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Abstract. Monitoring applications of Bayesian networks require
computing a sequence of most probable explanations for the obser-
vations from a monitored entity at consecutive time steps. Such appli-
cations rapidly become impracticable, especially when computations
are performed in real time. In this paper, we argue that a sequence of
explanations can often be feasibly computed if consecutive time steps
share large numbers of observed features. We show more specifically
that we can conclude persistence of an explanation at an early stage
of propagation. We present an algorithm that exploits this result to
forestall unnecessary re-computation of explanations.

1 INTRODUCTION

Bayesian networks are nowadays being applied for a range of prob-
lems in the field of biomedicine. Most notably, networks are being
used for diagnostic purposes. Such networks typically capture dis-
ease processes and tend to include a single diagnostic variable for
which posterior distributions are computed. Bayesian networks have
so far been little used for monitoring problems in which deviations
from expected behaviour are to be identified. We currently are de-
veloping such a Bayesian network, for monitoring the welfare and
productivity of a pig herd. Our network differs from more standard
Bayesian networks for diagnostic problem solving, in the sense that it
includes multiple variables of interest for which posterior joint prob-
abilities need to be computed in view of a sequence of dependent
observation vectors. Based upon these probabilities, the most proba-
ble joint value assignment over the variables of interest needs to be
established. Unfortunately, finding most probable explanations for
just a single observation vector from a network is already known to
be a computationally intensive task in general [3].

In view of the unfavourable runtime complexity of computing a
most probable explanation, we address in this paper the computation
of consecutive explanations for a sequence of dependent observation
vectors. We assume that in a monitoring application at hand, the un-
derlying processes do not vary disruptively; in fact, we assume that
two consecutive observation vectors differ in their values for a sin-
gle variable only. Given a most probable explanation at some time
step, we show that although a new observation may change the ex-
planation, the new explanation cannot become any arbitrary value
combination. We further identify conditions under which parts of an
explanation are guaranteed to persist over time, and show that these
conditions can be readily verified locally upon junction-tree propa-
gation. Based upon these considerations, we present a new algorithm
for computing most probable explanations that is tailored to monitor-
ing applications. The algorithm decides at a very early stage during
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propagation if part of the current most probable explanation will per-
sist in view of a new observation and halts propagation at the earliest
possible moment. The algorithm thereby effectively forestals unnec-
essary re-computation of explanations.

The paper is organised as follows. In Section 2 we introduce our
notational conventions and briefly review junction trees for Bayesian
networks in general. In Section 3 we show that a new observation can
change a constituent explanation from a clique only to one of a pre-
determined set of value combinations. In Section 4, we show under
which conditions persistence of constituent explanations is guaran-
teed. In Section 5, we combine our persistency results with the ba-
sic ideas underlying the cautious and max-propagation algorithms to
arrive at a new, practical algorithm for computing most probable ex-
planations in monitoring applications. The paper is rounded off with
our conclusions and suggestions for future research in Section 6.

2 PRELIMINARIES

We consider a finite set V of random binary variables; each variable
Vi ∈ V takes its value from the associated domain ΩVi = {v̄i, vi}.
The notation v is used to denote a joint value combination for all
variables from V; the set of all such value combinations is ΩV =
×Vi∈V ΩVi . If a value combination v ∈ ΩV and a combination
w ∈ ΩW for a subset W ⊂ V assign the same values to their
shared variables, we say that v is consistent with w and vice versa.
For our monitoring context, we further assume that the set V is parti-
tioned into a set C of explanatory variables and a set X of observable
variables, with C∩X = ∅, C∪X = V. A joint value combination
x ∈ ΩX will be called an observation vector. To distinguish between
observations at different times, we add a time tag to each observation
vector and write xt for the vector of observations at time t. Without
loss of generality, we assume that two consecutive vectors xt and
xt+1 differ in their values for just a single variable Xi ∈ X.

