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ABSTRACT

Aims. Increasing observational evidence of wave modes in the solar corona brings us to a closer understanding of that medium.
Coronal seismology allows us to combine wave observations and theory to determine otherwise unknown parameters. The period
ratio, P1/2P2, between the period P1 of the fundamental mode and twice the period P2 of its first overtone, is one such tool of coronal
seismology and its departure from unity provides information about the structure of the corona.
Methods. We consider analytically the period ratio for the fast kink and sausage modes of a magnetic slab, discussing both an Epstein
density profile and a simple step function profile.
Results. Transverse density structuring in the form of an Epstein profile or a step function profile may contribute to the shift of the
period ratio for long thin slab-like structures.
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1. Introduction

Observations of various coronal wave phenomena have be-
come increasingly common in the literature within the last
twenty years. From the launch of the Solar and Heliospheric
Observatory (SoHO) and the Transition Region and Corona
Explorer (TRACE) in the late 1990’s to the present day,
with new missions such as the Solar Dynamics Observatory
(SDO) and Hinode, and instruments such as the Coronal Multi-
Channel Polarimeter (CoMP) at Sacramento Peak Observatory,
the evidence of waves in the solar corona is ever growing.
Magnetoacoustic waves both slow and fast have been reported.
Slow waves have been observed both as standing modes (Ofman
et al. 1997; DeForest & Gurman 1998; Ofman et al. 1999;
De Moortel et al. 2000, 2002a,b; Robbrecht et al. 2001; Ofman
& Wang 2002; McEwan & De Moortel 2006; Marsh et al.
2009) and propagating modes (Wang et al. 2002, 2003, 2009;
Srivastava & Dwivedi 2010). Standing fast waves are recorded
in the form of transverse or vertical kink modes (Aschwanden
et al. 1999, 2002; Nakariakov et al. 1999; Wang & Solanki
2004; Verwichte et al. 2004; Van Doorsselaere et al. 2007) or
sausage modes (Nakariakov et al. 2003; Melnikov et al. 2005).
Alfvénic or propagating kink waves have been reported by
Tomczyk et al. (2007) and Tomczyk & McIntosh (2009), and in-
terpreted by Van Doorsselaere et al. (2007) as propagating kink
waves. Torsional Alfvén waves have been identified by Jess et al.
(2009).

An increase in the observations of waves has led to an in-
creased growth in the field of coronal seismology of magnetic
loops, suggested over twenty five years ago by Roberts et al.
(1984) who exploited the dispersion diagrams derived in Edwin
& Roberts (1982, 1983). Coronal seismology helps to unveil the
nature of the solar atmosphere; studying observed waves and
drawing on their specific properties, it is possible to diagnose
aspects of the coronal structure which might otherwise remain
unknown. The period ratio between the fundamental mode and

its first overtone has been noted as an effective tool for coronal
seismology (Andries et al. 2005a,b; Goossens et al. 2006;
McEwan et al. 2006, 2008; Donnelly et al. 2006; Dymova &
Ruderman 2007; Díaz et al. 2007; Roberts 2008; Verth & Erdélyi
2008; Ruderman et al. 2008; Andries et al. 2009; Erdélyi &
Morton 2009; Morton & Erdélyi 2009). This topic has recently
been reviewed in Andries et al. (2009).

Observations of multi-periodicities (typically the fundamen-
tal mode and its first overtone) were first reported in stand-
ing fast waves (Verwichte et al. 2004; Van Doorsselaere et al.
2007; De Moortel & Brady 2007; O’Shea et al. 2007; Srivastava
et al. 2008) and have very recently been found in slow modes
(Srivastava & Dwivedi 2010). Using TRACE observations,
Van Doorsselaere et al. (2007) found period ratios P1/P2 = 1.81
(P1/2P2 = 0.91), P1/P2 = 1.58 (P1/2P2 = 0.79) and P1/P2 =
1.795 (P1/2P2 = 0.90) for the fast kink mode. Using observa-
tions from the Solar Tower Telescope at Aryabhatta Research
Institute of Observational Sciences, Srivastava et al. (2008) re-
port a period ratio P1/P2 = 1.68 (P1/2P2 = 0.84) which has
been attributed to the sausage mode. The observed tendency for
the period ratio P1/2P2 between the fundamental mode of pe-
riod P1 and twice the period P2 of its first overtone to be less
than unity (the value for a simple wave on a string) has led to an
interest in this ratio.

