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ABSTRACT 

The main aim of this paper is to review Middle Permian through Middle Triassic continental successions in 

European. Secondly, areas of Middle-Late Permian sedimentation, the Permian-Triassic Boundary (PIB) and 

the onset of Triassic sedimentation at the scale of the westernmost peri-Tethyan domain are defined in order 

to construct palaeogeographic maps of the area and to discuss the impact of tectonics, climate and sediment 

supply on the preservation of continental sediment. 

At the scale of the western European peri-Tethyan basins, the Upper Permian is characterised by a general 

progradational pattern from playa-lake or floodplain to fluvial environments. In the northern Variscan Belt 

domain, areas of sedimentation were either isolated or connected to the large basin, which was occupied by 

the Zechstein Sea. In the southern Variscan Belt, during the Late Permian, either isolated endoreic basins 

occurred, with palaeocurrent directions indicating local sources, or basins underwent erosion and/or there 

was no deposition. These basins were not connected with the Tethys Ocean, which could be explained by a 

high border formed by Corsica-Sardinia palaeorelief and even parts of the Kabilia microplate. The palaeoflora 

and sedimentary environments suggest warm and semi-arid climatic conditions. 

At the scale of the whole study area, an unconformity (more or less angular) is observed almost everywhere 

between deposits of the Upper Permian and Triassic, except in the central part of the Germanic Basin. The 

sedimentation gap is more developed in the southern area where, in some basins, Upper Pennian sediment does not 

occur. The large sedimentary supply, erosion and/or lack of deposition during the Late Permian, as well as the 

variable palaeocurrent direction pattern between the Middle-Late Permian and the EarlyTriassic indicate a period of 

relief rejuvenation during the Late Pennian. During the Induan, all the intra-belt basins were under erosion and 

sediment was only preserved in the extra-belt domains (the northern and extreme southern domains). In the 

northern domain (the central part of the Germanic Basin), sediment was preserved under the same climatic 

conditions as during the latest Permian, whereas in the extreme southern domain, it was probably preserved in the 

Tethys Ocean, implying a large amount of detrital components entering the marine waters. Mesozoic sedimentation 

began in the early Olenekian; the ephemeral fluvial systems indicate arid climatic conditions during this period. 

Three distinct areas of sedimentation occur: a northern and southern domain, separated by an intra-belt domain. 

The latter accumulated sediments during the Early-Middle Permian and experienced erosion and/or no-deposition 

conditions between the Middle-Late Pennian and the beginning of Mesozoic sedimentation, dated as Anisian to 

Hettangian. At the top of the Lower Triassic, another tectonically induced, more or less angular unconformity is 

observed: the Hardegsen unconformity, which is dated as intra-Spathian and is especially found in the North 

European basins. This tectonic activity created new source areas and a new fluvial style, with marine influences at 

the distal part of the systems. During the Anisian and Ladinian, continental sedimentation was characterised by a 
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retrogradational trend. In other words, the fluvial system evolved into fluvio-marine environments, attesting to a 

direct influence of the Tethys Ocean in the southern and northern domains. Both at the end of the Olenekian 

(Spathian) and during the Anisian, the presence of palaeosols, micro- and macrofloras indicate less arid conditions 

throughout this domain. 

1. Introduction 

In the supercontinent of Laurasia, the Appalachian-Variscan Belt 
separates intra-Variscan basins and basins in the former Variscan 
foreland (Ziegler, 1982, 1990). This Appalachian-Variscan mountain 
range seems to represent the limit of the influence of the Tethys Ocean 
on the basins located to the north (Fluteau et al., 2001). At the scale of 
the western European peri-Tethyan basins, the uppermost part of the 
Palaeozoic and lowermost part of the Mesozoic consist of continental 
redbeds. A "Permian-Triassic" age has often been proposed for this 
lithostratigraphic unit, despite a total lack of biostratigraphical data. In 
most cases, the lack of any Early Triassic biochronological evidence 
makes it very difficult to attribute these basal beds to either the 
Permian or Triassic period. 

Throughout the northern hemisphere, where continuity can be 
demonstrated between the Permian and Triassic, there is no evidence 
for a sudden collapse of terrestrial ecosystems. Rather, the climate 
seems to have evolved towards more humid conditions during the 
Griesbachian (e.g. Fuglewicz, 1980; Kozur, 2003); the macroflora 
continues to exhibit a predominantly Permian character, whereas the 
palynoflora is transitional (Lozovsky et al., 2001; Shu and Norris, 
1999). 

Within the continental northwestern Tethyan domain, the Perrnian
Triassic Boundary (FIB) corresponds to an lll1conformity, except locally 
in the Germanic Basin (Bourquin et al., 2007; Durand, 2006). At the scale 
of European basins, the Permian successions are mainly characterised by 
playa-lake or fluvio-lacustrine deposits, in some cases dated by 
palynology. In these continental series, the difficulty is to constrain 
the stratigraphic age. Actually, the subdivisions in the study area are 
mainly lithological: "Zechstein" in Germany, based on a sedimentolog
ical facies (Richter-Bernburg, 1955) and "Thuringian" in France, based 

on palaeoflora facies (Renevier, 1874). The Zechstein corresponds to the 
Late Permian, but the "Thuringien" facies is Middle-Late Permian. It is 
for this reason that Middle-Late Permian sediments are considered in 
this paper. Moreover, the onset of Mesozoic sedimentation is diachro
nous at the scale of the northwestern peri-Tethyan area. Beyond the 
Germanic Basin and in some basins in Engiand, for which palynology 
and magnetostratigraphic data are available, the bolll1dary cannot be 
precisely dated due to the total absence of any biostratigraphic markers 
in the earliest fluvial deposits overlying the pre-Triassic unconformity. 
There, the oldest Mesozoic fossils are Anisian in age (Middle Triassic). 
The oldest lll1dated fluvial deposits, found above the Permian-Triassic 
unconformity, are interbedded with aeolian deposits or include 
indicators of aridity, such as ventifacts or the reworking of aeolian 
deposits (Bourquin et al., 2007; Durand, 2006). Within the Germanic 
Basin, the single time interval of a warm and arid climate is attributed to 
the Volpriehausen Formation, dated as early Olenekian (Smithian) by 

magnetostratigraphy (Kozur and Bachmann, 2008; Szurlies, 2007). This 
arid episode was previously dated as late Dienerianjearly Smithian 
(Cassinis et al., 2007; Durand, 2006, 2008) according to the first 
magnetostratigraphic age (Szurlies, 2004). This arid episode within 
European basins suggests continental-scale arid conditions (Bourquin 
et al., 2007; Cassinis et al., 2007; Durand, 2006). Moreover, palaeoclimate 
simulations based on different palaeogeographic scenarios for this 
period also support very arid conditions in the sedimentary basins, with 
the water supply and associated sediment coming from the adjacent 
relief, i.e. remnants of the Hercynian (Variscan)-Appalachian Mountains 
(Bourquin et al., 2006; Peron et al., 2005). Consequently, a careful 

recognition of the unconformities and the use of sedimentary indicators 
of climatic conditions can constitute powerful tools to establish 
correlations in the corresponding series (Bourquin et al, 2007, 2009; 
Durand,2oo6). 

Based on a review of Permian-Triassic successions, the aims of this 
paper are to define the areas in which Middle-Late Permian 
sedimentation occurred, to locate the stratigraphic position of the 
Permian-Triassic unconformity and the onset of Triassic sedimentation 
at the scale of the westernmost Tethyan domain (Fig. 1). A second 
objective is the construction of palaeogeographic maps of the area, which 
will allow discussion of the impact of tectonics, climate and sediment 
supply on continental sediment accumulation and preservation. 