Over the set of variables V, we further consider a joint probabil-
ity distribution Pr(V), represented by a Bayesian network. We as-
sume that from this network a junction tree is constructed, with a
set Cl of cliques and a set S of separators. The set of variables of
the clique Cl i ∈ Cl is denoted as Vi = Ci ∪ Xi; the variable
set of a separator Sij ∈ S is indicated by Vij . Each clique Cl i
is supplemented with a marginal distribution Pr(Vi); a separator
Sij between two cliques Cl i and Cl j has associated the distribution
Pr(Vij) = Pr(Vi∩Vj). The joint probability distribution Pr(V)
over all variables V is known to factorise over the junction tree as

Pr(V) =

∏
Cli∈Cl Pr(Vi)∏
Sij∈S Pr(Vij)

The well-known junction-tree propagation algorithm provides for ef-
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ficiently computing marginal probabilities over the network’s vari-
ables by means of local message-passing through the junction tree.

The problem in monitoring applications now is to find, at each
time t, a joint value combination c for the network’s explanatory
variables C which maximises the posterior probability Pr(c | xt)
given the observation vector xt; such a maximising value combina-
tion c is termed a most probable explanation for xt. More formally,
the most probable explanation for xt at time t, denoted by mt, equals

mt = argmax
c∈ΩC

Pr(c | xt)

The explanation mt assigns values to the explanatory variables of
the separate cliques in the junction tree. For each clique Cl i ∈ Cl,
the value combination mt

i ∈ ΩCi consistent with mt is termed the
constituent explanation from Cl i for the overall explanation mt.

The problem of finding most probable explanations for observa-
tion vectors is known to be NP-hard for Bayesian networks in gen-
eral [3]. For networks of bounded treewidth, the problem is solvable
in polynomial time. To this end, an efficient algorithm called max-
propagation is available [1], which builds upon the same concept of
local message passing as the standard junction-tree algorithm.

3 LOCAL PROPERTIES OF CONSTITUENTS

We consider a Bayesian network for a monitoring application. Within
the network’s junction tree, we focus on a single clique Clr and study
properties of its constituent explanation. We will show more specif-
ically that, while a change of observation elsewhere in the junction
tree may induce a change of constituent explanation for Clr , the new
constituent cannot be any arbitrary value combination from ΩCr .
Without loss of generality, we assume that Clr has the two neigh-
bouring cliques Clp and Clq , as shown in Figure 1; Spr and Srq

are the two clique separators. For ease of exposition, we assume that
the separator Spr includes a single explanatory variable P , that is,
Spr = Cp ∩Cr = {P}; similarly, we assume that Srq = {Q}.

We suppose that, given the observation vector xt at time t, an over-
all most probable explanation mt for xt has been computed from the
junction tree. By definition, this explanation maximises the probabil-
ity Pr(c | xt) over all joint value combinations c ∈ ΩC, that is,

mt = argmax
c∈ΩC

[
Pr(cp− | xt) · Pr(cr | xt) · Pr(cq− | xt)

Pr(p′ | xt) · Pr(q′ | xt)

]

where the set Cp− includes the explanatory variables from all cliques
that are separated from Clr by Spr , and Cq− is defined analogously;
the value combinations cp−, cr, cq− and the values p′, q′ are taken
consistent with c. We note that the value combination cp− shares its
value for the separator variable P with the value combination cr; it
does not share any other values with cr . A similar property holds for
the value combination cq− and the separator variable Q. We find that
the four possible value combinations for the two separator variables
P and Q partition the set ΩCr of clique Clr into four blocks. The
block denoted by Ωpq

Cr
includes all value combinations from ΩCr

that are consistent with the value p for P and the value q for Q; the
other three blocks Ωpq̄

Cr
, Ωp̄q

Cr
and Ωp̄q̄

Cr
have analogous meanings.

Clp Spr Clr Srq Clq

Figure 1: Part of a junction tree with three cliques and two separators.
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Figure 2: Partition of the set ΩCr of clique Clr into four blocks.

The partition of the set ΩCr of value combinations for the explana-
tory variables from Clr is visualised in Figure 2.

