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Abstract The performance of robust principal component analysis (RPCA), detrended correspondence analysis
(DCA) and non-metric multidimensional scaling (NMDS) with two demersal fish data sets were assessed in terms
of their stability to bootstrap-generated sample variation and the method’s ability to reflect a well-known depth
gradient. Stability was assessed for both species and site orderings and configurations, using scaled rank variance
(SRV) and Spearman (q) and Procrustes correlations (t0). The NMDS site and species orderings showed the
highest stability. DCA performed best in terms of site ordination stability, but NMDS performed best in terms of
species ordination stability. In terms of matching the expected ecological variation, NMDS was the most sensitive
method for the wider-depth gradient data and DCA was the most sensitive for the narrower-depth gradient data.
According to the sensitivity and informative power criteria associated with the stability assessment, t0 was the best
methodological approach for site ordinations, and SRV for species ordinations.
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Introduction

Multivariate methods comprise a family of powerful
tools for analysing large numbers of samples collected
in surveys with different objectives: (1) to arrange
samples along one or more environmental gradients
(Bakus 2007; Ruokolainen & Salo 2006) to obtain a
more interpretable view of the patterns of sampling
units (e.g. sites) or assemblages (e.g. species) that
would otherwise be too complex to understand (Pillar
1999; McGarigal et al. 2000; McCune et al. 2002); (2)
to identify the main underlying environmental gradi-
ents that structure the data (Kenkel & Orlóci 1986;

Kodama et al. 2002; Ruokolainen & Salo 2006) or
reveal species–environment relationships (Cao et al.
2002); (3) to assess fisheries-related human impacts on
assemblages (e.g. Cao et al. 2002); and (4) to reduce
data dimensionality to obtain a parsimonious repre-
sentation of individuals in a low dimensional space
(Kenkel & Orlóci 1986; Gamito & Raffaelli 1992).

Multivariate methods for obtaining both direct and
indirect ordinations have been used previously in
community ecology. Direct gradient analysis has been
used to determine how sample units or species are
distributed in an n-dimensional space generated by
environmental factors (McCune et al. 2002). By
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contrast, indirect gradient analysis is based on patterns
of covariation and association among species (Knox &
Peet 1989; McCune et al. 2002). A group of these
multivariate techniques for indirect ordination involves
the Eigen analysis of a sum of squares and cross-
products (SSCP) matrix (Kenkel & Orlóci 1986). The
following metric methods are examples of this group:
principal component analysis (PCA), principal coordi-
nates analysis (PCoA), metric multidimensional scaling
(MDS) and correspondence analysis (CA), which gave
rise to detrended correspondence analysis (DCA). A
recent version of PCA known as robust PCA (RPCA)
was developed for coping with outliers (Croux et al.
2007). A different approach is known as non-metric
multidimensional scaling (NMDS). Non-metric means
that configurations are based on the rankings of
distances. Therefore, NMDS derives a configuration
in which the distances between all pairs of sample
points are, as far as possible, in rank order agreement
with their compositional dissimilarities (Minchin 1987),
which makes this method well suited to non-normal
data (McCune et al. 2002; Bakus 2007). Metric meth-
ods (e.g. PCA, CA and DCA) use distances that are
proportional to the dissimilarities (Minchin 1987);
therefore, DCA uses the Chi-Squared distance metric,
whereas PCA uses the Euclidian one.

It is not possible to draw a clear conclusion from the
studies that compare different metric Eigen value
techniques. Under most conditions, DCA (Hill &
Gauch 1980; McGarigal et al. 2000) has been found to
be superior to PCA, although it has been suggested
that this superiority could be attributed to differences
in data standardisation that may lead to an undue
emphasis on outliers (Hill & Gauch 1980). A similar
conclusion arises from the studies that compare
NMDS with metric Eigen value methods. Hill and
Gauch (1980) reported that DCA ecological ordina-
tions are more interpretable and successful than
NMDS ordinations. These authors also found that
NMDS does not ordinate species well, and that this
method has only a marginal advantage over CA for
sample ordinations. Bakus (2007) stated that DCA
gives a slightly more realistic portrayal of intertidal
community structure than NMDS, but recognised that
this may not be the case in other communities. By
contrast, Minchin (1987) considered NMDS applied
with the Bray–Curtis dissimilarity coefficient to be the
most robust and effective of the compared methods
(PCA, PCoA, DCA and NMDS). Gauch et al. (1981),
with vegetation data, also found NMDS to give
‘better’ results than CA and DCA, although this
depended on the data set analysed (Gauch et al. 1981).
In general, results from comparative studies depend

strongly on the type of data set, gradient length,
sampling pattern, data pre-treatment methods and
distances or similarity measures.