2. Middle Permian-Ladinian evolution of the northwestern 
peri-Tethyan domain 

2.1. Middle-Late Permian 

Based on a review of European basin successions during the 
Middle-Upper Permian (Fig. 1), the aim is to define the areas in which 
sediment was accumulating or undergoing erosion during this period. 
These results are summarised in Figs. 2-4. 

Within the Germanic Basin, the Middle Permian is composed of the 
Upper Rotliegend 11 Formation, a saline lake deposit attributed to 
Wordian-Wuchiapingian age (Legler and Schneider, 2008). This 
formation passes upwards into transgressive marine carbonates and 
mudstones at the base of the Zechstein deposits (Fig. 2), followed by 
evaporites deposited from marine incursions coming from the present
day Barents Sea (Legler and Schneider, 2008; Ziegler, 1990). Towards 
the end of the Permian, the connection with the Barents Sea was 
interrupted by a strong clastic influx in the area of the Viking-Central 
Graben system (Geluk, 2005; Ziegier, 1990). The basin evolved into an 
extensive sabkha, with isolated saline ponds in the depocentral area that 

are laterally related to braided rivers at its margins, and later into 
extensive inland playa-lakes (Aigner and Bachmann, 1992; Geluk, 

2005). In northwest Germany, conchostraceans, palaeomagnetic and 
palynologic data allowed the top of the Permian to be placed, 
characterised by grey siltstones and shales of lake environments, within 
the base of the Calvorde Formation, at the top of the "Graubankbereich" 
(Fig. 2; Geluk, 2005;Geluk and Rohling, 1997; Kozur, 1998; Szurlies 
et aL, 2003). Therefore, the Permian-Triassic Boundary (FIB) would be 
located 20 m above the typical Zechstein deposits (Szurlies, 2007; 
Szurlies et al, 2003). In the Netherlands (Fig. 1), the uppermost Permian 
is represented by the Zechstein Upper Claystone Formation, which 
occurs throughout the COlll1try and lll1conformably overlies older deposits 
of the Lower Zechstein and even may rest on the Upper Rotliegend Group 
(Geluk, 1998, 2005). This formation is composed of red and grey 
anhydritic daystones and sandstones, and was deposited in a continental 
lacustrine to mudflat setting (Geluk, 2005). Within the Germanic Basin, 
the Upper Permian sediments record a catastrophic transgression from 
the Barents sea (Geluk, 2005; Glennie and Buller, 1983), followed by a 

regression (progradational) trend (Aigner and Bachmann, 1992). 
In the southern part of the Germanic Basin, the shallow marine, 

evaporitic Zechstein facies are absent and either fluvial or fluvio-lacustrine 
clastic deposits characterise the Late Permian record. In northern France 
(Vosges; Fig. 2), only the uppermost Permian is present and is 
characterised by fluvial-shallow lake deposits of the "Gres d'Annweiler" 
and "Gres de Senones" formations (Durand et aL, 1994). In the Paris Basin 
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Fig. 1. Location of the study areas. Blanzy: Blanzy-Le-Creusot: Aumance: Bourbon L'ArchambaultjAumance: Provence trough: Bas-Argen, Luc basin and Toulon-Cuers area. 

(Fig. 1), several isolated Permian basins, identified only in the subsurface, 
are described by Megnien (1980), Mascle (1990), Perrodon and Zabeck 
(1990) and Autran et al. (1994); however, the lack of core data does not 
allow a more precise dating of these Permian deposits. 

In the western part of the Zechstein Basin (i.e. the Western 
Shetlands; Fig. 2), the Midde-Upper Permian is characterised by 

coastal plain playa-lake deposits (Swiecicki et al., 1995). In southern 
England (Devon; Fig. 2), the sediments attributed to the Middle
Upper Permian are characterised by continental deposits of the Exeter 
Group (composed of semi-arid alluvial fans overlain by aeolian 
deposits) overlain unconformably by fluvial and playa-lake environ
ments of the Aylesbear Group (Edwards et al. 1997; Smith et al., 
1992). The Aylesbear Group is considered to be time equivalent to the 
Zechstein deposits (Late Permian; Hounslow and Ruffell, 2006; Mader 
and Laming, 1992; Ruffell and Shelton, 2009). In the North Sea Central 
Graben (Fig. 2), the Middle Permian is characterised by fluvial and 
aeolian sandstone overlain by marine carbonate and sabkha deposits 
(Glennie et aI., 2003; Goldsmith et aI., 1995; Smith et aI., 1992). 

In the Castillian Branch of the Iberian Ranges (Fig. 3), several 
palynomorph assemblages found in the Alcotas Formation or the 
Montesoro Formation, its lateral equivalent, as well as in the lower 
part of the overlying and unconformable Hoz del Gallo Formation, 

indicate a Late Permian ("Thuringian") age (Dieguez and Barron, 2005; 
Doubinger et al., 1990; wpez-G6mez et al., 2005; Ramos, 1979). The 
upper part of the Alcotas Formation would be of early Lopingian age 
(earlyWuchiapingian; de la Horra, 2008; Dieguez et al., 2007). Therefore, 
the Boniches and lower Alcotas formations (Fig. 3) could be Guadalupian 
in age. In the Aragonian Branch of the Iberian Ranges, a Late Permian age 

is assigned to the Araviana Formation (Anibas, 1984; Bourquin et al., 
2007; Diez et al, 2007). In both areas, the paiaeocurrent directions point 
to the SE (Arche and L6pez-Comez, 1999; L6pez-C6mez et aI., 2002; 
Ramos, 1979; Sopefia and Sa.nchez-Moya, 2004). In the Catalan Coastal 
Ranges (Fig. 3), the fluvial congiomerates and sandstones of the 
Bellmunt and Brugers units (Caivet and Marzo, 1994; Marzo, 1980) are 

considered to be Late Permian in age by regional comparison with the 
succession of the Iberian Ranges (Arche et al., 20(4). Within the Iberian 
Peninsula (Fig. 3), the Middle-Upper Perrnian sediments display an 
evolution from a retrogradational (from alluvial fan to playa-lake) to 
progradational pattern (from playa-lake to alluvial fan) in the Castilian 
Branch (linol et aI., 2009). In the Aragonian Brancb (Fig. 3), only the 
retrogradational cyde is observed (Diez et al., 2007). 

On the Balearic Islands of Minorca and Majorca (Fig. 3), the 
sedimentary record follows a similar vertical retrogradational pattern 
(from alluvial fan conglomerate to playa-lake) and progradational 
pattern (from playa-lake to sand-sheet rivers) during the Middle
Upper Permian, but the palaeocurrent directions differ (to the SE on 
Minorca and to the SSW on Majorca; Linol et al., 2009). The Middle
Late Permian on Majorca is represented by fluvial sandstones of the 
Asa Formation (Fig. 3), which contain a palynoflora of Late Permian 
age at its top (Ramos and Doubinger, 1989). On Minorca (Fig. 3), the 

upper part of the fluvial P3 unit displays an increasing number of 
palaeosols (G6mez-Gras, 1993; Gomez-Gras and Alonso-Zarza, 2003) 
and the uppermost beds are dated as Late Permian by palynological 
data (Bercovici et al., 2009; Broutin et al., 1992). 

Around the Toulon harbour (Fig. 1) in the Provence Trough (Fig. 3) 
of southeast France, the Permian formation (the La Motte Formation 
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of the Bas-Argen Basin, which is called the Pelitique Formation in the 
Luc Basin, and the Fabregas-Gonfaron Formation in the Toulon-Cuers 
area; Durand, 2008; Durand et aL, 1989) is made up of playa-lake 
deposits and has yielded a vertebrate track assemblage of Guadalupian 
(Wordian) age (Durand, 2008; Gand and Durand, 2006), In northwest 
Sardinia (Nurra; Fig, 3), a thick Permian-Triassic siliciclastic succession, 
interpreted as deposited in a playa-lake, crops out over a relatively 
limited area and shows remarkable similarities with formations in 
southeast France (around Toulon; Fig, 1), This comparison allows both 
areas to be considered as parts of the same structural basin, which 
had two parts that initially faced one another in close proximity 
(Cassinis et al, 2003), In Nurra, the youngest deposits of the second 
tectonostratigraphic cycle, Le, the eala del Vino Formation (e,g. Cassinis 
et al, 2003; Ronchi et aL, 2008), can be correlated with the Permian 
Saint-Mandrier Formation (more than 700 m thick) in the Toulon area 
(Fig. 3). These deposits are tentatively assigned to the Middle-Upper 

Permian. 

