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Marian Mrozek

Received: 20 May 2013 / Revised: 17 July 2014 / Accepted: 20 August 2014 /

Published online: 9 October 2014

© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Considering a continuous self-map and the induced endomorphism on

homology, we study the eigenvalues and eigenspaces of the latter. Taking a filtration of

representations, we define the persistence of the eigenspaces, effectively introducing a

hierarchical organization of the map. The algorithm that computes this information for

a finite sample is proved to be stable, and to give the correct answer for a sufficiently

dense sample. Results computed with an implementation of the algorithm provide

evidence of its practical utility.

Keywords Discrete dynamical systems · Computational topology · Persistent

homology · Category theory · Algebraic algorithms · Convergence · Stability ·

Computational experiments

Mathematics Subject Classification 55N35 · 37B99 · 18A99 · 55U99

1 Introduction

In recent years, the theory of persistent homology [11,23] has become a useful tool

in several areas, including shape analysis [12], scientific visualization [13], high-

dimensional data analysis [3], but also in mathematics itself [21]. The specific aim of
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this paper is an approach to the persistence of endomorphisms induced in homology by

continuous self-maps. The long-term goal is to embed persistence in the computational

analysis of dynamical systems, as pursued in [14] and the related literature.

In the case of finitely generated homology with field coefficients, the homomor-

phism induced by a continuous map between topological spaces is a linear map

between finite-dimensional vector spaces. Such a map ϕ : Y → X is character-

ized up to conjugacy by its rank. This is in contrast to a linear self-map, φ : X → X ,

which in the case of an algebraically closed field1 is characterized up to conjugacy

by its Jordan form. A weaker piece of information is the eigenvectors, which in our

setting captures the homology classes that are invariant under the self-map. Therefore,

it is natural to study the persistence of eigenvalues and eigenspaces as a first step to

the full understanding of the persistence of the map. We define it in terms of the per-

sistence of vector spaces, a concept that has been around for some time. Specifically,

it has been presented as the general idea of zigzag persistence [2], which is based

on the theory of quivers [9]. Since we need an algorithm that provides not only the

persistence intervals but also a special basis, we give an independent presentation of

the concept. We believe this presentation is elementary and in the spirit of the theory

of persistent homology. We also note that its generalization to zigzag persistence is

straightforward. Beyond describing the algorithm for the persistence of eigenvalues

and eigenspaces, we analyze its performance, proving that the persistence diagram it

produces is stable under perturbations of the input, and the algorithm converges to the

homology of the studied map, reaching the correct ranks for a sufficiently fine sample.

In addition, we exhibit results obtained with a software implementation, which suggest

that the persistent homology of eigenspaces picks up the important dynamics already

from a relatively small sample.

We motivate the technical work in this paper with a small toy example, designed to

highlight one of the main difficulties we encounter. Writing S
1 for the circle in the com-

plex plane, we consider the map defined by f (z) := z2, which doubles the angle of the

input point. Sampling S
1 at eight equally spaced locations, x j := cos

jπ
4

+ i sin
jπ
4

, we

can check that f (x j ) = x2 j , where indices are taken modulo 8. Assuming the space and

the map are unknown, other than at the sampled points and their images, we consider

the filtration K1 ⊆ K2 ⊆ K3 ⊆ K4 ⊆ K5 shown in the top row of Fig. 1. Each com-

plex Ki consists of all simplices spanned by the eight points whose smallest enclosing

circles have radii that do not exceed a given threshold, and this threshold increases from

left to right. The most persistent homology classes in this filtration are the component

that appears in K1 and lasts to K5 and the loop that appears in K2 and lasts to K4.

We would hope that f extends to simplicial maps on these complexes, but this is

unfortunately not the case in general. For instance, f maps the endpoints of the edge

x1x7 in K3 to the points x2 and x6, but they are not endpoints of a common edge in

K3. The reason for this situation is the expanding character of f . To still make sense

of the map, we construct the maximal partial simplicial maps, κi : Ki �Ki consistent

with f . Figure 1 shows the domains of these maps in the bottom row, and for i = 3, 4,

we can see how κi wraps the convex octagon twice around the hole in Ki shown right

1 A field is algebraically closed if every non-constant polynomial over the field has a root.
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Fig. 1 Five simplicial complexes in the filtration of the eight data points at the top, and the domains of the

induced partial simplicial maps at the bottom

above. This reflects the fundamental feature of f , namely that its image wraps around

the circle twice. To see this more formally, we compare the homology classes in the

domains with their images. For i = 1, 3, 5, the inclusion of the domain of κi in Ki

induces an isomorphism in homology. The comparison therefore reduces to the study

of eigenvectors of an endomorphism. The lack of isomorphism for i = 2, 4 may be

overcome by the study of eigenvectors of pairs of linear maps. In this particular case,

we are able to conclude that the eigenspace for eigenvalue t = 2 appears in K3 and

lasts to K4, thus reconstructing the essential character of f from a very small sample.

To summarize, there are differences between the partial simplicial maps and the

underlying continuous map; see in particular the reorganization that takes place at

i = 2 and i = 4. The hope to recover the properties of the latter from the former is

based on the ability of persistence to provide a measure that transcends fluctuations

and identifies what stays the same when things change.

Outline Section 2 introduces the categories of partial functions, matchings, and linear

maps. Section 3 discusses towers within these categories and introduces the concept of

persistence. Section 4 describes the algorithm that computes the persistent homology

of an endomorphism from a hierarchical representation of the underlying self-map.

Section 5 proves that the algorithm converges and produces stable persistence dia-

grams. Section 6 presents results obtained with our implementation of the algorithm.

Section 7 concludes the paper.

2 Categories

We find the language of category theory convenient to talk about persistent homol-

ogy; see MacLane [16] for a standard reference. Most importantly, we introduce the
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category of finite sets and matchings, which will lead to an elementary exposition of

persistence.

2.1 Partial Functions

We recall that a category consists of objects and (directed) arrows between objects.

Importantly, there is the identity arrow from every object to itself, and arrows compose

associatively. An arrow, θ : K → L , is invertible if it has an inverse, θ−1 : L → K ,

such that θ−1θ and θθ−1 are the identity arrows for K and L . If there is an invertible

arrow from K to L , then the two objects are isomorphic. Every category in this paper

contains a zero object, which is characterized by having exactly one arrow to and one

arrow from every other object. It is unique up to isomorphisms. Two arrows κ : K →

K ′ and λ : L → L ′ are conjugate if there are invertible arrows θ : K → L and θ ′ :

K ′ → L ′ that commute with κ and λ; that is, θ ′κ = λθ . A functor is an arrow between

categories, assigning to each object and each arrow of the first category an object and

an arrow of the second category in such a way that the identity arrows are mapped to

identity arrows and the functor commutes with the composition of the arrows.