A number of physical effects have been assessed for their in-
fluence on the period ratio: wave dispersion, gravitational strat-
ification, longitudinal and transverse density structuring, loop
cross-sectional ellipticity, the overall geometry of a loop and
magnetic field expansion (Andries et al. 2005a,b; McEwan et al.
2006, 2008; Díaz et al. 2007; Ruderman et al. 2008; Verth &
Erdélyi 2008; Erdélyi & Morton 2009; Morton & Erdélyi 2009;
Inglis et al. 2009). The overall conclusion seems to be that lon-
gitudinal structuring plays the most marked role (Andries et al.
2009). Longitudinal structuring may take the form of density
stratification (e.g. Andries et al. 2005a,b; McEwan et al. 2006,
2008) or magnetic structuring (Verth & Erdélyi 2008).
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In this work we consider analytically the behaviour of the
period ratio for fast kink and sausage modes with transverse
density structuring in the form of an Epstein profile. Previously
transverse density structuring has been considered analytically
in the form of a step function (Edwin & Roberts 1982, 1983), or
as a smooth Epstein profile (Edwin & Roberts 1988) or its gen-
eralisation to a profile that combines both the step function and
the Epstein profile through use of a free parameter (Nakariakov
& Roberts 1995); the generalised case has to be treated numeri-
cally. Here we consider the Epstein profile as representative of a
smoothly changing plasma density, providing a physically more
realistic representation of density change than is given by the
step function. The Epstein profile has been considered numeri-
cally in Pascoe et al. (2007, 2009), and the period ratio for the
sausage mode has been determined numerically by Inglis et al.
(2009). Our emphasis is on an analytical treatment of period ra-
tios for the kink and sausage modes. We compare our results for
the Epstein profile with the case of a simple magnetic slab with
a step function density profile. The dispersion curves of a mag-
netic slab were given in Edwin & Roberts (1982, 1983); period
ratios for such a slab have not hitherto been discussed. Our treat-
ment is entirely in a cartesian geometry; we do not consider the
case of a cylindrical tube (which requires a separate, probably
numerical, treatment).

2. Model

We consider a magnetic slab aligned with the z-axis of a carte-
sian coordinate system Oxyz. The equilibrium magnetic field is
B0ez and is taken to be uniform. Across the magnetic field, the
equilibrium plasma density is ρ0(x); this produces a non-uniform
Alfvén speed cA(x) = (B2

0/μρ0(x))1/2 which varies across the
magnetic field. The slab is of length 2L with its ends at z = ±L;
we consider the slab to be anchored at its ends (modelling line
tying of a coronal loop by the photosphere). Both gravity and
acoustic effects are not considered.

We take the following set of ideal zero-βMHD equations:

ρ

(
∂u

∂t
+ (u · ∇)u

)
=

1
μ

(∇ × B) × B, (1)

∂B
∂t
= ∇ × (u × B), ∇ · B = 0, (2)

∂ρ

∂t
+ ∇ · (ρu) = 0. (3)

The set of ideal MHD Eqs. (1)–(3) are linearised about the non-
uniform equilibrium density ρ0(x) embedded within the uni-
form field B0ez. The linearised form of Eq. (3) gives the result-
ing density perturbations. We take the perturbed motions to be
u = (vx, vy, 0), there being no force in the direction of the applied
magnetic field in a zero-β plasma (vz = 0). Then the linearised
form of Eqs. (1) and (2) may be manipulated to yield the coupled
partial differential equations

1

c2
A(x)

∂2vx

∂t2
− ∂

2vx

∂z2
=
∂

∂x

(
∂vx
∂x
+
∂vy

∂y

)
(4)

1

c2
A(x)

∂2vy

∂t2
− ∂

2vy

∂z2
=
∂

∂y

(
∂vx
∂x
+
∂vy

∂y

)
· (5)

In a uniform medium Eqs. (4) and (5) describe the Alfvén and
fast magnetoacoustic waves of a zero-β plasma. Here we are in-
terested in the fast waves in a non-uniform medium; accordingly,
we suppose that vy = 0 and ∂/∂y = 0 so that the perturbed mo-
tions u = (vx, 0, 0) are perpendicular to the applied magnetic field

and lie entirely in the plane of the density non-uniformity. These
motions are compressible. Equations (4) and (5) then give the
wave equation

∂2vx

∂t2
= c2

A(x)

(
∂2vx

∂x2
+
∂2vx

∂z2

)
· (6)

Finally, setting

vx(x, z, t) = vx(x)ei(ωt−kzz) (7)

for frequency ω and wavenumber kz, we obtain the ordinary dif-
ferential equation

d2vx

dx2
+

⎛⎜⎜⎜⎜⎝ ω2

c2
A(x)

− k2
z

⎞⎟⎟⎟⎟⎠ vx = 0. (8)

The generalisation of (8) to include acoustic effects (non-zero β)
and also three dimensional motions is given in Roberts (1981).