Within the southern Pyrenees (in the Palanca de Noves section; 
Fig. 4), above the alkaline basalt levels (Bixel, 1987; Bixel and Lucas, 
1987), fluvial conglomerates and sandstones of the Bl unit (Gisbert, 
1983) are dated as Middle-Late Permian based on a palynomorph 
assemblage (Broutin et aL, 1988). 

In the Brive Basin (Fig. 4) within the Massif Central, the Middle
Upper Perrnian succession shows an evolution from red silty-clay to 
sandstones to conglomerates in a vertical progradational pattern (Chen 
et aL, 2006). The palaeocurrents point to the east These sediments, 
interpreted as fluvial and playa-lake deposits, occur within the 
Lodeve, Rodez and Saint-Affrique basins (Fig. 4; Lopez et aL, 2008; 
Schneider et aL, 2006). These three basins may have been connected, 
with palaeocurrents oriented to the NE in the Saint-Affrique Basin 
(Chateauneuf and Farjanel, 1989) and to the SE in the Lodeve and 
Rodez basins (Bourges et aL, 1987; Chateauneuf and Farjanel, 1989; 
Rolando et al., 1988). Middle-Upper Perrnian sediments are not present 

in the other areas of the Massif Central domain: the Blanzy-Le Creusot, 
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Autlll1 and Bourbon-l'Archambault/Aumance basins (Chateauneuf and 
Farjanel, 1989; Fig. 1). 

In summary, in the northern domain (Fig. 2), the Middle-Late 
Permian sedimentation is characterised by a transgressive cycle 
(a vertical evolution from evaporite to shallow marine carbonates) 
followed by a Late Permian regressive cycle (a vertical evolution from 
shallow marine to evaporite and to fluvial-lacustrine deposits); the 
end of the marine Zechstein deposits is still present in the central part 
of the basin. In the southern domain (Figs. 3, 4), the Middle-Late 
Permian is characterised by a retrogradational phase (alluvial fan to 
playa-lake) followed by either (1) a progradational trend from playa
lake deposits to fluvial conglomerates and sandstones (Castillan 
Branch, Catalan Coastal Range, Balearic Islands, Rodez, Saint-Affrique, 
Lodeve) or (2) a period of erosion and/or no deposition during Late 
Permian (SE France-Sardinia, Aragonian Branch, Brive, Blanzy-Le 
Creusot,Autun, Bourbon-l'Archambault/Aumance; Fig. 1). The palaeo
flora and sedimentary environments suggest warm and semi-arid 

climatic conditions (Schneider et al., 2006). 

2.2. The Permian-Triassic Boundary (?TB) 

In the central part of the Germanic Basin (the Netherlands and 
central Germany; Fig. 2), the transition from Permian to Triassic, 
seems to be gradual (Szurlies, 2007; Szurlies et al., 2003). The 
sediments, which were deposited in playa-lake systems, characterise 
the regressive tendency of the the uppermost Permian, which 
continues well into the Early Triassic (Aigner and Bachmann, 1992; 
Aigner et al., 1998). On the margins of the basin, an angular 
unconformity at the base of the Triassic was caused by deformation 
and erosion of the uppermost Zechstein cycles, in contrast with the 

central area, where sedimentation was more or less continuous 
during this period (Geluk, 1998, 2005; R6hling, 1991; Szurlies, 2007; 
Szurlies et al., 2003). 

A pre-Triassic unconformity is clearly observed on the southwestern 
edge of the Germanic Basin (the Paris Basin, NE France; Fig. 2), which is 
assodated with a progressive onlap of the Triassic succession on the 
Palaeozoic basement (Bourquin et aL, 2006). An angular unconformity 



separates Permian from Triassic deposits in the western part of the 
Germanic Basin (Fig. 2): Western Shetlands (Swiecicki et al, 1995), 
South England (the Wessex Basin; Goldsmith et al., 1995, 2003; 
Hounslow and Mdntosh, 2003), Central Graben (Goldsmith et al., 
1995,2003), and the Celtic Sea (Brookfteld, 2008; Shannon, 1995). 

Studies on the PTB in Iberia have focused on the Castilian and 
Aragonian Branches of the Iberian Ranges and on the Catalan Coastal 
Range (Fig. 3). Within the Aragonian Branch, the lowermost 
sediments (the Tierga Formation) overlying the Permian-Triassic 
angular unconformity are dated as Anisian (Diez et al., 2005, 2007). In 
the Castilian Branch (Fig. 3), an angular unconformity is present 

within the Hoz de Gallo Formation: the lower Hoz de Gallo 
Conglomerates are Late Permian in age (Ramos and Doubinger, 
1989) and the upper Hoz de Gallo Conglomerates (or their lateral 
equivalents: the Chequilla and Valdemeca formations) are considered 
to be of Early Triassic age (Bourquin et al., 2007; de la Horra et al., 
2005; Ramos, 1979). In the Catalan Coastal Ranges, a hiatus is also 
recorded at the FIB (Fig. 3); in places, the Variscan basement is 
directly overlain by the Riera de Sant jaume megasequence (Dlvet 
and Marzo, 1994) dated as upper Olenekian (Spathian) from 
magnetostratigraphic data (Dinares-Turell et al., 2005). 

In the Balearic Islands of Minorca and Majorca (Fig. 3), an 
unconformity separates the Upper Permian sediments from either 
Anisian sandstones (Majorca; Bourrouilh, 1973; Ramos and Doubinger, 
1989) or sandstones of undetermined Early Triassic age in other sections 
(BoulTouilh, 1973; Linol et aI., 2009; Rosell and G6mez-Cras, 1990; 
Rosell et al., 1988). In the Provence Trough (Fig. 3), the lowest Triassic 

deposits rest lll1conformably on Permian formations of different ages 
depending on location (Durand, 2006, 2008). In NW Sardinia, an angular 
unconformity separates the Triassic deposits from the Cala del Vino 
Formation, recently asserted to be Middle Permian in age ((assinis et al., 
2003). In the southern Pyrenees and the Massif Central, an unconformity 
also occurs between the Upper Permian deposits and the earliest 
Mesozoic sediments (Fig. 4). 

2.3. The onset of Mesozoic sedimentation 

2.3.1. Early Triassic: Induan 

At the beginning of the Early Triassic, the sedimentation area was 
restricted to the northwestern part of the peri-Tethyan domain: in the 
central part of the Germanic Basin and in the Western Shetlands 
(Fig. 1 ).Within the central part of the Germanic Basin (Fig. 2), which 
was characterised by a playa-lake sedimentary system, the Calvorde 
and Bernburg formations (Fig. 2) were attributed to the Induan by 

magnetostratigraphic studies (Szurlies, 2007; Szurlies et al., 2003). 
These sediments do not have any lateral equivalents on the 
southwestern margins of the basin and there is a hiatus at the base 
of the Triassic (Bourquin et aI., 2006; Geluk, 1998, 2005). 