We use a category whose arrows generalize functions between sets as the basis of

other categories. Specifically, a partial function is a relation ξ ⊆ X ×Y such that every

x ∈ X is either not paired or paired with exactly one element in Y [15]. We denote it

by ξ : X�Y , observing that there is a largest subset X ′ ⊆ X such that the restriction

ξ : X ′ → Y is a function. We call dom ξ := X ′ the domain and ker ξ := X − X ′ the

kernel of ξ . For each x ∈ X ′, we write ξ(x) for the unique element y ∈ Y paired with

x , as usual. Similarly, we write ξ(A) for the set of elements ξ(x) with x ∈ A ∩ X ′.

The image of ξ is of course the entire reachable set, im ξ := ξ(X). If ξ : X�Y

and η : Y �Z are partial functions, then their composition is the partial function

ηξ : X�Z consisting of all pairs (x, z) ∈ X × Z for which there exists y ∈ Y such

that y = ξ(x) and z = η(y). Thus, we have a category of sets and partial functions,

which we denote as Part. The zero object in this category is the empty set, which is

connected to all other sets by empty partial functions. It will be convenient to limit

the objects in this category to finite sets.

2.2 Matchings

We call an injective partial function α : A�B a matching. Its restriction to the domain

and the image is a bijection, hence the name. Bijections have inverses and so do match-

ings, namely α−1 : B�A with (b, a) ∈ α−1 iff (a, b) ∈ α.2 Clearly, the composition

of two matchings is again a matching. We therefore have a category, and we write Mch

for this subcategory of Part: its objects are finite sets and its arrows are matchings.

Writing [k] := {1, 2, . . . , k}, we may assume that A = [p] and B = [q], in which

p and q are the cardinalities of A and B. Representing the matching by its matrix,

M = (Mi j ), we thus get

2 To be more precise, we should call it a weak inverse, because α−1α and αα−1 are identities on the domain

and image of α and not necessarily on A and B. We simplify language by ignoring this subtlety.
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Fig. 2 The composition of two matchings. Its domain and image are the dark regions in A and in C

Mi j =

{

1 if ( j, i) ∈ α,

0 otherwise ,

for j ∈ [p] and i ∈ [q]. Matrices of matchings are characterized by having at most

one non-zero entry in each row and in each column. It follows that there are equally

many non-zero rows (the cardinality of the image) as there are non-zero columns

(the cardinality of the domain). The rank of the matching is this common cardinality,

rank α := #dom α = #im α. The simple structure of matchings makes it easy to

compute the ranks of compositions. Letting β : B�C be another matching, the rank

of βα : A�C is the cardinality of im α ∩ dom β; see Fig. 2.

We can rewrite this as

#(dom β − im α) = rank β − rank βα. (1)

It will be useful to extend this relation to the composition of three matchings, adding

γ : C�D to the two we already have. The number of elements in the domain of β

that are neither in the image of α nor map to the domain of γ is

#(dom β − im α − dom γβ) = rank β − rank βα − rank γβ + rank γβα. (2)

To see the second line, we construct a set , first by taking the disjoint union of the sets

A, B, C , and D, and second by identifying two elements if they occur in a common

pair, which may be in α, β, or γ . After identification, each matching is a subset of

, namely α = A ∩ B, βα = A ∩ B ∩ C , etc. Using the identification, the left-hand

side of (2) may be rewritten as the cardinality of the set

(B ∩ C) − (A ∩ B) − (B ∩ C ∩ D)

= (B ∩ C) − [(A ∩ B ∩ C) ∪ (B ∩ C ∩ D)]. (3)

By elementary inclusion–exclusion, its cardinality is the right-hand side of (2).

2.3 Linear Maps

Assuming a fixed field, we now consider the category Vect, whose objects are the

finite-dimensional vector spaces over this field, and whose arrows are the linear maps
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between these vector spaces. The dimension of a vector space, U , is of course the

cardinality of its basis, which we denote as dim U . Letting υ : U → V be a linear

map, we write ker υ := υ−1(0) for the kernel, im υ := υ(U ) for the image, and

rank υ := dim υ(U ) for the rank of υ.

Given bases A of U and B of V , we construct the matrix M = (Mi j ) of υ in

these bases. In particular, Mi j is the coefficient of the i th basis vector of B in the

representation of the image of the j th basis vector of A. It is generally not the matrix

of a matching because υ does generally not map A to B. However, if M is the matrix of

a matching, then the partial function α : A�B, consisting of all pairs (a, b) ∈ A × B

with υ(a) = b, is a matching that satisfies ker α = ker υ ∩ A, im α = im υ ∩ B,

and, most importantly,

rank α = rank υ. (4)

A matching with this property exists, and we can compute it by reducing M to

Smith normal form. However, it is not necessarily unique. On the other hand, any

two matchings α : A�B and α′ : A′
�B ′ that satisfy (4)—albeit possibly for dif-

ferent bases A, A′ of U and B, B ′ of V — are conjugate in Mch. Indeed, we have

# A = # A′, #B = #B ′, and rank α = rank α′ from (4), which suffices for the exis-

tence of bijections that imply the conjugacy of α and α′.

We have a functor Lin : Mch → Vect which sends a finite set A to the linear space

spanned by A and a matching α : A → B to the linear map defined on a basis vector

a ∈ A as α(a) if a is in the domain of α and as zero otherwise. It follows from the

discussion of the preceding paragraph that for every linear map υ in Vect, there exists

a matching α in Mch such that υ = Lin(α) and any two matchings with this property

are conjugate.

2.4 Eigenvalues and Eigenspaces

Still assuming the same field, we consider a vector space, U , and a linear self-map,

φ : U → U . Letting t be an element in the field, we set

Et (φ) := {u ∈ U | φ(u) = tu}. (5)

If Et (φ) �= 0, then t is an eigenvalue of φ, and Et (φ) is the corresponding eigenspace.

As usual, the non-zero elements of Et (φ) are referred to as the eigenvectors of φ and t .

It should be clear that Et (φ) is a subspace of U and thus a vector space itself. We find

it convenient to formalize the transition from the linear self-map to its eigenspaces.

