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Abstract

Rates and timescales of viral evolution can be estimated using phylogenetic analyses of time-structured molecular
sequences. This involves the use of molecular-clock methods, calibrated by the sampling times of the viral sequences.
However, the spread of these sampling times is not always sufficient to allow the substitution rate to be estimated
accurately. We conducted Bayesian phylogenetic analyses of simulated virus data to evaluate the performance of the
date-randomization test, which is sometimes used to investigate whether time-structured data sets have temporal signal.
An estimate of the substitution rate passes this test if its mean does not fall within the 95% credible intervals of rate
estimates obtained using replicate data sets in which the sampling times have been randomized. We find that the test
sometimes fails to detect rate estimates from data with no temporal signal. This error can be minimized by using a more
conservative criterion, whereby the 95% credible interval of the estimate with correct sampling times should not overlap
with those obtained with randomized sampling times. We also investigated the behavior of the test when the sampling
times are not uniformly distributed throughout the tree, which sometimes occurs in empirical data sets. The test
performs poorly in these circumstances, such that a modification to the randomization scheme is needed. Finally, we
illustrate the behavior of the test in analyses of nucleotide sequences of cereal yellow dwarf virus. Our results validate the
use of the date-randomization test and allow us to propose guidelines for interpretation of its results.

Key words: molecular clock, date-randomization test, tip calibrations, virus evolution, Bayesian phylogenetics, time-
structured sequence data.

Introduction
The evolutionary rates and timescales of viruses can be esti-
mated from molecular sequence data. This usually involves
phylogenetic methods based on molecular clocks, which
make assumptions about patterns of rate variation among
lineages (recenly reviewed by Heath and Moore 2014 and Ho
and Duchêne 2014). A key step is the scaling of the divergence
times in the phylogeny into units of absolute time, a proce-
dure known as “calibrating” the molecular clock. Calibrations
typically involve constraining the age of one or more nodes in
the tree using independent temporal data, such as dates from
the fossil record. In viruses and some bacteria, however, nu-
cleotide substitutions occur rapidly and appreciable amounts
of genetic change can accumulate over the course of years or
even months (Rodrigo and Felsenstein 1999; Drummond
and Rodrigo 2000). In these cases, samples can be collected
at different points in time to produce time-structured, or
“heterochronous,” data sets. The sampling dates can then
be used to fix the ages of the tips in the tree, known as tip-
calibrations (Rambaut 2000; Drummond et al. 2001, 2002;
Drummond, Pybus, and Rambaut 2003; Ewing et al. 2004).

Phylogenetic analyses of time-structured sequence data
have been critical in improving our understanding of virus

evolution and emergence. For example, they have revealed
that the substitution rates of some DNA viruses overlap with
those of RNA viruses (Shackelton et al. 2005; Duffy and
Holmes 2008, 2009). This challenges the expectation that
DNA viruses should evolve more slowly than their RNA coun-
terparts, because the latter depend on an error-prone poly-
merase to replicate without the assistance of proof-reading
mechanisms (Furi�o et al. 2005). Tip-calibrations are also
valuable for inferring the epidemiological dynamics of infec-
tious disease (Pybus and Rambaut 2009), including such key
measures as the basic reproductive number (R0) and popu-
lation growth rate (Stadler et al. 2012), as well as identifying
chains of transmission (Lewis et al. 2008; Leventhal et al. 2014).

The tip-calibrations are the most important factor affect-
ing the reliability of estimates of viral evolutionary rates and
timescales. Clearly, the sampling dates need to have sufficient
temporal spread to capture a measurable amount of evolu-
tionary change (Drummond, Pybus, Rambaut et al. 2003).
Tip-calibrations appear to be effective in analyses of empirical
data and of data simulated under simple evolutionary scenar-
ios (Seo et al. 2002; Ho et al. 2007; Molak et al. 2013). However,
the reliability of the resulting estimates of rates and divergence
times can be affected by the presence of population structure
and fluctuations in population size (Navascu�es and Emerson
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2009), the distribution of sampling times (Ho et al. 2007, 2011;
Firth et al. 2010), the information content of the data set
(Debruyne and Poinar 2009; Ho et al. 2011), and the level of
phylogenetic tree imbalance (Duchêne D, Duchêne S, et al.
2014). This points to an important role for methods of
evaluating the reliability of inferences from time-structured
data.

A simple method of validating estimates of rates and time-
scales is to fit a linear regression of the number of substitu-
tions from the root of the tree to the tips as a function of the
sampling times (Fitch et al. 1991). This method is often used
as a diagnostic of the reliability of rate estimates, where the
slope coefficient corresponds to the substitution rate under
the assumption of a strict molecular clock, and R2 indicates
the degree to which sequence evolution has been clocklike
(Korber et al. 2000). An important limitation of this method,
however, is that the root-to-tip distances do not represent
statistically independent samples. In addition, this method
can produce spurious estimates of rates and timescales if
the number of samples is small, such that the regression is
based on few data points. Moreover, even if the regression
points to a substantial departure from a strict molecular
clock, the use of relaxed-clock models might satisfactorily
accommodate rate variation among branches (Firth et al.
2010).

