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Abstract: In this paper, we address the permutation flow shop scheduling problem with sequence-
dependent and non-anticipatory setup times. These setups are performed or supervised by multiple
servers, which are renewable secondary resources (typically human resources). Despite the real
applications of this kind of human supervision and the growing attention paid in the scheduling
literature, we are not aware of any previous study on the problem under consideration. To cover
this gap, we start theoretically addressing the problem by: proposing three mixed-integer linear
programming models to find optimal solutions in the problem; and proposing different decoding
procedures to code solutions in approximated procedures. After that, the best decoding procedure is
used to propose a new mechanism that generates 896 different dispatching rules, combining different
measures, indicators, and sorting criteria. All these dispatching rules are embedded in the traditional
NEH algorithm. Finally, an iterated greedy algorithm is proposed to find near-optimal solutions. By
doing so, we provide academics and practitioners with efficient methods that can be used to obtain
exact solutions of the problem; applied to quickly schedule jobs and react under changes; used for
initialisation or embedded in more advanced algorithms; and/or easily updated and implemented in
real manufacturing scenarios.

Keywords: scheduling; flow shop; MILP; decoding procedure; makespan; flow shop; human resources;
multiple servers; sequence-dependent setups; iterated greedy

MSC: 90B35; 68M20; 90C59

1. Introduction

Minimising the makepan in the Permutation Flow shop Scheduling Problem (PFSP)
is one of the most addressed problems in the Operations Research literature [1]. In the
PFSP, there are n jobs, each one with m operations, and a set of m machines. Each machine
is exclusively responsible for processing an operation of each job and, therefore, each job
must be processed on all machines following the same route. The goal of this scheduling
problem is to find the best sequence (the same in all machines) to process the jobs according
to a certain objective function, with the makespan being the most common one in the
literature. In this problem, machines are typically classified as primary resources that
remain busy throughout the processing of each job. In addition, in several situations, the
processing of jobs may also require the use of other resources (such as, e.g., raw materials,
human resources, or setup tools), denoted as ‘secondary’ ([2]). Among these types of sec-
ondary resources, the use of servers is very common in the real manufacturing industry [3]:
examples can be found in flexible manufacturing systems [4]; in scheduling problems
with versatile machines and assembly components [5]; in computer-controlled material
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handling systems [6]; in biomass truck scheduling problems in the context of supply chain
optimisation [7]; and in container terminals [8]. Servers are secondary resources that are in
charge of carrying out setups between jobs or families of jobs. In this sense, these servers
could represent a robot (see, e.g., [4]), a human (see, e.g., [9]), or an automatic guided
vehicle ([10]), among others. In the literature, this type of resource has also been denoted
as a setup operator (see, e.g., [11,12]). In addition to the previous real implications of the
problem, this scheduling problem is especially appropriate for the U-shaped manufactur-
ing layout (see [13] for a definition of this production line layout), where machines are
distributed in a flow-shop layout with a U shape, and human resources are located in the
centre in charge of carrying out the changeovers.

Despite the practical applications of servers in real scenarios and the recent interest in
the literature to these kind of scheduling problems with secondary resources responsible
for setup times (see, e.g., [3,9,14–16]), literature addressing this topic is still very scarce and
there are many open research questions. Most papers address the problem with a single
server (see, e.g., [6,17]) under very simple layouts, mostly identical parallel machines (see,
e.g., [18–20]). The case with multiple human resources has been tackled only in unrelated
parallel machines, hybrid flow shop, open shop, and no-wait flow shop. Although these
papers propose relevant algorithms for solving such scheduling problems, there is still
a need to further improve the knowledge of multiple servers, especially solving and
analysing its influence in the permutation flow shop scheduling problem, the most relevant
and addressed layout in the literature. To cover this gap, we address the Permutation
Flow shop Scheduling problem with Multiple Servers, denoted as PFSMS in the following.
Regarding the setup times which have to carry out these servers, according to [21], they
may be classified first as non-anticipatory and anticipatory: the former (also denoted as
inseparable or attached) must be executed after the job arrival; the latter (also denoted as
separable or detached) can be performed at the machine at any time after the completion of
the previous job (i.e., they may be performed before the job arrival). Second, setup times
can be classified as sequence-dependent or sequence-independent if this amount of time
depends or not on the previous job executed on the same machine, respectively. Following
the common approach used in the literature, in this paper, we address the PFSMS with
non-anticipatory and sequence-dependent setup times. This scheduling problem, with
the objective of minimising the makespan, is denoted by Fm, Sr|prmu|Cmax, according
to [18,22]. This problem is clearly NP-hard, since the same problem without considering
the servers is already NP-hard [23].

To deal with this PFSMS for the first time, the contributions of this paper can be stated
as follows:

• A new PFSP problem is defined with multiple servers or human resources in charge
of carrying out setups.

• We identify efficient formulations to solve the proposed problem, by developing three
different Mixed Integer Linear Programming (MILP) models.

• Another contribution is the development of decoding procedures. These procedures
are important to obtain feasible schedules and to reduce the solution space of the prob-
lem. Both issues are essential to guarantee the efficiency of approximated algorithms
developed for the problem.

• A new procedure to generate static dispatching rules is proposed. Using this proce-
dure, we propose and compare 896 different dispatching rules.

• In addition, we propose different NEH-based constructive heuristics to efficiently
solve the problem. Using the traditional NEH heuristic ([24]), we analyse the influence
and efficiency of its first phase, embedding all previous dispatching rules. In this
regard, note that heuristics have been traditionally proposed in the literature either to
obtain high-quality solutions in short times (required when decisions should be made
almost instantaneously or with high computational requirements) or to provide good
initial solutions for more advanced algorithms (as metaheuristics). Recently, they are
also relevant for quickly reacting to the changing environments of industry 4.0 ([25]).
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• Finally, starting with the best constructive heuristic, we develop an iterated greedy
metaheuristic to find near-optimal solutions in large-sized instances.

Note that with these contributions, we try to introduce future researchers and prac-
titioners with the problem under study, providing them with tools that can be directly
applied, combined or adapted to other related scheduling problems. It is also noteworthy
to mention that, as most proposals in the literature, we propose deterministic approaches
to solve the problem under consideration. Despite the inherent uncertainty in the supply
chain ([26–28]), in many scheduling situations, deterministic approaches are very robust to
stochasticity and uncertainty (see in this regard [25,29]).

The rest of the paper is organised as follows: the problem is described in Section 2. In
this section, we also review the literature related to the problem under study. In Section 3,
we propose several new formulations for the problem using MILP models. The decoding
procedures are explained in Section 4. Regarding approximate algorithms, the proposed
dispatching rules and constructive heuristics are detailed in Section 5, while the iterated
greedy algorithm is explained in Section 6. The computational results of all previous
methods are shown in Section 7. Finally, the conclusions and future research lines are
discussed in Section 8.

2. Problem Description and Background

In the PFSP, there is a setN of n jobs that must be processed on a setM of m machines,
following the same route of machines for each job. Each machine is always available and
has to process jobs (one by one) following a certain sequence, Π = (π1, . . . , πn), which is
identical for all machines (permutation constraint). Let Oij denote the operation of job j
processed on machine i. Whenever it does not cause confusion, let Oi[k] be the operation
corresponding to the job in position k on machine i (i.e., Oiπk ). Each operation Oij has a
processing time pij. In addition, each job j requires a setup time sil j, when it is processed
after job l on machine i. This setup is both non-anticipatory and sequence-dependent, and
has to be carried out on that machine i by a worker w. LetR be the set of r identical workers
that can perform all setups. Denoting by Cij the completion time of job j on machine i, the
goal of the problem is to find the best schedule that minimises the maximum completion
time, Cmax, where Cmax is equal to Cmπn .

In Figure 1, we show an example of Fm, Sr|prmu, sil j|Cmax with four jobs, four ma-
chines, and two workers. We can observe, for example, that the setup operation O3[1]
cannot be performed before, as all the workers are unavailable. Similarly, some idle time is
also forced on machines 3 and 4 by the setup of operations O3[2] and O4[2], which have to
wait until a worker is available.

As mentioned in the previous section, due to its importance, the permutation flow
shop scheduling problem is one of the most active problems in the operation literature
with hundreds of contributions in the last years, addressing different variants and con-
straints in the classical problems. Recent examples solving the permutation flow shop
can be found in [30–36], and addressing different setups configurations in [37–44]. For
comprehensive reviews of the problem under different constraints, we refer the interested
reader to [1,45–49]. Despite the extensive flow-shop-based literature, we are not aware of
any previous reference to the problem under study (PFSMS) so far. Therefore, we focus this
review of the literature on scheduling problems that deal with single or multiple servers.
Regarding the single server literature, most focus on solving the parallel machine schedul-
ing problem and applying it . In this regard, this problem has been solved for two machines,
for example [3,4,50] considering sequence-independent setup times and using objective
functions based on the makespan or total idle time. The problem with m machines has been
solved by [6] sequence-dependent setup times and makespan minimisation and by [17] for
sequence-dependent setup times to minimise total weighted earliness and tardiness. The
complexity of this kind of problem is addressed by [10]. The problem with a single server
has also been solved by [51] for the parallel dedicated machine scheduling problem with
sequence-dependent setup times and makespan minimisation, while [20] have proposed
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a MILP model and two approximate algorithms to solve the unrelated parallel schedul-
ing problem with sequence-dependent setup times and machine eligibility restrictions.
Regarding other layouts in the literature with a single server, the problem has also been
solved for the flow shop scheduling problem with two machines and minimisation of the
makespan by [52]. The authors have addressed the problem of sequence-independent and
anticipatory setup times. The complexity of this problem is addressed by [53], considering
unit processing times, and, more generally, by [54]. Using the same configuration of setup
times and traditional processing times, [55] have solved the no-wait variant of the problem
to minimise the total completion time. Anticipatory and non-anticipatory setup times are
addressed by [56], minimising the makespan, and also considering dismounting times. The
problem with m machines and a single server has been solved by [5] for total completion
times’ minimisation, but in this case, the server is responsible for both processing and
setup operations. The authors have addressed the problem with non-anticipatory and
sequence-independent setup times.

Figure 1. Example of the Fm, Sr|prmu, sij|Cmax problem.

Regarding the related scheduling problem with multiple servers, [18] have addressed
the identical parallel machine scheduling problem with sequence-independent setup times.
For the unrelated parallel machine layout, [15] have proposed a Grasp algorithm to solve
the problem with sequence-dependent setup times for makespan minimisation, while [16]
have proposed an iterated greedy-based algorithm to solve a bi-objective variant of the
problem. Both researchers have addressed the case where a setup requires more than
one server at the same time. Based on the ceramic tile manufacturing sector, [19] have
solved a related unrelated parallel machine layout, where the setup times depend on
the assignment of resources. The hybrid flow shop scheduling problem with sequence-
independent setup times and multiple servers has recently been addressed by [9,14]. The
former has proposed a backtracking search optimisation algorithm to solve the anticipatory
variant, while the latter have proposed several constructive and composite heuristics to
solve both the anticipatory and non-anticipatory cases. An example in the open shop layout
with two machines can be found in [57] for non-anticipatory and sequence-independent
setup times. Regarding the flow shop layout with multiple servers, the problem has been
solved only by [58,59]. However, they addressed the no-wait variant using anticipatory
and sequence-dependent setup times by proposing a genetic algorithm. A summary of the
literature review is presented in Table 1.
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Table 1. Summary of the literature review.