Ordination methods have traditionally been used to
detect spatial or temporal differences among demersal
fish assemblages (e.g. Fariña et al. 1997; Kodama et al.
2002; Sousa et al. 2005; Bergstad et al. 2008), but the
specific methods applied in each case are not based on
previous assessments of the most appropriate tech-
nique for detecting these differences (Hurst 2005; Hurst
et al. 2008). It is to be expected that different methods
applied to species-station matrices of demersal fish
assemblages will give different results. Consequently,
the strengths and weaknesses of each method need to
be considered before deciding which of the available
methods best fits the collected data (Ruokolainen &
Salo 2006; Bakus 2007). An assessment of the stability
of ordination methods to sampling variation is impor-
tant considering that interpretations may be mislead-
ing if they are based on dimensions that depict
unstable variation trends that would not reappear in
the analysis of other samples from the same sampling
universe (Pillar 1999). This would influence the ability
of multivariate analysis to detect and quantify ecolog-
ical changes and patterns (Cao et al. 2002). Further-
more, the interpretability of the resulting ordinations
in terms of underlying environmental gradients must
also be a criterion for a comprehensive performance
analysis, especially when working with field data and
not simulated data.

This study aims to assess the performance of RPCA,
DCA and NMDS with demersal fish survey data sets
in terms of the stability to sample variation generated
through bootstrap resampling and the extent to which
the well-known depth gradient is reflected in the output
of these multivariate methods. Thus, the work includes
one non-metric method (NMDS) and two metric
Eigenvalue methods with different approaches to the
linearity assumption. Principal component analysis
assumes a linear relationship between taxa and the
ecological space determined by the underlying envi-
ronmental gradients (McCune et al. 2002), whereas
DCA does not make assumptions about the distribu-
tion of sample units and species in an environmental
space (Bakus 2007).

Material and methods

Data source

Data on catch composition as well as fishing time and
power by haul were collected in two bottom trawl
research cruises conducted in the Colombian Carib-
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bean Sea (CCS) (Fig. 1): (1) The UNDP-FAO-NO-
RAD 199806 (UFN), carried out from 15 to 21 June
1988 between Castilletes (11�51¢0.1¢¢ N, 71�19¢60¢¢ W)
and Punta Arenas (8�37¢24¢¢ N, 76�52¢55¢¢ W), from 11
to 455 m depth, surveyed with 51 hauls (Strømme &
Saetersdal 1989); and (2) the INPA-COLCIENCIAS
200112 (IC), carried out from 19 November to 7
December 2001, covering only the northern zone of the
CCS, between Punta Gallinas (12�27¢32¢¢ N; 71�40¢04¢¢
W) and Palomino (11�15¢12¢¢ N, 73�44¢15¢¢ W) and
from 10 to 88 m depth, with 39 hauls. Raw data from
the two cruises were taken from the SIEEP database
system (Duarte et al. 2005; Duarte & Cuello 2006).
The UFN cruise catches were taken with a 31-m
headrope bottom trawl (Strømme & Saetersdal 1989),
and the IC cruise catches were made with a 20.5-m

headrope bottom trawl (Garcia et al. 1998). As a result
of differences in trawl size and towing velocity and
duration, catches were standardised by calculating
biomass densities (kg km)2), i.e. by dividing the catch
weight (kg) for each haul by the respective swept area
ai (km

2), which in turn was calculated by ai = TVi ·
ti · Wi · 1852 · 10)6 (King 2007), where, for each
haul, TVi is the towing velocity in knots, ti is the
duration of the tow in hours, Wi is the effective width
of the trawl in metres and 1.852 · 10)6 is the conver-
sion factor for expressing the swept area in squared
kilometres.

As a consequence of the time between the two
cruises, valid scientific names were standardised using
the taxonomic database Fishbase (Froese & Pauly
2009) and FAO catalogues (Carpenter 2002). Only fish

(a)

(b)

Figure 1. Spatial distribution of the fishing stations (sampling units) carried out on the (a) UFN and (b) IC cruises.
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species classified in Fishbase as demersal, bathydemer-
sal or benthopelagic (Froese & Pauly 2009) were
included in this study, as in the approach adopted in
numerous previous works on demersal assemblages
(e.g. Bianchi et al. 2000; Colloca et al. 2007; Massutı́ &
Reñones 2005; Garcı́a et al. 2007). Rare species were
also removed from the matrix to avoid their strong
distorting effect and obtain interpretable species ordi-
nations (e.g. Hill & Gauch 1980; Clarke & Warwick
2001). Specifically, all species that never constituted
more than 10% of the total biomass of any sample
were removed according to the general approach
suggested by Field et al. (1982), which has been used
in several previous works (e.g. Manjarrés et al. 2001;
Duffy-Anderson et al. 2006). A matrix of 50 species by
51 sites from the UFN data and a matrix of 38 species
by 39 sites from the IC data was obtained. Down-
weighting of abundant species was used to obtain a
more balanced picture of the sample ordinations, and
the density biomass values were log-transformed, log
(X + 1) (Clarke & Warwick 2001; Kallianiotis et al.
2004; Bergstad et al. 2008). For the species ordination,
the data matrix was standardised instead of log
transformed (Clarke & Warwick 2001) to make the
maximum use of the quantitative information on all
species (Hill & Gauch 1980). This standardisation
consisted in dividing each entry by its row (species)
total and multiplying by 100, as recommended by
Clarke and Warwick (2001). Taxon richness and
Shannon diversity, as well as Bray–Curtis similarity
were calculated for the two species-selected, log-trans-
formed data sets using the program PRIMER version
6 (Clarke & Gorley 2006). The Shannon diversity was
calculated based on biomass units (Wilhm 1968). The
coefficient of variation in similarities was intuitively
used as a measure of sample heterogeneity (Cao et al.
2002).