To this end, we consider another endomorphism, φ′ : U ′ → U ′, and a linear map

υ : U → U ′ such that

U U

U ′ U ′

❄υ

✲φ

❄υ
✲φ

′
(6)
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commutes. We can think of this diagram as an arrow in a new category Endo(Vect);

see e.g. [19]. In particular, the objects in Endo(Vect) are the endomorphisms in Vect,

and the arrows are the linear maps that commute with the endomorphisms. Fixing t , we

now map φ to Et (φ) and φ′ to Et (φ
′), which are objects in Vect. Since (6) commutes,

the image of an eigenvector in Et (φ) belongs to Et (φ
′). This motivates us to define

the restriction of υ to Et (φ) and Et (φ
′) as the image of υ under Et , thus completing

the definition of Et as the eigenspace functor from Endo(Vect) to Vect.

2.5 Eigenspace Functor for Pairs

The situation in this paper is more general, and we need an extension from endo-

morphisms to pairs of linear maps. Let ϕ,ψ : U → V be such a pair, and define

Ēt (ϕ, ψ) := {u ∈ U | ϕ(u) = tψ(u)}. This is a subspace of U , but it contains the

entire intersection of the two kernels, which we remove by taking the quotient:

Et (ϕ, ψ) := Ēt (ϕ, ψ)/ (ker ϕ ∩ ker ψ) . (7)

Assuming Et (ϕ, ψ) �= 0, we call t an eigenvalue of the pair, and Et (ϕ, ψ) the corre-

sponding eigenspace. The non-zero elements of Et (ϕ, ψ) are the eigenvectors of ϕ,ψ ,

and t . Similar to the case of endomorphisms, Et (ϕ, ψ) is a vector space, although its

elements are not the original vectors but equivalence classes of such. To formalize the

transition, we consider a second pair ϕ′, ψ ′ : U ′ → V ′ and linear maps υ and ν such

that

V U V

V ′ U ′ V ′

❄ν ❄υ

✛ϕ ✲ψ

❄ν
✛ϕ

′

✲ψ
′

(8)

commutes. We can think of this diagram as an arrow in a new category as follows.

The objects in Pairs(Vect) are the horizontal pairs of linear maps, and the arrows are

the vertical pairs of linear maps that form commutative diagrams, as in (8). Fixing

t , we can now map ϕ,ψ to Et (ϕ, ψ) and ϕ′, ψ ′ to Et (ϕ
′, ψ ′), which are objects in

Vect. Since (8) commutes, the images of the vectors in a class [u] ∈ Et (ϕ, ψ) form

an equivalence class [υ(u)] ∈ Et (ϕ
′, ψ ′). We thus define the arrow that maps [u]

to [υ(u)] as the image of υ, ν under Et . This completes the definition of Et as the

eigenspace functor from Pairs(Vect) to Vect.

It is easy to see that if the vertical maps in (8) are isomorphisms, then Et (ϕ, ψ)

and Et (ϕ
′, ψ ′) are isomorphic. Starting with (8), suppose now that V = V ′ = U ′ and

that ν and ϕ′ are identities, and redraw the diagram in triangular form:

(9)

If ϕ is an isomorphism, then so is υ, which implies that Et (ϕ, ψ) and Et (ψ
′) are

isomorphic. This little fact will be useful in Sect. 5, when we analyze our algorithm
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by comparing eigenspaces obtained from the homology endomorphism induced by a

continuous self-map f : X → X and from pairs of linear maps induced in homology

by projections from the graph of f (comp. diagram (29)).

3 Towers and Persistence

In this section, we study what can persist along paths in a category, similarly to the

very recent, independently obtained results [1]. We show that parallel paths in Vect

and Mch will naturally lead to the concept of persistent homology, now within a more

general framework than in the traditional literature. We note that the concept of tower

introduced in the sequel corresponds to persistence module in [23]. We prefer to speak

about towers to avoid phrases like ‘persistent module of persistence modules’.

3.1 Paths and Categories of Paths in a Category

A tower is a path with finitely many non-zero objects in a category. More formally, it

consists of objects X i and arrows ξi : X i → X i+1, for all i ∈ Z, in which all but a

finite number of the X i are the zero object. We denote this tower as X = (X i , ξi ). In

later discussions, we will refer to compositions of the arrows, so we write ξ i
i for the

identity arrow of X i and define

ξ
j

i := ξ j−1 . . . ξi+1ξi : X i → X j , (10)

for i < j .

Suppose Y = (Yi , ηi ) is a second tower in the same category, and there is a vector

of arrows ϕ = (ϕi ), with ϕi : X i → Yi , such that ηiϕi = ϕi+1ξi for all i . Referring

to this vector of arrows as a morphism, we denote this by ϕ : X → Y . To verify that

the towers and morphisms form a new category, we note that the identity morphism is

the vector of identity arrows, and that morphisms compose naturally. The zero object

is the tower consisting solely of zero objects. Finally, an isomorphism is an invertible

morphism; it consists of invertible arrows between objects that commute with the

arrows of the towers. We remark that arrows and morphisms are alternative terms

for the same notion in category theory. We find it convenient to use both so we can

emphasize different levels of the construction.

3.2 Persistence in a Tower of Matchings

As a first concrete case, we consider a tower A = (Ai , αi ) of matchings. Recall that

rank α
j
i is the number of pairs in α

j
i . We formalize this notion by introducing the rank

function a : Z×N0 → Z defined by a
j

i := a(i, j − i) := rank α
j

i , where N0 is the set

of non-negative integers. It can alternatively be understood by counting intervals, as

we now explain. Letting A be the disjoint union of the Ai , we call a non-empty partial

function a : Z�A an string in A if the domain of a is an interval [k, ℓ] in Z, ai = a(i)

belongs to Ai for every k ≤ i ≤ ℓ, and ai+1 = αi (ai ) whenever k ≤ i < ℓ; see Fig. 3.
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Fig. 3 A tower of matchings with persistence intervals [1, 2], [1, 3], [1, 4], twice[1, 5], [2, 2], [2, 5], [3, 5],

[4, 4], [4, 5]

The string is maximal if it cannot be extended at either end. Specifically, a is maximal

iff ak /∈ im αk−1 and aℓ ∈ ker αℓ. Finally, by a persistence interval3, we mean the

domain of a maximal string in A.