Paper
#Machines Layout #Workers Setup Other Objective Approach

m = 2 m ≥ 2 FS O r = 1 r ≥ 1 SD SI A NA Constraint Cmax ∑ Cj OM MO MILP H MH O

[3] X P X X - - X X
[4] X P X X - - X X
[5] X X X X X SPS X X X
[6] X P X X - - X X X
[9] X HF X X X X X X

[14] X HF X X X X X X
[15] X R X X - - X X X X
[16] X R X X - - X X
[50] X P X X - - X X X
[17] X P X X - - X X
[51] X DP X X - - X X X
[20] X R X X - - E X X X
[52] X X X X X CPT X X X
[55] X X X X X X X X
[56] X X X X X X DT X X
[57] X O X X X X X
[19] X R X X - - STAR X X X
[58] X X X X X NW X X
[59] X X X X X NW X X
This X X X X X X X X X

Notation: FS, Flow shop; P, Identical Parallel Machines; DP, Dedicated Machines; R, Unrelated Parallel Machines; O, Other; NW, no-wait; STAR, setup times depending on the number
of assigned resources; SPS, servers must process the jobs and carry out the setup; DT, Dismounting Times; CPT, Constant Processing Times; E, Eligibility; SD, Sequence dependent
setup times; SI, sequence independent setup times; A, Anticipatory setup times; NA, Non-anticipatory setup times; OM, Other Mono-objective; MO, Multiobjective; H, Heuristic;
MH, Metaheuristic.
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3. MILP Models

In this section, we elaborate three different MILP models to exactly solve the problem
under consideration. The parameters and variables used by the models are presented in
Section 3.1. Then, a detailed description of each model is shown in Sections 3.2–3.4 for
Models 1, 2, and 3, respectively.

3.1. Notation: Variables and Common Parameters

The three proposed MILP models use the following common indices and parameters:

• i (i ∈ M): machine index.
• j (j ∈ N ): job index.
• k (k = 1, . . . , n): position index.
• w (w ∈ R): worker index.
• sijj′ (i ∈ M,j,j′ ∈ N ): setup time of job j′ on machine i when it is processed immedi-

ately after job j. If the job j′ is the first job of the sequence, its setup time is defined
by si,0,j′ .

• pij (i ∈ M,j ∈ N ): processing time of job j on machine i.

The proposed models use some of the following variables:

• Xijw (i ∈ M,j ∈ N , w ∈ R): 1 if the setup associated with the operation Oij is carried
out by the worker w.

• αjkj′ (j, j′, k ∈ N ): 1 if job j is assigned to position k and is processed before job
j
′
, 0 otherwise. Additionally, let α0,0,j′ = 1 if job j

′
is the first job in the sequence

(0 otherwise).
• β jj′ (j, j

′ ∈ {0} ∪N ): 1 if job j is processed before job j
′
, 0 otherwise.

• Zjk (j ∈ N , k ∈ N ): 1 if job j is assigned to position k, 0 otherwise.
• γikw (i ∈ M,k ∈ N , w ∈ R): 1 is setup of the job in position k is performed by worker

w on machine i.
• Cij (i ∈ M, j ∈ N ): Completion time of job j on machine i.
• Cmax: Makespan.
• Ĉik (∈ M, k ∈ N ): Completion time of the job in position k on machine i.
• Bij (i ∈ M, j ∈ N ): Starting time of job j on machine i.
• B̂ik (i ∈ M, k ∈ N ): Starting time of the job in position k on machine i.
• ηwiji′ j′ (w =∈ R, i, i

′ ∈ M, j, j
′ ∈ N ): 1 if worker w performs the setup of operation

Oij immediately before operation Oi′ j′ . Furthermore, let ηw00ij = 1 if operation Oij is
the first operation in the worker w.

• λiji′ j′ (i, i
′ ∈ M, j, j

′ ∈ N ): if the setup for the operations Oij and Oi′ j′ are performed
on the same machine, then it takes 1 if the setup of Oi′ j′ is carried out after the setup of
Oij, and 0 otherwise.

• λ̂iki′k′ (i, i′ ∈ M, k, k′ ∈ N ): if the setup for the operations Oi[k] and Oi′ [k′ ] is performed
on the same machine, then it takes 1 if the setup of Oi′ [k′ ] is carried out after setup of
Oi[k], and 0 otherwise.

3.2. Model 1

Our first proposal, denoted Model 1, emerges from the Wilson model, introduced
by [60] in the classical Fm|prmu|Cmax, which belongs to the Wagner family. This model
used Zjk to define the sequence of jobs in the shop. Then, this auxiliary variable is used
to calculate the starting time of the job in position k (B̂ik). In our proposal, we introduce
the setup times and workers that are defined by the decision variables αjkj′ , γikw, and λ̂iki′k′ .
Using the previous parameters and variables, Model 1 can be formulated as follows:
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Min B̂mn + ∑
j∈N

pm,jZj,n

subject to
n

∑
k=1

Zjk = 1 j ∈ N (1)

∑
j∈N

Zjk = 1 k ∈ N (2)

∑
j′∈N−{j}

αjkj′ = Zjk j ∈ N , k ∈ N − {n} (3)

∑
j′∈N−{j}

αj′ ,k−1,j = Zjk j ∈ N , k ∈ N − {1} (4)

α0,0,j = Zj,1 j ∈ N (5)

B̂1,k + ∑
j∈N

p1,jZj,k + ∑
j∈N

∑
j′∈N−{j}

(s1,j,j′ · αjkj′) ≤ B̂1,k+1 k ∈ N − {n} (6)

B̂i,1 + ∑
j∈N

pi,jZj,1 + ∑
j′∈N

(si+1,0,j′ · α0,0,j′) ≤ B̂i+1,1 i ∈ M− {m} (7)

B̂1,1 = ∑
j′∈N

(s1,0,j′ · α0,0,j′) (8)

B̂i,k + ∑
j∈N

pijZjk + ∑
j∈N

∑
j′∈N−{j}

(si+1,j,j′ · αj,k−1,j′) ≤ B̂i+1,k i ∈ M− {m}, k ∈ N − {1} (9)

B̂i,k + ∑
j∈N

pijZjk + ∑
j∈N

∑
j′∈N−{j}

(sijj′ · αjkj′) ≤ B̂i,k+1 i ∈ M− {1}, k ∈ N − {n} (10)

∑
w∈R

γikw = 1 i ∈ M, k ∈ N (11)

B̂i′k′ − B̂ik + V(3− γikw − γi′k′w − λ̂iki′k′) ≥ ∑
j∈N

∑
l∈N−{j}

(si′ jj′αj,k′−1,j′) , w ∈ R, i
′ ∈ M, i > i

′
, k ∈ N , k

′
> k, (12)

B̂ik − B̂i′k′ + V(2− γikw − γi′k′w + λ̂iki′k′) ≥ ∑
j∈N

∑
j′∈N−{j}

(sijj′αj,k−1,j′) , w ∈ R, i′ ∈ M, i > i
′
, k ∈ N , k

′
> k, (13)

B̂i′k′ − B̂ik + V(2− γikw − γi′k′w) ≥ ∑
j∈N

∑
l∈N−{j}

(si′ jj′ αj,k′−1,j′) , w ∈ R, i ∈ M, i
′ ≥ i, k ∈ N , k

′
> k, (14)

B̂i′k − B̂ik + V(2− γikw − γi′kw) ≥ ∑
j∈N

∑
l∈N−{j}

(si′ jj′ αj,k′−1,j′) , w ∈ R, i ∈ M, i
′
> i, k ∈ N , (15)

The set of constraints (1) ensures that every job is assigned to a unique position,
while the constraints (2) achieve that exactly one job is assigned to each position. The
set (3) establishes that each job has a successor, whereas the predecessors are defined in
constraints (4) and (5). The starting time of every job on the first machine is defined in
the set (6). Analogously, the starting time of the first job on every machine is calculated
using constraints (7) and (8). Constraints (9) establish that a job must start after its previous
operation is completed. The set (10) ensures that a job starts once its previous job in the
same machine has been processed. Constraints (11) ensure that every job is assigned to a
worker. The set of constraints (12) and (13) achieves that the same worker does not process
two setups at the same time. Finally, on the one hand, constraints (14) establish that an
operation Oi[k] has to start before an operation Oi′ [k′ ] if k′ > k and i′ ≥ i. On the other hand,
(15) enforces that operation Oi[k] must start before Oi′ [k] if i′ > i.
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3.3. Model 2

Our second proposal is denoted by Model 2. This model belongs to the Manne
family of models ([60]), also denoted as a disjunctive formulation. Some examples of this
formulation in flow-shop layouts can be found in the SGST model proposed by [60], in the
MILP model proposed by [9] or in the MIP1 model proposed by [5]. This family starts by
defining the sequence of jobs by variable β jj′ . In our case, we incorporate variable λiji′ j′ for
the sequences in the workers. In doing so, Model 3 can be formulated as follows:

Min Cmax

subject to

∑
j∈{0}∪N−{j′}

β jj′ = 1 j′ ∈ N (16)

∑
j′∈N−{j}

β jj′ ≤ 1 j ∈ {0} ∪N (17)

∑
w∈R

Xijw = 1 i ∈ M, j ∈ N (18)

λiji′ j′ + λi′ j′ ij ≥ Xijw + Xi′ j′w − 1 i ∈ M, i
′ ∈ M− {i}, j ∈ N , j

′ ∈ N − {j}, w ∈ R (19)

Bij′ ≥ Cij −V · (1− β jj′ ) i ∈ M, j ∈ {0} ∪N , j
′ ∈ N − {j} (20)

Bi′ j′ ≥ Bij + ∑
j′′{0}∪N−{j}

(sij′′ j · β j′′ j)−V · (1− λiji′ j′ ) i ∈ M, i
′ ∈ M− {i}, j ∈ N , j

′ ∈ N − {j} (21)

Cij ≥ Bij + ∑
j′{0}∪N−{j}

(sij′ j · β j′ j) + pij i ∈ M, j ∈ N (22)

Ci−1,j ≤ Bij i ∈ M− {1}, j ∈ N (23)

Cmax ≥ Cm,j j ∈ N (24)

The set of constraints (16) ensures that each job has a predecessor. Note that a dummy
job is introduced to represent the predecessor of the first job in the sequence. Furthermore,
each job (including the dummy job) has at most one successor, which is bounded by
constraints (17). The set (18) enforces that the setup of operation Oij is assigned to a
unique worker. Constraints (19) define binary variables λiji′ j′ . The sets (20) and (21) ensure
that an operation has to start processing after its predecessor in the machine and after its
predecessor in the worker, respectively. The set of constraints (22) defines the completion
time of an operation and (23) ensures that an operation is not processed after its previous
operation (in the previous stage) is completed. Finally, the set (24) defines the makespan of
the sequence.