Statistical analysis

All the statistical analyses and graphical outputs were
performed with programs written in the R software
environment, version 2.10.1 (R Development Core
Team 2009). Initially, a t-test was run to compare the
mean richness of the two data sets, assuming homo-
geneous variances, as shown by an F-test. As a result of
non-normal distribution, the median Shannon diver-
sity indices of the two data sets were compared using
the Mann–Whitney test (a = 0.05). Robust principal
component analysis was computed using the projec-
tion-pursuit-based GRID algorithm developed by
Croux et al. (2007) and implemented in the function
PACgrid of the R package pcaPP (Filzmoser et al.

2009). The DCA was run from the DECORANA
command in the R package VEGAN (Oksanen et al.
2009). Non-metric multidimensional scaling ordina-
tions were carried out using the isoMDS command in
the R statistical software package MASS (Venables &
Ripley 2002). Similarity matrices for NMDS were
obtained by applying the Bray–Curtis coefficient
(Clarke & Warwick 2001). The comparative analysis
was based on two criteria. The first criterion was the
robustness to the effect of bootstrap-generated sam-
pling variation, which was tested by assessing the
stability of both site and species orderings and config-
urations. The second criterion was the method’s
capacity to show specified types of expected ecological
variation, based on the depth gradient that underlies
the structure of the demersal fish data sets.

Bootstrap replicate solutions (n = 1000) were gen-
erated from the original N · P data (Knox & Peet
1989; Efron & Tibshirani 1993). Procrustes rotation
was applied to make the bootstrap assessment of
stability insensitive to reversals in direction and axis
order, which are two well-known features of the axes
of Eigen-analysis ordinations (Knox & Peet 1989;
Pillar 1999). Target configurations were then deter-
mined with the scores on the first three axes produced
by the different ordination methods applied to the
original data set (X). As sampling has replacement,
matrix X holds the scores of the sampling units that are
in the bootstrap sample, but extracted from the
reference scores (Knox & Peet 1989; Pillar 1999). The
Procrustes rotation was implemented with the function
PROCRUSTES from the R package VEGAN (Oksa-
nen et al. 2009).

The overall stability of the first three original
ordination axes (reference axes) was assessed with
three approaches. The first used the function PRO-
TEST of the package VEGAN to calculate a correla-
tion-like statistic (t0) derived from the symmetric
Procrustes sum of squared differences (SS) between
the original data set (X) and the Procrustes-rotated
configuration of each bootstrap-generated data set
(Yrot) as t0 = � (1 ) SS) (Oksanen et al. 2009)..

The second approach was to calculate Spearman’s
rank correlations (q) between Procrustes-rotated
scores along bootstrap axes (X*) and scores on
reference axes (X), for both the stations (Knox & Peet
1989; Pillar 1999) and species, for which the respective
P-values (pq) were also obtained. The third approach
was to calculate a coefficient termed scaled rank
variance (SRV) to compare the stability in species
orderings across axes (Knox & Peet 1989). The
variance in rank was computed for each species from
the Procrustes rotated scores for species occurring in
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all the bootstrap samples, and then the variances were
averaged across the n species for each axis. This mean
variance was scaled to range from 0 to 1 using
SRV = observed variance in rank/expected variance
in rank, where expected variance in rank = (n2 ) 1)/
12, and n is the number of items. SRV values near zero
indicate very consistent species rankings, whereas
values near 1.0 indicate that species ranks vary as
much as random ranks (Knox & Peet 1989).
Distributions of t0 and q generated from the 1000

bootstrap replicates (hereafter replicate axes) were
depicted in box-and-whisker plots for each combina-
tion method-axis. As correlations were calculated in
relation to each reference axis, these results could be
interpreted in terms of accuracy. For the purposes of
this study, accuracy (A) was referenced with the
Q1–Q3 ranges, i.e. by the central 50% of the data
(IQR). Thus, higher correlations indicate higher accu-
racy. The precision of the correlations was assessed
with graphical information provided by the length of
the whiskers and also the median coefficient of
variation (VMe), which is a measure of the reproduc-
ibility, or closeness in value, of repeated measurements.
Several studies that use different methodological

strategies show that demersal fish assemblages of the
CCS are strongly associated with depth (Fariña et al.
1997; Garcia et al. 1998; Manjarrés et al. 2001; Labr-
opoulou & Papaconstantinou 2004; Sousa et al. 2005;
Massutı́ & Reñones 2005; Catalán et al. 2006). In this
way, the three ordination methods are compared based
on their ability to show the expected depth gradient for
the following five depth strata: 10–30 m, 31–50 m, 51–
100 m, 101–200 m, and>200 m. For most of the CCS,
the first three strata correspond to the shelf proper
(inner, middle and outer shelf, respectively), and the last
two strata, to the slope (upper and intermediate slope).
The results from this approach were analysed using

two strategies: (1) visually examining the degree of
correspondence between the relative positions of the
sampling sites in the two-dimensional depth strata
(McGarigal et al. 2000); and (2) using Welch’s (1951),
randomised version of the one-factor analysis of
variance, to test the differences between depth strata
in score means on axes 1 and 2 separately. When
Welch’s test was significant, post-hoc pairwise multiple
comparisons between depth strata were performed
using the Dunnet–Tukey–Kramer (DTK) test adjusted
for unequal variances and unequal sample sizes, as
implemented in the R package DTK (Lau 2009). The
significance of the observed F-value from Levene’s test,
the P-value of Welch’s test and mean differences from
the DTK test were all tested by randomisation
(n = 5000).