Without further knowledge from the rest of the junction tree, we
cannot establish the contribution mt

r from clique Clr to the overall
explanation at time t. We know however that this constituent is one
of the most likely value combinations per block, that is,

mt
r ∈

⎧⎨
⎩argmax

cr∈Ω
pq
Cr

Pr(cr | xt), argmax
cr∈Ω

pq̄
Cr

Pr(cr | xt),

argmax
cr∈Ω

p̄q
Cr

Pr(cr | xt), argmax
cr∈Ω

p̄q̄
Cr

Pr(cr | xt)

⎫⎬
⎭

= {cpqr , cpq̄r , cp̄qr , cp̄q̄r }
where cpqr denotes the most likely element from the set Ωpq

Cr
of value

combinations with pq, and cp̄qr , cpq̄r and cp̄q̄r are defined analogously.
We now suppose that, at time t + 1, a new value is obtained for

some variable in clique Clq; all other observable variables retain their
original values. As a result of the new observation, the marginal dis-
tribution Pr(Q | xt) over the separator variable Q is updated to
Pr(Q | xt+1). Upon further propagation of the update to clique Clr ,
the probability distribution Pr(Cr | xt) over the explanatory vari-
ables from Clr is multiplied by update factors such that

Pr(cr | xt+1) = Pr(cr | xt) · Pr(q
′ | xt+1)

Pr(q′ | xt)

for all value combinations cr ∈ ΩCr and q′ consistent with cr . We
now show that the new constituent explanation mt+1

r from clique
Clr at time t+1 is again among the candidates which were identified
for the constituent explanation mt

r at time t. We consider to this end
the most likely value combination cpqr from the block Ωpq

r of clique
Clr at time t. For this value combination we have that

Pr(cpqr | xt) ≥ Pr(c′r | xt)

for all value combinations c′r ∈ Ωpq
Cr

consistent with pq. At time
t+ 1, we find for any such combination c′r that

Pr(cpqr | xt+1) = Pr(cpqr | xt) · Pr(q | xt+1)

Pr(q | xt)
≥

Pr(c′r | xt) · Pr(q | xt+1)

Pr(q | xt)
= Pr(c′r | xt+1)

We conclude that since all joint value combinations c′r ∈ Ωpq
Cr

are
multiplied by the same update factor, cpqr remains to be the most
likely element from Ωpq

Cr
. Similar considerations hold for the most

likely value combinations cpq̄r , cp̄qr and cp̄q̄r of the other three blocks.
Given a single new observation in its neighbouring clique Clq , we
thus find for clique Clr that:

mt
r ∈ {cpqr , cpq̄r , cp̄qr , cp̄q̄r } −→ mt+1

r ∈ {cpqr , cpq̄r , cp̄qr , cp̄q̄r }
While the new observation vector xt+1 may induce a change in the
constituent explanation from Clr therefore, its constituent for mt+1

cannot be any arbitrary joint value combination from ΩCr .
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The result stated above is readily generalised. A new value, at time
t + 1, for a single observable variable in clique Clp for example,
would lead to a similar result. The result further holds for cliques
Clr with multiple adjoining separators. The set of value combina-
tions ΩCr for the explanatory variables from such a clique would
then be partitioned into as many blocks as there are value combi-
nations for its explanatory separator variables. The result also holds
for multiple subsequent changes to the observation vector, as long
as these changes do not pertain to the observable variables of the
clique Clr at hand: since all value combinations from a single block
of ΩCr will always be updated by the same factor, regardless of the
number of changes to the separators’ probability distributions, the
most likely combinations per block remain to be the candidates for
the constituent explanation from clique Clr .

Thus far we studied the effect that a change of value for an ob-
servable variable in its neighbouring clique Clq can have on the con-
stituent explanation from clique Clr . We now briefly address the ef-
fect that this change can have on the constituent explanation from
clique Clp upon propagation further down the junction tree. Refer-
ring again to Figure 1, we note that clique Clp is linked to the source
Clq from which the probability update originates, only through Clr .
We now look upon the two cliques Clp and Clr as constituting a
single joint clique Cl (p,r) with the marginal probability distribution
Pr(Cp,Cr | xt) over its variables established as

Pr(cp, cr | xt) =
Pr(cp | xt) · Pr(cr | xt)

Pr(p′ | xt)

for all values p′ of P and all value combinations cpcr ∈ ΩCp ×ΩCr

consistent with p′. The joint clique Cl (p,r) contributes a constituent
explanation mt

(p,r) = mt
p mt

r composed of the separate con-
stituents from its original cliques, to the overall most probable ex-
planation. This joint constituent is an element of the set ΩC(p,r)