3.4. Model 3

Our last MILP model arises from Model 2, but modifies how workers are treated. In
this case, we introduce variable ηwiji′ j′ to define the sequence followed by each worker (the
use of a related decision variable can be found in the first MILP model proposed in [61]).
The formulation of this model is presented below:
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Min Cmax

subject to

∑
j∈{0}∪N−{j′ }

β jj′ = 1 j′ ∈ N (25)

∑
j′∈N−{j}

β jj′ ≤ 1 j ∈ {0} ∪N (26)

C1,j ≥ p1,j + ∑
j′ {0}∪N−{j}

(s1j′ j · β j′ j) j ∈ N (27)

Cij − Ci−1,j ≥ pij + ∑
j′ {0}∪N−{j}

(sij′ j · β j′ j) i ∈ M− {1}, j ∈ N (28)

Cij′ − Cij + V · (1− β jj′ ) ≥ pij′ + sijj′ i ∈ M, j ∈ {0} ∪N , j
′ ∈ N − {j} (29)

∑
w∈R

(
ηw00i′ j′ + ∑

i∈M
∑
j∈N

ηwiji′ j′

)
= 1 i

′ ∈ M, i ∈ M− {i′ }, j
′N , j ∈ N − {j

′ } (30)

∑
w∈R

∑
i′∈M−{i}

∑
j′∈N−{j}

ηwiji′ j′ ≤ 1 i ∈ M, j ∈ N (31)

∑
i∈M

∑
j∈N

ηw00ij = 1 w ∈ R (32)

ηw00ij + ∑
i′∈M−{i}

∑
j′∈N−{j}

ηwi′ j′ ij ≥ ∑
i′∈M−{i}

∑
j′∈N−{j}

ηwiji′ j′ i ∈ M, jN , w ∈ R (33)

Ci′ j′ − pi′ j′ + V (̇1− ηwiji′ j′ ) ≥ Cij − pij + ∑
j′′∈{0}∪N−j′

(si′ j′′ j′ · β j′′ j′ ) w ∈ R, i ∈ M, i
′ ∈ M− {i}, j ∈ N , j

′ ∈ N − {j} (34)

Cij − pij + V (̇1− ηw00ij) ≥ ∑
j′∈{0}∪N−j

(sij′ j · β j′ j) w ∈ R, i ∈ M, j ∈ N (35)

Cmax ≥ Cm,j j ∈ N (36)

As in the previous model, constraints (25) and (26) fully define variables β jj′ . The com-
pletion times of the first machine are established in the set (27), while the constraints (28)
and (29) bound the completion times of each job in the other machines. To do so, con-
straints (28) limit these completion times considering its previous machine, while con-
straints (29) consider its previous job. Variable ηwi′ j′ij is defined in Equations (30)–(33).
More specifically, the set (30) ensures that the setup of each operation has either a predeces-
sor in the same worker or a dummy setup. Constraints (31) achieve that each setup has at
most a successor in a worker, while constraints (32) and (33) ensure that each worker starts
with a setup. The completion times of the jobs and the precedence relationships between
the operations are linked in constraints (34) and (35). Finally, the set of constraints (36)
defines the makespan.

4. Proposed Decoding Procedures and Complete Enumeration

Due to the limitation of MILP models to solve medium-large sized instances, we also
propose different approximate algorithms to tackle the problem (described in Section 5).
Each of the proposed algorithms uses a sequence of jobs to easily represent the solutions,
since each machine must process the jobs in the same order (permutation constraint, see
Section 2). This sequence can be formally defined as follows:

• Sequence of jobs, Π = (π1, . . . , πk, . . . , πn): It represents the order that each machine
has to follow to process the jobs, i.e., πk has to be processed before job πk+1 in any
machine i (k ∈ {1, . . . , n− 1}).
Obviously, for the problem under consideration, the same sequence of jobs could

theoretically lead to different semi-active schedules depending on how and in which order
the operations of the jobs are assigned to the workers. Therefore, in the proposed algorithms,
it is necessary to include mechanisms to construct a unique schedule to represent the
sequence. In this regard, the procedure to find a specific schedule (and consequently
an objective function value) from a representation of solutions is denoted by decoding
procedure . For the problem under consideration, a decoding procedure can be determined
by establishing the following rules:
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• Priority rule (PR): It is used to define which setup must be performed first by workers
when there are several jobs waiting in the queue.

• Assignment rule (AR): It established the criterion for assigning a worker to a set-up.
In this paper, as workers have the same skills, we use the FAW (First Available Worker)
rule, which is the most common rule when workers/machines are identical (see [62]).

Therefore, given a sequence of jobs Π and the FAW rule, a different decoding procedure
can be obtained by varying the priority rule. In this paper, we propose two families (each
composed of six priority rules) to order the operations that are waiting to be processed
(denoted as PRS and PRC). Each of these rules first selects an operation according to a
certain criterion (either the operation which can start before, PRS, or the operation to be
completed before, PRC), breaking ties using a specific mechanism. More specifically, we
propose and compare the following priority rules:

• PRS
J : This rule selects the operation whose setup can start before breaking the tie in

favour of the operation in the lowest position of the sequence Π.
• PRS

M: This rule selects the operation whose setup can start before breaking ties in
favour of the operation that will be processed on the lowest machine index.

• PRS
SPI : This rule selects the operation whose setup can start before breaking ties

according to the operation with the lowest sum of setup and processing times.
• PRS

SPD: This rule selects the operation whose setup can start before breaking ties in
favour of the operation with the highest sum of setup and processing times.

• PRS
SI : This rule selects the operation whose setup can start before breaking ties accord-

ing to operation with the lowest setup time.
• PRS

SD: This rule selects the operation whose setup can start before breaking ties in
favour of the operation with the highest setup time.

• PRC
J : This rule assigns the operation that can be completed before breaking ties in

favour of the operation in the lowest position of the sequence Π.
• PRC

M: This rule assigns the operation that can be completed before breaking ties in
favour of the operation that will be processed on the lowest machine index.

• PRC
SPI : This rule assigns the operation that can be completed before breaking ties

according to the operation with the lowest sum of setup and processing times.
• PRC

SPD: This rule assigns the operation that can be completed before breaking ties in
favour of the operation with the highest sum of setup and processing times.

• PRC
SI : This rule assigns the operation that can be completed before breaking ties

according to the operation with the lowest setup time.
• PRC

SD: This rule assigns the operation that can be completed before breaking ties in
favour of the operation with the highest setup time.

Using a specific priority rule PR, the detailed procedure for decoding a sequence can
be explained as follows. First, operation O1[1] (and its corresponding setup) is processed on
the first machine. Once this operation is completed, an operation is selected according to
the PR priority rule among the operations that are waiting to be processed (that is, O2[1] or
O1[2]). The procedure is repeated until there are no more operations available. In Figure 2,
we show an example (following the previous example) of operations that are waiting to be
processed (O1[4], O2[3], and O3[2]) after the following operations have been completed: O1[1],
O1[2], O1[3], O2[1], and O2[2]. An example of the use of the PRS

M priority rule to decode the
sequence (1, 2, 3, 4) is shown in Figure 1, while in Figure 3, the same sequence is decoded
using the PRS

J rule.
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Figure 2. Example of operations that are waiting to be processed.

Figure 3. Example of using PRS
J to decode a solution.

Obviously, the use of non-completed representations of the solutions with a specific
decoding procedure (i.e., using rules to assign jobs to the worker instead of testing every
possibility) does not guarantee the optimum of the problem, as many schedules are omitted.
However, the solution space using these representations can be strongly reduced, which
could be exploited by approximate algorithms to find solutions close to the optimum. To
analyse the efficiency of each decoding procedure, we perform a complete enumeration
by evaluating each solution in its solution space (composed by n! sequences), whose
computational results are shown in Section 7. Once all solutions are evaluated using a
specific decoding procedure, the best objective function value found can be obtained.

5. Dispatching and Construction Procedures

In this section, we propose approximate algorithms to find fast and efficient solutions
for the problem under consideration. As it is the first time that the problem is addressed, on
the one hand, we start analysing the behaviour of very fast solutions (i.e., static dispatching
rules). To this end, we propose a mechanism to generate 896 different dispatching rules in
Section 5.1. On the other hand, we analyse the efficiency of the traditional NEH algorithm
when it is adapted to the problem under consideration. The proposed variants of the NEH
are explained in Section 5.2. All proposed approximate algorithms use the best decoding
procedure found among the proposals, i.e., PRS

SI (see Section 7.3).
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5.1. Generation of Static Dispatching Rules

Dispatching rules are typically composed of an indicator value depending on the data
of the instance and a sorting criterion to order the jobs. Generalising this idea, ref. [63]
constructed and compared 176 different rules combining 22 indicators with 8 sorting
criteria. All these indicators were constructed using functions of a unique measure of the
original instance, the processing times of the jobs. In this paper, we extend this idea by also
changing the starting measure. Thereby, we generate dispatching rules by combining the
following issues:

• Measure , χij: It represents the contribution of the operation Oij to the dispatching
rules and is denoted by χij. χij is obtained from the instance data.

• Indicator, ψj: Using a specific measure for each operation Oij, we can define an
indicator to characterise each job j, denoted by ψj. Then, ψj can be constructed as a
function of χij.

• Sorting criterion, Ω: Once an indicator for each job is generated (i.e., ψj), the sorting
criterion established the procedure to order the jobs according to indicator ψj. Let Ω
be the sequence obtained after applying such a sorting criterion.

As measures, we consider seven different variants:

• Measure P: It directly uses the processing times to define χij: χij = pij.

• Measure S: The average setup time is used for each operation Oij: χij =
∑n

j′=1 sij′ j
n .

• Measure MS: For each operation, it considers the maximal setup time that the operation
could need: χij = max∀j′ sij′ j.

• Measure mS: For each operation, it considers the minimal setup time that the operation
could need: χij = min∀j′ sij′ j.

• Measure PS: In this case, each operation is defined by its processing time plus its

average setup time: χij = pij +
∑n

j′=1 sij′ j
n .

• Measure PMS: Each operation is defined by its processing time plus its maximum
setup time: χij = pij + max∀j′ sij′ j.

• Measure PmS: Each operation is defined by its processing time plus its minimal setup
time: χij = pij + min∀j′ sij′ j.

As indicators, based on [63], we consider 16 different variants:

• Indicator SUM: ψj = ∑m
i=1 χij.

• Indicator WSUM: ψj = ∑m
i=1(m− i + 1)χij.

• Indicator ABS: ψj = ∑m
i=1 ∑n

j′=1 |χij − χij′ |.
• Indicator WABS: ψj = ∑m

i=1 ∑n
j′=1(m− i + 1)|χij − χij′ |.

• Indicator SRA: ψj = ∑∀j′∈N−j ∑m
i=2 |rijj′ |, where rijj′ = χij − χi−1,j′ .

• Indicator WSRA: ψj = ∑∀j′∈N−j ∑m
i=2(m− i + 1)|rijj′ |.

• Indicator SRS: ψj = ∑∀j′∈N−j ∑m
i=2(rijj′)

2.
• Indicator WSRS: ψj = ∑∀j′∈N−j ∑m

i=2(m− i + 1)(rijj′)
2.

• Indicator SRN: ψj = ∑∀j′∈N−j ∑m
i=2 |min(r∗ijj′ , 0)|, where r∗ijj′ = χij − χi−1,j′ +

min{ri−1,j,j′}.
• Indicator WSRN: ψj = ∑∀j′∈N−j ∑m

i=2(m− i + 1)|min(r∗ijj′ , 0)|.
• Indicator SRAN: ψj = ∑∀j′∈N−j ∑m

i=2 |r∗ijj′ |.
• Indicator WSRAN: ψj = ∑∀j′∈N−j ∑m

i=2(m− i + 1)|r∗ijj′ |.
• Indicator SRSN: ψj = ∑∀j′∈N−j ∑m

i=2(r
∗
ijj′)

2.

• Indicator WSRSN: ψj = ∑∀j′∈N−j ∑m
i=2(m− i + 1)(r∗ijj′)

2.

• Indicator SRAN2: ψj = ∑∀j′∈N−j ∑m
i=2(max(rijj′ , 0) + 2|min(rijj′ , 0)|).

• Indicator WSRAN2: ψj = ∑∀j′∈N−j ∑m
i=2(m− i + 1)(max(rijj′ , 0) + 2|min(rijj′ , 0)|).

As sorting criteria (Ω), we use the following eight variants taken from [63]:
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• Sorting Criterion C: Jobs are ordered in non-decreasing order of ψj. Let ΩC =

(ωC
1 , . . . , ωC

n ) denote such a sequence.
• Sorting Criterion D: Jobs are ordered according to non-increasing order of ψj. Let

ΩD = (ωD
1 , . . . , ωD

n ) denote the obtained order.
• Sorting Criterion H: The jobs are sorted as a ’hill’ of their ψj values. Denoting this

sequence by ΩH = (ωH
1 , . . . , ωH

n ), it can be calculated by ΩH = (ωC
1 , ωC

3 , . . . , ωC
4 , ωC

2 ).
• Sorting Criterion V: Jobs are sorted as a ’valley’ of their ψj values. Denoting this

sequence by ΩV = (ωV
1 , . . . , ωV

n ), it can be calculated by ΩH = (ωD
1 , ωD

3 , . . . , ωD
4 , ωD

2 ).
• Sorting Criterion HIH: Jobs are sorted by first choosing the job with maximal ψj,

and then the job with minimal ψj. The procedure is repeated until all jobs are se-
lected. Denoting by ΩHIH the sequence obtained, it can be calculated by ΩHIH =
(ωD

1 , ωD
n , ωD

2 , ωD
n−1, . . . , ).

