale for discrimination the
second one. For a signal-to-noise ratio S/N = 1, and combining
all the information from all the scales with the Fisher discriminant,
the SMHW is still able to discriminate with a high power levels of
skewness and kurtosis above 1 per cent.
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