=

(Ωp
Cp

× Ωp
Cr

) ∪ (Ωp̄
Cp

× Ωp̄
Cr

) of value combinations for the ex-
planatory variables from both cliques, with mt

p ∈ Ωp
Cp

∪ Ωp̄
Cp

and
mt

r ∈ Ωp
Cr
∪Ωp̄

Cr
. Assuming, without loss of generality, that Cl (p,r)

does not have any neighbouring cliques other than Clq , we have that
Srq is its only adjacent separator. The separator variable Q thus par-
titions the set ΩC(p,r)

into two blocks of value combinations, consis-
tent with q and with q̄ respectively. By similar arguments as above,
it is now readily seen that a value change for an observable variable
from clique Clq may induce a change in the constituent explanation
from Cl (p,r) and hence in that from Clp. If the constituent expla-
nation from Clr does not change as a result of the new observation
however, then the constituent from Clp will not change either.

4 PERSISTENCE OF CONSTITUENTS

In the previous section we focused on a single clique in a junction tree
and studied the effect that a new observation elsewhere in the tree can
have on its candidate constituents. We argued that although a clique’s
current constituent may change as a result of the new observation, it
cannot change to any arbitrary value combination. While we could
establish the candidate constituents for the new overall explanation,
we could not decide whether a clique’s current constituent would
persist, as for establishing persistence information from the rest of
the junction tree is required. In this section we investigate properties
of persistence of constituents over time. More specifically, we derive
conditions under which persistence of a constituent is guaranteed.
In Section 5 we will then build upon these conditions to arrive at a
tailored algorithm that halts the propagation of probability updates
as soon as constituents are known to persist.

4.1 Persistence after a single probability update

We consider the junction tree from Figure 1, with the cliques Clp,
Clr , Clq and the separators Spr , Srq as before. Without loss of gen-
erality, we assume that clique Clp has no neighbouring cliques other
than Clr . At time t, the most probable explanation mt for the obser-
vation vector xt has been computed; we assume that mt includes the
value combination pq for the separator variables P and Q.

At time t+ 1, a new value is observed for some variable in clique
Clq . The most probable explanation for the new observation vector
xt+1 is mt+1. Joining the cliques Clp and Clr into Cl (p,r) as de-
tailed in Section 3, we find for mt+1 that

mt+1= argmax
c∈ΩC

[
Pr(c(p,r) | xt+1)

Pr(q′ | xt+1)
· Pr(cq− | xt+1)

]

= argmax
c∈ΩC

[
Pr(c(p,r) | xt)

Pr(q′ | xt)
· Pr(cq− | xt+1)

]

where the set Cq− is as before, and c(p,r), cq−, q
′ are taken consis-

tent with c. To study the relation between mt+1 and the most prob-
able explanation mt from time t, we distinguish between the two
cases mt+1∈ Ωpq

C and mt+1 �∈ Ωpq
C . In the former case, we have that

mt+1 = argmax
c∈Ω

pq
C

[
Pr(c(p,r) | xt)

Pr(q | xt)
· Pr(cq− | xt+1)

]

with c(p,r), cq−, q again consistent with c. Since the probabilities
of all value combinations c(p,r) from the set Ωq

C(p,r)
are multiplied

by the same factor Pr(cq− | xt+1)/Pr(q | xt), we conclude for the
constituent explanation mt+1

(p,r) from Cl (p,r) at time t+ 1 that

mt+1
(p,r) = argmax

c∈Ω
pq
C(p,r)

Pr(c(p,r) | xt) = mt
(p,r)

that is, we find that the constituent explanation from time t persists
onto time t + 1; the separate constituents from the original cliques
Clp and Clr thus persist as well. In the case where mt+1 �∈ Ωpq

C , we
know that the constituent explanation mt

(p,r) from the joint clique
Cl (p,r) at time t does not persist onto time t + 1. In fact, we know
that at least the separator variable Q will have changed value in the
new constituent mt+1

(p,r). We derive that

mt+1
(p,r) = argmax

c∈Ω
q̄
C(p,r)

Pr(c(p,r) | xt)

that is, the new constituent explanation from the joint clique Cl (p,r)
is the most likely value combination given xt from the block Ωq̄

C(p,r)
.