A more general method of validating estimates of rates
and timescales is to investigate the extent of temporal signal
within a data set, which is typically done using the date-
randomization test (Ramsden et al. 2008). This test involves
randomly reassigning the sampling times of the sequences,
which effectively breaks the association between substitutions
and time. This procedure is repeated a number of times,
generating an expectation of rate estimates in the absence
of temporal signal in the data. A widely used criterion for
determining whether there is sufficient temporal signal is to
verify that the mean rate estimated with the correct sampling
times is not contained within any of the 95% credible intervals
of those estimated from the date-randomized data sets (Firth
et al. 2010). A more stringent criterion is to verify that there is
no overlap between the 95% credible interval of the original
rate estimate and any of those from the date-randomized
data sets (Duffy and Holmes 2009; Ramsden et al. 2009).
We refer to these criteria as CR1 and CR2, respectively. The
number of date randomizations used for the test varies be-
tween studies, from 5 (Silva et al. 2012) to 20 (Kerr et al. 2012),
but a large number of randomizations is probably needed for
the test to be reliable.

Although the date-randomization test has been widely
adopted, its statistical properties are not well understood
and its performance has not been rigorously evaluated,
such that its error rate is unknown. The efficacy of the test
can be understood in terms of type I and type II errors; a type I
error occurs when a data set with no temporal signal passes
the test, whereas a type II error occurs when a data set with
sufficient temporal signal fails the test. Generally, an ideal test
should have low rates of type I and type II errors. In the
context of molecular dating, however, type I errors are of

special concern because they can mislead interpretations of
estimates of substitution rates and timescales.

The performance of the test can depend on the number of
date-randomizations and on different characteristics of the
data, such as the number of variable sites, the sampling time-
frame (calibration window), the level of rate variation among
branches, and the temporal and spatial structure of the sam-
pling times. For example, consider a data set consisting of
samples that were collected at different times from two dis-
tinct subpopulations, such that the ages of samples are the
same within subpopulations but differ between subpopula-
tions. The random assignment of dates from different sub-
populations to each of the samples will produce rate
estimates that are considerably different from those obtained
with the correct sampling times, regardless of whether the
data have sufficient temporal signal.

Here, we investigate the performance of the date-random-
ization test using data generated by simulation. Using a sim-
ulation framework allows a broad range of conditions to be
explored while controlling for the confounding effects of
model misspecification. Furthermore, the true parameter
values are known with certainty, making the calculation of
error rates straightforward. We also illustrate the behavior of
the date-randomization test in a case study of nucleotide
sequences from cereal yellow dwarf virus (CYDV). For this
data set, we show the effect of reducing the width of the
calibration window and the number of variable sites. Based
on the results of our analyses, we provide guidelines and im-
provements for the practical use and interpretation of the
date-randomization test.

RESULTS
To assess the performance of the date-randomization test, we
simulated the evolution of sequences of 2,000 nt along trees
with root-node ages of 100 years. We generated the data
under nine rate treatments using the uncorrelated lognormal
relaxed-clock model (Drummond et al. 2006). The treatments
involved three values for the mean rate: 1� 10�3 (high),
5� 10�4 (medium), and 1� 10�4 (low) subs/site/year. We
chose these values of the rates to represent the range of
estimates from typical RNA virus data sets (Duchêne,
Holmes, et al. 2014). The treatments also involved three
levels of among-linage rate variation: 0%, 5%, and 20% of
the mean. In addition, we specified different ages for the
tips to vary the width of the calibration window, from
narrow (0–5 years) to wide (60 years). We generated 40
data sets under each rate treatment. All of the data sets
were analyzed using a Bayesian phylogenetic method imple-
mented in BEAST v2.1 (Bouckaert et al. 2014). For each syn-
thetic data set, we conducted 20 date-randomizations. We
used two criteria for the date-randomization test, CR1 and
CR2 (described above), to determine whether the rate esti-
mates passed or failed the test. To assess the performance of
the test, we calculated the number of type I and type II errors
for both criteria. In our simulation framework, we consider
that a data set has sufficient temporal signal if the estimate of
the substitution rate is accurate.
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Accuracy of Rate Estimates in Simulations

The substitution rate used in our simulations was an impor-
tant determinant of the reliability of rate estimates. Analyses
of the data sets simulated with high substitution rates
(1� 10�3 subs/site/year) consistently produced accurate
rate estimates (fig. 1, panels A1–A3), with 95% credible inter-
vals that always contained, or were within one standard
deviation of, the true mean rate. In contrast, analyses of the
data simulated with substitution rates that were medium
(5� 10�4 subs/site/year) or low (1� 10�4 subs/site/year)
values often yielded overestimates of the rate (fig. 1, panels
B1–B3 and C1–C3). The mean numbers of variable sites for
the data simulated with high, medium, and low rates were
1,200 (60%), 700 (35%), and 176 (8.8%), respectively.

Analyses of the data sets with narrow calibration windows
produced estimates that were less accurate and precise than
those with wide calibration windows (fig. 1). This pattern was
most pronounced for the data simulated using medium and
low substitution rates. In these cases, analyses of the data sets
with narrow calibration windows produced mean rate esti-
mates that were up to eight times as high as those used to
generate the data (fig. 1, columns B and C).