• Sorting Criterion HIL: Similarly as in HIH, jobs are sorted by firstly choosing the job
with minimal ψj, and then the job with maximal ψj. Denoting this sequence by ΩHIL,
it can be calculated by ΩHIL = (ωD

n , ωD
1 , ωD

n−1, ωD
2 , . . . , ).

• Sorting Criterion LOH: Jobs sorted by reverse sequence ΩHIH , that is, ΩLOH =

(ωLOH
1 , . . . , ωLOH

n ) = (ωHIH
n , . . . , ωHIH

1 ).
• Sorting Criterion LOL: Jobs sorted reversing sequence ΩHIL, i.e., ΩLOL = (ωLOL

1 , . . . ,
ωLOL

n ) = (ωHIL
n , . . . , ωHIL

1 ).

Combining all previous measures, indicators, and sorting criteria (i.e., by a fixed
{χij, ψj, Ω}), we can construct 896 different sequences, which are evaluated in Section 7.4.
Many of them are very common static dispatching rules proposed in the literature, such
as, e.g., Shortest Processing Time (SPT) rule ([64]) by using {P, SUM, C}; Longest Process-
ing Time (LPT) rule ([65]) by using {P, SUM, D}; SPT-LPT ([66]) by using {P, SUM, H};
Shortest Setup Time (SST) rule ([21]) by using {S, SUM, H}; or the dispatching rule applied
by [67] using {P, WSUM, C}. In the following section, these dispatching rules are included
as an initialisation of more advanced heuristics.

5.2. Constructive Heuristics: NEHV

In the flow-shop literature, the NEH heuristic (which was first proposed by [24], and
adapted for the PFSP with sequence-dependent setup times by [68]) is clearly the cornerstone
heuristic to solve flow-shop scheduling problems, which can be explained by the following
two issues: (1) many of the state-of-the-art heuristics nowadays for this kind of layout are
variants of the classical proposal (see, e.g., [32,69,70] among many others); (2) it is also the base
of more complex metaheuristics (see e.g., [39,71–73]). The original NEH heuristic is a greedy
approximate algorithm composed of two phases. In the first phase, the jobs are ordered
according to the LPT rule (ΠLPT := {πLPT

1 , . . . , πLPT
n }). Then, a partial sequence, denoted by

ΠP, is generated with only the first element of ΠLPT, i.e., ΠP := (πLPT
1 ). Examples modifying

this phase in the literature can be found, e.g., in [74–79]. The second phase is an insertion
procedure to iteratively construct a complete sequence. This phase starts by testing the second
job of the initial rule (πLPT

2 ) in all available positions of ΠP. The position that yields the
minimum makespan is chosen to insert πLPT

2 , and the new partial sequence overwrites ΠP.
This insertion step is repeated iteratively with the rest of the jobs in ΠLPT (i.e., with πLPT

k with
k ∈ {3, n}). Examples modifying this phase in the literature can be found, e.g., in [69,80–83].

In this paper, we propose different variants of this classical NEH algorithm, denoted
by NEHV({χij, ψj, Ω}), by modifying its initial phase. The idea is twofold: first, to analyse
the limit and influence of the initial order in the classical NEH heuristic; and secondly
to determine the best initial sequence to start more advanced algorithms. To deal with
these issues, our proposal is focused on the first phase of the algorithm (see [63,74,77]
with similar approaches that also deal with the first phase of the NEH algorithms in the
literature). More specifically, we propose different NEHV heuristics by replacing the first
phase of the NEH algorithm for the following steps:

1. Define a measure χij to identify each operation.
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2. Define an indicator ψj to identify each job.
3. Define a specific sorting criterion Ω.
4. Denote by Πini the sequence obtained by ordering the jobs according to {χij, ψj, Ω}.
5. Denote by ΠP the initial partial sequence composed of job πini

1

Combining all the measures, indicators, and sorting criteria from the previous section,
we can propose 896 different NEHV. A general pseudo-code of these proposals is described
in Algorithm 1.

Algorithm 1: Pseudo-code of the proposed NEH algorithm.

Procedure NEHV({χij, ψj, Ω})
//Phase I
Πini := Jobs ordered by using dispatching rule {χij, ψj, Ω};
ΠP := {πini

1 };
//Phase II
for k = 2 to n do

Test job πini
k in any position of ΠP.

ΠP := partial sequence obtained by inserting πini
k in the position of ΠP

with the lowest makespan;
end

end

6. Iterated Greedy Algorithm, IGV

In this section, we detail the proposed iterated-greedy-based metaheuristic. The
iterated greedy algorithm is a single-solution-based metaheuristic, which iteratively re-
moves several jobs from a sequence (destruction phase) and re-inserts them using a greedy
procedure (construction phase). Traditionally, this destruction-construction procedure is
followed by a local search and a simulated annealing procedure. This metaheuristic was
first proposed by [84] and since then is one of the best performing metaheuristics in flow-
shop-based scheduling problems. Examples of state-of-the-art iterated greedy algorithms
can be found in [42,85–90].

The proposed iterated greedy algorithm, denoted as IGV, is composed of the following steps:

STEP 1: Initial Solution. We employ a constructive heuristic that explores the reduced solu-
tion space obtained by PRS

SI . More specifically, we use the best NEHV proposed,
i.e., NEHV({PMS,ABS,D}) (see Section 7.6 for more details).

STEP 2: Local search applying PRS
SI (denoted as LS). Once a sequence of jobs is obtained by

NEHV({PMS,ABS,D}), a traditional insertion local search is implemented, using
the PRS

SI procedure. This search removes a job of the sequence and re-inserts it
in the best position of the sequence. This procedure is repeated until all jobs are
tested. Additionally, the insertion local search is completely repeated until no
improvement is found.

STEP 3: Iterations. The following steps are repeated until the stopping criterion is reached:

(a) Destruction phase. In this phase, we removed d random jobs from the iteration
sequence.

(b) Construction phase. After the previous phase is completed and a partial se-
quence is obtained without the destructed jobs, these destructed jobs are
iteratively re-inserted in the best position of that sequence, until a complete
sequence is constructed.

(c) Local search applying PRS
SI . The LS method is applied to the previous sequence

to find a local optimum, denoted as Π
′

in the solution space obtained using
the PRS

SI procedure.
(d) Intensive local search fixing the sequence (denoted as ILS). Each time a local opti-

mum has been found in the previous local search, we explore the neighbour-
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hood of this solution by changing the decoding procedure. More specifically,
we obtain the order of operations that have been processed in the shop to
obtain this local optimum. Then, each operation (following a random order)
is re-inserted and evaluated in all available positions, i.e., without altering the
sequence of jobs in each machine and fulfilling the route of operations.

(e) Simulated annealing procedure. The last step is a simple simulated annealing
procedure to determine the reference sequence for the next iteration. We
directly apply the original procedure proposed by ([84]), which depends
on the parameter T. Basically, the sequence obtained in Step 3c is kept if
random ≤ exp{(Cmax − Cmaxr)/Temperature} (being random a randomly
generated number between 0 and 1, Cmax the makespan of sequence Π

′
,

while Cmaxr is the reference makespan). Finally, Temperature depends on
parameter T according to the following formula:

Temperature = T ×
∑∀n ∑∀m pij

n×m× 10

A complete pseudo-code of the proposed algorithm is shown in Algorithm 2.

Algorithm 2: Proposed iterated greedy algorithm.

Procedure IGV
//Initial Solution
Πi = NEHV({PMS,ABS,D});
//Local Search LS
Πii = LS(Πi);
Πr := Πii;
Cr

max := Cmax(Πr);
ΠB := Πii;
CB

max := Cmax(Πr);
while stopping criterion is not met do

//Destruction Phase
Π:= Sequence obtained after removing d random jobs on Πr;
//Construction Phase
for i = 1 to d do

Π := Sequence obtained after inserting the ith removed job in the best
position of Π;

end
//Local Search LS
Π
′
= LS(Π);

//Simple simulated annealing procedure and intensive local search
if Cmax(Π

′
) < Cr

max then
Πr := Π

′
;

Cr
max := Cmax(Π

′
);

Π
′′

:= ILS(Πr);
if Cmax(Π

′′
) < CB

max then
CB

max := Cmax(Π
′′
);

ΠB := Π
′′
;

end
else if random ≤ exp{−(Cmax(Π

′
)− Cr

max)/Temperature} then
Πr := Π

′
;

Cr
max := Cmax(Π

′
);

end
end

end
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7. Computational Results

In this section, we present the computational evaluations carried out in our study.
A total of four experiments have been performed: first, we compare the performance of
the proposed MILP models in Section 7.2; second, the proposed decoding procedures are
compared in Section 7.3 by analysing all their complete solutions (complete enumeration
procedure); thirdly, the efficiency of each proposed dispatching rule is tested in Section 7.4;
fourthly, the constructive heuristics proposed are analysed in Section 7.6; then, the iterated
greedy algorithm is calibrated and its performance is evaluated in Section 7.6. To perform
all these experiments, we generate three sets of benchmarks explained in Section 7.1. All
procedures tested have been compared using the same computer conditions: on the same
Intel Core i7-3770 with 3.4 GHz and 16 GB RAM; under the same programming languages
(C# and Gurobi 9.5.0); and by the same person and using the same common functions and
libraries. Finally, a sensitivity analysis is performed in Section 7.7 to study the impact of
each factor on the problem.

7.1. Benchmarks

In this section, we describe three sets of instances generated to test the performance
of the proposals. The first set, denoted by β1, is specifically constructed to compare exact
methods, i.e., the proposed MILP models (see Section 3) and the complete enumerations
for each of the proposed decoding procedure (see Section 7.3). The second set, denoted by
β2 is constructed to compare approximate methods, i.e., the proposed dispatching rules
(see Section 5.1), the proposed NEHV (see Section 5.2), and to evaluated the performance
of the proposed IGV (see Section 6). Finally, a last benchmark, denoted by β3, is generated
to calibrated IGV.

• β1 for comparison of exact methods. As the complete enumeration procedure has
a high computational requirement (due to the evaluation of all solutions), the set is
composed of 540 small-sized instances with processing and setup times following
uniform distributions from [1, 99] and [1, γ], respectively ([14,91,92]). γ is a parameter
of the testbed in the range γ ∈ {25, 50, 100} ([14]). The other parameters are generated
for the following values: n ∈ {4, 5, 6, 7, 8, 9}, m ∈ {3, 4, 5}, and r ∈ {1, 2}. Finally, five
instances are constructed for each combination of the parameters.