From the considerations above, we have that the overall explana-
tion mt with the value combination pq for the separator variables P
and Q, persists onto time t+ 1 if the following inequality holds

max
c∈Ω

pq
C

[
Pr(c(p,r) | xt) · Pr(cq− | xt+1)

Pr(q | xt)

]
≥

max
c′∈Ω

q̄
C

[
Pr(c′(p,r) | xt) · Pr(c

′
q− | xt+1)

Pr(q̄ | xt)

]

where c(p,r), cq−, q are consistent with c, and c′(p,r), c
′
q−, q̄ are con-

sistent with c′; in the sequel, we will use the phrase persistence in-
equality to refer to this inequality. Since

argmax
c∈Ω

pq
C

[
Pr(c(p,r) | xt) · Pr(cq− | xt+1)

Pr(q | xt)

]
= mt
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we know that the joint value combination c(p,r) maximizing the left-
hand side of the persistence inequality equals the current constituent
explanation mt

(p,r) from the joint clique Cl (p,r). The right-hand side
of the inequality is maximised by one of the candidate constituents
cpq̄(p,r), c

p̄q̄
(p,r), identified for clique Cl (p,r) at time t.

To summarise, we found that, given a value change in its neigh-
bouring clique Clq , the constituent explanation mt

r from clique Clr
at time t is guaranteed to persist onto time t + 1 if and only if the
persistence inequality holds. In Section 5 we will argue that the prob-
abilistic information required for verifying the inequality is available
locally in the separators of the junction tree upon runtime, and hence
can be used to decide whether or not propagation can be halted.

4.2 Persistence after multiple probability updates

Having gained insight in the persistence of constituent explanations
after a single probability update, we now address persistence after
multiple consecutive updates. For this purpose, we distinguish be-
tween two types of persistence for separator constituents. For two
cliques Cl i and Cl j separated by the explanatory variable K, we say
that the value k for K at time t persists strongly after a probability
update in clique Cl j , if k persists in the overall explanation to time
t+ 1, and in addition the following inequality holds:

maxcj−∈Ωk
Cj−

Pr(cj−|xt+1)

maxcj−∈Ωk
Cj−

Pr(cj−|xt)
≥

max
c′j−∈Ωk̄

Cj−
Pr(c′j− |xt+1)

max
c′j−∈Ωk̄

Cj−
Pr(c′j− |xt)

where Cj− is the set of explanatory variables separated from Cl i
by K; cj− is taken consistent with k, and c′j− includes k̄. If the
separator value k persists from time t to time t + 1 yet not strongly
so, we say that its persistence is weak. We will show that if at most
one of the separator constituents for a clique persists weakly after
an associated value change, then the clique’s constituent explanation
will persist after multiple value changes throughout the junction tree.

We consider as before the junction tree from Figure 1, with the
cliques Clp, Clr , Clq and the separators Spr , Srq . At time t, the
value combination mt constitutes the most probable explanation for
the observation vector xt; we assume again that mt includes the
value combination pq for the two separator variables, and hence that
mt ∈ Ωpq

C . We now consider two separate changes to the observation
vector xt. One of these changes pertains to an observable variable
from clique Clq; we write x(Q) to denote the resulting observation
vector. The other value change takes place in clique Clp; we write
x(P ) to denote the observation vector resulting from just this change.
We now suppose that the two changes to the observation vector xt

are effectuated consecutively. The first change gives the observation
vector xt+1 = x(Q), and the vector after both changes is xt+2; note
that xt+2 = x(P◦Q) �= x(P ). We would like to mention that the
described situation can arise upon runtime with a propagation algo-
rithm that after a single value change verifies persistence locally and
halts as soon as separator persistence is guaranteed. We will show for
such a situation that, given persistence of q and strong persistence of
p in view of the original observation vector xt, the probability of the
most likely value combination from Ωpq

C at time t + 2 is larger than
that from Ωp̄q̄

C . Since similar properties also hold for the most likely
value combinations given xt+2 from the blocks Ωpq̄

C and Omegap̄q
C ,

we can conclude persistence of mt
r from clique Clr onto time t+2.