Results

Ecological-based comparison of data sets

The UFN data showed a slightly higher taxon richness
than the IC data, but no significant differences
(P > 0.05) were found between the two means.
Shannon diversity was also higher for the UFN data,
and the differences in relation to the IC data
(P < 0.05) were significant. The respective coefficients
of variation of these two indices were similar for the
two data sets. Although the two data sets showed very
similar mean Bray–Curtis similarities, the variability of
the pairwise similarities was much higher for the UFN
data set (Table 1).

Site score correlation

The correlation values for the site scores showed
several differences in score accuracy between the three
methods on each axis (Fig. 2). The two data sets
resulted in different patterns on the first axis: for the
UFN data (Fig. 2a), the accuracy tended to decrease
from PCA to NMDS, while the opposite occurred for
the IC data (Fig. 2b). By contrast, no differences
between data sets were found for the next axes. The
accuracy tended to increase from PCA to NMDS on
the second axis. The accuracy of PCA and NMDS was
higher than that of DCA on the third axis for both
data sets. In short, on axis 1 RPCA obtained the
highest score accuracy for the UFN data, and NMDS
obtained the highest for the IC data. However, on axes
2 and 3, NMDS obtained the maximum accuracy for
both data sets except on axis 3 with the IC data, where
the score accuracy of RPCA was comparable to that of
NMDS.

The comparison between methods on each axis
showed that the score precision of the two data sets
was not homogeneous (Fig. 3). On axis 1, RPCA

Table 1. Summary of ecological indices of the two input data sets

used to investigate the performance of the three ordination methods

(after elimination of rare species and log transformation)

Data

set

Taxon richness Shannon diversity

Bray–Curtis

similarity

Total Mean

CV

(%) Mean Median

CV

(%) Mean

CV

(%)

UFN 50 8.71 35.1 1.54 1.64 27.9 24.36 81.2

IC 38 7.85 35.9 1.37 1.43 31.4 25.10 68.4

CV, coefficient of variation; IC, INPA-COLCIENCIAS 200112;

UFN, UNDP-FAO-NORAD 199806.
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produced the highest precision with UFN data, and
NMDS showed the highest precision with IC data. On
axis 2, NMDS generated less scattered distribution of
the correlation values than the other two methods with
both data sets. On axis 3, NMDS had the highest score
precision with the UFN data, whereas with the IC
data, NMDS and RPCA had similar, higher precision
levels than DCA (Table 1).

Procrustes correlation of site ordinations

Some differences in the site ordination accuracy
patterns emerged when the two data sets were com-
pared with base in t0. IC data showed more t0 accuracy
heterogeneity than the UFN data (Fig. 3). The largest
difference was the lower t0 accuracy of the method-
dimension combinations RPCA-1, NMDS-1 and
RPCA-2 with the IC data (Fig. 3b) compared with
the UFN data (Fig. 3a). A common feature of the two
data sets was that DCA showed higher t0 accuracy
than NMDS and RPCA for the three dimensions.

The comparisons of the ordination precision did not
reveal any consistent patterns between methods for
each dimension (Table 2). The UFN data set showed
higher t0 precision than the IC data, except in the two-

dimensional ordinations of DCA and NMDS. The
DCA produced slightly higher t0 precision levels than
the other two methods for both data sets, with the only
exception of two-dimensional ordinations with IC

(a) (b)

Figure 2. Comparison of distributions of Spearman’s correlation coefficient (q) between site scores on the axes of the ordinations generated from

original UFN (a) and IC (b) data sets and site scores on Procrustes-rotated axes of the ordinations generated from 1000 bootstrap replicates of these

data sets, using the three first axes. Each box contains the central 50% of the data (interquartile range IQR). The centre-line indicates the median and

the plus sign the location of the mean. Squares represent data below 1.5 IQR (outliers). Letters P, D and N on x-axis legend mean Robust PCA,

detrended correspondence analysis and NMDS methods, respectively.

(a) (b)

Figure 3. Comparison of distributions of Procrustes correlation (t0) between original site ordination and each of the site ordinations generated for

the 1000 bootstrap replicates of both UFN (a) and IC (b) data sets, using the three first dimensions. Symbols are the same as those used in Figure 2.