We are particularly interested in the Epstein profile for the
equilibrium plasma density

ρ0(x) = ρe + (ρ0 − ρe)sech2
( x
a

)
, (9)

where ρ0 and ρe are the internal and external densities respec-
tively and a is the spatial scale over which the density varies.
This profile provides a smooth representation of a physically re-
alistic situation. The density varies smoothly from ρ0 at x = 0
to ρe as x → ±∞. The corresponding Alfvén speeds are cA0 =
(B2

0/μρ0)1/2 at x = 0 and cAe = (B2
0/μρe)1/2 as x → ±∞; thus

ρ0c2
A0 = ρec2

Ae. The Epstein profile is a convenient model for
both analytical (Edwin & Roberts 1988; Nakariakov & Roberts
1995) and numerical (Cooper et al. 2003; Pascoe et al. 2007;
Inglis et al. 2009) studies. The Epstein profile may also be com-
pared with the simple step function profile of a magnetic slab
investigated in Edwin & Roberts (1982, 1983).

Following Landau & Lifshitz (1958), we solve Eq. (8) in
terms of hypergeometric functions and find the solution

vx = (1 − s2)λ/2F(A, B,C, (1− s)/2) (10)

where s = tanh(x/a), A = λ − ν, B = 1 + λ + ν, C = 1 + λ for λ
and ν given by

λ = kza

⎛⎜⎜⎜⎜⎝1 − c2

c2
Ae

⎞⎟⎟⎟⎟⎠1/2

(11)

and

ν(ν + 1) = k2
z a2

⎛⎜⎜⎜⎜⎝ c2

c2
A0

− c2

c2
Ae

⎞⎟⎟⎟⎟⎠ · (12)

The hypergeometric function F is defined by (Abramowitz &
Stegun 1965)

F(A, B,C, (1− s)/2) =
n∑

m=0

(A)m(B)m

(C)m

(
1 − s

2

)m

(13)

where

(α)m =
Γ(α + m)
Γ(α)

(14)

and Γ(α) denotes the gamma function of argument α. The dis-
persion relation is given by

ν = λ + n, for n = 0, 1, 2, . . . (15)
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C. K. Macnamara and B. Roberts: Epstein Profile and the Period Ratio P1/2P2

Fig. 1. A plot of the wave speed c (in units of cA0) with respect to kza
for cAe/cA0 = (ρ0/ρe)1/2 = 2, 5, and 10 for the solid, dashed, and dotted
curves respectively. The speed c is bounded below by cA0 and above by
cAe.

3. The kink mode

In the case of the fast kink mode (n = 0), which disturbs the
central axis of the loop (the z-axis), so vx � 0 at x = 0, Eq. (8)
has the solution

vx = v0

[
sech

( x
a

)]λ
, (16)

for arbitrary amplitude v0. The power λ is determined transcen-
dentally through the dispersion relation λ = ν. The dispersion
relation λ = ν implies that

kza =

(
c2

Ae − c2
)

(
c2 − c2

A0

)
1/2

c2
A0

cAe
· (17)

This relation has been given by Cooper et al. (2003).
Equation (17) determines the wave speed c (= ω/kz) as a

function of kza. In order that kza is real and positive we require
cA0 < c < cAe. We note that for kza → 0 Eq. (17) leads to
c = cAe, and for kza → ∞, c = cA0. Further, for cAe � cA0
Eq. (17) yields

c2 = c2
A0

(
1 +

1
kza

)
· (18)

Equation (18) provides an upper bound on the behaviour of c2.
The limit cAe → ∞ described by (18) applies if ρe → 0, i.e. the
environment is a vacuum.