We suppose that the separator value q is known to persist after the
first value change in view of the original observation vector xt. From
our considerations in Section 4.1, we have that the most probable
explanation m(Q) for the new observation vector x(Q) again is an

element of the block Ωpq
C of value combinations including pq. For

the new overall explanation m(Q), we have that

Pr(m(Q) |x(Q)) = max
c∈Ω

pq
C

[
Pr(cp−|xt)·Pr(cr|xt)·Pr(cq−|x(Q))

Pr(p | xt) · Pr(q | xt)

]

≥ max
c′∈Ω

p̄q̄
C

Pr(c′ | x(Q))

for all value combinations c′ ∈ Ωp̄q̄
C , where cp−, cr, cq− are con-

sistent with c; similar properties hold with respect to the blocks
Ωpq̄

C ,Ωp̄q
C . We now consider the second value change, pertaining to

clique Clp. We suppose that after the probability update in Clp, the
separator value p persists in view of the original observation vector
xt, and that in fact the inequality for strong persistence holds, that is,

maxcp−∈Ω
p
Cp−

Pr(cp− |x(P ))

maxcp−∈Ω
p
Cp−

Pr(cp− |xt)
≥

maxc′p−∈Ω
p̄
Cp−

Pr(c′p− |x(P ))

maxc′p−∈Ω
p̄
Cp−

Pr(c′p− |xt)

We note that from the two persistence properties, we have that the
constituent explanation mt

r from clique Clr is guaranteed to persist
with x(Q) and with x(P ). By incorporating the property of strong
persistence in the expression for the probability Pr(m(Q) | x(Q))
above, we find that it also persists with x(P◦Q) after the two changes:

max
c∈Ω

pq
C

[
Pr(cp−|x(P )) · Pr(cr | xt)

Pr(p | xt)·Pr(q | xt)
· Pr(cq−|x(Q))

]
≥

max
c′∈Ω

p̄q̄
C

[
Pr(c′p−|x(P )) · Pr(c′r | xt)

Pr(p̄ |xt)·Pr(q̄ |xt)
· Pr(c′q−|x(Q))

]

where cp−, cr, cq− are consistent with c ∈ Ωpq
C and c′p−, c

′
r, c

′
q−

are consistent with c′ ∈ Ωp̄q̄
C ; similar properties are again found for

the blocks Ωpq̄
C and Ωp̄q

C . We thus have that, given weak persistence of
the separator value q and strong persistence of p in view of the orig-
inal observation vector xt, the most likely value combination from
the block Ωpq remains the largest among the most likely value com-
binations of all four blocks of ΩC.

While stated for a clique Clr with two adjoining separators, the
result is readily generalised to cliques with an arbitrary number of
separators, as was also argued in Section 3. The result is further gen-
eralised to more than two consecutive updates. For our overall result,
we then have that the constituent explanation from a clique persists as
long as all update factors applied to the clique’s marginal distribution
originate from separators of which the value persists and strongly so
from all but possibly one separator. The order in which the various
update factors are applied to a clique’s marginal distribution is irrel-
evant; also the separator from which a weakly persisting value orig-
inates is immaterial. More formal proofs of our statements will be
provided in a forthcoming technical paper.

5 EXPLOITING PERSISTENCE PROPERTIES

Having identified conditions under which constituent explanations
are guaranteed to persist over time, we now present our propagation
algorithm tailored to monitoring applications, which exploits these
conditions for halting the propagation of probability updates as soon
as constituents are known to persist. By building upon the existing
cautious and max-propagation algorithms, our algorithm effectively
minimizes the number of cliques visited upon propagation.
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5.1 Cautious max-propagation

The junction-tree propagation algorithm for Bayesian networks in
general is ill suited for monitoring applications with consecutively
changing observations. When an observation x is entered into a
clique, the algorithm effectively sets the probabilities of all value
combination inconsistent with x to zero, and thereby prohibits the
retrieval of the original probabilistic information. Before the new ob-
servation x̄ can be propagated therefore, the junction tree needs to
be re-initialized. For studying the effects of alternative observations,
cautious propagation has been proposed as a variant of the junction-
tree algorithm which retains the original distributions per clique for
future computations [2]. For ease of exposition, we assume that, as
with cautious propagation, probabilities given alternative observa-
tions are readily accessible for our algorithm.