Table 2. Median coefficient of variation (%) of Spearman’s corre-

lation coefficient (q) for site scores and Procrustes correlation (t0) for

site configurations, calculated between the ordinations generated

from original UFN (UNDP-FAO-NORAD 198806) and IC (INPA-

COLCIENCIAS 200112) data sets and the ordinations generated

from 1000 bootstrap replicates of these data sets. Only the first three

axes or dimensions are used

Data

set

Ordination

method

Score correlations (q)
Configuration

correlations (t0)

Axis 1 Axis 2 Axis 3 Dim. 1 Dim. 2 Dim. 3

UFN RPCA 1.46 10.72 21.77 5.13 6.69 4.93

DCA 6.60 15.99 91.64 1.47 5.43 4.84

NMDS 10.59 5.93 15.78 4.91 6.00 5.37

IC RPCA 3.14 7.75 9.80 26.49 12.96 6.49

DCA 3.43 7.81 28.54 6.43 5.29 5.24

NMDS 1.08 1.65 11.73 14.92 3.33 5.50

RPCA, robust principal component analysis; DCA, detrended

correspondence analysis; NMDS, non-metric multidimensional

scaling.
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data, for which NMDS showed higher precision than
DCA. Robust principal component analysis showed
the worst t0 precision levels with both data sets (Fig. 3,
Table 2).

Species score correlation

The species score correlations for the two data sets
showed similar accuracy patterns (Fig. 4). The higher
score accuracy of NMDS was clear, particularly on
axes 2 and 3. Robust principal component analysis
showed the lowest score accuracy on all axes. Similar
score precision levels were found for the two data sets,
except in the NMDS-2 and DCA-3 combinations,
which were far higher with the IC data (Table 3).
Although precision ranking differences were found
between data sets, a common general trend was that
NMDS produced the most precise species score
distributions and RPCA obtained the least precise
species scores (Fig. 4, Table 3).

Procrustes correlation of species ordinations

A similar t0 pattern emerged for the two data sets
based on both species accuracy and precision levels
(Fig. 5). The main t0 accuracy features of this common
pattern were as follows: (1) NMDS and to a slightly
lesser degree DCA showed higher Procrustes correla-
tion values across most axes; and (2) RPCA showed
very low t0 accuracy levels. Furthermore, the two data
sets showed very close t0 precision values for each
method-axis combination (Table 3).

SRV of species orderings

According to the bootstrap SRV criterion, the first
three axes of NMDS species ordinations were less
variable than those of DCA and RPCA, except for axis
1 with UFN data, for which DCA had a slightly lower

SRV value than NMDS (Table 4). Robust principal
component analysis had the worst performance on the
three axes with both data sets. While RPCA showed
similar, higher SRV values on the three axes, DCA and
NMDS showed their minimum SRV values on axis 1
and intermediate levels on axis 2, except for NMDS
applied to UFN data, for which the SRV value on axis
3 was lower than that on axis 2.

Matching to expected ecological variation

When the three multivariate techniques were per-
formed on UFN data with RPCA (Fig. 6a) the
samples from the different depth strata tended to be
grouped. The plots for DCA (Fig. 6c) and NMDS
(Fig. 6e) were both more sensitive in discriminating the
intermediate-slope samples from the other depth
strata. Other similarities between the DCA and NMDS

(b)(a)

Figure 4. Comparison of distributions of Spearman’s correlation coefficient (q) between species scores on the axes of the ordinations generated from

original UFN (a) and IC (b) data sets and species scores on Procrustes-rotated axes of the ordinations generated from 1000 bootstrap replicates of

these data sets, using the three first axes. Symbols are the same as those used in Figure 2.

Table 3. Median coefficient of variation (%) of Spearman’s corre-

lation coefficient (q) for species scores and Procrustes correlation (t0)

for species configurations, calculated between the ordinations

generated from original UFN (UNDP-FAO-NORAD 198806) and

IC (INPA-COLCIENCIAS 200112) data sets and the ordinations

generated from 1000 bootstrap replicates of these data sets. Only the

first three axes or dimensions are used

Data

set

Ordination

method

Score correlations (q)
Configuration

correlations (t0)

Axis 1 Axis 2 Axis 3 Dim. 1 Dim. 2 Dim. 3

UFN RPCA 36.23 35.92 34.16 68.80 28.54 19.34

DCA 10.28 38.29 64.77 8.98 10.21 9.68

NMDS 8.31 21.73 15.12 6.34 14.04 9.19

IC RPCA 40.99 30.44 36.68 71.41 28.05 18.72

DCA 6.31 34.94 37.09 7.94 9.08 9.21

NMDS 6.63 10.67 13.47 13.27 11.91 9.36

RPCA, robust principal component analysis; DCA, detrended

correspondence analysis; NMDS, non-metric multidimensional

scaling.
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plots of UFN data were the grouping of the shelf
samples, although NMDS produced a more scattered
cluster of shelf samples than DCA, as well as the trend
of the upper-slope samples to be located in an
intermediate area of the plot, like a transition zone
between the shelf and the upper slope. With IC data,
which only include shelf depth strata samples, the
RPCA ordination pattern (Fig. 6b) was also different
from those of DCA (Fig. 6d) and NMDS (Fig. 6f).
Likewise, DCA (Fig. 6d), and to a lesser extent NMDS
(Fig. 6f), tended to display an assemblage composition
gradation across the three shelf depth strata.