Induan deposits occur above the Permian-Triassic unconformity in 
the Western Shetlands (Fig. 2). They constitute coastal alluvial plain 
deposits of the Otter Bank Shale Formation, dated by palynology 
(Swiecicki et al., 1995). The palynological assemblages of the Induan 
deposits indicate a warm and semi-arid environment (Swiecicki et al., 
1995). In the Central North Sea Graben, the earliest Triassic sediments 
are considered as Induan in age (Fig. 2; Goldsmith et al., 1995, 2003; 
Smith et al., 1992); however, no biostratigraphic data have been 
published up to now. 

2.3.2. Early Triassic: Olenekian 

In the Germanic Basin (Fig. 2), the Volpriehausen Formation is 
composed of ephemeral playa-lakes or aeolian deposits (Aigner and 
Bachmann, 1992; Clemmensen, 1979, 1991; Oemmensen and Tirsgaard 
1990; Geluk, 2005; Richter-Bernburg, 1974; Rohling, 1991; Ulicny, 
2004; van der Zwan and Spaak, 1992) and is dated as Smithian by 
magnetostratigraphy (Kozur and Bachmann, 2008; Szurlies, 2007). 
Using sequence stratigraphic correlations, Bourquin et al. (2006) 

compared stratigraphic cycles between the Germanic and Paris basins, 
showing that the coeval deposits of the "Conglomerat basal", "Gres 
vosgiens" and "Congiomerat principal" formations (Vosges and Trier 
area; Fig. 2) can be correlated with the Volpriehausen Formation. These 
formations were laid down under arid climatic conditions by braided 
rivers, as indicated by the presence of both reworked and in situ aeolian 
sand dune deposits as well as by wind-worn pebbles, and by the lack of 
any palaeosol remnants (Bourquin et al, 2009; Durand, 1972, 1978; 
Durand et al., 1994). Palaeocurrents are generally oriented towards the 
NNE, thus the river catchment areas were mainly located in the present
day Arrnorican Massif. The "Conglomerat principal" Formation (Fig. 2) is 

not thicker than 20 m at the outcrop in the Vosges area and shows a 
great lateral continuity towards the east. In Lorraine, the top of the 
Lower Triassic is marked by a major sedimentary break associated with a 
period of by-pass and development of the earliest paleosols ("Zone 
limite violette", noted ZLV in Fig. 2; Gall et al., 1977; Muller, 1954; 
Ortlam, 1967). This episode could be coeval with the deposition of the 
Hardegsen and Detfurthformations in the Germanic Basin (Fig. 2), dated 
as Spathian by magnetostratigraphy (Szurlies, 2007). The Spathian 
therefore can be characterised by the occurrence of the earliest 
Mesozoic palaeosols, indicating less arid conditions. 

In the westernmost part of the Germanic Basin, i.e. the Devon Basin 
(Hounslow and McIntosh, 2003), the Central Graben (Goldsmith et al., 
1995,2003), the Celtic Sea (Shannon, 1995), the Western Shetlands 
(Swiecicki et al., 1995) and the Lower Triassic successions (Fig. 2) are 
characterised either by ephemeral fluvial deposits or arid alluvial 
wadi deposits, associated with aeolian dunes and ventifacts. From 

these sedimentological criteria, these sediments could be Smithian in 
age. The Spathian, identified in the Western Shetlands (Swiecicki 
et al., 1995), is difficult to constrain in the other British basins (Fig. 2). 

On Minorca Island (Fig. 3), above the pre-Triassic unconformity, 
sedimentation began with coarse-grained fluvial deposits (unnamed 
conglomerate in Fig. 2) with palaeocurrents flowing at first towards 
the SSW and then to the WNW. The absence of fossils in the Lower 
Triassic of this area prevents any precise dating, but the occurrence of 
ventifacts together with the lack of palaeosols and clay layers suggest 
that sedimentation took place in an arid setting (tinol et al., 2009). 
This arid episode, which marks a climatic change from the underlying 
Late Permian fluvial sand-sheet environments with palaeosols (P3 in 
Fig. 2), could be correlated with the early Olenekian arid event 
(Bourquin et aI., 2007; Durand, 2006, 2008; Peron et aI., 2005). In this 
case, Induan deposits should not be preserved in the Triassic 
succession of Minorca. On Majorca Island, no Lower Triassic sediments 
have been recognised up to now (Fig. 3). 

Lower Triassic deposits (Induan and Olenekian) have not yet been 
positively recognised in the Iberian Peninsula up to now, except for 
the upper Olenekian (uppermost Spathian) in the Catalan Coastal 
Range using magnetostratigraphy (Dinares-Turell et aI., 2005; Riera 
de Santjaume, Fig. 3). Base on stratigraphic location, the Eramprunya 
unit of the Garraf area could be time equivalent to the middle part 
(sandstones) of the Riera de S jaume megasequence in the Montseny 
area. In the Central Castillan Branch of the Iberian Range, the 
beginning of Mesozoic sedimentation is represented by the presence 
of conglomerates overlain by the thick Cafiizar Formation, which is 
composed of braided sandy fluvial deposits with palaeocurrents 
flowing towards the SE (L6pez-G6mez and Arche, 1994). These basal 
conglomeratic units (the upper Hoz de Gallo, Chequilla and 
Valdemeca formations, Arche and wpez-Comez, 2005; Arche et al., 
2004) yield ventifacts (Bourquin et al., 2007). Whereas the basal part 
of the Cafiizar Formation is devoid of any palaeosol, the upper part is 

characterised first by Mesozoic palaeosols and then by the preserva
tion of an Anisian palynoflora near its top (Diez et al., 2005; Doubinger 

et al., 1990; L6pez-Gomez et al., 2005). Thus, palaeoclimatic indicators 
show that the basal part of these sediments could represent at least 
part of the Smithian (Fig. 3). In the Aragonian Branch of the Iberian 
Range (Fig. 3), the lowermost sediments above the Permian are dated 



as Anisian (Oiez et al., 2007) and the whole of the Early Triassic is 
lacking in this area. 

Above the FIB in NW Sardinia, (the Cala Viola area, Nurra; Fig. 3), 
the "Conglomerato del Porticciolo" Formation (Cassinis et al., 2003) is 
mainly composed of well-rounded vein-quartz pebbles and cobbles, 
deposited by braided rivers flowing to the east. Cassinis et al. (2003) 
observed slightly reworked and even in situ ventifacts in this 
formation, as well as some aeolian sandstone dune remnants. 
Together with the entire stratigraphic framework, these observations 
are used as an argument for the correlation of this formation with the 
"Poudingue de Port-Issol" Formation in the Provence Trough, which 

also contains ventifacts. In the western part of the Provence Trough 
(Fig. 3), the main palaeocurrents of the fluvial Triassic sediments are 
towards the SW, opposite to those observed in the Perrnian (Durand, 
1993; Durand et al., 1989). In comparison with North European 
basins, these conglomerates are more likely of Smithian age and 
Induan sediments would not be preserved in this area (Fig. 3). 

In the southern Pyrenees (Fig. 4), Lower Triassic sediments have 
not yet been recognised. The fluvial Mesozoic sedimentation started 
with either an oligomictic conglomerate or red silty clay beds, dated as 
Anisian at their top (Broutin et al., 1988; Calvet et al., 1993; Diez, 
2000; Diez et al., 2005). Thus, the lower part of this fluvial unit (B2, 
Fig. 4) could be of Early Triassic age, probably Spathian or even late 
Smithian (some ventifacts were found in the oligomictic basal 
conglomerate of the Basque Country, western Pyrenees). 