It should be clear that aℓ
k is the number of strings in A with domain [k, ℓ]. Equiv-

alently, it is the number of maximal strings with domains that contain [k, ℓ]. We can

also reverse the relationship and compute the number of persistence intervals from the

rank function. Letting #[i, j] = #[i, j](A) denote the number of maximal strings with

domain [i, j], we have

#[i, j] = a
j
i − a

j
i−1 − a

j+1
i + a

j+1
i−1 . (11)

To see this, we consider again A and identify elements if they belong to a common

pair in any of the αi . After identification, every point a in A corresponds to a maximal

string. The domain of this maximal string is [i, j] iff a belongs to the domain of α
j
i

but not to the image of αi−1 and not to the domain of α
j+1
i . The relation (11) now

follows from (2) is applied to α = αi−1, β = α
j

i , γ = α j .

This relationship motivates us to introduce the persistence diagram of A as the

multiset of persistence intervals, which we denote as Dgm(A). Note that #[i, j] is the

multiplicity of [i, j]. The number of intervals in the persistence diagram, counted with

multiplicities, is therefore #Dgm(A) =
∑

i≤ j #[i, j]. It is important to observe that the

persistence diagram characterizes the tower up to isomorphisms.

Equivalence Theorem A Letting A and B be towers in Mch, the following conditions

are equivalent:

(i) A and B are isomorphic;

(ii) the rank functions of A and B coincide;

(iii) the persistence diagrams of A and B are the same.

Proof (i) ⇒ (ii). Since A and B are isomorphic, we have invertible arrows θi : Ai →

Bi that commute with the arrows in A and B. It follows that rank α
j

i = rank β
j

i , for

all i ≤ j .

3 We note a difference in convention to most of the related literature, in which persistence intervals are

defined half-open. In particular, [k, ℓ] in our notation corresponds to [k, ℓ + 1) in [10]. Reading them as

intervals in Z, they are the same.
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(ii) ⇒ (iii). The rank function determines the multiplicities of the intervals in the

persistence diagram by (11).

(iii) ⇒ (i). To construct the required isomorphism, we first match up the intervals,

and using the matching, we match up the underlying points. ⊓⊔

3.3 Persistence in a Tower of Linear Maps

We return to assuming a fixed field, and consider a tower U = (Ui , υi ) in the category

of vector spaces over this field.4 For each i , let Ai be a basis of Ui . Restricting υi to

Ai and Ai+1, we get a partial function αi : Ai �Ai+1, again for every i .

Definition We call the tower of partial functions A = (Ai , αi ) a basis of the tower U

if αi is a matching and rank αi = rank υi , for every i .

We have seen in Sect. 2 that for each υi : Ui → Ui+1, there are bases Ai and Ai+1

of the two vector spaces such that the implied partial function αi : Ai �Ai+1 is a

matching that satisfies rank αi = rank υi ; see (4). We will show shortly that such

bases exist for all vector spaces in the tower simultaneously; see the Basis Lemma

below. For now, we assume that A = (Ai , αi ) is such a basis, deferring the proof to

later. Considering compositions α
j
i , we note that rank α

j
i = rank υ

j
i . Consequently,

the rank functions of A and U are the same. The basis of U is not necessarily unique, but

the rank function does not depend on the choice. Thus, we can define the persistence

diagram of U as the persistence diagram of a basis, Dgm(U) := Dgm(A). We also

write #[i, j](U) := #[i, j](A) for the multiplicity of the interval [i, j] in the persistence

diagram of U . Writing u
j
i for the rank of υ

j
i , we thus get

#[i, j](U) = u
j

i − u
j

i−1 − u
j+1
i + u

j+1
i−1 (12)

from (11). Similarly, we can generalize the Equivalence Theorem A to the case of

linear maps between finite-dimensional vector spaces.

Equivalence Theorem B Letting U and V be towers in Vect, the following conditions

are equivalent:

(i) U and V are isomorphic;

(ii) the rank functions of U and V coincide;

(iii) the persistence diagrams of U and V are the same.

Proof Implications (i) ⇒ (ii) and (ii) ⇒ (iii) are trivial. To see that (iii) ⇒ (i) select

bases A and B, respectively, in U and V by the Basis Lemma below. Then Dgm(A) =

Dgm(B). Thus, Equivalence Theorem A implies that A and B are isomorphic, and the

bijections between the bases A and B define the requested isomorphisms between U

and V . ⊓⊔

4 Part of the theory in this section can be developed for the more general case of finitely generated modules

over a principal ideal domain. For reasons of simplicity, and because the crucial connection to matchings

relies on stronger algebraic properties, we limit this discussion to vector spaces over a field right from the

start.
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Fig. 4 Two-phase reduction of the matrix. The shaded areas contain zeros and non-zeros, the white areas

contain only zeros, and all dark squares are 1

3.4 Tower Bases

We now prove the technical result assumed above to get Equivalence Theorem B. It

is not new and can be found in different words and with a less elementary proof in

[2,23].

Basis Lemma Every tower in Vect has a basis.

Proof We construct the basis in two phases of an algorithm, as sketched in Fig. 4. Let

U = (Ui , υi ) be a tower in Vect, and for each i , let Mi be the matrix that represents

the map υi in terms of the given bases of Ui and Ui+1.

In Phase 1, we use column operations to turn Mi into column echelon form, as

sketched in Fig. 4 in the middle. We get a strictly descending staircase of non-zero

entries, with zeros and non-zeros below and zeros above the staircase. Here, we call the

collection of topmost non-zero entries in the columns the staircase, and we multiply

with inverses so that all entries in the staircase are equal to 1. By definition, each column

contains at most one element of the staircase, and by construction, each row contains

at most one element of the staircase. The reduction to echelon form is done from right

to left in the sequence of matrices; that is, in the order of decreasing index i . Indeed,

every column operation in Mi changes the basis of Ui , so we need to follow up with

the corresponding row operation in Mi−1. Since Mi−1 has not yet been transformed

to echelon form, there is nothing else to do.

In Phase 2, we use row operations to turn the column echelon into the normal form,

as sketched in Fig. 4 on the right. Equivalently, we preserve the staircase and turn all

non-zero entries below it into zeros. To do this for a single column, we add multiples

of the row of its staircase element to lower rows. Processing the columns from left

to right, this requires no backtracking. The reduction to normal form is done from

left to right in the sequence of matrices; that is, in the order of increasing index i .

Each row operation in Mi changes the basis of Ui+1, so we need to follow up with

the corresponding column operation in Mi+1. This operation is a right-to-left column

addition, which preserves the echelon form. Since Mi+1 has not yet been transformed

to normal form, there is nothing else to do.