The degree of rate variation among branches did not
appear to have a strong impact on the accuracy of the esti-
mates, suggesting that our choice of a lognormal relaxed-
clock model performed well under the simulation conditions.
For example, analyses of the data simulated with a high rate
always yielded estimates with 95% credible intervals that con-
tained, or were within one standard deviation of, the true
mean rate, regardless of the level of rate variation among
branches (fig. 1, panels A1–A3).

Performance of the Date-Randomization Test

The performance of the date-randomization test depended
on the criterion used. Many data sets with no temporal signal,
and with correspondingly inaccurate rate estimates, passed
the test according to CR1, with a large number of type I errors.
CR2 was preferable in the sense that it resulted in few type
I errors. However, the improved detection of inaccurate esti-
mates when using CR2 came at the expense of many accurate
estimates failing the test, with higher numbers of type II errors
than when using CR1.

Our simulation study illustrates the trade-off between the
two types of errors for CR1 and CR2. We report the number
of errors per rate treatment, each of which includes the rate
estimates from 40 data sets, each with 20 randomizations for
the date-randomization test. In the simulations with low
mean rate and medium rate variation, six inaccurate rate
estimates passed the test for CR1, whereas all of the inaccu-
rate estimates failed the test according to CR2. In contrast,
only one accurate estimate failed the test according to
CR1, but six accurate estimates failed the test according to
CR2 (fig. 1, panel C2). We do not consider type I errors for the
data simulated with high rates because the estimates always
included the true rate (fig. 1, panels A1–A3).

In most of our analyses of simulated data, the use of CR2
led to zero type I errors. The exceptions were three data sets

simulated with low mean rate and zero rate variation (fig. 1,
panel C1), and one data set simulated with a low mean rate
and high rate variation (fig. 1, panel C3). The mean rate esti-
mated from these data sets was up to 7.5 times as high as that
used to generate the data, which is consistent with their
narrow calibration window (<10 years).

The largest number of type II errors was 14, for CR2 in the
data simulated with a high mean rate and high rate variation
(fig. 1, panel A3), and for those with a medium mean rate
and medium rate variation (fig. 1, panel B2). The smallest
number of type II errors was 1, for CR1 in the simulations
with low mean rate and medium rate variation (fig. 1, panel
C2). This result echoes the trade-off between type I and type II
errors for CR1 and CR2. Importantly, both types of errors
were low when the calibration window was very wide. In all
simulations, analyses of the data sets with calibration win-
dows of at least 30 years (~101.5 in fig. 1) produced accurate
rate estimates, most of which passed the date-randomization
test.

We used 20 randomizations for each data set. However,
the number of randomizations needed to detect inaccurate
estimates was highly variable. In figure 2, we show the rate
estimates with the correct sampling times and those from the
randomizations for a subset of ten data sets that produced
inaccurate rate estimates. In some cases, the 95% credible
interval of the rate with the correct sampling times over-
lapped with those of 17 randomized replicates (e.g., replicate
10, fig. 2). However, in other cases it did not overlap with
those of any of the date-randomized replicates, such that 20
randomizations were not sufficient to detect the lack of tem-
poral signal in these data (e.g., replicate 9, fig. 2). These results
indicate that using a large number of randomizations and
preferring CR2 over CR1 is critical for reducing type I errors
(fig. 3). In particular, conducting as many as 20 date-
randomizations might be insufficient in some cases.

Effect of Nonuniform Temporal Sampling on the
Date-Randomization Test

We evaluated whether the performance of the date-random-
ization test was affected by nonuniform distribution of
sampling times. We simulated phylogenetic trees with a
root-node age of 100 years. The sampling times could take
five values: 0, 1, 2, 3, and 4 years. We simulated a total of 20
trees. For ten of these trees, we assumed that the samples
with the same sampling times were also closely related, form-
ing monophyletic clusters. This situation represents the
expected pattern when there is a strong association between
spatial and temporal structure. For the remaining ten trees,
we relaxed this assumption: the tips could also take any of the
five sampling times, but they did not form monophyletic
groups. We simulated these data under an uncorrelated log-
normal relaxed clock, using a low mean substitution rate
(1� 10�4 subs/site/year) and a standard deviation of 5% of
the mean rate. We simulated the evolution of sequences of
2,000 nt along these trees. The combination of a low mean
substitution rate and a narrow calibration window is expected
to produce data sets with no temporal signal, leading to
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inaccurate rate estimates. To analyze these data, we used the
same Bayesian phylogenetic method as that for our simula-
tions described above.