2.3.3. The Hardegsen unconformity and the Olenekian-Anisian transition 

In the Germanic Basin, the base of the Solling Formation 
corresponds to the erosional Hardegsen unconformity (Fig. 2), formed 
during an intra-Spathian time span (Geluk and Rohling, 1997; Szuriies, 

2004, 2007), when approximately 100 m of Middle Buntsandstein 
deposits could have been locally eroded (Aigner and Bachmann, 

1992). This unconformity is related to one of the most pronounced 
extensional tectonic events observed in the German Triassic (Rohling, 

1991; Trusheim, 1961, 1963; Wolburg, 1968). The Solling Formation, 
interpreted as fluvial deposits (Aigner and Bachmann, 1992) 

preserved in the Germanic Basin, are dated as upper Olenekian 
(Kozur, 1998; Szurlies, 2007) and could be equivalent to an episode of 
sediment by-pass at the basin margins. Moreover, Geluk (1998) 
showed that the base of the Solling Formation becomes progressively 
younger to the west, the formation thinning away in the same 
direction. In the southern part of the Germanic Basin (NE France, 
Fig. 2), the "Conglomerat principal" Formation rarely crops out north 
of the Vosges Massif (near the German boundary) because it is 
truncated there by the Hardegsen unconformity (Fig. 2), which even 
cuts locally into the "Gres vosgien" Formation (Bourquin et al., 2006). 

An unconformity between the Lower Triassic and Anisian deposits 
is also present in several areas: the Central Graben Basin (Goldsmith 
et al., 1995, 2003; Smith et al., 1992), the Wessex Basin (Hounslow 

and McIntosh, 2003) and the Western Shetlands (Swiecicki et al., 
1995). This might indicate erosion of the upper Olenekian in this area 

(Fig. 2). 
A hiatus, marked by palaeosol development, occurs in the 

Provence Trough (Durand, 2008; Durand et al, 1989) and Sardinia 
(Cassinis et al., 2003, 2007; Fig. 3). However, no indication of the 
Hardegsen unconformity is observed in the other SW European basins 
(Figs. 2, 3). 

2.3.4. Middle Triassic: Anisian and Ladinian 

In the Germanic Basin (Fig. 2), the Olenekian-Anisian transition is 
located in the uppermost beds of the playa-lake Solling Formation 
(Kozur and Bachmann, 2008). Therefore, the main part of the 
overlying unit, the Rot Formation, is Middle Triassic (Aegean, earliest 
Anisian in age, Kozur and Bachmann, 2008; Szurlies, 2007). This 
formation consists of evaporitic shallow marine and sabkha deposits 

(Aigner and Bachmann, 1992; Geluk, 2005); it represents the first 
Triassic occurrence of halite deposition in the Germanic Basin. 

The lateral equivalents of the Rot Formation in the southern part of 
the Germanic Basin (NE France; Bourquin et al., 2006; Fig. 2) are the 
fluvial sediments composing the "Couches intermediaires", which 
show an enhanced development of floodplains with associated 
dolocretes derived from hydromorphic palaeosols (Durand, 1978; 
Durand and Meyer, 1982). There, the only biochronologic evidence is 
provided by the "Gres a Voltzia" Formation, where macrofauna and 
palynoflora indicate an early-middle Anisian age (Durand and jurain, 
1969; Gall, 1971). The fluvial "Gres a Voltzia" evolves eastwards (and 

upwards) into deposits with increasing marine influence (Bourquin 
et al., 20(6) and then passes laterally into marine limestones 
characterising the Lower Muschelkalk (the Jena Formation in 
Germany; Fig. 2). In NE France, fluvial systems appear to collapse 
suddenly at the beginning of the evaporitic episode corresponding to 
the Middle Muschelkak (the "Couches rouges", "Couches grises" and 
"Couches blanches"), which precedes the extensive deposition of 
marine carbonates during the Illyrian-Fassanian (Fig. 2). The vertical 
passage from the "Couches intermediaires" to the Anisian-Ladinian 
marine limestones (Duringer and Hagdorn, 1987) characterises a 
general transgressive trend. 

As for the westernmost part of the Germanic Basin (Fig. 2), the 
Anisian is characterised by either fluvial systems in the Devon Basin 
(Hounslow and McIntosh, 2003), Central Graben (Goldsmith et al., 
1995,2003) and Western Shetlands (Swiecicki et al .. 1995), or by distal 
floodplain or inland sabkha deposits in the Celtic Sea (Shannon, 1995). 

The Ladinian depositional environments are similar to those of the 
Anisian, except in the Devon Basin (Hounslow and McIntosh, 2003) and 
the Celtic Sea (Shannon, 1995), where the fluvial deposits evolve 
vertically to coastal sabkha deposits (Warrington and Ivimey-Cook, 
1992). 

In the Aragonian Branch of the Iberian Ranges (Fig. 3), a 
palynological analysis of fluvial-coastal deposits of the Tierga, Gilcena 
and Trasobares formations allowed dating of these deposits as lower
middle Anisian for the Gilcena Formation and middle-upper Anisian for 
the Trasobares Formation (Diez et al., 1996, 2007). In the Castilian 
Branch (Fig. 3), the ammonite and foraminifera assemblages yield a late 
Anisian age for the basal limestones of the Landete Formation (Arche 
and L6pez-G6mez, 1999; Arche et al., 2004; L6pez-G6mez et al., 1998, 
2002; Marquez et al., 1994). In the Catalan Coastal Range, the top of 
Riera de Sant Jaume is dated as Aegean by magnetostratigraphy and 
palynology (Oinares-Turell et al., 2005) and the conodonts yield a late 
Anisian age for the lower Muschelkalk facies (named M-l, Fig. 3, middle 

Pelsonian-upper Illyrian; Dinares-Turell et al, 2005; M.irquez-Aliaga 
et at.. 2000). Hence, a connection with the open Tethys Ocean was 
established during the Anisian. 

On Minorca (Fig. 3), the Anisian s.l. is well marked by a transition 
from braided river deposits, with in situ and reworked palaeosols 
(dolomite breccias), to fluvial-coastal and shallow marine deposits 
(Muschelkalk, Fig. 3) and are dated as upper Anisian-Ladinian 
(Uornpart et aI., 1987; March, 1991; Vachard and (olin, 1994). The 
palaeocurrents are directed towards the SE, which implies a 
continental environment located to the west and open sea to the 
east. On Majorca, the siliciclastic Son Serralta Formation (Fig. 3) 
becomes more argiUaceous towards its top and contains palaeofauna 
(Calafat, 1988) and palaeoflora (Grauvogel-Stamm and Alvarez Ramis, 
1996) associations of middle Anisian age. These sandstones were 
deposited in a distal braidplain environment evolving into coastal 
shallow deltaic or beach-prograding complexes (L6pez-G6mez et al., 

2002). 
In the Provence Trough and in Sardinia (Fig. 3), the basal contact of 

the "Gres de Gonfaron" and "Arenarie di Cala Viola" formations is very 
sharp and marked by the sudden appearance of caliche nodules, 
mainly reworked and sometimes in situ. In the distal part of the 
Provence Trough (Toulon), as well in Sardinia, the fluvial sandstones 



grade upwards into terminal fan and playa deposits. Other than the 
caliche horizons, there is relatively frequent evidence of biological 
activity: e.g. vegetation-induced primary sedimentary structures 
(Rygel et al., 2004) and trace fossils that are mainly invertebrate 
burrows (e.g. Scoyenia, Beaconites, Phycodes, Arenicoloides, etc). 
Nevertheless, the only remains of biochronologic significance in the 
"Gres de Gonfaron" are palynomorphs found in the uppermost part, 
which are of an early Anisian age (Adloff, in Durand et al., 1989). 
Occasional occurrences of tetrapod footprints have also been 
recorded. Although the latter provide less precise dating than 
palynomorphs, their stratigraphic ranges agree well with an early 

Anisian age for these sediments (Demathieu and Durand, 1991). In 
NW Sardinia, reddish siliciclastic deposits from the subsurface (the 
Cugiareddu well), correlating to the "Arenarie di Cala Viola", yielded 
two distinct palynomorph assemblages that are ascribed to an 
Olenekian?-early Anisian and late Anisian age, respectively (Pittau 
and Del Rio, 2002). In the Provence Trough and in Sardinia (Fig. 3), 
these fluvial mature silidclastics pass upwards into floodplain-playa 
and subsequently to Anisian age pre-evaporitic marly-dolomitic 
deposits. They are overlain by marine Middle Triassic carbonates of 
the Muschelkalk (Brocard and Philip, 1989; Carrillat et al., 1999; 
Posenato et al., 2002; Ronchi, 2004). 