In summary, we have an algorithm that turns each matrix Mi into a matrix in which

every row and every column contain at most one non-zero element, which is 1. This

is the matrix of a matching. Since we use only row and column operations, the ranks

of the matrices are the same as at the beginning. Each column operation in Mi has a

corresponding operation on the basis of Ui . Similarly, each row operation in Mi has a
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corresponding operation on the basis of Ui+1. By performing these operations on the

bases of the vector spaces, we arrive at a basis of the tower. ⊓⊔

3.5 Persistent Homology and Derivations

Persistent homology as introduced in [11,23] may be viewed as a special case of the

persistence of towers of vector spaces. To see this, let C = (Ci , γi ) be a tower of

chain complexes, with γi the inclusion of Ci in Ci+1, and obtain H = (Hi , ηi ) by

applying the homology functor. Assuming coefficients in a field, the latter is a tower

of vector spaces. The persistent homology groups are the images of the η
j
i . A version

of persistent homology, recently introduced in [2], studies a sequence of vector spaces

Ui and linear maps, some of which go forward, from Ui to Ui+1, while others go

backward, from Ui+1 to Ui . This is a zigzag module if we have exactly one map

between any two contiguous vector spaces. It turns out that the theory of persistence

generalizes to this setting. In view of our approach based on matchings, this is not

surprising. Indeed, the inverse of a matching is again a matching, so that there is no

difference at all in the category of matchings. To achieve the same in the category

of vector spaces, we only need to adapt the above algorithm to obtain the zigzag

generalization of the Basis Lemma. The adaptation is also straightforward, running

the algorithm on a sequence of matrices that are the original matrices for the forward

maps and the transposed matrices for the backward maps.

There are several ways one can derive towers from towers, and we discuss some of

them. Letting U = (Ui , υi ) and V = (Vi , νi ) be towers in Vect, we call V a subtower

of U if Vi ⊆ Ui and νi is the restriction of υi to Vi and Vi+1, for each i . Given U and a

subtower V , we can take quotients and define the quotient tower, U/V = (Ui/Vi , ̺i ),

where ̺i is the induced map from Ui/Vi to Ui+1/Vi+1. Similarly, we can construct

towers from a morphism ϕ : U → V , where we no longer assume that V is a subtower

of U . Taking kernels and images, we get the tower of kernels, which is a subtower of

U , and the tower of images, which is a subtower of V . Taking the quotients, Ui/ker ϕi

and Vi/im ϕi , we furthermore define the towers of coimages and of cokernels. In [7],

towers of kernels are used in the analysis of sampled stratified spaces and introduced

along with the towers of images and cokernels. The benefit of the general framework

presented in this section is that persistence is now defined for all these towers, without

the need to prove or define anything else.

Suppose now that V = U , and let φ : U → U be an endomorphism. We can iterate

φ and thus obtain a sequence of endomorphisms. The generalized kernel of the com-

ponent φi : Ui → Ui is the union of the kernels of its iterated compositions. Similarly,

the generalized image is the intersection of the images of the iterated compositions:

gker φi :=

∞
⋃

k=1

ker φ◦k
i , (13)

gim φi :=

∞
⋂

k=1

im φ◦k
i , (14)
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where φ◦k
i is the k-fold composition of φi with itself. Similar to before, we define two

subtowers of U : the tower of generalized kernels, denoted as gker φ, and the tower of

generalized images, denoted as gim φ. By assumption, Ui has finite dimension, which

implies that both the generalized kernel and the generalized image are already defined

by finite compositions of φi . Furthermore, the ranks of gker φi and gim φi add up to the

rank of Ui . A trivial example of an element in the generalized image is an eigenvector

of φi , but gim φi also contains the eigenvectors of the iterated compositions of φi and

the spaces they span.

Of particular interest are the quotient towers, U/gker φ and U/gim φ, because of

their relation to the Leray functor [18] and Conley index theory [8,17]. They may be

of interest in the future study of the persistence of the Conley index applied to sampled

dynamical systems.

3.6 Tower of Eigenspaces

Of particular interest to this paper is the tower of eigenspaces. When studying the

eigenvectors of the endomorphisms, we do this for each eigenvalue in turn. To begin,

we note that φ : U → U is a tower in the category Endo(Vect). Indeed, each φi :

Ui → Ui is an object, and υi : Ui → Ui+1 commutes with φi and φi+1. Applying the

eigenspace functor, Et , we get the tower Et (φ) = (Et (φi ), δt,i ) in Vect. Its objects

are the eigenspaces, Et (φi ), and its arrows are the restrictions, δt,i , of the υi to Et (φi )

and Et (φi+1). We refer to it as the eigenspace tower of φ for eigenvalue t .

Much of the technical challenge we face in this paper derives from the difficulty in

constructing linear self-maps from sampled self-maps. This motivates us to extend the

above construction to a pair of morphisms. Let V = (Vi , νi ) be a second tower in Vect,

let ϕ,ψ : U → V be morphisms between the two towers, and recall that this gives a

tower in Pairs(Vect). Its objects are the pairs ϕi , ψi : Ui → Vi , and its arrows are the

commutative diagrams with vertical maps υi and νi , as in (8). Similar to the single-map

case, we apply the eigenspace functor, Et , now from Pairs(Vect) to Vect. This gives

the tower Et (ϕ, ψ) = (Et (ϕi , ψi ), ǫt,i ) in Vect. Its objects are the eigenspaces, and its

arrows are the linear maps that map [u] ∈ Et (ϕi , ψi ) to [υi (u)] ∈ Et (ϕi+1, ψi+1). We

refer to it as the eigenspace tower of the pair (ϕ, ψ) for the eigenvalue t . This is the

main new tool in our study of self-maps. Of particular interest will be the persistence

module of this tower.

4 Algorithm

Assuming a hierarchical representation of an endomorphism, we explain how to com-

pute the persistent homology of its eigenspaces in three steps. The general setting

consists of a filtration and an increasing sequence of self-maps. In Step 1, we com-

pute the bases of the two towers obtained by applying the homology functor to the

filtrations of spaces and domains. In Step 2, we construct matrix representations of

the linear maps in the morphism between the two towers. In Step 3, we compute the

eigenvalues and the corresponding eigenspaces as well as their persistence.
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4.1 Hierarchical Representation

The algorithm does its computations on a simplicial complex, K , and a partial simpli-

cial map, κ : K�K . More precisely, κ is a partial map on the underlying space of K ,

but we will ignore this difference. In addition, we assume a filtration of the complex,

∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn = K , and of the domain,

dom κ0 ⊆ dom κ1 ⊆ · · · ⊆ dom κn, (15)

with κi : Ki �Ki being the two-sided restriction of κ to Ki . Writing Simp for the

category of simplicial complexes and simplicial maps, we use the two filtrations to

form a tower in Pairs(Simp). Its objects are the pairs ιi , κ
′
i : dom κi → Ki , in which

ιi is the inclusion and κ ′
i is the further restriction of κi to the domain. Its arrows are

the commuting diagrams connecting contiguous objects by inclusions. Applying the

homology functor, we get a tower in Pairs(Vect), and applying the eigenspace functor,

we get a tower in Vect. The algorithm in this section computes the persistence diagram

of the latter tower.