We obtained similar results from the analyses of the 20
simulated data sets with nonuniform distributions of

sampling times. The substitution rate was always overesti-
mated by more than one order of magnitude, which is con-
sistent with a lack of temporal signal in these data sets (figs. 4
and 5). We used a modification of the date-randomization
test, whereby the sampling times are grouped into clusters.
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FIG. 1. Estimates of the substitution rate (subs/site/year) against the width of the calibration window (years) for different rate treatments. The axes are
in log10 scale. The columns (A–C) represent data simulated using different mean substitution rates: high, 1� 10�3 (A); medium, 5� 10�4 (B); and low,
1� 10�4 (C). The rows correspond to different levels of rate variation among branches used in the simulations, defined as the standard deviation of
rates in the lognormal relaxed-clock model: 0% (strict clock) (1), 5% (2), and 20% (3) of the mean. Solid horizontal lines indicate the mean rate used in
the simulations, whereas the dashed horizontal lines correspond to 1 standard deviation on either side of the mean. Symbols represent the mean rate
estimate for each simulation, with the error bars showing the 95% credible intervals. Symbols in black represent rate estimates that passed the date-
randomization test according to criteria CR1 and CR2. We conducted 20 randomizations for the date-randomization test for all data sets. We consider
that rate estimates fail the test according to CR1 if the mean rate estimated with the correct sampling time is contained within the 95% credible interval
of that obtained with any of the 20 randomizations. With CR2, rate estimates fail the test if the 95% credible interval with the correct sampling times
overlaps with that from any of the 20 randomizations. Rate estimates that failed the date-randomization are shown in gray. Squares denote rate
estimates that failed the test according to both CR1 and CR2, whereas triangles denote those that failed according to CR2 only. Numbers of type I and
type II errors are shown for each rate treatment. A type I error occurs when the estimate from a data set with no temporal signal passes the test. A type
II error occurs when the estimate from a data set with sufficient temporal signal fails the test.
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randomizations, we select a given number of randomizations for all data sets and count the errors. For example, we select one randomization for each of
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We refer to a “sampling cluster” as a set of samples that share
the same sampling time. In this respect, each of our simulated
data sets consists of five sampling clusters. Our modification
to the date-randomization test involved randomizing the
sampling times among the sampling clusters, but not for
samples within a cluster. For example, the sequences with
sampling times of 3 years might all be assigned a sampling
time of 1 year. We conducted the date-randomization test
with five cluster randomizations. For comparison, we also
conducted the test using the standard method of randomiz-
ing all of the sampling times. All of the estimates of substitu-
tion rates failed the cluster-based date-randomization test
according to CR2, and sometimes also according to CR1. In
contrast, the standard method of randomizing the sampling
times was ineffective; the rate estimates passed the test ac-
cording to CR1 and CR2 for most of the simulations, resulting
in type I errors (figs. 4 and 5). The exception was a data set
simulated with nonmonophyletic sampling clusters, for which
the rate estimate failed the date-randomization test with
both the standard and the cluster-randomization method,
according to CR2 (replicate 6, fig. 5).

Case Study of CYDV

We performed a Bayesian phylogenetic analysis of a data set
comprising 76 sequences of the coat protein gene from
CYDV, sampled from 1925 to 2005. The mean rate estimate
was 3.83� 10�3 subs/site/year, with a 95% credible interval of
9.17� 10�4 to 1.42� 10�3 subs/site/year. This estimate
passed the date-randomization test according to CR1 and
CR2 (fig. 6), which is consistent with the results of previous
studies of these data (Pag�an and Holmes 2010; Duchêne,
Holmes, et al. 2014). We then removed 38 samples to
reduce the calibration window from 80 years to 1 year, re-
taining only the sequences with sampling dates from 2003 to
2004. For comparison, we also removed 38 randomly selected
sequences while maintaining the calibration window of 80
years and the original root-node age. The mean rate estimate
for the data set with randomly removed samples was similar
to that for the complete data set (4.01� 10�3 subs/site/year).
There was greater uncertainty in the estimate, however, with
a 95% credible interval of 6.20� 10�4 to 1.73� 10�2 subs/
site/year. This estimate also passed the date-randomization
test according to both CR1 and CR2. In contrast, reducing the
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FIG. 4. Estimates of substitution rate (subs/site/year) for ten replicate data sets simulated with nonuniform temporal sampling and for which samples
with identical sampling times form monophyletic groups. The y axis is in log10 scale. Symbols and error bars in black correspond to the estimates with
the correct sampling times, whereas those in gray correspond to the estimates from date-randomized data sets. Each panel contains five simulation
replicates. For each simulation replicate, the first five gray points correspond to the estimates obtained using cluster randomizations, while the
remaining five were obtained using the standard date-randomization method. The solid black horizontal line is the mean substitution rate used in the
simulations, whereas the dashed lines correspond to the standard deviation of 5% on either side of the mean.
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Duchêne et al. . doi:10.1093/molbev/msv056 MBE
D

ow
nloaded from

 https://academ
ic.oup.com

/m
be/article/32/7/1895/1016979 by U

.S. D
epartm

ent of Justice user on 17 August 2022

`
cluster' 
randomisation 
randomising 
randomisation 
-
randomisations
randomising 
randomisation 
randomising 
 fig. 
-
randomisation 
randomisation 
-
-
 -- 
-
randomisation 
-
-
 -- 
-
randomisation 


calibration window of the CYDV data set to 1 year resulted in
a rate estimate that was higher and had greater uncertainty
than that for the complete data. The mean rate estimate was
6.71� 10�3 subs/site/year, with a 95% credible interval of
1.11� 10�3 to 1.92� 10�2 subs/site/year. This rate estimate
failed the date-randomization test according to CR2, but not
according to CR1 (fig. 6).