In the southern Pyrenees (Fig. 4), above the Anisian siliciclastic 
sediments, a dolomitic unit representing the Muschelkalk fades has 
been dated as Ladinian (Calvet et al., 1993, 1994; Diez, 2000; Marquez 
et al., 1992). The earliest Triassic sediments deposited on the French 
Massif Central (Figs. 4, 1) are dated as Anisian in the Lodeve Basin 

(Broutin et al., 1992; Diez, 2000). They are considered as Anisien in 
the Rodez and Saint-Affrique basins by comparison with the Lodeve 
Basin (Chateauneuf and Farjanel, 1989), and as Ladinian in the Blanzy
Le Creusot and Autun basins (Courel et al., 1984). In other areas, the 
Early and Middle Triassic correspond to a hiatus and the earliest 
Mesozoic sediments are of Carnian-Hettangian age (Blanzy-Le 
Creusot, Autun, Bourbon-l'Archambault/Aumance; Fig. 1). 

2.3.5. Conclusion 

In summary, within the northwestern Tethys domain, the Early 
Triassic (Induan), which is preserved only in the Germanic basin and 
Western Shetlands (Figs. 1, 2), corresponds to playa-lake deposits in 
warm and semi-arid climate conditions. It represents the end of the 
Permian progradational trend, i.e. the regressive tendency that started 

in the uppermost Zechstein (Aigner and Bachmann, 1992; Aigner 
et al., 1998; R6hling, 1991; Szurlies et al., 2003). In other basins, the 

onset of Mesozoic sedimentation, above the Permian-Triassic uncon
formity, is dated as Olenekian. The Olenekian began with warm and 
hyper arid climate conditions of the Smithian (no palaeosols, the 
presence of ventifacts, and aeolian deposits). This was followed by 
more humid conditions, with the development of the earliest 
Mesozoic palaeosols, considered as Spathian. The ages are obtained 
through a comparison with magnetostratigraphic data for the 
Germanic Basin (Szurlies, 2007). Within the northern domain, 
above a sedimentation hiatus marked along the margin of the basins 
by palaeosol development, an intra-Spathian tectonically induced 
unconformity (Hardegesen unconformity) is observed (Fig. 2). ln the 
southern domain, only a sedimentation haitus, marked by palaeosol 
development, occurs (Fig. 3). Above this hiatus or unconformity, the 
Anisian-Ladinian deposits evolve vertically from fluvial to open 
marine sedimentation, except in some of the Massif Central basins 
(Fig. 1) where a sedimentation gap occurs from the pre-Triassic 

unconformity to the Carnian or Hettangian (Figs. 3, 4). Throughout the 
Spathian and Anisian, the presence of palaeosols and the development 
of palyno- and macrofloras attest to less arid conditions over the study 
area. Thus, the lack of typical Early Triassic continental fossils can be 
explained not only by a slow recovery after the Permian-Triassic 
biologic crisis (L6pez-G6mez et al., 2005), but also by a true 
stratigraphic gap including part of the Early Triassic (Induan) and/or 

by climatic conditions that were not suitable for the development of 
most of the flora and fauna during the Lower Olenekian (i.e. "desert" 
environments ). 

2.4. Palaeogeographical implications 

This review of the Middle Permian-Middle Triassic record of 
several western European basins (Figs. 2-4) forms the basis of a 
discussion of the palaeogeographic evolution of these basins. In the 
Laurasia supercontinent, the palaeogeography and mountain chain 

morphology are reconstructed from: (1) previously published maps of 
the kinematic reconstruction of plate motions during the Middle/ 
Late-Permian, Early and Middle Triassic periods (Dercourt et al., 1993, 
2000; Ziegler, 1982, 1990; Ziegler et aI., 1997); and (2) original 
sedimentological data, such as palaeocurrent directions, boundaries 
for the marine influence, and areas of erosion and/or no deposition 
(palaeorelief). The mean Upper Permian Appalachian-Variscan Belt 
altitude is estimated to be around 2000 m, as deduced from numerical 
modelling on mountain elevation by Fluteau et al. (2001). The 
palaeolatitude reconstructions, based on Ziegler's reconstructions 
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(1990), show that the northwestern continental Tethyan domain is 
above the equator during the Middle-Late Permian and migrated 
northward until the middle Ladinian. 

At the scale of the western European peri-Tethyan basins, in the 
northern domain (Fig. 5), the Middle-Late Permian sedimentation areas 
are either isolated or connected to a large sub-endorheic basin. This 
basin, occupied by the Zechstein Sea, is characterised by the vertical 
evolution from evaporite to shallow marine carbonates to playa-lake 
and fluvial deposits. Fluvial-lacustrine deposits occur on the southern 
margin of this large basin, with a vertical evolution towards increasingly 
dominant fluvial deposits. The palaeocurrent directions point to the 

north. Within the Paris Basin, sedimentation took place in isolated 
subbasins during this period. In the southern domain (Fig. 5), the 
Middle-Late Permian sedimentation took place in numerous endorheic 
basins with palaeocurrent directions indicating local sediment sources 
(Fig. 5). Three types of sedimentary basins can be distinguished (Fig. 5): 
(1) a large southwest basin (the Iberian Range and Balearic area) 
with fluvial networks flowing mainly towards the south-southeast but 
probably not connected to the Tethys Ocean; (2) numerous small basins 
with active sedimentation and palaeocurrent directions indicating local 
sources (e.g. the Pyrenees, Brive, Rodez, Saint-Affrique, Lodeve, Nurra, 
SE France basins); and (3) areas under erosion and/or with no 
deposition during the Late Permian (e.g. Blanzy-Le Creusot, Autun, 
Bourbon-l'Archambault/Aumance, Sardinia and Provence). These large 
endorheic domains were limited at the southeastern border (Fig. 5) by 
Corsica-Sardinia palaeorelief (since the Early Permian; Cassinis et al., 
2003; Ronchi et al, 1998, 2008) and probably also by the relief 

corresponding to the future Kabylia microplate (Edel et al., 2001). The 
climate in these domains, as well as in the northern domain, was warm 
and semi-arid (Schneider et al., 2006). 

At the scale of the study area, a major erosional boundary surface can 
be followed almost everywhere between Permian and Triassic deposits, 
except in the northern domain (the Central Germanic Basin and the 
Western Shetlands; Figs. 2-4). This boundary surface may correspond to 
an erosional and, in places, an angular unconformity. The earliest 
Triassic sediments (Induan) are preserved only in the central part of the 
Germanic Basin (the North Sea Central Grabben and Western Shetlands; 
Fig. 2). All the intra-belt domains were under erosion at that time 
(Figs. 3, 4); all the sediment supply by-passed the continental area and 
was preserved in the extra-belt domains (Fig. 6). The Induan sediments 
are mainly attributed to playa-lake systems evolving under warm and 
semi-arid climatic conditions, similar to those characterising the end of 
the Permian, and they reflect the regressive tendency that started in the 
uppermost Zechstein (Aigner and Bachmann, 1992; Aigner et al., 1998; 

R6hling, 1991; Szurlies et al., 2003). 
The deposits overlying the Permian-Triassic unconformity are 

characterised by marked changes in sedimentological features. 
Moreover, in some basins, a change in the palaeocurrent directions 
is observed across the unconformity (NW Sardinia, SE France, 
Minorca, Figs. 5, 7). The fluvial siliciclastics lack palaeosol remnants, 
but include ventifacts and aeolian dune deposits. Like the Volpriehausen 
Formation of the Germanic Basin, they were laid down during an arid 
episode dated as lower Olenekian (Smithian) by magnetostratigraphy 
(Szurlies, 2007). The first occurrence of Mesozoic palaeosols, which are 
considered as Spathian in age, indicated that more humid conditions 
prevailed later on when compared to their equivalents in the Germanic 
Basin. 