The general solution of the kink dispersion relation (17) for
the square of the wave speed is given by

c2 =
c2

A0

2c2
Aek

2
z a2

(
2c2

Aek
2
z a2 − c2

A0

+

√
c4

A0 + 4c4
Aek

2
z a2 − 4c2

A0c2
Aek2

z a2
)
. (19)

We plot this solution in Fig. 1. The behaviour of the solution is
such that as kza increases c decreases from cAe to cA0 and so we
expect the period ratio to be less than unity.

3.1. The period ratio for the kink mode

For a loop of length 2L, the wavenumber kz is taken as kz = π/2L
for the fundamental mode and kz = π/L for the first overtone.

Fig. 2. A plot of the period ratio P1/2P2 with respect to a/L for the fast
kink mode with an Epstein density profile and cAe/cA0 = 2, 5, 10, and
50 for the solid, dotted, dashed and dot-dashed curves respectively.

Thus the speed c1 of the fundamental mode is given by Eq. (19)
and the frequency is given by ω1 = kzc1 where kz = π/2L. The
speed c2 of the first overtone is given by Eq. (19) and the fre-
quency is given by ω2 = kzc2 where kz = π/L. We use the sub-
script 1 to denote any value pertaining to the fundamental mode
and the subscript 2 to denote the first overtone. The fundamen-
tal period is given by P1 = 2π/ω1 = 4L/c1 and the period of
the first overtone is P2 = 2π/ω2 = 2L/c2. Thus the period ra-
tio determined by the dispersion relation (17) is P1/2P2 = c2/c1
where c1 and c2 are determined from Eq. (19):

(
P1

2P2

)2

=
1
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2
π2a2

L2
− c2

A0

c2
Ae

+

√
c4

A0

c4
Ae

+ 4
π2a2

L2
− 4

c2
A0

c2
Ae

π2a2

L2

π2a2

2L2
− c2

A0

c2
Ae

+

√
c4

A0

c4
Ae

+
π2a2

L2
− c2

A0

c2
Ae

π2a2

L2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

(20)

Regardless of the values of the internal and external Alfvén
speeds (cA0 and cAe), as a/L→ ∞ the period ratio is unity. Thus
for long thin loops the period ratio is unaffected by transverse
density structuring in the form of the Epstein profile.

In Fig. 2 we plot the period ratio for the kink mode under an
Epstein profile for selected values of cAe/cA0. For all values of
cAe/cA0, in the limits a/L → 0 and a/L → ∞ the period ratio
is unity. Thus for long and thin or short and fat loops the period
ratio is close to unity. For small a/L there is a rapid departure
from unity, possibly falling to as low a value as P1/2P2 = 1/

√
2

in the limit of cAe � cA0. This tendency towards a least value is
shown in Fig. 3 where we plot the minimum value of the period
ratio as a function of cAe/cA0.

3.2. Approximations for small and large a/L

Consider Eq. (19) in the extreme 2c2
Aek

2
z a2 � c2

A0, which applies
for all kza as cAe/cA0 → ∞ and for all cAe/cA0 as kza → ∞.
We consider this approximation for kza → ∞ (corresponding to
a/L→ ∞). With 2c2

Aek
2
z a2 � c2

A0, Eq. (19) yields

c2 = c2
A0

(
1 +
μ1

kza

)
(21)
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Fig. 3. A plot of the minimum value of the period ratio P1/2P2 for
the kink mode with respect to cAe/cA0 = (ρ0/ρe)1/2. In the extreme
cAe/cA0 → ∞, the period ratio minimum approaches

√
1/2.

where

μ1 =

⎛⎜⎜⎜⎜⎝c2
Ae − c2

A0

c2
Ae

⎞⎟⎟⎟⎟⎠1/2

, 0 < μ1 < 1. (22)

The period ratio is then given by

P1

2P2
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 +
μ1L
πa

1 +
2μ1L
πa

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1/2

· (23)

For cAe � cA0, μ1 = 1 and Eq. (23) gives P1/2P2 = 1 for
a/L → ∞ and P1/2P2 = 1/

√
2 for a/L → 0, in agreement with

Figs. 2 and 3. Expanding Eq. (23) gives

P1

2P2
= 1 − μ1L

2πa
+

7μ2
1L2

8π2a2
+ . . . ,

πa
2L
� 1. (24)

In the opposite extreme of πa/2L � 1, the period ratio is given
by

P1

2P2
= 1 − 3π2a2μ2

8L2
− 21π4a4μ2

2

128L4
+ . . . ,

πa
2L
� 1, (25)

where

μ2 =

⎛⎜⎜⎜⎜⎝c2
Ae − c2

A0

c2
A0

⎞⎟⎟⎟⎟⎠2

. (26)

We note that as a/L→ 0 the period ratio is unity.