We investigated the effect of reducing sequence variation
on the outcome of the date-randomization test. To do this,
we obtained five data sets from which we removed 117 of the
129 variable sites, resulting in a reduction in sequence varia-
tion of 90%. We do not expect the rate estimates from these
data sets to match that from the complete data because they
have different levels of sequence variation. However, these
data sets serve to illustrate the behavior of the date-
randomization test when sequence variation is low. To
enable comparison of the estimates from these data sets
with those from data sets of similar sequence length, we
also generated five data sets from which 117 randomly se-
lected sites were removed.

We found considerable variation in the rate estimates from
data sets with reduced sequence variation, with mean rate
estimates that differed by as much as an order of magnitude.
Four of these rate estimates failed the date-randomization
test according to both CR1 and CR2 (fig. 7A). One rate
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FIG. 5. Estimates of the substitution rate (subs/site/year) with nonuniform temporal sampling, but for which the samples with identical sampling times
do not form monophyletic groups. The axes and symbols correspond to those of figure 4.

FIG. 6. Estimates of the substitution rate (subs/site/year) for the CYDV
data set with different widths for the calibration window. The y axis is in
log10 scale. Data points in black represent rate estimates obtained with
the correct sampling times, whereas those for the date-randomizations
are shown in gray. Filled circles represent mean rate estimates and error
bars show the 95% credible intervals. The black horizontal line repre-
sents the mean rate estimate for the complete data set.
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estimate failed the test according to CR2 only, and its 95%
credible interval overlapped with that of only one of the five
date-randomizations (fig. 7A, replicate 4). This result illus-
trates the fact that using only a small number of randomiza-
tions can result in type I errors. Conversely, the rate estimates
for data sets from which we randomly removed sites were
very similar to that of the complete data set, but only two of
these data sets passed the date-randomization test according
to CR1 and CR2 (fig. 7B).

Discussion
Our simulation study shows that tip-calibrations provide a
useful and effective source of information for analyses of virus
data. This is consistent with previous validations of the use of
time-structured data for estimating rates (e.g., Ho et al. 2007,
2011; Firth et al. 2010), but here we have confirmed that
reliable rate estimates can be obtained even when there is
substantial rate variation among branches. Our results also
demonstrate that rates can be estimated reliably when there
are small numbers of variable sites, provided that there is
a wide span in sampling times. For example, a calibration
window of at least 5 years was sufficient for obtaining accu-
rate rate estimates from our data simulated with a high mean
substitution rate (1� 10�3 subs/site/year). For the data
simulated with medium (5� 10�4 subs/site/year) and low
(1� 10�4 subs/site/year) mean substitution rates, calibration
windows of 13 and 30 years, respectively, appeared to be
sufficient to obtain accurate rate estimates. The expected
number of substitutions that accumulated over the timescale
of the calibration window can be calculated as the product of
the calibration window time, the substitution rate, and the
alignment length. In this respect, the simulations that pro-
duced accurate estimates had calibration windows that

accumulated at least between 5 and 20 substitutions.
However, determining whether the samples constitute “mea-
surably evolving populations” (Drummond, Pybus, Rambaut,
Forsberg, et al. 2003), for which substitution rates and evolu-
tionary timescales can be reliably estimated, can depend on a
combination of other factors. These include the evolutionary
timescale of the data set, the number of variable sites, and the
degree of among-lineage rate variation. For this reason, the
date-randomization test is a valuable tool that can be easily
applied to investigate the extent of temporal signal in the
data.

In most of our simulations, we found that the data sets
that produced inaccurate rate estimates tended to overesti-
mate rather than underestimate the rate. A possible reason
for this pattern is that narrow calibration windows are unin-
formative, leading to a large uncertainty and an upward bias
in the estimate of the rate (Ho et al. 2007; Debruyne and
Poinar 2009). Our simulation study shows that this pattern
of overestimation disappears when the calibration window is
sufficiently wide.

The results of our analyses indicate that the more conser-
vative criterion described here, CR2, should be applied when
using the date-randomization test. In our simulation study,
this criterion allowed us to detect nearly all of the inaccurate
estimates of substitution rates. Although CR2 has the disad-
vantage of rejecting many rate estimates from data sets with
sufficient temporal signal, we consider that this is preferable
to interpreting estimates from data sets with no temporal
signal as being correct, which is more likely to occur when
using CR1.

Reducing the number of variable sites had an impact on
the performance of the date-randomization test. The only
cases in which inaccurate rate estimates passed the test

A B

FIG. 7. Estimates of the substitution rate (subs/site/year) for the CYDV data set with reduced numbers of variable sites. The y axis is in log10 scale. Panel
(A) shows five data sets from which 117 variable sites were removed, resulting in lower sequence variation than in the complete data. Panel (B) shows
the estimates obtained for five data sets from which 117 sites were randomly removed. Data points in black represent rate estimates obtained with the
correct sampling times, whereas those in gray represent rate estimates for the date-randomized data sets. Filled circles correspond to mean rate
estimates and error bars show the 95% credible intervals. The black horizontal line represents the mean rate estimate for the complete data set.
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with CR2 was for a few data sets simulated with low rates, and
with correspondingly small numbers of variable sites (fig. 1,
panels C1 and C3, and fig. 2, replicate 9). In practice, it is
difficult to establish whether a data set has a “small”
number of variable sites. For example, there are 129 variable
sites in the CYDV data set, which appears to have sufficient
temporal signal. In our simulation study, however, some in-
accurate rate estimates that passed the date-randomization
test had around 176 variable sites. In this respect, a reassuring
result is that the test had no type I errors and very few type II
errors for data sets with very wide calibration windows, re-
gardless of the number of variable sites or the amount
of rate variation among branches. This underscores the im-
portance of drawing samples from as wide a time span as
possible.