In principle, it is irrelevant how K and κ are obtained. In the context of sampling

an unknown map, we may construct both from a finite sample of that map. We explain

this in detail. Write Vert K for the vertex set of K , and let g : Vert K�Vert K be a

partial function from the vertex set to itself. If the vertices of a simplex σ ∈ K map

to the vertices of a simplex τ ∈ K , then we extend the vertex map linearly to σ as

follows. Letting x0, x1, . . . , x p be the vertices, and x =
∑p

i=0 λi xi a point of σ , where
∑p

i=0 λi = 1 and λi ≥ 0 for all i , we define

κ(x) :=

p
∑

i=0

λi g(xi ), (16)

which is a point of τ . Doing this for all such simplices σ , we get a partial simplicial map,

κ : K�K . Its domain consists of all simplices whose vertices map to the vertices of a

simplex in K . Having constructed κ , it is now easy to construct the partial simplicial

maps on the subcomplexes of K . Letting gi : Vert Ki �Vert Ki be the restriction of

g to the vertex set of Ki , we get κi : Ki �Ki by linear extension as before; it is

also the restriction of κ to Ki , as mentioned earlier. We observe that the image is not

necessarily the same as the domain. This difference is the reason we construct the

tower in Pairs(Simp) and not in Endo(Simp), as explained above. Finally, we note

that the domains of the κi form the filtration (15), as required. Indeed, if the vertices

of a simplex σ in Ki map to the vertices of a simplex τ in Ki , then σ ∈ dom κ j for

all i ≤ j ≤ n.

Assuming the above hierarchical representation of the sampled map, we explain

now how to compute the persistent homology of its eigenspaces in three steps. In Step

1, we compute the bases of the two towers obtained by applying the homology functor

to the filtrations of spaces and domains. In Step 2, we construct matrix representations

of the linear maps in the morphism between the two towers. In Step 3, we compute

the eigenvalues and the corresponding eigenspaces as well as their persistence.
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Fig. 5 The rows and columns of

the reduced matrix are

decomposed into n blocks each.

The kth column is zero, and the

lowest non-zero entry in the

(ℓ + 1)st column belongs to the

kth row. Since the kth and

(ℓ + 1)st columns belong to the

first and the second blocks, the

corresponding persistence

interval is [1, 1]

Step 1: Spaces Applying the homology functor, we get the tower X = (X i , ξi ) from

the filtration of domains dom κi , and the tower Y = (Yi , ηi ) from the filtration of

complexes Ki . In this step, we compute the bases of these towers, which we explain

for X . Importantly, we represent all domains and maps in a single data structure, and

we compute the basis in a single step that considers all maps at once.

Call dom κi − dom κi−1 the i -th block of simplices, and sort dom κ as

σ1, σ2, . . . , σm such that each simplex succeeds its faces, and the i th block succeeds

the (i − 1)-st block, for every 1 ≤ i ≤ n. Let D be the ordered boundary matrix of

dom κ; that is, D[k, ℓ] is non-zero if σk is a codimension-1 face of σℓ, and D[k, ℓ] = 0,

otherwise. The ordering implies that the submatrix consisting of the first i blocks of

rows and the first i blocks of columns is the boundary matrix of dom κi , for each

i . We use the original persistence algorithm [10, Chap. VII.1] to construct the basis.

Similar to the echelon form, it creates a collection of distinguished non-zero entries, at

most one per column and row, but to preserve the order, it does not arrange them in a

staircase. Specifically, the algorithm uses left-to-right column additions to get D into

reduced form, which is a matrix R so that the lowest non-zero entries of the columns

belong to distinct rows.

Suppose R[k, ℓ+1] is the lowest non-zero entry in column ℓ+1, as in Fig. 5. Then

R[., k] = 0 and bℓ+1 := R[., ℓ + 1] is the boundary of a chain that contains σℓ+1. We

note that bℓ+1 existed as early as Xk but not earlier, and that it changed to a boundary

in Xℓ+1 but not earlier. In other words, bℓ+1 /∈ im ξk−1 and bℓ+1 ∈ ker ξℓ, as required

for a maximal string. Assuming σk belongs to the i th block of simplices, and σℓ+1

belongs to the ( j + 1)-st block, the corresponding persistence interval is [i, j]. It is

empty if i = j + 1. In the persistence literature, the above situation is expressed by

saying that bℓ is born at X i and dies entering X j+1. It is also possible that a cycle is

born but never dies, in which case we do not have a corresponding lowest non-zero

entry in the matrix. But this case can easily be avoided, for example by adding the

cone over the entire complex as a last block of simplices to the filtration.
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Fig. 6 Extracting the matrix

representation of ψi from �. For

each persistence interval that

contains i , we show the row or

column that stores the

corresponding cycle

Given an index 1 ≤ i ≤ n, we identify the persistence intervals that contain i and

get a basis of X i by gathering the vectors in the corresponding columns of R. The

collection of these bases forms a basis of X ; see Sect. 3. Running the same algorithm

on the filtration of K , we get a basis of Y .

Step 2: Maps Let ϕi , ψi : X → Y be the morphisms such that ϕi is induced by

ιi : dom κi → Ki and ψi is induced by κ ′
i : dom κi → Ki . In the second step of the

algorithm, we construct matrix representations of the two morphisms. Both matrices,

� for ϕ and � for ψ , have their columns indexed by the non-zero columns of the

reduced matrix of X and their rows indexed by the non-zero columns of the reduced

matrix of Y . We explain the computations for �.