4. The sausage mode

In the case of the sausage mode (n = 1) Eq. (8) has solution

vx(x) = v0 tanh
( x
a

) [
sech

( x
a

)]λ
, (27)

for arbitrary amplitude v0, giving vx = 0 at x = 0. From Eqs. (11)
and (12), the dispersion relation ν = 1 + λ gives

k2
z a2

⎛⎜⎜⎜⎜⎝ c2

c2
A0

− 1

⎞⎟⎟⎟⎟⎠ − 3kza

⎛⎜⎜⎜⎜⎝1 − c2

c2
Ae

⎞⎟⎟⎟⎟⎠1/2

− 2 = 0. (28)

Relation (28) has been given in Cooper et al. (2003); see also
Pascoe et al. (2007) and Inglis et al. (2009). The presence of

Fig. 4. A plot of the wave speed c (in units of cA0) with respect to kza
for cAe/cA0 = 2, 5, and 10 shown as solid, dashed, and dotted curves
respectively. The cutoff value for each curve is given by Eq. (30). For
example, the curve with cAe/cA0 = 2 has a cutoff of kza =

√
2/3.

the square root in (28) makes it clear that we require c2 ≤ c2
Ae.

Moreover, since 1 − c2/c2
Ae ≤ 1, it follows from (28) that the

wave speed squared is bounded above by the expression

c2 = c2
A0

(
1 +

3
kza
+

2
k2

z a2

)
· (29)

In fact, this bound is achieved in the limit cAe → ∞, which at-
tains whenever ρe → 0, i.e. if the environment is a vacuum. The
bound (29) shows that c2 → c2

A0 as kza → ∞, so altogether the
solutions of (28) satisfy c2

A0 ≤ c2 ≤ c2
Ae.

The upper bound (29) is not a strong constraint for small kza.
In fact it is evident from the dispersion relation (28) that when
c2 = c2

Ae we require

kza =

⎛⎜⎜⎜⎜⎝ 2c2
A0

c2
Ae − c2

A0

⎞⎟⎟⎟⎟⎠1/2

, cutoff; (30)

kza must exceed this cutoff value.
The dispersion relation (28) may be viewed as a quadratic

equation determining kza as a function of c/cA0 for given cAe/cA0
(= (ρ0/ρe)1/2). Specifically,

kza =

3

⎛⎜⎜⎜⎜⎝1 − c2

c2
Ae

⎞⎟⎟⎟⎟⎠1/2

+

⎛⎜⎜⎜⎜⎝1 − 9
c2

c2
Ae

+ 8
c2

c2
A0

⎞⎟⎟⎟⎟⎠1/2

2

⎛⎜⎜⎜⎜⎝ c2

c2
A0

− 1

⎞⎟⎟⎟⎟⎠
, (31)

the second root of the quadratic being rejected (it gives kza < 0).
We may also solve (28) for the square of the wave speed, viz.

c2 =
c2

A0

2c2
Aek

2
z a2

(
2c2

Aek
2
z a2 + 4c2

Ae − 9c2
A0

+3
√

9c4
A0 − 4c2

A0c2
Aek2

z a2 − 8c2
A0c2

Ae + 4c4
Aek

2
z a2

)
. (32)

We plot this solution in Fig. 4 as a function of kza. The behaviour
of the solution is such that the speed c exists for values of kza
above the cutoff (30) after which as kza increases c decreases and
so we expect the period ratio to be less than unity. Increasing the
ratio cAe/cA0 between the internal and external Alfvén speeds
acts to increase the speed c for a particular kza.
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Fig. 5. A plot of the period ratio P1/2P2 with respect to a/L for the fast
sausage mode with an Epstein density profile for cAe/cA0 = 2, 5, 10 and
50 for the solid, dotted, dashed and dot-dashed curves respectively.

Fig. 6. A plot of the minimum value of the period ratio P1/2P2 for the
sausage mode with respect to cAe/cA0. In the extreme cAe/cA0 → ∞, the
period ratio minimum approaches 1/2.