In the Laurasia supercontinent, three domains can be distinguished 
based on our study of the Early Triassic: a northern domain separated 
from a southern domain by an intra-belt domain (the Appalachian

Variscan Belt). In the northern and southern domains, Mesozoic 
sedimentation mainly began in the early Olenekian (Smithian), with 
fluvial systems flowing through the arid plains towards the north and 
the south, respectively. Erosion occurred in the sectors pertaining to the 
Appalachian-Variscan Belt, where no Lower Triassic sediment preser
vation is recorded (Fig. 7). 
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Fig. 6. Induan palaeogeographical reconstruction of the northwestern peri-Tethyan 

domain. Ws: Western Shetlands: cs: Celtic Sea: wb: Wessex Basin: cg: North Sea Central 

Graben: blew: bockenem well: blew: bockenem well (central Germanic Basin): 

v: Vosges and Trier area: cb: Castilian Branch: ab: Aragonian Branch: ccr: Catalan 

Coastal Range: bal: Balearic Islands (Minorca and Majorca): pt: Provence through (Bas

Argen, Luc basin and Toulon-Cuers area): s: Sardinia: sp: southern Pyrenees: b: Brive: 

r: Rodez: sa: Saint Affrique: I: Lodeve: aut: Autun: aum: Bourbon L'Archambault/ 

Aumance: bl: Blanzy-Le Creusot; RM: Rhenish Massif. Palaeolatitudes are from Ziegler 

et al. (1997). 

Another tectonically induced, major sedimentary break, the 
Hardegsen unconformity, can be observed within the upper Spathian, 
especially in northern European basins (Fig. 2). Above the Lower 
Triassic, braided fluvial deposits yielded both macro- and palyno
floras, allowing the first palaeontological dating of Mesozoic sedi
ments as Anisian. The Anisian-Ladinian is characterised by a vertical 
transition from fluvial to open marine sedimentation, taking place 
during the Muschelkalk Sea transgression (Fig. 8). A hiatus encom
passing the Early and Middle Triassic occurred in the basins located 
within the Appalachian-Variscan Belt (those of the Massif Central): 
Brive, Blanzy-Le Creusot, Autun and Bourbon-l'Archambault/ 
Aumance basins (Fig. 1). The earliest Mesozoic sediments here are 
Carnian-Hettangian in age. 

2.5. Discussion 

After this review of the Middle Permian-Middle Triassic record of 
several European basins (Figs. 2-4) and the palaeogeographic 
reconstruction of the sedimentary basins (Figs. 5-8), the impact of 
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tectonics, climate and sediment supply on the sediment preservation 
can be discussed. 

2.5.1. Qimate 

Throughout the northern hemisphere and as far as the South China 
Block (Yu, 2008), where continuity can be documented between the 
Permian and Triassic sedimentary records, the climate seems to have 
evolved from semi-arid towards more humid conditions beginning 
in the Changhsingian-Griesbachian Stages (e.g. Fuglewicz, 1980; 
Kozur, 2003). Macrofloras show a predominantly Permian character, 
whereas the palynoflora indicate transitional Permian-Triassic char
acteristics (Lozovsky et al., 2001; Ouyang and Norris, 1999). A clear 

climate change from semi-arid to hyper-arid conditions occurs only 
during the early Olenekian (Smithian). At the end of the Olenekian 
(Spathian) and during the Anisian, palaeosols, palyno- and macrofloras 
again indicate less arid conditions at the scale of the study area. The Early 
Triassic arid episode could have been triggered by a global-scale 
phenomenon, as suggested by recent studies on ammonoids (Brayard 
et al., 2006), where climate changes are observed during the Smithian. 
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Fig. 8. Middle Anisian palaeogeographical reconstruction of the northwestern peri

Tethyan domain. Ws: Western Shetlands: cs: Celtic Sea: wb: Wessex Basin: cg: North Sea 

Central Graben: bkw: bockenem well (central Germanic Basin): v: Vosges and Trier area: 

cb: castilian Branch: ab: Aragonian Branch: ccr: Catalan Coastal Range: bal: Balearic 

Islands (Minorca and Majorca): pt: Provence through **(Bas-Argen, Lucbasin and Toulon

Cuers area): s: Sardinia: sp: southern Pyrenees: b: Brive: r: Rodez: sa: Saint Affrique: 

I: Lodeve: aut: Autun: aum: Bourbon L'ArchambaultjAumance: bl: Blanzy-Le Creusot: 

RIv1: Rhenish Massif. Palaeolatitudes are from Dercourt et al. (1993). 

Furthermore, it should be noted that even in South Africa, recent 
research has provided evidence of a vegetated landscape during the 
beginning of the Triassic and, conversely, of an aphytic interval between 
the deposits dated as Early and Middle Triassic (Gastaldo et al, 2005). 
Therefore, there is no evidence for a climate change during the 
Palaeozoic and Mesozoic transition. The climate always reflects warm 
and semi-arid conditions. A drastic change occurs at the Induan
Olenekian boundary and the hyper arid episode of the western Tethys 

domain appears to last throughout the Smithian (Fig. 9). 

2.5.2. Sediment supply 

In the northern and southern borders of the Variscan Belt (Figs. 5, 9A), 
the Late Penman is characterised by a general vertical progradational 
trend from evaporite sabkha, playa-lake or floodplain sediments to fluvial 
deposits (Figs. 2-4). The similar evolution observed in these two domains 
leads to the conclusion that this trend was controlled by allocyclic factors 
independent of the basin location, such as intraplate tectonics or climate 
change. It could be explained by either an increase in sediment supply 
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and/or a decrease in the subsidence of the depositional area, as 
demonstrated by numerical modelling (Heller and Paola, 1992; Marr 
et al., 2000; Paola, 2000; Paola et al., 1992). A strong clastic influx is well 
documented in the area of the Viking-Central Graben area (Geluk, 2005; 
Ziegter, 1990). Moreover, some basins located on the southern side of the 
Variscan Belt are mainly in erosion and/or there was no deposition during 
the Late Permian (Figs. 3, 4). 

In the Laurasia supercontinent, three palaeogeographic units can 
be distinguished from the Early Triassic onwards: a northern domain 
separated from a southern one by an intra-belt domain (Figs. 6, 7). At 
the beginning of the Triassic times (Induan), sediments were mainly 

in by-pass throughout the western peri-Tethyan continental region. 
The sediment supply, coming from north of the Variscan Belt, was 
preserved only locally in low topographic areas (the Germanic Basin 
and North Sea: the residual Zechstein basin) under warm and sub
humid/semi-arid climate conditions (Fig. 9B). In the southern part of 
the Variscan Belt, the sediment record does not seem to have been 
preserved, but could more probably be present in the Tethys Ocean as 
siliciclastic marine sediments. This would imply a large detrital 
discharge into the marine waters during the Late Permian and Induan 
(Figs. 6, 9B). 

The earliest Mesozoic sediments preserved in the northern and 
southern endoreic extra-belt basins show a high mineralogical and 
textural maturity (well-rounded quartz and quartzite grains) indi
cating a long transport process. Moreover, in some of the southern 
basins, the Early Triassic palaeocurrent directions (Fig. 6) are different 
from those of the Middle-Late Permian (Fig. 7), attesting to a change 

of fluvial networks between these two periods. The intra-belt basins 
(Figs. 5-7) were under erosion during the entire Early Triassic and 
sometimes up to the Hettangian (Figs. 8, 9B to E). This implies that all 
the areas of sedimentation were filled up by the end of Permian and 
no new areas of subsidence developed during the Early Triassic in this 
intra-belt area. 