Letting R[., ℓ+ 1] be a non-zero column in the reduced matrix of X , we recall that

bℓ+1 = R[., ℓ+1] is a cycle in dom κ . First, we compute its image, cℓ+1 := κ(bℓ+1),

which either collapses to zero or is a cycle of the same dimension in im κ . Second, we

write the homology class of cℓ+1 as a linear combination of the basis vectors of Y j ,

assuming σℓ belongs to the j th block of simplices, as before. Most effectively, this is

done as part of the reduction of the boundary matrix of K . Indeed, we can insert the

images of the columns into the boundary matrix so that their representation as linear

combinations of basis vectors of Y falls out as a by-product of the reduction. Running

the same algorithm for ϕ, we get the matrix �.

The two computed matrices represent the morphisms, ϕ and ψ , from which the

matrices �i and �i representing the arrows, ϕi and ψi , can be extracted. To do so,

we first find all persistence intervals that contain i , as before. Second, we collect the

intersections of all corresponding rows and columns, as illustrated in Fig. 6.

Step 3: Eigenspaces We recall that Step 2 provides presentations of ϕ and ψ in terms

of the same bases, namely those of X and of Y as computed in Step 1. In this step,

we compute the filtration of eigenspaces and their persistence, separately for each

eigenvalue t �= 0. Fixing the eigenvalue, we compute the eigenspaces of ϕi and ψi

and we take the quotient relative to the intersection of kernels:
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Ēt (ϕi , ψi ) = ker (ϕi − tψi ), (17)

Et (ϕi , ψi ) = Ēt (ϕi , ψi )/ (ker ϕi ∩ ker ψi ) . (18)

It might be interesting to do the computations incrementally, as in Steps 1 and 2, but

here we have to add as well as remove rows and columns, which makes the update

operation complicated. Besides, the matrices at this stage tend to be small (see Table

1), so we decide to do the computations for each index i from scratch. At the same

time, we extract the kernels of ϕi and ψi from �i and �i , and we use standard

methods from linear algebra to compute the quotient. Next, we compute the maps

ξi : dom κi → dom κi+1 and their restrictions ǫt,i : Et (ϕi , ψi ) → Et (ϕi+1, ψi+1),

thus completing the construction of the eigenspace tower defined by ϕ and ψ . Finally,

we compute the persistence of this tower as explained in Sect. 3.

5 Analysis

Given a finite set of sample points and their images, we apply the algorithm of Sect. 4 to

compute information about the otherwise unknown map acting on an unknown space.

In this section, we prove that under mild assumptions—about the space, the map,

and the sample—this information includes the correct dimension of the eigenspaces.

We also show that the persistence diagrams of the eigenspace towers are stable under

perturbations of the input.

5.1 Graphs and Distances

Let f : X → X be a continuous map acting on a topological space. For convenience,

we assume that X is a subset of R
ℓ, with topology induced by the Euclidean metric.5

While we are interested in exploring f , we assume that all we know about it is a finite

set, S ⊆ X, and the image, f (s), for every point s ∈ S. Assuming that the image of

every point is again in S, we write g : S → S for the restriction of f .6 The goal is

to show that under reasonable conditions, f and g are similar so that we can learn

about the former by studying the latter. To achieve this, we need some way to measure

distance between two functions whose domains need not be the same. To this end, we

consider the graphs of the functions,

G f := {(x, f (x)) | x ∈ X}, (19)

Gg := {(s, g(s)) | s ∈ S}, (20)

which are both subsets of R
ℓ × R

ℓ. Using the product metric, the distance between

(x, x ′) and (y, y′) in the product space is the larger of the two Euclidean distances,

5 With occasionally more elaborate formalism, everything we say can be generalized to X embedded in a

general metric space.

6 In cases in which the image of a point is not in S, we can snap the image to the nearest point in S, which

usually implies only a small perturbation of the map. Similarly, we can relax the assumption that g be a

restriction of f to allow for errors due to noise, for imprecision of measurement, and for approximations

in computation.
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‖x − y‖ and ‖x ′ − y′‖. We compare two maps using the Hausdorff distance between

their graphs. Recall that the Hausdorff distance between two sets is the infimum radius,

r , such that every point of either set has a point at distance at most r in the other set. We

note that the Hausdorff distance between the domains of the two functions is bounded

from above by the Hausdorff distance between their graphs:

Hdf(X, S) ≤ Hdf(G f , Gg), (21)

simply because the distance between two points in R
ℓ × R

ℓ is at least the distance

between their projections to the first factor. The Hausdorff distance between two sets

is related to the difference between the distance functions they define. To explain this,

let dX, dS : R
ℓ → R be the functions that map each point y to the infimum distance

to a point in X and S, respectively. Similarly, let dG f , dGg : R
ℓ × R

ℓ → R be the

corresponding distance functions in the product space. Then we have

‖dX − dS‖∞ = Hdf(X, S), (22)

‖dG f − dGg‖∞ = Hdf(G f , Gg). (23)

The conditions under which we can infer properties of f from g include that for small

distance thresholds, the sublevel sets of dX have the same homology as X. To quantify

this notion, we assume that dX is tame, by which we mean that every sublevel set has

finite-dimensional homology groups, and there are only finitely many homological

critical values that are the values at which the homology of the sublevel set changes

non-isomorphically. Following [6], we define the homological feature size of X as the

smallest positive homological critical value of dX, denoting it as hfs(X). Similarly, we

assume that dG f is tame, and we define hfs(G f ).

We note that there are functions f for which hfs(X) < hfs(G f ), but there are also

functions for which the relation is reversed. For example, the graph of the function that

wraps the unit circle in R
2 k times around itself is a curve on a torus in R

4. For large

values of k, thickening this curve by a small radius suffices to get the same homotopy

type as the torus, while thickening the circle by the same radius does not change its

homotopy type.

5.2 Sublevel Sets

If f and g are similar, then the sublevel sets of their distance functions are similar. To

make this more precise, we write Ar := d−1
A [0, r ], where A may be X, S, G f , Gg, or

some other sets. Then

Xr ⊆ Sr+ε ⊆ Xr+2ε, (24)

G f r ⊆ Ggr+ε ⊆ G f r+2ε, (25)

provided ε ≥ Hdf(G f , Gg), which we recall is at least the Hausdorff distance between

X and S. This suggests that we compare f and g based on the sublevel sets of the four

distance functions, which is the program we follow.
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To apply the algorithms in Sect. 4, we use an indirect approach that encodes the

sublevel sets in computationally more amenable simplicial complexes. To explain

this connection, we construct a complex by drawing a ball of radius r around each

point of S, and let Kr = Kr (S) be the nerve of this collection. It is sometimes

referred to as the Čech complex of S and r ; see [10, Chap. III]. Similarly, we let

Lr = Lr (Gg) be the Čech complex of Gg and r .7 While the complexes are abstract,

they are constructed over geometric points, which we use to form maps. Specifically,

we write pr : Lr → Kr for the simplicial map we get by projecting R
ℓ×R

ℓ to the first

factor, and we write qr : Lr → Kr if we project to the second factor. Both are simplicial

maps because for every simplex in Lr , its projections to the two factors both belong

to Kr . Note that pr is injective, which implies that its inverse is a partial simplicial

map, p−1
r : Kr �Lr , and its restriction to the domain is a simplicial isomorphism.