• β2 for comparison of approximate methods: β2 is a set of medium and large instances.
This benchmark is generated following a procedure similar to β1. Thereby, pij and
sil j follow the uniform distributions [1, 99] and [1, γ], respectively. Regarding the
parameters of the testbed, five instances are generated for each combination of the
following parameters: γ ∈ {25, 50, 100}, n ∈ {50, 100, 150, 200}, m ∈ {10, 20}, and
r = r

′ ·m, with r
′ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

• β3 for calibration of the iterated greedy algorithm. Similarly as in β2, we generate
two instances for each combination of the following parameters: γ ∈ {25, 50, 100},
n ∈ {50, 100, 150, 200}, m ∈ {10, 20}, and r = r

′ ·m, with r
′ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

7.2. Computational Evaluation: Comparison of MILP Models

In this section, we test the performance of the MILP models proposed in Section 3. The
proposed models are solved using Gurobi 9.5.0 with 500 seconds as the stopping criterion
in each instance of the β1 set. The models are then compared in terms of the quality of
the solution by the Relative Percentage Deviation (RPDpi) indicator (see Equation (37)).
RPDpi measures (in percentage) the difference between the objective function found by
procedure p in instance i (OFhi) and the best solution found in this instance (denoted besti).
In addition, to compare the computational effort required by the MILP models, we use the
average CPU time. Both indicators are summarised in Table 2, grouped by n, m, r, and γ.
Finally, in Table 3, we also present the number of optimal, feasible, and no solutions found.

RPDpi =
OFhi − besti

besti
100 (37)
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According to these computational results, we can observe that the best performance
is found in Model 1. This model clearly outperforms the other MILP models in terms of
average RPD (denoted ARPD) and CPU times. In this regard, Model 1 has an ARPD value
of 0.01 (in the whole benchmark), while Models 2 and 3 found 0.14 and 0.56, respectively.
This difference is statistically significant with a p-value of 0.004, using a non-parametric
Mann-Whitney test between Model 1 and 2. With respect to average CPU times, we can
observe the same trend. Model 1 requires a lower average CPU (61.61 seconds) as compared
to Model 2 (84.78) and Model 3 (214.48). Similarly, Models 1 and 2 clearly outperform Model
3 in terms of number of optimal solutions, both finding a total of 487 optimal solutions
versus 332 by Model 3.

Table 2. Computational results of the proposed MILP models: ARPD values and CPU times (in seconds).

Parameter Value
ARPD CPU Time (s)

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

n

4 0.00 0.00 0.00 0.24 0.27 2.03
5 0.00 0.00 0.00 2.54 0.66 19.90
6 0.00 0.00 0.35 19.18 6.24 75.67
7 0.00 0.00 1.01 63.08 22.66 272.94
8 0.04 0.21 2.68 112.70 86.66 421.57
9 0.02 0.61 3.65 171.94 392.16 494.75

m
3 0.00 0.00 0.00 6.85 50.19 134.54
4 0.00 0.06 0.25 56.17 84.77 221.45
5 0.03 0.35 1.60 121.82 119.36 287.44

r 1 0.01 0.26 0.55 91.13 104.58 213.69
2 0.01 0.01 0.57 32.10 64.97 215.26

γ
25 0.00 0.00 0.02 5.30 71.31 204.16
50 0.01 0.06 0.42 54.59 79.43 207.71

100 0.02 0.35 1.18 124.96 103.59 231.55

Average 0.01 0.14 0.56 61.61 84.78 214.48

Table 3. Computational results of the proposed MILP models: optimal solutions (#O), feasible
solutions (#F), and no solution is found (#N).

Parameter Value
Model 1 Model 2 Model 3

#O #F #N #O #F #N #O #F #N

n

4 90 0 0 90 0 0 90 0 0
5 90 0 0 90 0 0 88 2 0
6 87 3 0 90 0 0 85 5 0
7 82 8 0 88 2 0 47 15 28
8 73 17 0 84 6 0 19 5 66
9 65 25 0 45 45 0 3 10 77

m
3 179 1 0 176 4 0 138 4 38
4 164 16 0 164 16 0 108 9 63
5 144 36 0 147 33 0 86 24 70

r 1 229 41 0 232 38 0 166 23 81
2 258 12 0 255 15 0 166 14 90

γ
25 180 0 0 165 15 0 114 2 64
50 165 15 0 166 14 0 114 10 56

100 142 38 0 156 24 0 104 25 51

All 487 53 0 487 53 0 332 37 171
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7.3. Computational Evaluation: Complete Enumeration Applying Different Decoding Procedures

In this section, using the same set of instances β1, we compare the decoding procedures
proposed in Section 4. Each procedure is embedded in a complete enumeration procedure
and the best solution found is compared using the RPD indicator (see Equation (37), where,
again, besti is the best solution found in instance i, i.e., considering both MILP models and
the complete enumeration procedures). The computational results are demonstrated in
Table 4. The best ARPD (2.32) is found using the PRS

SI procedure of the PRS family. In this
family, the tie-breaking mechanisms have a high influence on reducing the ARPD value
from 3.76 (PRS

SD procedure) to 2.32, while these mechanisms are not as relevant in the PRC

family, oscillating the ARPD from 7.65 to 7.76. Despite the excellent performance found by
PRS

SI , it is not statistically significant with PRS
M (the second best proposal), according to the

non-parametric Mann-Whitney test (p-value equals to 0.221). However, with the exception
of PRS

M and PRS
SPD (whose ARPD is similar to 2.64 and 2.65, respectively), it is statistically

significant with all other decoding procedures (in this regard, when compared with the
PRS

SPI procedure, the p-value found in the Mann-Whitney test is 0.000).

Table 4. Computational results in small-sized instances: ARPD values of the proposed decoding
procedures, the best NEHV (i.e., NEHV(PMS,ABS,D)), and IGV.

Parameter Value PRS
J PRS

M PRS
SPI PRS

SPD PRS
SI PRS

SD PRC
J PRC

M PRC
SPI PRC

SPD PRC
SI PRC

SD NEHV IGV

n

4 3.02 2.89 3.49 2.21 2.17 3.41 6.54 6.49 6.49 6.49 6.54 6.49 3.86 1.92
5 4.08 2.96 3.85 3.11 2.57 4.33 8.04 8.04 8.15 7.96 8.01 8.07 5.53 2.02
6 4.08 2.80 3.76 2.96 2.60 4.31 7.87 7.85 7.85 7.83 7.86 7.87 6.35 1.97
7 4.06 2.61 3.47 2.62 2.39 3.62 7.78 7.81 7.83 7.74 7.83 7.75 7.61 1.42
8 3.35 2.36 3.12 2.68 2.20 3.54 7.82 7.83 7.96 7.68 7.82 7.87 7.80 1.48
9 3.56 2.24 2.92 2.31 1.98 3.34 8.20 8.27 8.27 8.20 8.17 8.27 9.21 1.27

m
3 3.39 1.67 2.41 2.00 1.43 3.03 4.73 4.74 4.78 4.69 4.69 4.78 6.15 1.04
4 3.73 2.91 3.47 2.76 2.47 3.95 7.64 7.69 7.68 7.65 7.64 7.66 6.80 1.85
5 3.95 3.36 4.43 3.19 3.06 4.30 10.74 10.72 10.82 10.61 10.78 10.71 7.23 2.16

r 1 5.94 4.15 5.33 4.26 3.33 6.26 12.43 12.47 12.51 12.37 12.41 12.49 8.13 2.52
2 1.44 1.14 1.54 1.04 1.31 1.26 2.99 2.96 3.01 2.93 3.00 2.95 5.32 0.85

γ
25 2.50 1.83 2.81 1.49 1.40 2.78 4.45 4.50 4.49 4.44 4.45 4.50 4.36 0.88
50 4.09 2.90 3.79 2.85 2.47 4.18 7.26 7.23 7.32 7.17 7.25 7.26 6.61 1.73
100 4.49 3.20 3.70 3.60 3.10 4.31 11.40 11.42 11.47 11.34 11.42 11.40 9.20 2.43

Average 3.69 2.64 3.43 2.65 2.32 3.76 7.71 7.72 7.76 7.65 7.71 7.72 6.73 1.68

7.4. Computational Evaluation: Dispatching Rules

In this section, we compare the dispatching rules generated following the procedure
described in Section 5.1. Using this procedure, we construct 896 (potentially) different
sequences of jobs in each instance, based on the specific indicator, measure, and sorting
criterion applied. To generate a schedule (and consequently to obtain an objective function
value), we apply the best decoding procedure (i.e., the PRS

SI procedure) to each proposed
dispatching rule as mentioned previously. Then, each dispatching rule is tested in the set
of instances β2 and its performance is evaluated by the RPD indicator (see Equation (37)).
In the same way, besti is the best solution found in instance i, considering both dispatching
rules and NEHV variants. The computational results are shown in Tables 5–7. All ARPD
values for the proposed dispatching rules are obtained between 23.97 and 28.75. Regarding
the best results, they are found by dispatching rules using the WSUM indicator, the C
sorting criterion, and any measure that considers the processing times of the operations
(i.e., P, PS, PMS, PmS). Thereby, the ARPD values of this group of dispatching rules are
24.01, 23.97, 24.00, and 24.10 (for {P,WSUM,C}, {PS,WSUM,C}, {PMS,WSUM,C}, and
{PmS,WSUM,C}, respectively). In fact, there is a statistically significant difference between
this group of rules and {P,SUM,C} (the following best rule with an ARPD of 25.28), finding
a p-value of 0.000 (using the non-parametric Mann-Whitney test).
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Table 5. Computational results for the dispatching rules: ARPD values I.

Measure Indicator
Sorting

C D H V HIH HIL LOH LOL

P SUM 26.42 26.30 25.28 27.25 26.48 26.35 26.34 26.20
P WSUM 24.01 28.64 25.60 27.24 26.47 26.20 26.32 26.44
P ABS 26.40 26.23 26.23 26.57 26.34 26.28 26.37 26.27
P WABS 26.02 26.52 26.43 26.62 26.31 26.23 26.24 26.38
P SRA 26.46 26.40 26.42 26.44 26.27 26.21 26.45 26.37
P WSRA 25.98 26.58 26.30 26.40 26.29 26.28 26.27 26.34
P SRS 26.43 26.11 26.31 26.30 26.34 26.22 26.30 26.34
P WSRS 25.93 26.65 26.22 26.31 26.28 26.38 26.24 26.31
P SRN 26.22 27.25 26.62 26.42 26.49 26.61 26.40 26.50
P WSRN 28.13 26.13 26.55 26.92 26.13 26.26 26.50 26.47
P SRAN 26.15 27.17 26.33 26.50 26.45 26.47 26.27 26.33
P WSRAN 27.34 26.53 26.15 26.89 26.01 25.96 26.78 26.89
P SRSN 26.23 27.16 26.23 26.51 26.46 26.42 26.32 26.30
P WSRSN 27.31 26.55 26.46 27.12 25.92 26.06 26.90 26.92
P SRAN2 25.85 27.21 26.58 26.11 26.49 26.42 26.26 26.25
P WSRAN2 27.39 25.86 26.45 26.67 26.21 26.22 26.75 26.70
S SUM 26.33 26.34 26.25 26.23 26.16 26.21 26.32 26.34
S WSUM 26.08 26.33 26.36 26.38 26.25 26.12 26.21 26.27
S ABS 26.32 26.34 26.29 26.38 26.30 26.32 26.34 26.28
S WABS 26.40 26.14 26.28 26.40 26.18 26.22 26.21 26.23
S SRA 26.24 26.22 26.27 26.32 26.22 26.30 26.36 26.34
S WSRA 26.28 26.35 26.26 26.39 26.17 26.12 26.27 26.46
S SRS 26.24 26.35 26.31 26.19 26.20 26.18 26.41 26.34
S WSRS 26.34 26.45 26.30 26.33 26.29 26.21 26.27 26.51
S SRN 26.21 26.35 26.16 26.24 26.34 26.25 26.20 26.06
S WSRN 26.26 26.19 26.18 26.37 26.26 26.28 26.28 26.28
S SRAN 26.39 26.33 26.34 26.37 26.20 26.32 26.29 26.28
S WSRAN 26.38 26.13 26.20 26.36 26.43 26.29 26.38 26.48
S SRSN 26.37 26.18 26.33 26.51 26.30 26.33 26.45 26.35
S WSRSN 26.26 26.21 26.20 26.27 26.24 26.30 26.32 26.35
S SRAN2 26.26 26.20 26.15 26.23 26.14 26.21 26.37 26.23
S WSRAN2 26.23 26.33 26.22 26.24 26.32 26.28 26.31 26.28