4.1. The period ratio for the sausage mode

The period ratio for the sausage mode is given by P1/2P2 =
c2/c1 where c1 and c2 are determined by (32). Thus the period
ratio is determined by

(
P1

2P2

)2

=

1
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
4+2
π2a2

L2
−9

c2
A0

c2
Ae

+3

√
9

c4
A0

c4
Ae

−4
c2

A0

c2
Ae

π2a2

L2
−8

c2
A0

c2
Ae

+4
π2a2

L2

4+
π2a2

2L2
−9

c2
A0

c2
Ae

+3

√
9

c4
A0

c4
Ae

− c2
A0

c2
Ae

π2a2

L2
−8

c2
A0

c2
Ae

+
π2a2

L2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

(33)

In the limit a/L → ∞ the period ratio P1/2P2 → 1. In Fig. 5
we plot the period ratio for the sausage mode under the Epstein
profile. A similar graph is given in Inglis et al. (2009).

Just as in the case of the kink mode we note that the pe-
riod ratio appears to have a limit of 1/2 as cAe/cA0 → ∞ and
a/L → 0. We plot in Fig. 6 the minimum value of the period
ratio with respect to cAe/cA0 and note that as cAe/cA0 → ∞ the
minimum value approaches 1/2.

4.2. Approximation for large a/L

As for the kink mode we consider the approximation for
2c2

Aek
2
z a2 � c2

A0, corresponding to the ratio cAe/cA0 being much
greater than L/a. This gives

c2 = c2
A0

(
1 +

3μ1

kza
+

2
k2

z a2

)
, (34)

where μ1 is given by Eq. (22) as for the kink mode case. The
period ratio is then given by

P1

2P2
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 +

3μ1L
πa
+

2L2

π2a2

1 +
6μ1L
πa
+

8L2

π2a2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1/2

· (35)

For cAe � cA0, μ1 = 1 and Eq. (35) gives P1/2P2 → 1/2 for
a/L → 0, although this may not be attained due to the cutoff,
and P1/2P2 → 1 for a/L→ ∞. Expanding Eq. (35) we obtain

P1

2P2
= 1 − 3μ1L

2πa
− 3L2

π2a2
+

63μ2
1L2

8π2a2
+ . . . ,

πa
2L
� 1. (36)

5. Comparison between the Epstein profile
and a step function slab

The results for the Epstein profile show how period ratios vary
with the density ratio ρ0/ρe (or equivalently (cAe/cA0)1/2) and
the length L of the magnetic field lines. It is natural to compare
these results with the simpler magnetic slab model of a step func-
tion change in the plasma density. Dispersion curves for the step
function slab are well known (see Edwin & Roberts 1982, 1983)
but hitherto period ratios have not been determined. We give a
brief discussion here.

The starting point for our discussion is again the wave
Eq. (8), but now in place of the Epstein profile (9) we consider
the step function

ρ0(x) =

{
ρe, |x| > a,
ρ0, |x| < a, (37)

the internal density ρ0 changing to ρe discontinuously at the
slab boundaries at x = ±a. Following the notation of Edwin &
Roberts (1982), we write

n2
0 =
ω2

c2
A0

− k2
z , m2

e = k2
z −
ω2

c2
Ae

(38)

where cA0 is the Alfvén speed in the slab (−a < x < a) and cAe is
the Alfvén speed in the environment (|x| > a). Equation (8) has
solution

vx(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
αee−me(x−a), x > a

α0 cos n0x + β0 sin n0x, |x| < a
βeeme(x+a), x < −a.

(39)

In order that the velocity disturbance is effectively confined to
the interior of the slab, so that vx → 0 as |x| → ∞, we require
me > 0. It is also required (see Roberts 1981; Edwin & Roberts
1982) that both vx and the total pressure perturbation pT are con-
tinuous at x = ±a, where

pT (x) =
iρ0

ω
c2

A(x)
dvx
dx
· (40)
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Fig. 7. A plot of the wave speed c (in units of cA0) with respect to kza for
the Epstein profile (solid curves) and the step function profile (dashed
curves), for both kink and sausage modes. Here cAe/cA0 = 2 (ρ0 = 4ρe).