The Levene’s test rejected the homoscedasticity
hypothesis for several data set-method-axis combina-
tions (Table 5). The subsequent application of Welch’s
test under randomisation showed that there were
highly significant mean differences (P < 0.01) between
depth strata for several data set-method-axis combi-
nations (Table 6). With the UFN data set, significant
differences were found for all tests involving RPCA
and DCA, and for one of the tests involving NMDS:

between depth strata on axis 1. With the IC data, the
three methods showed identical results: significant
mean differences between depth strata only on axis 2.

From the randomised post-hocmultiple comparisons
implemented only for the significant Welch’s tests
carried out with UFN data (Table 7), highly significant
differences (P < 0.01) were found for the following
pairwise comparisons on axis 1: (1) for RPCA scores,
inner shelf vs outer shelf, mid-shelf vs intermediate
slope, and outer shelf vs intermediate slope; (2) for
DCA and NMDS scores, intermediate slope vs all the
other depth strata. On axis 2, RPCA detected signi-
ficant mean differences for the comparisons inner shelf
vs outer shelf (P < 0.05), outer shelf vs intermediate
slope (P < 0.01), and upper slope vs intermediate
slope (P < 0.05), whereas DCA only detected signi-
ficant differences for inner shelf vs mid-shelf
(P < 0.05). When this type of analysis was based on
axis 2 scores generated from IC data (Table 8), a
common result of all three ordination methods was the
detection of significant differences for the three pair-
wise comparisons of shelf strata.

Discussion

In general, NMDS perform better than RPCA and
much better than DCA in terms of site score stability,
which suggests that with NMDS the relative position
of the entities along the gradients underlying the main
axes is more stable. However, based on the Procrustes
correlation criterion, DCA perform slightly better than
NMDS and far better than RPCA, which indicates
that the site ordinations have a more stable internal
structure with DCA. Therefore, for deciding which
method is more recommendable for site ordinations, it
should be taken into account that the score stability
approach provides a measurement of the relative
position of the entities (sites or species) on the
ordination axes and not of the similarity in the

(b)(a)

Figure 5. Comparison of distributions of Procrustes correlation (t0) between original species ordination and each of the species ordinations generated

for the 1000 bootstrap replicates of both UFN (a) and IC (b) data sets, using the three first dimensions (c and d). Symbols are the same as those used

in Figure 2.

Table 4. Assessment of variability in species rankings through

scaled rank variance (SRV) coefficient, after orthogonal Procrustes

rotation. SRV are variances in ranks in species orderings from each

axis, averaged across species present in all 1000 bootstrap samples,

and scaled by the expected variance of a set of n random ranks

Data set

Ordination

method Axis 1 Axis 2 Axis 3

UFN RPCA 0.875 0.875 0.887

DCA 0.271 0.762 0.879

NMDS 0.286 0.476 0.373

IC RPCA 0.901 0.819 0.863

DCA 0.199 0.783 0.832

NMDS 0.165 0.290 0.410

UFN, UNDP-FAO-NORAD 199806; IC, INPA-COLCIENCIAS

200112; RPCA, robust principal component analysis; DCA, detr-

ended correspondence analysis; NMDS, non-metric multidimen-

sional scaling.
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ecological information conveyed by the plots (Gamito
& Raffaelli 1992). This last aspect is measured with the
Procrustes correlation (t0) (Pillar 1999; Oksanen et al.
2009). In addition, the site score correlation (q) was
less sensitive to the method effects than the Procrustes
correlation of site ordinations. Therefore, when this
last criterion is prioritised, in general DCA yields the
most stable site ordinations.
In terms of species stability, the q-based results

indicate that NMDS is more robust than DCA and
RPCA to sampling variation. In relation to t0-based
stability of the species ordination, NMDS and DCA
would be appropriate for making spatial or temporal
comparisons of species assemblages when sampling
variation could be a determinant factor. However,

according to the SRV, a third criterion used for
comparing the stability of species ordination with
different methods (Knox & Peet 1989), the relative
species orderings along the axes are more consistently
determined by NMDS. Besides showing higher sensi-
tivity for detecting differences between ordination
methods, the SRV criterion also provides evidence
for comparing the three methods based on the inter-
pretability of the axes. Knox and Peet (1989) suggested
that interpretable axes must have SRV values lower
than 0.5 (half the variance of random ranks) and, more
stringently, first axes should have SRV values lower
than 0.33 (a third of the variance of random ranks).
According to this criterion, all three NMDS axes for
the two data sets can be considered interpretable axes.

(a) (b)

(c) (d)

(e) (f)

Figure 6. RPCA, DCA and NMDS two-dimensional ordinations by sites for the UFN (UNDP-FAO-NORAD 198806) and IC (INPA-

COLCIENCIAS 200112) data sets. Symbol conventions represent the depth strata: gray triangle point up = 10–30 m (inner shelf), black

circle = 31–50 m (mid shelf), black triangle point down = 51–100 m (outer shelf), gray diamond = 101–200 m (upper slope), black square =

>200 m (intermediate slope).
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For DCA, only the first would be interpretable, and
for RPCA, no axis is interpretable. Thus, both
sensitivity and interpretability prioritise SRV as an
appropriate approach for assessing and comparing the
stability of species ordinations. Therefore, it can be
stated that NMDS species ordinations are particularly
robust to sampling variation. Based on criteria other
than stability to sampling variation, Minchin (1987)
found that NMDS performed well for species ordina-
tions, whereas Hill and Gauch (1980) and Palmer
(1993) reported that DCA performed well for sample
ordinations. Furthermore, Palmer (1993) stated that
DCA sample ordinations are generally more robust
than DCA variable ordinations.