MS SUM 26.30 26.18 26.32 26.37 26.33 26.24 26.21 26.34
MS WSUM 26.20 26.29 26.25 26.38 26.35 26.36 26.36 26.30
MS ABS 26.24 26.29 26.29 26.12 26.28 26.22 26.21 26.20
MS WABS 26.24 26.33 26.41 26.12 26.36 26.25 26.28 26.26
MS SRA 26.23 26.27 26.29 26.18 26.33 26.34 26.23 26.33
MS WSRA 26.33 26.44 26.29 26.10 26.18 26.23 26.13 26.15
MS SRS 26.30 26.34 26.34 26.06 26.27 26.43 26.16 26.16
MS WSRS 26.31 26.27 26.27 26.11 26.33 26.27 26.14 26.23
MS SRN 26.33 26.29 26.37 26.32 26.26 26.34 26.29 26.19
MS WSRN 26.28 26.31 26.30 26.14 26.25 26.19 26.28 26.28
MS SRAN 26.29 26.17 26.23 26.14 26.34 26.33 26.21 26.30
MS WSRAN 26.32 26.23 26.31 26.11 26.20 26.38 26.20 26.30
MS SRSN 26.29 26.35 26.21 26.19 26.31 26.25 26.27 26.27
MS WSRSN 26.18 26.30 26.36 26.12 26.20 26.08 26.20 26.25
MS SRAN2 26.23 26.28 26.31 26.19 26.27 26.36 26.23 26.20
MS WSRAN2 26.24 26.37 26.32 26.12 26.21 26.34 26.25 26.27
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Table 6. Computational results for the dispatching rules: ARPD values II.

Measure Indicator
Sorting

C D H V HIH HIL LOH LOL

mS SUM 26.46 26.51 26.27 26.39 26.37 26.38 26.22 26.18
mS WSUM 26.31 26.40 26.29 26.36 26.39 26.29 26.20 26.29
mS ABS 26.39 26.40 26.24 26.28 26.30 26.36 26.23 26.28
mS WABS 26.52 26.32 26.34 26.22 26.32 26.27 26.18 26.33
mS SRA 26.42 26.30 26.24 26.34 26.39 26.26 26.07 26.11
mS WSRA 26.44 26.39 26.23 26.29 26.22 26.17 26.18 26.30
mS SRS 26.37 26.45 26.14 26.25 26.34 26.29 26.20 26.30
mS WSRS 26.45 26.41 26.29 26.30 26.43 26.31 26.22 26.38
mS SRN 26.35 26.16 26.29 26.25 26.33 26.26 26.36 26.38
mS WSRN 26.33 26.26 26.29 26.30 26.18 26.25 26.30 26.27
mS SRAN 26.44 26.33 26.32 26.40 26.26 26.33 26.23 26.21
mS WSRAN 26.39 26.34 26.28 26.31 26.28 26.37 26.29 26.28
mS SRSN 26.32 26.34 26.22 26.33 26.24 26.35 26.30 26.22
mS WSRSN 26.40 26.36 26.28 26.23 26.34 26.37 26.17 26.23
mS SRAN2 26.38 26.38 26.27 26.35 26.43 26.33 26.19 26.27
mS WSRAN2 26.54 26.30 26.18 26.22 26.33 26.29 26.10 26.34
PS SUM 26.58 26.33 25.36 27.17 26.53 26.34 26.47 26.42
PS WSUM 23.97 28.75 25.46 27.20 26.63 26.25 26.43 26.44
PS ABS 26.38 26.31 26.30 26.59 26.16 26.40 26.31 26.30
PS WABS 26.15 26.67 26.25 26.45 26.23 26.33 26.21 26.34
PS SRA 26.38 26.34 26.37 26.38 26.24 26.33 26.26 26.34
PS WSRA 26.01 26.64 26.17 26.30 26.39 26.28 26.28 26.29
PS SRS 26.46 26.19 26.31 26.28 26.14 26.29 26.32 26.31
PS WSRS 25.93 26.58 26.34 26.42 26.39 26.41 26.21 26.23
PS SRN 26.24 27.41 26.70 26.43 26.42 26.49 26.32 26.47
PS WSRN 28.01 26.13 26.73 27.11 26.28 26.17 26.47 26.57
PS SRAN 26.07 27.26 26.53 26.61 26.44 26.54 26.19 26.29
PS WSRAN 27.26 26.49 26.22 27.01 25.88 26.16 26.90 26.82
PS SRSN 26.15 27.21 26.37 26.60 26.54 26.53 26.26 26.28
PS WSRSN 27.31 26.60 26.24 27.16 25.85 26.07 26.96 27.00
PS SRAN2 25.92 27.27 26.63 26.07 26.47 26.38 26.29 26.39
PS WSRAN2 27.34 25.87 26.59 26.91 26.13 26.18 26.58 26.71

Table 7. Computational results for the dispatching rules: ARPD values III.

Measure Indicator
Sorting

C D H V HIH HIL LOH LOL

PMS SUM 26.36 26.28 25.46 27.44 26.42 26.41 26.31 26.19
PMS WSUM 24.00 28.66 25.55 27.26 26.57 26.18 26.42 26.49
PMS ABS 26.42 26.29 26.16 26.43 26.26 26.37 26.40 26.38
PMS WABS 26.03 26.59 26.18 26.38 26.26 26.23 26.32 26.32
PMS SRA 26.55 26.31 26.50 26.46 26.16 26.24 26.28 26.24
PMS WSRA 26.02 26.71 26.25 26.31 26.25 26.28 26.20 26.31
PMS SRS 26.35 26.03 26.37 26.45 26.25 26.36 26.38 26.33
PMS WSRS 26.00 26.60 26.17 26.20 26.32 26.33 26.23 26.25
PMS SRN 26.21 27.42 26.74 26.40 26.51 26.58 26.48 26.49
PMS WSRN 28.14 26.14 26.58 26.96 26.17 26.21 26.52 26.42
PMS SRAN 26.14 27.18 26.41 26.63 26.36 26.51 26.28 26.18
PMS WSRAN 27.31 26.46 26.34 26.99 25.98 26.08 26.89 26.93
PMS SRSN 26.27 27.12 26.40 26.55 26.41 26.47 26.21 26.30
PMS WSRSN 27.39 26.53 26.36 27.22 25.98 26.06 26.81 26.88
PMS SRAN2 25.91 27.09 26.62 26.21 26.47 26.43 26.34 26.31
PMS WSRAN2 27.30 25.94 26.57 26.67 26.13 26.24 26.67 26.76
PmS SUM 26.47 26.30 25.39 27.33 26.51 26.43 26.34 26.27
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Table 7. Cont.

Measure Indicator
Sorting

C D H V HIH HIL LOH LOL

PmS WSUM 24.10 28.63 25.59 27.37 26.64 26.16 26.23 26.53
PmS ABS 26.40 26.24 26.21 26.59 26.29 26.43 26.20 26.36
PmS WABS 26.12 26.44 26.44 26.48 26.32 26.32 26.28 26.30
PmS SRA 26.50 26.24 26.35 26.26 26.29 26.30 26.25 26.23
PmS WSRA 26.03 26.76 26.27 26.39 26.27 26.26 26.34 26.29
PmS SRS 26.33 26.20 26.32 26.41 26.24 26.30 26.19 26.26
PmS WSRS 26.07 26.59 26.27 26.38 26.29 26.43 26.20 26.28
PmS SRN 26.15 27.26 26.78 26.37 26.43 26.50 26.46 26.48
PmS WSRN 28.12 26.05 26.55 26.89 26.08 26.27 26.49 26.46
PmS SRAN 26.10 27.06 26.51 26.63 26.39 26.38 26.27 26.31
PmS WSRAN 27.28 26.54 26.16 26.89 25.95 26.01 26.80 26.89
PmS SRSN 26.21 27.06 26.31 26.54 26.28 26.50 26.36 26.33
PmS WSRSN 27.35 26.61 26.37 27.08 25.97 26.07 26.79 26.83
PmS SRAN2 25.81 27.09 26.69 26.19 26.41 26.38 26.35 26.32
PmS WSRAN2 27.34 25.94 26.56 26.61 26.19 26.28 26.73 26.71

7.5. Computational Evaluation: NEHV Variants

In this section, we analyse the performance of the proposed NEHV variants and
compare it with the best proposals in the related literature. These 896 proposed heuristics
are tested in the set of instances β2. The computational results are shown in Tables 8–10.
In addition, computational results comparing the best proposal with the most promising
NEH variants in the literature are shown in Table 11 (RA, NM, KK1, KK2, AD, and PRSKE
are the NEH heuristics that apply the initial order proposed by [74–79], respectively,
while NEH represents the traditional NEH ordering the jobs in non-increasing sum of
processing times). As in the previous section, the quality of the solution of the proposals
is evaluated using the RPD indicator. In this case, the ARPDs of the proposals range
between 2.58 and 3.30. Despite this difference, there are several variants whose ARPD is
very similar, close to the best-obtained value. In this regard, the best value is found using
the {PMS,ABS,D} rule as an initial sequence (with an ARPD equal to 2.58), while, e.g.,
the {PS,WABS,H}, {P,SRA,H}, {P,WSRS,H}, {P,WABS,HIH}, and {PS,ABS,D} found an
ARPD value equal to 2.61. In this case, no statistically significant differences (with the
Mann-Whitney test) were found when comparing { PMS, ABS, D}with any of the previous
variants. However, the proposed NEHV({PMS,ABS,D} clearly outperforms every previous
proposal in the literature. In this regard, we obtain p values equal to 0.031 and 0.004 (using
the non-parametric Mann-Whitney test) comparing our best proposal with RA and with
the traditional NEH algorithm, whose ARPD values are 2.73 and 2.82, respectively.Finally,
in Table 4 we demonstrate the ARPD values obtained by NEHV({PMS,ABS,D}) in the
small-sized instances, β1. The global ARPD obtained is 6.73, which outperforms the best
results obtained by several decoding procedures. Note that the best ARPD achievable using
the PRS

SI decoding procedure is 2.32.
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Table 8. Computational results for the NEH algorithm: ARPD values I.