Conducting large numbers of date-randomizations is
important for detecting inaccurate rate estimates. In our sim-
ulation study, the test performed well with 20 randomiza-
tions, but there were still some inaccurate rate estimates that
passed the test. The number of date-randomizations required
to eliminate these type I errors depends on the data set,
but in general it is advisable to conduct at least 20 date-
randomizations to improve the reliability of the test.

A critical aspect of phylogenetic methods that use tip-
calibrations is that they typically assume random sampling
and the absence of population structure. Severe deviations
from these assumptions can have a substantial impact on the
estimates of substitution rates and evolutionary timescales
(Navascu�es et al. 2010). In practice, data sets often violate
these assumptions because sampling is conducted in a
nonrandom manner, resulting in a nonuniform distribution
of sampling times. Sometimes this can also result in an asso-
ciation between temporal and phylogenetic clustering. We
find that the standard method of randomizing the sampling
times is ineffective in these cases, causing the date-random-
ization test to have a high probability of type I errors. This
probably occurs because there are very few distinct sampling
times relative to the number of sequences. If the standard
randomization method is used, a large portion of sequences
will be reassigned their correct sampling time. The rate esti-
mates from these “partial” randomizations will tend to be
very different from those obtained with the correct sampling
times, regardless of whether they have sufficient temporal
signal or not. This problem can be solved by identifying clus-
ters of samples with the same, or very similar, sampling times.
The date-randomizations are performed by randomizing the
sampling times among, but not within, these clusters. Our
guidelines for the date-randomization test are also applicable
to the cluster-randomization approach. However, it is impor-
tant to note that conducting a large number of cluster-
randomizations is only possible when there are multiple
sampling clusters. For example, in a data set comprising
only two sampling clusters, only a single randomization is
feasible.

We suggest that the date-randomization test should be
applied routinely in studies that use tip-calibrations. This
comes with a caution that the performance of the test de-
pends on the degree of temporal clustering. Wider

application of the test might reveal that data sets for some
rapidly evolving pathogens do not have sufficient temporal
signal, indicating that their estimates of rates and timescales
might be inaccurate. For rate estimates that fail the test, the
sampling strategy should be modified to include older sam-
ples, if possible. In a study of Human immunodeficiency virus 1,
the inclusion of a single molecular sample from 1959 sug-
gested that the substitution rate of this virus was lower
than previously reported, implying that its emergence in
humans occurred around 1920 (Worobey et al. 2008).
Another strategy is to include calibrations for internal
nodes, particularly those with deep positions in the tree
(Duchêne, Lanfear, et al. 2014). For example, the use of cali-
brations based on island biogeography revealed that the long-
term substitution rate for some Simian immunodeficiency
virus lineages might have been overestimated previously,
such that the timescale for these viruses is at least 30,000
years (Worobey et al. 2010). This result stands in contrast
with those obtained using only using tip-calibrations, which
yielded estimates of a higher rate and a viral evolutionary
timescale of only a few centuries (Wertheim and Worobey
2009).

Our study has focused on Bayesian phylogenetic analysis of
time-structured data using popular models of rate variation
and demographic history, but these data can be analyzed
using a wide range of other phylodynamic models (K€uhnert
et al. 2011). Accurate rate estimation is important in these
complex models (Ho and Shapiro 2011; Hedge et al. 2013),
but their sensitivity to the temporal structure in the data is
unknown. The date-randomization test is also commonly
employed in studies of ancient DNA sequences from animals
and plants, which tend to evolve much more slowly than
viruses but can include samples from much wider calibration
windows (Miller et al. 2009; Ho et al. 2011). These data sets
sometimes have large numbers of modern sequences and a
small set of ancient sequences, so it has been suggested that it
is more appropriate to randomize the ancient sequences only
(Miller et al. 2009). Simulation frameworks similar to the one
we have presented here will be useful for investigating these
questions and different methods for validating estimates of
evolutionary rates and time frames.

Materials and Methods

Simulations

We generated phylogenetic trees with 50 taxa and with a
root-node age of 100 years. The ages of the tips were uni-
formly distributed between 0 and 5, 15, 30, or 60 years. This
represents a range of calibration windows used in studies of
recently emerging RNA viruses, such as influenza viruses (e.g.,
Smith et al. 2009) and human immunodeficiency virus (e.g.,
Worobey et al. 2008). We used BEAST to generate the trees
for simulating sequence evolution. We fixed the ages of the
tips and the root-node and assumed a demographic model
with constant population size. We specified these settings in
an input file for BEAST and conducted the analyses without
sequence data. This allowed us to sample trees from the prior
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distribution under the chosen model. These trees are chro-
nograms, in which the branch lengths are expressed in years.