Also for computing a most probable explanation for a given ob-
servation vector has a variant of the standard junction-tree propaga-
tion algorithm been designed, called max-propagation [1]. While the
standard junction-tree propagation algorithm enforces consistency of
taking sums over probabilities to ensure correct marginal distribu-
tions per clique, the max-propagation algorithm enforces consistency
of taking the maximum of probabilities. More specifically, max-
propagation maintains for each value combination ci for a clique Cl i
the probability that is maximally attained by a most probable expla-
nation consistent with ci and the current observation vector xt, that
is, it maintains the max-distribution maxc−∈ΩC− Pr(ci, c−,xt) for
all value combinations ci ∈ ΩCi , where C− = C \ Ci is the set
of explanatory variables not included in Cl i. Similar information
is maintained per separator. From every clique and each separator
therefore, its constituent explanation is readily found by choosing a
value combination with maximum probability. Retrieving the overall
most probable explanation requires some simple extra bookkeeping.

5.2 The propagation algorithm

Building upon concepts from cautious max-propagation, we de-
signed a new propagation algorithm for computing most probable
explanations, tailored to monitoring applications. Upon detailing our
algorithm, we will again refer to the junction tree from Figure 1. We
assume that the tree has been initialized at time t with the observation
vector xt and that the most probable explanation mt for xt includes
the value combination pq for the separator variables P and Q. For
ease of reference, Algorithm 1 summarises the structure of our algo-
rithm; in Section 5.3 we will illustrate the working of our algorithm.

We suppose that a new value is observed for some variable in
clique Clq , which results in the new observation vector x(Q). The
max-distribution over clique Clq is updated with the new informa-
tion. From the updated max-distribution, the update factors to be sent
to the separator Srq = {Q} are established as{

max
c∈Ω

q
C

Pr(c,x(Q)), max
c′∈Ω

q̄
C

Pr(c′,x(Q))

}

We observe that these factors in essence suffice for verifying the
persistence inequality for the separator variable Q. If the inequal-
ity holds, propagation is halted. Some cliques in the junction tree
will then have incorporated the new observation vector x(Q), while
other cliques still have a max-distribution given a previous observa-
tion vector. Computation of the most probable explanation for x(Q)

is nonetheless guaranteed to yield the correct value combination.
We now suppose that a new value is observed for a variable in a

clique Clp which still has a max-distribution given xt, that is, upon

Given a new value for some variable in clique Clq , update Clq’s
max-distribution, and start an outward max-propagation;

for every separator S adjacent to Clq do

if a marked separator S′ exists with S ⊥⊥ S′|Clq then

Propagate from S′ to Clq and unmark S′;
if persistence is guaranteed then

if the persistence is strong then

Halt the propagation, and mark S as persisted;
if the persistence is the first weak one then

Halt the propagation, and mark S as persisted;
Broadcast weak persistence;

if the persistence is the second weak one then

Reset all marks, and start a full propagation;
else

if S is not yet marked as persisted on the other side then

Continue the propagation;
else

Reset all marks, and start a full propagation;
end

Algorithm 1: Summary of propagation for monitoring applications.

propagating the observation vector x(Q) the algorithm identified per-
sistence of constituents before the propagation had reached Clp. We
use, once more, x(P ) to denote the observation vector which results
from incorporating the value change in clique Clp in xt. The al-
gorithm updates the max-distribution from clique Clp with the new
information and starts an outward max-propagation from the clique.
For establishing persistence of the constituent explanation from the
clique Clr at which both updates convene, we need to verify strong
persistence of either of its separator constituents. Since the max-
distribution maintained for a separator variable pertains to full value
combinations, for verifying the inequality for strong persistence upon
runtime, this inequality has to be extended to include value combina-
tions from ΩC. Given persistence of the separator value p, we have
that the probability of the most probable explanation equals

Pr(m(P ) | x(P )) = max
c∈Ω

p
C

[
Pr(cp− | x(P )) · Pr(c− | xt)

Pr(p | xt)

]

with C− = C \Cp−. Since the term Pr(c− | xt)/Pr(p | xt) is the
same for all value assignments cp− given xt and x(P )), we find that

maxcp−∈Ω
p
Cp−

Pr(cp− | x(P ))

maxcp−∈Ω
p
Cp−

Pr(cp− | xt)
=

maxc∈Ω
p
C
Pr(c | x(P ))

maxc∈Ω
p
C
Pr(c | xt)

for the left-hand side of the strong-persistence inequality; a similar
result holds for its right-hand side. We observe that the factors now
required for verifying the inequality are directly available upon max-
propagation as the update factors at each separator.