Measure Indicator
Sorting

C D H V HIH HIL LOH LOL

P SUM 2.80 2.82 2.74 2.79 2.83 2.79 2.73 2.68
P WSUM 2.79 3.19 2.77 2.88 2.70 2.66 2.70 2.80
P ABS 2.86 2.73 2.68 2.80 2.75 2.78 2.73 2.82
P WABS 2.84 2.65 2.73 2.70 2.61 2.71 2.84 2.67
P SRA 2.85 2.74 2.61 2.79 2.73 2.72 2.74 2.77
P WSRA 2.78 2.67 2.68 2.78 2.71 2.76 2.76 2.74
P SRS 2.86 2.67 2.68 2.73 2.71 2.64 2.74 2.75
P WSRS 2.80 2.72 2.61 2.81 2.73 2.76 2.75 2.70
P SRN 2.86 3.01 2.80 2.73 2.76 2.76 2.73 2.76
P WSRN 3.14 2.90 2.86 2.88 2.75 2.73 2.76 2.76
P SRAN 2.78 2.91 2.76 2.80 2.79 2.86 2.63 2.64
P WSRAN 3.01 2.71 2.77 2.81 2.72 2.67 2.83 2.80
P SRSN 2.77 2.88 2.71 2.79 2.81 2.78 2.65 2.61
P WSRSN 3.01 2.81 2.79 2.81 2.64 2.67 2.80 2.79
P SRAN2 2.73 2.89 2.76 2.83 2.74 2.80 2.72 2.68
P WSRAN2 3.02 2.75 2.85 2.86 2.69 2.76 2.75 2.77
S SUM 2.75 2.66 2.74 2.76 2.67 2.71 2.77 2.75
S WSUM 2.68 2.76 2.62 2.77 2.71 2.79 2.80 2.70
S ABS 2.83 2.67 2.64 2.69 2.72 2.68 2.71 2.71
S WABS 2.74 2.70 2.69 2.74 2.76 2.74 2.72 2.69
S SRA 2.74 2.69 2.75 2.73 2.75 2.73 2.73 2.78
S WSRA 2.72 2.72 2.73 2.75 2.75 2.73 2.74 2.69
S SRS 2.72 2.74 2.72 2.78 2.74 2.74 2.70 2.69
S WSRS 2.77 2.75 2.72 2.73 2.78 2.71 2.74 2.75
S SRN 2.70 2.78 2.76 2.78 2.70 2.74 2.68 2.71
S WSRN 2.76 2.73 2.68 2.77 2.72 2.70 2.75 2.72
S SRAN 2.72 2.70 2.72 2.66 2.74 2.77 2.72 2.71
S WSRAN 2.68 2.75 2.73 2.73 2.82 2.68 2.71 2.75
S SRSN 2.63 2.68 2.71 2.70 2.79 2.76 2.69 2.68
S WSRSN 2.68 2.71 2.69 2.71 2.74 2.75 2.68 2.66
S SRAN2 2.69 2.76 2.78 2.72 2.72 2.77 2.70 2.69
S WSRAN2 2.73 2.72 2.64 2.74 2.69 2.72 2.78 2.72

MS SUM 2.77 2.76 2.74 2.75 2.73 2.71 2.71 2.72
MS WSUM 2.70 2.70 2.69 2.77 2.75 2.69 2.67 2.80
MS ABS 2.72 2.79 2.70 2.71 2.70 2.74 2.70 2.73
MS WABS 2.72 2.70 2.78 2.70 2.71 2.71 2.71 2.72
MS SRA 2.78 2.73 2.69 2.78 2.71 2.72 2.71 2.65
MS WSRA 2.75 2.76 2.78 2.67 2.72 2.70 2.65 2.79
MS SRS 2.81 2.74 2.72 2.73 2.67 2.78 2.71 2.69
MS WSRS 2.72 2.77 2.79 2.67 2.73 2.79 2.72 2.68
MS SRN 2.71 2.68 2.73 2.76 2.76 2.71 2.76 2.68
MS WSRN 2.72 2.73 2.75 2.79 2.67 2.76 2.77 2.64
MS SRAN 2.76 2.70 2.72 2.70 2.73 2.70 2.69 2.73
MS WSRAN 2.77 2.73 2.74 2.72 2.77 2.70 2.74 2.71
MS SRSN 2.74 2.72 2.70 2.75 2.79 2.73 2.68 2.80
MS WSRSN 2.75 2.76 2.70 2.77 2.71 2.71 2.74 2.72
MS SRAN2 2.77 2.70 2.74 2.75 2.75 2.69 2.72 2.65
MS WSRAN2 2.72 2.77 2.74 2.63 2.71 2.72 2.77 2.70
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Table 9. Computational results for the NEH algorithm: ARPD values II.

Measure Indicator
Sorting

C D H V HIH HIL LOH LOL

mS SUM 2.73 2.65 2.72 2.75 2.76 2.79 2.80 2.73
mS WSUM 2.67 2.70 2.67 2.72 2.78 2.65 2.76 2.69
mS ABS 2.70 2.75 2.71 2.73 2.67 2.81 2.74 2.75
mS WABS 2.76 2.77 2.70 2.70 2.78 2.66 2.75 2.76
mS SRA 2.72 2.75 2.77 2.76 2.71 2.75 2.73 2.73
mS WSRA 2.66 2.73 2.70 2.72 2.76 2.74 2.70 2.70
mS SRS 2.71 2.69 2.77 2.77 2.77 2.78 2.71 2.75
mS WSRS 2.75 2.72 2.67 2.78 2.76 2.67 2.73 2.69
mS SRN 2.73 2.73 2.75 2.71 2.67 2.77 2.68 2.73
mS WSRN 2.73 2.66 2.75 2.69 2.65 2.68 2.68 2.76
mS SRAN 2.74 2.75 2.72 2.70 2.73 2.70 2.68 2.74
mS WSRAN 2.71 2.72 2.75 2.74 2.70 2.77 2.69 2.78
mS SRSN 2.67 2.75 2.80 2.76 2.76 2.76 2.71 2.74
mS WSRSN 2.70 2.77 2.72 2.75 2.75 2.75 2.77 2.71
mS SRAN2 2.67 2.75 2.78 2.67 2.73 2.77 2.76 2.77
mS WSRAN2 2.69 2.74 2.67 2.75 2.74 2.79 2.69 2.73
PS SUM 2.77 2.80 2.69 2.67 2.78 2.76 2.75 2.71
PS WSUM 2.79 3.24 2.80 2.89 2.65 2.66 2.79 2.76
PS ABS 2.85 2.61 2.67 2.92 2.73 2.75 2.78 2.70
PS WABS 2.90 2.63 2.61 2.84 2.76 2.71 2.74 2.70
PS SRA 2.88 2.74 2.62 2.78 2.68 2.70 2.76 2.70
PS WSRA 2.82 2.65 2.65 2.80 2.71 2.81 2.67 2.74
PS SRS 2.81 2.69 2.63 2.82 2.66 2.67 2.75 2.71
PS WSRS 2.83 2.70 2.68 2.80 2.77 2.75 2.73 2.68
PS SRN 2.90 2.95 2.72 2.77 2.76 2.81 2.68 2.66
PS WSRN 3.15 2.95 2.88 2.89 2.67 2.76 2.70 2.78
PS SRAN 2.87 2.92 2.74 2.78 2.80 2.79 2.72 2.75
PS WSRAN 2.97 2.75 2.81 2.87 2.76 2.70 2.78 2.76
PS SRSN 2.86 2.88 2.76 2.80 2.78 2.78 2.75 2.68
PS WSRSN 3.00 2.82 2.77 2.78 2.68 2.72 2.78 2.77
PS SRAN2 2.75 2.87 2.77 2.81 2.76 2.75 2.74 2.66
PS WSRAN2 3.03 2.74 2.67 2.79 2.69 2.74 2.76 2.86

Table 10. Computational results for the NEH algorithm: ARPD values III.

Measure Indicator
Sorting

C D H V HIH HIL LOH LOL

PMS SUM 2.84 2.76 2.70 2.85 2.80 2.80 2.71 2.71
PMS WSUM 2.84 3.30 2.80 2.91 2.70 2.70 2.78 2.85
PMS ABS 2.81 2.58 2.72 2.87 2.71 2.78 2.79 2.74
PMS WABS 2.89 2.64 2.72 2.79 2.66 2.75 2.83 2.73
PMS SRA 2.82 2.67 2.62 2.87 2.69 2.71 2.83 2.68
PMS WSRA 2.76 2.64 2.68 2.82 2.74 2.75 2.72 2.71
PMS SRS 2.73 2.66 2.70 2.79 2.68 2.72 2.76 2.66
PMS WSRS 2.81 2.70 2.64 2.78 2.74 2.72 2.79 2.74
PMS SRN 2.82 3.04 2.78 2.80 2.78 2.82 2.69 2.71
PMS WSRN 3.18 2.97 2.82 2.85 2.78 2.71 2.75 2.76
PMS SRAN 2.82 2.81 2.66 2.85 2.79 2.70 2.70 2.70
PMS WSRAN 3.04 2.75 2.83 2.78 2.67 2.67 2.76 2.74
PMS SRSN 2.77 2.93 2.75 2.83 2.71 2.77 2.77 2.69
PMS WSRSN 3.10 2.82 2.79 2.82 2.66 2.71 2.79 2.82
PMS SRAN2 2.81 2.89 2.72 2.82 2.80 2.82 2.75 2.71
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Table 10. Cont.

Measure Indicator
Sorting

C D H V HIH HIL LOH LOL

PMS WSRAN2 3.10 2.81 2.82 2.77 2.74 2.72 2.76 2.79
PmS SUM 2.84 2.78 2.72 2.81 2.78 2.73 2.81 2.71
PmS WSUM 2.80 3.20 2.80 2.90 2.64 2.67 2.72 2.76
PmS ABS 2.78 2.68 2.64 2.83 2.73 2.75 2.76 2.71
PmS WABS 2.85 2.63 2.68 2.78 2.66 2.68 2.78 2.66
PmS SRA 2.86 2.68 2.73 2.84 2.72 2.66 2.74 2.67
PmS WSRA 2.76 2.69 2.62 2.80 2.77 2.70 2.80 2.72
PmS SRS 2.79 2.65 2.70 2.81 2.71 2.70 2.79 2.72
PmS WSRS 2.87 2.66 2.62 2.81 2.73 2.71 2.82 2.77
PmS SRN 2.82 3.00 2.75 2.77 2.81 2.78 2.69 2.73
PmS WSRN 3.14 2.92 2.80 2.84 2.68 2.70 2.72 2.79
PmS SRAN 2.88 2.88 2.75 2.76 2.73 2.81 2.72 2.70
PmS WSRAN 2.98 2.74 2.81 2.81 2.71 2.67 2.80 2.82
PmS SRSN 2.78 2.92 2.76 2.84 2.79 2.83 2.77 2.68
PmS WSRSN 3.02 2.77 2.80 2.80 2.68 2.70 2.78 2.77
PmS SRAN2 2.80 2.85 2.77 2.77 2.76 2.78 2.69 2.75
PmS WSRAN2 3.11 2.72 2.82 2.77 2.66 2.68 2.83 2.77

Table 11. Computational results for the NEH algorithm: comparison with the most promising
proposals in the literature.

Parameter Value Our RA NM KK1 KK2 AD PRSKE NEH

n

50 3.38 3.58 3.71 3.69 3.59 3.70 3.74 3.46
100 2.71 2.90 2.86 2.82 3.06 2.62 2.86 2.95
150 2.25 2.34 2.55 2.50 2.55 2.48 2.34 2.54
200 2.00 2.09 2.41 2.13 2.34 2.27 2.09 2.33

m 10 2.96 3.10 3.28 3.27 3.25 3.15 3.18 3.20
20 2.21 2.36 2.49 2.30 2.52 2.39 2.34 2.44

r
′

0.1 3.19 3.12 3.39 3.39 3.41 3.47 2.88 3.38
0.2 3.05 3.19 3.54 3.55 3.48 3.45 2.93 3.40
0.3 2.54 2.79 3.02 2.93 2.92 2.89 2.89 2.93
0.4 2.25 2.40 2.37 2.30 2.43 2.24 2.66 2.40
0.5 1.89 2.14 2.10 1.75 2.17 1.78 2.41 1.98

γ
25 2.07 2.18 2.27 2.12 2.28 2.06 2.50 2.08
50 2.54 2.82 2.90 2.81 2.90 2.73 2.80 2.86

100 3.15 3.17 3.48 3.42 3.47 3.51 2.97 3.51

Average 2.58 2.73 2.78 2.88 2.88 2.77 2.76 2.82

7.6. Computational Evaluation: IGV

In this section, we analyse the performance of the proposed iterated greedy algorithm,
IGV. To do so, we first compare it with both the MILP models and the complete enumeration
procedures, on small-sized instances (β1). Second, we compare our proposal with some
of the most promising iterated greedy algorithms proposed in the related literature, on
medium-large sized instances (β2). To deal with this last issue, the following metaheuristics
are re-implemented:

• IGP: The iterated greedy algorithm proposed by [93] for the mixed no-idle permutation
flow shop scheduling problem and makespan minimisation.

• IGF: The iterated greedy algorithm proposed by [94] for the classical permutation flow
shop scheduling problem with total tardiness minimisation.