To generate the branch-specific substitution rates for the
chronograms, we used the R package NELSI v0.21 (Ho et al.
2014). In this program, the branch lengths of the chrono-
grams are multiplied by the rate to produce phylograms,
with branch lengths in units of substitutions per site (subs/
site). We chose three values for the mean substitution
rate, corresponding to some of those estimated from RNA
viruses: 1� 10�3 (high), 5� 10�4 (medium), and 1� 10�4

(low) subs/site/year. Simulations using these rates produce
sequence data with different proportions of variable sites.
We also specified different levels of rate variation among
branches by drawing the branch rates from a lognormal dis-
tribution, which is equivalent to the uncorrelated lognormal
relaxed molecular clock (Drummond et al. 2006). We set the
mean rate to the high, medium, or low values described
above, and set the standard deviation as 0% (strict clock),
5%, or 20% of the mean.

We simulated sequence evolution along the trees to pro-
duce alignments of 2,000 nt, under the Jukes–Cantor substi-
tution model, using the R package phangorn v1.9 (Schliep
2011). We chose this substitution model to avoid the need
to choose a large number of parameter values for more com-
plex substitution models in the simulations, and because the
focus of our study does not involve substitution model mis-
specification. In total, our simulations included nine rate
treatments and four different widths for the calibration
window. We generated 40 data sets for each rate treatment,
with 10 data sets for each calibration width, for a total of 360
data sets.

Phylogenetic Analyses

We analyzed the sequence data using the Bayesian
Markov chain Monte Carlo (MCMC) method implemented
in BEAST. We used the uncorrelated lognormal relaxed
molecular clock model to accommodate rate variation
among branches in our data, calibrated using the ages of
the tips. We matched the demographic and substitution
models to those used to generate the sequences. We used
the “OneOnX” prior for the population size parameter
of the constant population size demographic model,
which takes the form f(x) = C/x, where C is a normalizing
constant. We chose this prior because using a more
informative prior, or fixing the population size to its true
value, can result in an underestimation of the variance of
the substitution rate (Debruyne and Poinar 2009; Ho et al.
2011).

We conducted 20 date-randomizations for the date-
randomization test for each of the 40 data sets from each
rate treatment. The analyses were run with an MCMC chain
length of 1.5� 107 steps, with samples from the posterior
distribution drawn every 5� 103 steps. After discarding the
first 10% of steps as burn-in, we assessed sufficient sampling
from the posterior by verifying that the effective sample sizes
for all parameters were at least 200, using the R package
CODA (Plummer et al. 2006).

Statistical Analyses

We compared two different criteria for the date-randomiza-
tion test. For the first criterion, CR1, a rate estimate fails the
test if the mean estimate obtained with the correct sampling
times is contained within the 95% credible intervals of any of
those obtained with the date-randomized data sets. The
second criterion, CR2, is more conservative. A rate estimate
fails the test if its 95% credible interval overlaps with those of
any of the date-randomized data sets. We evaluated the per-
formance of the test in terms of type I and type II errors. A
type I error occurs when a data set with no temporal signal
passes the test, and a type II error occurs when a data set with
sufficient temporal signal fails the test. In our simulations, we
consider that a data set has sufficient temporal signal if it
produces an accurate rate estimate, so that its 95% credible
interval includes the value used for simulation.

Effect of Nonuniform Temporal Sampling on the
Date-Randomization Test

To investigate the effect of nonuniform temporal sampling on
the date-randomization test, we generated data sets with low
temporal signal. Analyses of these data sets are expected to
produce unreliable rate estimates. Accordingly, they are useful
for illustrating the probability of type I errors, which is an
important concern for estimates of substitution rates and
evolutionary timescales. We simulated phylogenetic trees
with 50 taxa, a root-node age of 100 years, and a constant
population size by sampling from the prior distribution in
BEAST. We considered two scenarios of nonuniform tempo-
ral sampling, and simulated ten trees in each case. In the first
scenario, there is a strong association between sampling time
and genetic divergence, such that samples with the same age
form monophyletic clusters. To simulate these data, we con-
strained monophyly for five clusters of tips, with each cluster
comprising ten tips. We assigned a single sampling time (0, 1,
2, 3, and 4 years) for all of the tips within each cluster. In the
second scenario, we also considered five clusters of ten tips
with the same sampling time, but the clusters did not form
monophyletic groups. This latter scenario is similar to the
“layered” sampling strategy described in previous studies
(e.g., Seo et al. 2002; Ho et al. 2007).

The substitution rate varied among branches according to
the uncorrelated lognormal relaxed-clock model with a low
mean rate (1� 10�4 subs/site/year) and a standard deviation
of 5%. To simulate sequence evolution, we used the same
method as that described for our simulations above. We an-
alyzed the data in BEAST, with the sampling times used for
calibration, and matched the substitution and demographic
models to those used to generate the data.