The methodological approaches used for assessing
stability to sampling variation (q, t0 and SRV) did not

show the same sensitivity to data set effects. The two
data sets differed in the number of samples n, but
neither in the relative dimensionality, which is equal to
n ) 1 for both data sets, nor in the mean taxon
richness. Given the shorter depth range and the lower
diversity and variability in the similarity index of the
IC data set, this seems to indicate that any different
result from the two data sets would have to be
attributed to differences in the underlying gradient
length or the between-site heterogeneity in composi-
tional similarity (Knox & Peet 1989; Gamito &
Raffaelli 1992; Hurst et al. 2008). Considering that
all the approaches tended to show similar stability
results for the two data sets, it is reasonable to
conclude that the application of any of the three
approaches is not subject to an ecological-type restric-
tion in terms of the length gradient or diversity, at least
within the scope of the ecological differences between
the two data sets used in this work.

In terms of matching to expected ecological varia-
tion, the 2-D site ordinations were consistent with
evidence from the analysis of variance and post-hoc
multiple comparisons test of site scores. In general,
NMDS and DCA have a more consistent performance
than RPCA, as they show a more informative picture
of a strong change from the shelf and upper slope to
the intermediate slope. Thus, these two methods are
more successful in capturing a depth-structured
pattern than previous studies have shown in the same
area (Garcia et al. 1998; Manjarrés et al. 2001).
However, a data set effect could be visually noted,
which influenced the decision on the most sensitive
method for showing the gradation in assemblage
composition across shelf depth strata. Whereas NMDS
tended to differentiate the shelf samples from the UFN
data better, DCA was better for the IC data.

These results seem to be related to the differences
between the two data sets in the depth gradient, which
has been evident in several previous works that relate
gradient length to the capacity of different methods to
recover underlying gradients. According to Legendre
and Legendre (1998), NMDS is an important alterna-
tive when data that represent complex ecological
gradients are analysed. This is the case for the UFN
data, which besides covering a larger area than the IC
data, includes a much broader depth gradient. By
contrast, in terms of matching to expected ecological
variation, DCA performed worst for the data set with
the strong underlying gradient (UFN). Most studies
agree that DCA, despite the detrending and rescaling
processes (Kenkel & Orlóci 1986), tends to evidence
compression effects. This is especially true when it is
applied to the data set with the widest underlying

Table 5. P-values resulting from the randomization (n = 5000) of

the Levene’s test applied for assessing the homoscedasticity

hypothesis for depth strata, taking as response variable the site scores

yielded by the three ordination methods for the two data sets.

Significant differences are indicated as (*) P < 0.05; (**) P < 0.01

Data set

Ordination

method Axis 1 Axis 2

UFN RPCA 0.0052** 0.0856

DCA 0.1210 0.0104*

NMDS 0.0156* 0.0072**

IC RPCA 0.4398 0.0010**

DCA 0.1378 0.6700

NMDS 0.1438 0.0228*

UFN, UNDP-FAO-NORAD 199806; IC, INPA-COLCIENCIAS

200112; RPCA, robust principal component analysis; DCA, detr-

ended correspondence analysis; NMDS, non-metric multidimen-

sional scaling.

Table 6. P-values resulting from the randomization (n = 5000) of

the Welch test applied for assessing the hypothesis of no mean dif-

ferences between depth strata, taking as response variable the site

scores yielded by the three ordination methods for the two data sets.

Significant differences are indicated as (***) P < 0.001

Data set

Ordination

method Axis 1 Axis 2

UFN RPCA 0.0004*** 0.0002***

DCA 0.0002*** 0.0006***

NMDS 0.0002*** 0.5278

IC RPCA 0.5018 0.0002***

DCA 0.9092 0.0002***

NMDS 0.6392 0.0002***

UFN, UNDP-FAO-NORAD 199806; IC, INPA-COLCIENCIAS

200112; RPCA, robust principal component analysis; DCA, detr-

ended correspondence analysis; NMDS, non-metric multidimen-

sional scaling.
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environmental gradient, because this limits the ability
to use axis 1 scores as a linear proxy of position along
the environmental gradient (McCune et al. 2002;
Holland 2008). The tendency to compress the scores
near the left end along axis 1 was evident in the output
of DCA for the UFN data. Although several authors
(Hill & Gauch 1980; Gamito & Raffaelli 1992; Bakus
2007) have reported that DCA ordinations are more
interpretable than those of NMDS, this seems to
depend on the kind of community analysed. DCA was
developed to overcome the distortions inherent to CA;
however, this method was mainly aimed at one-
dimensional gradients (Holland 2008). Simulation
studies (Minchin 1987) have shown that there may
still be distortion in DCA plots applied to data sets
with two underlying gradients.
Another relevant influence of the data set is that the

clearest evidence of the effects of depth on the
distribution of the CCS species is given by studies