• IGL: The iterated greedy algorithm proposed by [95] for the distributed permutation
flow shop with makespan minimisation.
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• IGH: The iterated greedy algorithm proposed by [96] for the distributed assembly
permutation flow shop scheduling problem with sequence-dependent setup times.

• IGD: The iterated greedy algorithm proposed by [97] for the classical permutation
flow shop scheduling problem with makespan minimisation.

• IGV: The proposed iterated greedy algorithm. Regarding the parameters of the al-
gorithm, we calibrate them based on [97]. More specifically, we vary parameter d
between 3 and 8, setting T to 0.4. This parameter has not been found statistically
significant according to the non-parametric Kruskal-Wallis (p-value equal to 0.609).
A similar result is found for parameter T when we vary it in {0.2, 0.3, 0.4, 0.5, 0.6},
setting d to 4. In this case, we obtain a p-value equal to 0.776. In Figure 4, we show
the 95% confidence intervals obtained in both calibrations. Due to the fact that there
are no statistically significant differences in d and T and the difference between the
levels is very narrow, we use d = 4 and T = 0.4 as applied in the traditional algorithm
by [84].

Figure 4. Calibration of d and T.

To adapt these metaheuristics to the problem under consideration, we apply the
best decoding procedure (i.e., PRS

SI), and initialise them with the best NEH algorithm
(i.e., NEHV({PMS,ABS,D})). As stopping criterion, we use n×m×m× 10/1000, which
depends of the size of the problem.

The computational results obtained by IGV on the small-sized instances are shown
in Table 4, while the comparison on medium-large sized instance is shown in Table 12.
Regarding the former, the ARPD obtained by IGV is 1.68 compared to 0.01 found by the
best Model 1, requiring only an average computational time of 1.08 seconds, instead of
61.61 seconds required by Model 1. Note that the proposed iterated greedy algorithm
explores the space of solutions of PRS

SI , whose optimum is 2.32, and incorporates a local
search to try to capture the global optimum of the problem. Therefore, this intensive local
search helps to efficiently escape from the local optimum. The computational results also
demonstrate the efficiency of the proposed mechanism, as IGV clearly outperforms the best
solutions obtained by any of the proposed complete enumeration procedures. Regarding
the comparison with other metaheuristics from the related literature, we again compare the
performance of the metaheuristics using the RPD indicator (see Equation (37)), with besti
as the best solution found in instance i by any of the iterated greedy algorithms. We also
include in the comparison the best obtained NEH algorithm. The following conclusions
can be derived from the results:

• IGV obtains an ARPD of 0.49, clearly outperforming all other metaheuristics. This
conclusion is also statistically confirmed by a non-parametric Mann-Whitney test
comparing IGV and IGD (which obtains an ARPD of 0.61). A statistically significant
difference has been found with the p-value equal to 0.003.

• The constructive heuristic (NEHV({PMS,ABS,D})) improves its performance when n
increases compared to the metaheuristics. This fact can be explained by the hardness
of the problem. When n increases, the local search included in the metaheuristics
requires much more computational time, and the number of global iterations decreases
compared to small instances.
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• Despite the excellent performance found by some of the metaheuristics in related
scheduling problems, their effectiveness in the problem under consideration clearly
decreases, as e.g., IGL and IGH whose ARPD values are 1.05 and 0.84, respectively.

Table 12. Computational results for IGV: comparison with the most promising proposals in the
literature.

Parmeter Value NEHV IGP IGF IGL IGH IGD IGV

n

50 6.49 0.92 1.07 1.31 1.49 0.84 0.59
100 4.39 0.84 0.82 1.23 0.94 0.71 0.62
150 2.88 0.59 0.53 1.00 0.60 0.57 0.48
200 1.86 0.32 0.31 0.66 0.32 0.31 0.27

m 10 4.26 0.77 0.76 1.25 0.99 0.71 0.47
20 3.55 0.56 0.61 0.85 0.68 0.50 0.51

r
′

0.1 5.24 0.61 0.73 1.18 1.10 0.77 0.71
0.2 4.56 0.93 0.89 1.19 1.13 0.71 0.55
0.3 3.68 0.72 0.79 1.18 0.86 0.62 0.41
0.4 3.11 0.64 0.55 0.86 0.59 0.57 0.39
0.5 2.94 0.44 0.46 0.84 0.50 0.37 0.40

γ
25 3.22 0.57 0.58 0.86 0.68 0.50 0.39
50 3.80 0.69 0.69 1.06 0.88 0.58 0.48

100 4.70 0.74 0.79 1.23 0.95 0.74 0.60

Average 3.91 0.67 0.68 1.05 0.84 0.61 0.49

7.7. Sensitivity Analysis

In this section, we address a sensitivity analysis to study the influence of the parame-
ters of the problem (that is, n, m, r, and γ). We analyse this influence both in the original
problem under study by using the best MILP model (i.e., Model 1), and in the reduced
problem obtained by applying the best decoding procedure (i.e., PRS

SI , whose ‘optimal’
solution can be reached by the complete enumeration). To this end, we address two anal-
ysis of variance (ANOVA), using the previous parameters as independent variables and
analysing their influence in the objective function of the problem (i.e., makespan). Table 13
reports the results with two-way interactions considering Model 1. We can observe that
all the parameters significantly influence the makespan (with p-value equal to 0.000 in
each case). In this regard, the makespan clearly increases when n, m, and γ increase or
when r decreases. Regarding the second-order interactions, only n ∗m is not statistically
significant (with p-value equal to 0.85), i.e., the effect in the makespan of the setup time
and server parameters (r and γ) changes with each other parameter. A similar trend can be
found by analysing the space of solutions obtained by PRS

SI in both the main factors and
the second-order interactions. The results obtained using PRS

SI are shown in Table 14.
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Table 13. Output from ANOVA using Model 1.

Source Type III Sum of Squares gl Mean Square F p-Value

Corrected model 36,385,933.71 107 340,055.455 77.588 0.000
Interaction 339,824,334.491 1 339,824,334.491 77,535.603 0.000

n 8,703,858.765 5 1,740,771.753 397.181 0.000
m 6,704,935.715 2 3,352,467.857 764.912 0.000
r 1,751,838.980 1 1,751,838.980 399.706 0.000
γ 15,876,334.004 2 7,938,167.002 1811.202 0.000

n ∗m 73,289.730 10 7328.973 1.672 0.085
n ∗ r 83,672.854 5 16,734.571 3.818 0.002
n ∗ γ 472,032.707 10 47,203.271 10.770 0.000
m ∗ r 238,123.670 2 119,061.835 27.166 0.000
m ∗ γ 895,119.607 4 223,779.902 51.058 0.000
r ∗ γ 1,036,832.737 2 518,416.369 118.284 0.000

Error 1,893,376.800 432 4382.817
Total 378,103,645.000 540

Corrected total 38,279,310.509 539
R Squared 0.951 Adjusted R Squared 0.938

Table 14. Output from ANOVA using PRS
SI .

Source Type III Sum of Squares gl Mean Square F p-Value

Corrected model 32,806,374.954 107 306,601.635 71.406 0.000
Interaction 321,406,900.046 1 321,406,900.046 74,853.703 0.000

n 8,511,868.787 5 1,702,373.757 396.472 0.000
m 5,781,238.981 2 2,890,619.491 673.208 0.000
r 1,072,095.780 1 1,072,095.780 249.685 0.000
γ 14,316,475.837 2 7,158,237.919 1667.110 0.000

n ∗m 68,005.219 10 6800.522 1.584 0.109
n ∗ r 82,400.787 5 16,480.157 3.838 0.002
n ∗ γ 447,155.963 10 44,715.596 10.414 0.000
m ∗ r 194,368.381 2 97,184.191 22.634 0.000
m ∗ γ 795,412.952 4 198,853.238 46.312 0.000
r ∗ γ 953,082.770 2 476,541.385 110.984 0.000

Error 1,854,922.000 432 4293.801
Total 356,068,197.000 540

Corrected total 34,661,296.954 539
R Squared 0.951 Adjusted R Squared 0.938

8. Conclusions

This paper tackled the permutation flow shop scheduling problem with multiple
servers or human resources for the first time. The purpose of our study is twofold: first,
to implement the multiple server constraint in one of the most relevant real-world-based
layout; and, secondly, to analyse and propose efficient methods to solve this problem. To
cover this purpose, the work developed in this paper can be stated as follows:

1. We formulated three different MILP models to exactly solve the proposed problem.
The formulations were based on three different efficient families of models from the
literature. The computational results identified the proposed Model 1 as the best exact
formulation to solve the problem under consideration.

2. We proposed 12 different decoding procedures to explore the solutions spaces of
future approximate algorithms. These procedures were integrated into a complete
enumeration algorithm to analyse their efficiency. The computational results demon-
strated that it is more efficient to always select the operations that can start before (i.e.,
PRS family). Among them, the best result was obtained by breaking ties according to
the operation with the lowest setup time (i.e., PRS

SI).
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3. We analyse the efficiency of dispatching rules in the problem under consideration by
combining several different measures, indicators, and sorting criteria. A total of 896
different dispatching rules were proposed and compared. The best values were found
by ordering the jobs according to a non-decreasing order of the processing times with
or without setup times and giving more importance to its values in the first machines
than to the last ones (WSUM indicator, which is based on the Johnson algorithm
idea), i.e., dispatching rules {P,WSUM,C}, {PS,WSUM,C}, {PMS,WSUM,C}, and
{PmS,WSUM,C}.

4. We proposed an efficient constructive heuristic to find fast solutions for the problem
under consideration. The proposed heuristic is based on the classical NEH algorithm.
We modified this algorithm by testing all previous dispatching rules in its first phase.
The computational results demonstrate that the proposed NEHV({PMS,ABS,D}) is
the best heuristic for the problem, outperforming both the classical NEH algorithm
and the related NEH-based heuristics.

5. Finally, we develop a new iterated greedy metaheuristic to obtain near-optimal so-
lutions in medium-large sized instances. The proposed IGV explores different solu-
tions spaces by changing the decoding procedures between phases. In doing so, the
metaheuristic outperforms the most promising iterated greedy algorithms from the
related literature.

By this work, we try to introduce future academics with the problem, providing
efficient fast heuristics, decoding procedures, and MILP models either to initialise and
improve the space of solutions of future proposals (typically metaheuristics) or to embed
them in more advanced approaches (as, e.g., in matheuristics). Furthermore, we provide
practitioners with efficient methods (dispatching rules and fast constructive heuristics) that
can be easily updated and implemented in related real manufacturing scenarios, since they
are not complex to implement and are appropriate for quick decision-making.

Regarding future research lines, a number of open research issues could be conducted
from this work. First, further advances should come in the development of time-consuming
approaches to the problem under consideration, which can be compared with the proposed
iterated greedy algorithm and initialised with the proposed methods or used some modifi-
cation of the proposals in its intermediate phases (e.g., in matheuristics relaxing assignment
or scheduling constraints). Second, the technological advances recently brought about by
Industry 4.0 offer decision makers the ability to integrate information in real time. Prelim-
inary studies have been conducted in this direction; however, we recommend exploring
this research line to improve the efficiency of servers and machines in the problem under
consideration. Finally, although the methods proposed in this paper have been developed
to be easily adapted to the real manufacturing scenario, future studies could be carried out
to validate and implement such methods either in a real shop or considering additional
real constraints (such as, e.g., deteriorating job, green scheduling, learning effect,. . . ).
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Abbreviations
The following abbreviations are used in this manuscript:

PFSP Permutation Flow shop Scheduling Problem
PFSMS Permutation Flow shop Scheduling problem with Multiple Servers
MILP Mixed Integer Linear Programming model
NEHV Proposed constructive heuristics based on the classical NEH algorithm
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