We recall from Section 4.2, that in view of a single separator’s
weak persistence, local verification of simple inequalities suffices
to guarantee persistence of constituent explanations upon halting
further propagation. When more than one separator value persists
weakly, local verification no longer suffices for this purpose. To iden-
tify multiple weak separator persistences, the algorithm broadcasts a
message signalling weak persistence throughout the junction tree as
soon as a first occurrence of weak persistence is found. Upon finding
a second weak persistence, a full propagation is started.
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5.3 An illustration of our algorithm

We illustrate the basic idea of our new propagation algorithm for
monitoring applications, by means of the example Bayesian net-
work and associated junction tree from Figure 3. We assume that
the junction tree is initialized with the observation vector x =
(x1, x2, x3, x4, x5). We further assume that the most probable expla-
nation given x is established to be m = (c1, c2, c3, c4, c5, c̄6). Fig-
ure 4 now visualizes the run described below. The values mentioned
for the variables per clique correspond with the current observation
vector and with the most probable explanation given that vector. An
‘∗’ over a clique or separator indicates that its max-distribution has
been updated given a new observation. A ‘+’ for a separator indicates
that its value has strongly persisted; a ‘−’ marks the occurrence of
a weak persistence somewhere in the junction tree. Persistence at a
separator is indicated by shading. To simplify bookkeeping we split
each separator of the junction tree into to parts as shown in Figure 4.
Verification of persistence for a separator is performed at the first part
that is visited upon propagation.

C1

C3 C4

X1

X2

C2

C5

C6

X3

X5

X4

(a) The example Bayesian network

C1, X1

C1

C1, C3, C4

C1

C1, C2, X2

C4 C4, C6

C4

C4, C5, X3

C6

C6, X4, X5

(b) Its associated junction tree

Figure 3: The example network with its corresponding junction tree.

We now suppose that the following changes are seen in the con-
secutive observation vectors entered into the junction tree:

• x1 is changed to x̄1 — The value change occurs in clique
{C1, X1}. We assume that the value c1 of its separator with
{C1, C3, C4} persists strongly. The algorithm halts the propaga-
tion and marks the separator as having strongly persisted.

• x4 is changed to x̄4 — The change is entered into {C6, X4, X5}.
We assume that the algorithm identifies, upon propagation, weak
persistence of the value c4 for two separators adjacent to the clique
{C4, C6}. Further propagation is halted and the algorithm broad-
casts the weak persistence throughout the rest of the junction tree.

• x2 is changed to x̄2 — We assume strong persistence at c1, which
causes the algorithm to halt further propagation.

• x3 is changed to x̄3, with strong persistence at c4.
• x̄1 is changed back again to x1 – We assume that the change in-

curs weak persistence of the value c1 for the separator adjacent
to clique {C1, X1}. The second mark of weak persistence now
causes the algorithm to invoke a full propagation before any new
information is entered.

6 CONCLUSIONS

When employing a Bayesian network for a monitoring application,
most probable explanations have to be established for a sequence
of consecutive observation vectors. Since computing a single most
probable explanation already has an unfavourable runtime complex-
ity, monitoring applications will rapidly become impracticable. In
this paper, we studied the computation of a sequence of explanations
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(a) Initial observation
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Figure 4: A run of the algorithm with multiple updates.

for subsequent observation vectors which differ by their values for
a single variable only. We showed that although a new observation
may locally change the explanation, it cannot change to any arbi-
trary value combination. We have also shown that propagation may
be halted as soon as persistence of parts of the explanation are guar-
anteed. We used these results in a new propagation algorithm tailored
to monitoring applications. Our algorithm forestalls unnecessary re-
computations of explanations to a large extent, but may in specific
situations perform a full propagation through the junction tree. We
think it worthwhile to investigate the possibility of performing par-
tial propagations in these situations. Most of all, we plan to study the
runtime performance of our algorithm on real-world monitored data.
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