conducted at bathymetric scales such as that of the
UFN cruise. The scores on the two major axes of both
the RPCA and DCA ordinations performed with UFN
data showed highly significant effects of the depth
gradient, but in NMDS ordinations, this gradient was
only depicted in the first axis. A different outcome was
derived with the IC data, for which the effect of the
depth gradient was only shown on the second axis of
the three methods. The IC data ordinations only
showing this relationship on their second axes seems to
indicate that with a narrower depth gradient, factors
other than depth would be more important in deter-
mining the assemblage distribution. Although there is
ample evidence that demersal species distributions are
mainly determined by the depth gradient at regional
scales, several studies showed that other environmental
factors determine which fish occur in a specific area
(Longhurst & Pauly 1987; Kodama et al. 2002; Catal-
án et al. 2006; Bergstad et al. 2008). This indicates that
depth needs to be mapped at a spatial resolution higher
than that of the IC data, so that there is substantial
spatial heterogeneity in the depth factor to be captured
by the first axis.

The results indicate that in terms of matching to
expected ecological variation, the performance of
RPCA is only comparable to that of DCA and NMDS
when there is a short gradient length like that
underlying the IC data. The performance of RPCA is
unsatisfactory with the UFN data, in which there is
considerable environmental heterogeneity, as occurs in
tropical habitats in which the beta diversity is high
(Bakus 2007). The absence of a clear depth pattern in
the RPCA plot seems to be related to the distortions
that would be expected on theoretical grounds for

Table 7. P-values resulting from the randomization (n = 5000) of the DTK test applied for the post-hoc pairwise comparison of means, taking

as factor the depth stratum and as response variable the site scores yielded by the three ordination methods for the UFN (UNDP-FAO-

NORAD 198806) data set. Only methods-axes combinations with significant Welch test P-values are included. Significant differences are

indicated as (*) P < 0.05; (**) P < 0.01; (***) P < 0.001

Contrasted depth strata

Axis 1 Axis 2

RPCA DCA NMDS RPCA DCA

Inner shelf Mid shelf 0.1514 0.9002 0.2944 0.3500 0.0210*

Outer shelf 0.0024** 0.5980 0.4202 0.0236* 0.0524

Upper slope 0.8316 0.0838 0.3580 0.2162 0.3640

Intermediate slope 0.1594 0.0002*** 0.0002*** 0.2384 0.7918

Mid shelf Outer shelf 0.3072 0.7380 0.6760 0.3428 0.4024

Upper slope 0.3980 0.1164 0.0846 0.6238 0.3586

Intermediate slope 0.0064** 0.0002*** 0.0002*** 0.0506 0.0810

Outer shelf Upper slope 0.0790 0.1092 0.0948 0.8732 0.6648

Intermediate slope 0.0002*** 0.0002*** 0.0002*** 0.0010** 0.1774

Upper slope Intermediate slope 0.1922 0.0024** 0.0036** 0.0380* 0.5564

RPCA, robust principal component analysis; DCA, detrended correspondence analysis; NMDS, non-metric multidimensional scaling.

Table 8. P-values resulting from the randomization (n = 5000) of

the DTK (Dunnet-Tukey-Kramer) test applied for the post-hoc

pairwise comparison of means, taking as factor the depth stratum

and as response variable the site scores on axis 2 yielded by the three

ordination methods for the IC (INPA-COLCIENCIAS 200112) data

set. Significant differences are indicated as (*) P < 0.05; (**)

P < 0.01; (***) P < 0.001

Contrasted depth strata RPCA DCA NMDS

Inner shelf Mid shelf 0.0208* 0.0400* 0.0442*

Outer shelf 0.0002*** 0.0002*** 0.0002***

Mid shelf Outer shelf 0.0246* 0.0150* 0.0048**

IC, INPA-COLCIENCIAS 200112; RPCA, robust principal com-

ponent analysis; DCA, detrended correspondence analysis; NMDS,

non-metric multidimensional scaling.
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conventional PCA. Studies that compared ordination
techniques (Kenkel & Orlóci 1986; Minchin 1987;
Knox & Peet 1989; Clarke & Warwick 2001; Ruoko-
lainen & Salo 2006) found that linear constraints of
Eigen analysis may restrict the ability of many metric
methods to summarise trends related to non-linear
and non-monotonic species responses, which are bio-
logical traits of these assemblages (McGarigal et al.
2000).

In conclusion, the results show that the site ordina-
tions yielded by DCA are the most stable to the effect
of sampling variation in demersal fish surveys. NMDS
yielded the most stable species ordinations, whatever
the underlying gradient length of the data set. By
contrast, there is a data set effect when the match to
expected ecological variation is assessed: NMDS is a
better choice for wider gradient length data sets and
DCA for narrower gradient length data sets. Finally, a
ranking of methodological approaches for evaluating
stability in ordinations based on demersal fish assem-
blage data sets can be established by combining
sensitivity and informative power criteria: Procrustes
correlation for site ordinations, and SRV for species
ordinations. These conclusions could be extrapolated
to community data sets with similar richness, diversity,
similarity and proportion of zero data levels, like those
often yielded by benthic surveys.
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