We conducted the date-randomization test with five ran-
domizations. We also used a modification of the test to ac-
count for nonuniform temporal sampling. In the modified
test, the units of date-randomization are the sampling
clusters, which are groups of sequences that share the
same sampling time. Dates are randomized among, but
not within, these sampling clusters. We conducted five
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cluster-randomizations and used criteria CR1 and CR2 to
determine whether the rate estimates passed or failed the
test.

Case Study of CYDV

We downloaded a data set of 76 nt sequences from GenBank
of the coat protein gene (CP) of CYDV, a positive-sense,
single-stranded RNA virus. This CYDV data set, previously
analyzed by Pag�an and Holmes (2010), was convenient for
our study because the sequences had a temporal and phylo-
genetic structure that allowed us to manipulate the calibra-
tion window while retaining the original root-node age. The
sampling dates ranged from 1925 to 2005, providing a cali-
bration window of 80 years. We aligned the sequences using
the Muscle algorithm (Edgar 2004) and visually inspected the
alignment. We analyzed the data in BEAST using a Bayesian
skyline demographic model (Drummond et al. 2005). We
selected the GTR+G substitution model according to
the Bayesian information criterion using the software
ModelGenerator v0.851 (Keane et al. 2006). The settings of
the MCMC and assessment of sufficient sampling from the
posterior distribution were the same as those used in our
simulation study. We conducted a date-randomization test
with five randomizations, and verified that the rate estimate
passed the test according to CR1 and CR2. We conducted
only a small number of randomizations because the rate es-
timates for this CYDV data set passed the date-randomiza-
tion test in two previous studies (Pag�an and Holmes 2010;
Duchêne, Holmes, et al. 2014).

To investigate the effect of the width of the calibration
window on the performance of the date-randomization test
and on the estimate of the substitution rate, we reduced the
calibration window to 1 year (between 2003 and 2004) by
removing 38 samples while maintaining the age of the root-
node. The estimates obtained with this subsampled data set
are not directly comparable to those obtained with the com-
plete set of samples because they differ in the number of
sequences. To overcome this limitation, we also removed
38 sequences randomly, while maintaining the original cali-
bration window of 80 years. We analyzed these data with the
same method as for the complete data set, conducting five
date-randomizations.

We assessed the impact of the number of variable sites on
the date-randomization test. The complete CYDV data set
contained 129 variable sites. We reduced the number of var-
iable sites by 90% by randomly removing 117, a procedure
that we repeated five times. The rate estimates for these
subsamples of the data are expected to differ from that of
the complete data set because they have different levels of
sequence variation; however, the purpose of our experiment
was to investigate the behavior of the date-randomization
test, rather than to compare the rate estimates with that
from the complete data set. For comparison with data sets
with similar sequence lengths, we also obtained five data sets
from which we removed 117 randomly selected sites. In this
case, we expect the rate estimates to match that from the
complete data set because the level of sequence variation is

similar. We conducted five date-randomizations in each case,
and analyzed the data set using the same settings as for the
complete data set.

Acknowledgments

The authors thank several anonymous reviewers of previously
submitted articles, who pointed out some of the potential
limitations of the date-randomization test. S.D. was sup-
ported by a Francisco Jos�e de Caldas Scholarship from the
Colombian government and by a Sydney World Scholars
Award from the University of Sydney. D.D. was supported
by an Australian National University HDR Merit
Scholarship. E.C.H. was supported by a National Health and
Medical Research Council Australia Fellowship (AF30).
S.Y.W.H. was supported by the Australian Research Council
(DP110100383).

References
Bouckaert R, Heled J, K€uhnert D, Vaughan T, Wu C-H, Xie D, Suchard

MA, Rambaut A, Drummond AJ. 2014. BEAST 2: a software platform
for Bayesian evolutionary analysis. PLoS Comput Biol. 10:e1003537.

Debruyne R, Poinar HN. 2009. Time dependency of molecular rates in
ancient DNA data sets, a sampling artifact? Syst Biol. 58:348–360.

Drummond AJ, Forsberg R, Rodrigo AG. 2001. The inference of stepwise
changes in substitution rates using serial sequence samples. Mol Biol
Evol. 18:1365–1371.

Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. 2006. Relaxed phylo-
genetics and dating with confidence. PLoS Biol. 4:e88.

Drummond AJ, Nicholls GK, Rodrigo AG, Solomon W. 2002. Estimating
mutation parameters, population history and genealogy simulta-
neously from temporally spaced sequence data. Genetics 161:
1307–1320.

Drummond AJ, Pybus OG, Rambaut A. 2003. Inference of viral evolu-
tionary rates from molecular sequences. Adv Parasitol. 54:331–358.

Drummond AJ, Pybus OG, Rambaut A, Forsberg R, Rodrigo AG. 2003.
Measurably evolving populations. Trends Ecol Evol. 18:481–488.

Drummond AJ, Rambaut A, Shapiro B, Pybus OG. 2005. Bayesian coa-
lescent inference of past population dynamics from molecular se-
quences. Mol Biol Evol. 22:1185–1192.

Drummond AJ, Rodrigo AG. 2000. Reconstructing genealogies of serial
samples under the assumption of a molecular clock using serial-
sample UPGMA. Mol Biol Evol. 17:1807–1815.
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