Thus, we have the dispersion relations (Edwin & Roberts 1982)

cot n0a =
n0

me
and tan n0a = − n0

me
(41)

for the kink and sausage modes respectively. Since ω = ckz we
have

tan

⎧⎪⎪⎨⎪⎪⎩kza

⎛⎜⎜⎜⎜⎝c2 − c2
A0

c2
A0

⎞⎟⎟⎟⎟⎠1/2⎫⎪⎪⎬⎪⎪⎭ = cA0

cAe

⎛⎜⎜⎜⎜⎝ c2
Ae − c2

c2 − c2
A0

⎞⎟⎟⎟⎟⎠1/2

(42)

for the kink mode, and

tan

⎧⎪⎪⎨⎪⎪⎩kza

⎛⎜⎜⎜⎜⎝c2 − c2
A0

c2
A0

⎞⎟⎟⎟⎟⎠1/2⎫⎪⎪⎬⎪⎪⎭ = − cAe

cA0

⎛⎜⎜⎜⎜⎝c2 − c2
A0

c2
Ae − c2

⎞⎟⎟⎟⎟⎠1/2

(43)

for the sausage mode. The principal kink mode has no cutoff; the
cutoff for the principal sausage mode occurs when c2 = c2

Ae with

kza =
π

2

⎛⎜⎜⎜⎜⎝ c2
A0

c2
Ae − c2

A0

⎞⎟⎟⎟⎟⎠1/2

, cutoff, (44)

which may be compared with the cutoff value (30) for the
Epstein profile.

Figure 7 gives the behaviour of the wave speed c as a func-
tion of kza, for both the Epstein and step function density pro-
files.

Figure 8 gives a plot of the period ratio in the kink mode for
both the Epstein profile and the step function profile. We note
that at a/L = 1 the curves are not converging but rather at this
point they cross, exhibiting a changeover in behaviour and then
converge for a/L → ∞. The period ratio for the sausage mode
is shown in Fig. 9. In both cases the period ratio has the same
general behaviour, although the period ratio achieves a lower
minimum in the step function profile than the Epstein profile,
for both kink and sausage modes.

As a final comparison we plot in Figs. 10 and 11 the period
ratio for the step function profile for both the kink and sausage
modes, for various values of cAe/cA0. For cAe/cA0 → ∞ the pe-
riod ratio for the kink mode may be as little as 1/

√
2, and for the

sausage mode the period ratio may fall to 1/2. Comparing these
plots with Figs. 2 and 5 we note that the limits of 1/

√
2 and 1/2

for the period ratio are the same regardless of whether there is
an Epstein profile or a step function profile.

Fig. 8. A plot of the period ratio P1/2P2 with respect to a/L for the kink
mode with an Epstein profile (solid curve) and for the step function
profile (dashed curve) for cAe/cA0 = 2. Beyond a/L = 1, the two curves
cross over and later converge together as a/L→∞.

Fig. 9. A plot of the period ratio P1/2P2 with respect to a/L for the
sausage mode with an Epstein profile (solid curve) or for step function
profile (dashed curve), for cAe/cA0 = 2. Wave cutoff restricts the forma-
tion of the period ratio.

6. Discussion

There is a striking similarity between the results for a magnetic
slab with Epstein density profile and one with a step function
profile. This means that either profile serves as a useful and ro-
bust guide as to the expected behaviour in a slab, the Epstein
profile perhaps being most useful for numerical investigations
with the step function being more readily discussed analytically.
Although there are differences in the period ratio from one model
to another, it is perhaps unlikely that observations will be able to
distinguish between the two cases given the additional compli-
cations that other factors, such as longitudinal density and mag-
netic field variation (see Andries et al. 2009) or non-adiabatic
effects (see Macnamara & Roberts 2010) are also likely to im-
pose. Moreover, our assumptions of a slab geometry makes ap-
plication to flux tube structures problematic.

In future, it would be important to explore the cylindrical
case with various density profiles, though it is likely that this
would require a largely numerical approach given the expected
loss of compact expressions for the wave speed c that a slab ge-
ometry provides.

Comparison of our slab results with available observations
(such as by Van Doorsselaere et al. 2007, or Srivastava et al.
2008) may be inappropriate until both slab and cylinder results
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Fig. 10. A plot of the period ratio P1/2P2 with respect to a/L for the
fast kink mode in a step function slab with for cAe/cA0 = 2, 5, 10 and 50
for the solid, dotted, dashed and dot-dashed curves respectively.

Fig. 11. A plot of the period ratio P1/2P2 with respect to a/L for the
fast sausage mode with step function profile for cAe/cA0 = 2, 5, 10 and
50 shown as solid, dotted, dashed and dot-dashed curves respectively.
Wave cutoff restricts the formation of the period ratio.

are available, for otherwise it may be that the geometry of a mag-
netic structure has a larger effect than the lateral profile of den-
sity variation.
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