In several basins of the northwestern Tethys margin (Paris Basin, 
Iberian Range, Sardinia; Figs. 2, 3), the development of the earliest 
Mesozoic palaeosol horizons during the upper Olenekian (Spathian) 
suggests one or more local hiatus( es) or a general slowing down of the 
sedimentation rate. The reactivation of the source area is demon
strated by a major change in the siliciclastic supply (rich in angular 
quartz and feldspars) and fluvial style. The restart of the sediment 
supply, with the reactivation of the source areas, began at the end of 
the Olenekian or the early Anisian. The new fluvial style, in an 
exhoreic context, was controlled by sea level variations (Fig. 90). 
During the Anisian and Ladinian, continental sedimentation was 

characterised by a retrogradational trend, i.e. an evolution from fluvial 
systems to fluvio-marine environments. This is proof of the direct 
influence of the Tethys Ocean in the southern and northern domains 
(Figs. 8, 9E). 

2.5.3. Tectonic control 

Two phases of deformation can be inferred: (1) at the Late 
Permian-Early Triassic; and (2) at the top of the Early Triassic, the 
Hardegsen unconformity. The latter, which shows as an angular (low
angle) unconformity in the north, with onlap of the overlying deposits 
on the previous ones, is not more than a disconformity to the south. 

Most authors believe that the Variscan Belt was under tectonic 
collapse during the Permian (e.g. Burg et al., 1994; Lorenz and 
NichoUs, 1976; Menard and Molnar, 1988) and the discussion is about 
the duration of the related extension and, to a lesser extent, about the 

cause of the collapse. The Middle-Late Permian basins were created 
and developed during an extensional phase either during the 
development of some rift systems in Central and Western Europe 
and/or as the result of the reactivation of ancient Hercynian faults 
representing the initial phase of post-Variscan plate reorganisation 
(Arche and L6pez-G6mez, 1996; Beauchamp, 1997; Bruner and Le 
Pichon. 1982; L6pez-G6mez et al., 2005; Ziegler, 1990). In other 

respects, the sedimentological analysis of the Middle-Upper Permian 
(Figs 5, 9A) and Lower Triassic (Figs. 6, 7, 9B) deposits shows that the 
Permian-Triassic Boundary is mainly characterised by an erosional 
and in places an angular unconformity, except in the northern 
domain. Other main features of the study area are: (i) the important 
sedimentary supply in some extra-belt basins at the end of the 
Permian, (ii) the erosion stage and/or no deposition in some intra-belt 
basins during the uppermost Permian, (iii) the Early Triassic (Induan) 
epoch of sediment by-pass through all the continental systems 
(Fig. 9B), and (iv) the different palaeocurrent direction pattern 
between the Middle-Late Permian (Fig. 5) and Early Triassic (Fig. 7), 

which indicates a change of fluvial networks. These features indicate a 
period of relief rejuvenation during the Late Permian. This tectonic 
pulse implies an increase in sediment supply and/or erosion during 
the Late Permian, which seems to occur earlier in the southern than in 
the northern area. The preservation of the Lower Triassic deposits 
(Induan-Olenekian) mirrors the progressive infilling of the basin 
morphologies inherited from the Late Permian (Fig. 9B, C). 

At the scale of the northwestern Tethys margin, the upper part of 
the Early Triassic is marked by a tectonic unconformity: the 
Hardegsen unconformity (Ziegler, 1990). During the Hardegsen 
phase, an important structural reorganisation occurred in NW Europe 
(Geluk, 2005; Geluk and R6hling, 1997). This led to the formation of 
the main rift in NW Germany and is attributable to the final collapse 
phase of the Variscan Belt (Best et al., 1983; R5hling, 1991 ). Above the 
unconformity, in the southern part of the Germanic Basin (NE France), 
the Triassic deposits show an onlap relationship with the underlying 

formations, which confirms tectonic activity just before the reorga
nisation of fluvial sedimentation. Moreover, the siliciclastic compo

nents of these fluvial sediments (Fig. 2) include micas, large feldspar 
crystals and angular quartz pebbles, thereby providing evidence for 
the reactivation of the source area. In the other basins where the 
Hardegsen unconformity is not recorded (Figs. 2-4), the earliest 
continental Anisian sediments (Fig. 90) generally contain more micas 
and feldspar crystals. This confirms a reactivation at the scale of the 
entire study area. Within the southern domain (Fig. 3) and the eastern 
to central part of the northern domain (Figs. 2, 4), the Anisian
Ladinian successions are characterised by a vertical succession from 
fluvial to open marine sedimentation, which occurred during the 
Muschelkalk Sea transgression (Fig. 8). At a wider regional scale, the 
east-west transgression of the Tethys Ocean can be clearly observed 
(Figs. 8, 90, E). Progressively, from the early Anisian-Middle Ladinian, 
the Germanic Basin was connected with the Tethys Ocean (Oercourt 
et al, 1993) and the fluvial systems were developed in an exorheic 

basin setting. Within the intra-belt domain, marine influence began 
either in the Ladinian or liassic depending on the location (Figs. 4, 8). 

2.6. Summary 

Palaeogeographic reconstructions of the continental northwestern 
peri-Tethys regions during the Middle Permian-Middle Triassic allow 
the different areas where sedimentation or erosion occurred to be 
characterised and show changes in the basin morphology, palaeo
drainage networks and palaeorelief between the studied epochs. 
During this time interval, the continental realm, dominated by the 
Variscan Belt, can be divided into three parts (Fig. 9): two extra-belt 
domains (the northern and southern side areas) and one intra-belt 
domain. In this last sector, sediment accumulated during most of the 
Early-through-Middle Permian, while erosion and sediment transport 

occurred between the Late Permian and the beginning of the onset of 
Mesozoic sedimentation, dated as Anisian-to-Hettangian according to 
the location (Figs. 5-9). 

An unconformity (angular in places) between the Late Permian 
and Early Triassic appears everywhere, except in the central part of 
the Germanic Basin (Figs. 2-4). The sedimentation gap is more 
developed in the southern area, where in some basins no Upper 



Permian sediments occur (Figs. 3, 4). A period of relief rejuvenation 
during the Late Permian is indicated by patterns of sediment supply or 
erosion in the uppermost Permian, the Early Triassic (Induan) epoch 
of sediment by-pass through all the continental systems (Fig. 9B), and 
the changing palaeocurrent direction pattern between the Middle
Late Permian (Fig. 5) and the Early Triassic (Fig. 7). During the Induan, 
all the intra-belt basins were under erosion and the other basins were 
prone to by-passing (Figs. 6, 9B). Thus, the sediment supply was only 
preserved in the north (the central part of the Germanic Basin) and 
probably in the Tethys Ocean as marine siliciclastic sediments. This 
implies a voluminous detrital input into the marine waters during the 

Late Permian and Induan. 
In the northern and southern parts of the Variscan Belt, Mesozoic 

sedimentation began during the early Olenekian (Smithian; Figs. 7, 9C), 
with fluvial siliciclastics laid down under hyper-arid climatic conditions. 
The late Olenekian (Spathian) is characterised by the appearance of the 
first palaeosol horizons. During this time period, deformation induced 
the genesis of the Hardegsen unconformity as well as new source areas, 
and a new fluvial style, under marine influence. During the Anisian and 
Ladinian (Figs. 8, 90, E) in the southern and northern domains, 
continental sedimentation is characterised by a vertical evolution 
from fluvial systems into fluvio-marine environments, indicating a 
direct influence from the Tethys Ocean. 
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