Composing it with qr , we get the partial simplicial map qr p−1
r : Kr �Kr .

We are now ready to relate this construction with the setup we use for our algorithm

in Sect. 4. There, we begin with a partial simplicial map, κ : K�K , and a filtration of

K . The filtration is furnished by the sequence of Čech complexes of S, which ends with

the complete simplicial complex K over the points in S, and κ is the partial simplicial

map defined by g : S → S. In this case, κ happens to be a simplicial map because

K is complete. For each radius, r , we have defined κr : Kr �Kr as the restriction of

κ , which is a partial simplicial map. It is not difficult to prove that κr is equal to the

map we have obtained by composing p−1
r and qr before. We state this result and its

consequence for towers of eigenvalues without proof.

Projection Lemma Let κr : Kr �Kr be the partial simplicial map obtained by

restricting κ to Kr , and let pr , qr : Lr → Kr be the simplicial maps induced by

projecting to the two factors. Then κr = qr p−1
r , for every r ≥ 0.

Recall that κ ′
r is the restriction of κr to the domain, and ιr : dom κr → Kr is the

inclusion map. In view of the Projection Lemma, we can freely move between the

tower of eigenspaces we get for (ι, κ ′) and (p, q), which we do in the sequel.

5.3 Interleaving

We prepare the main results of this section with a technical lemma about interleaving

arrows between eigenspaces. Let U, V ⊆ R
ℓ, let h : U → U and k : V → V be self-

maps, and set ε := Hdf(Gh, Gk). Projecting a sublevel set of the distance function

of the graph to those of the two factors, we get an object in Pairs(Top) for h, and

another such object for k. Choosing the distance thresholds so they satisfy r + ε ≤ r ′,

we have inclusions and therefore an arrow in Pairs(Top):

7 A practically more convenient alternative is the Vietoris–Rips complex that consists of all simplices

spanned by the data points whose diameters do not exceed 2r . We will use it for the computations discussed

in Sect. 6, but for now we stay with the Čech complex, which has the theoretical advantage that its homotopy

type agrees with that of the sublevel set for the same r .

123



1232 Found Comput Math (2015) 15:1213–1244

Ur Ghr Ur

Vr ′ Gkr ′ Vr ′

❄ ❄

✛pr ✲qr

❄
✛pr ′ ✲qr ′

. (26)

Applying now the homology functor, we get an arrow in Pairs(Vect), where we write

ϕr , ψr and υr ′ , νr ′ for the maps induced in homology. Next applying the eigenspace

functor, we get the arrow Et (ϕr , ψr ) → Et (υr ′ , νr ′) in Vect. The technical lemma

states two kinds of interleaving patterns, (27) and (28), with the main difference being

the reversed direction on the right.

Interleaving Lemma Let U, V ⊆ R
ℓ, and h : U → U, k : V → V be such that the

associated distance functions are tame. Set ε := Hdf(Gh, Gk). If a + ε ≤ b ≤ c ≤

d − ε, then

Et (ϕa, ψa) Et (ϕd , ψd)

Et (υb, νb) Et (υc, νc)

✲

❄
✲

✻ (27)

commutes. If a+ε ≤ b ≤ c and a ≤ d ≤ c−ε, then the following diagram commutes:

Et (ϕa, ψa) Et (ϕd , ψd)

Et (υb, νb) Et (υc, νc)

✲

❄ ❄
✲

. (28)

Proof We prove (27) using the commutative diagram of inclusions and projections

in Fig. 7. Within each disk, we have an object of Pairs(Top), and for every pair of

adjacent disks, we have an arrow of Pairs(Top).

The vertical arrows are replicas of (26), which are justified by a + ε ≤ b and

c ≤ d −ε. Each horizontal arrow connects objects in Pairs(Top) induced by the same

self-map, so we only need a ≤ d and b ≤ c, which we get from the assumptions.

Applying the homology functor, we get the same diagram, with spaces and maps

replaced by the corresponding vector spaces and linear maps. Indeed, the horizontal

maps are clear, and the vertical maps are induced by the inclusions that exist because of

the assumed relations between a, b, c, d, and ε. Applying now the eigenspace functor,

we get the diagram in (27), which is easily seen to commute. The proof for the diagram

in (28) is similar and omitted. ⊓⊔

5.4 Small Thickenings

To further prepare our first main result, we recall that the projections from the graph

of a continuous map commute with the map itself, a fact best expressed using a

commutative diagram:
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Fig. 7 Sublevel sets of the distance functions and their containment relations. All maps labeled p or q are

projections, and all other maps are inclusions

(29)

Here, we write Y for the homology group of G f , μ : Y → X for the map induced on

homology by p : G f → X, etc. The restriction of p to G f and X is a homeomorphism.

We can therefore apply the result stated at the end of Sect. 2, which implies that

Et (μ, ν) and Et (φ) are isomorphic, for every eigenvalue t . This property persists

for small thickenings of X and G f assuming the two spaces are compact absolute

neighborhood retracts; see [20, p. 290, Thm. 10]. While the name is intimidating,

the requirements for a space to be called an absolute neighborhood retract are mild.

Since X and G f are homeomorphic, the graph is a compact absolute neighborhood

retract whenever X is one. The result about thickening such spaces will be useful in the

proof of our first main result, so we state this observation more formally, but without

proof.

ANR Lemma Let X ⊆ R
ℓ be a compact absolute neighborhood retract, let f : X →

X be such that the associated distance functions are tame, and let r be positive but

smaller than min{hfs(X), hfs(G f )}. Writing μr , νr for the maps induced in homology

by the restrictions of p, q to G fr and Xr , the eigenspace Et (μr , νr ) is isomorphic to

Et (φ), for every eigenvalue t.
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5.5 Convergence

We are now ready to formulate our first main result. As before, we consider a contin-

uous self-map f : X → X, and write φ : X → X for the endomorphism induced in

homology. Let S ⊆ X be a finite sample of X, and let g : S → S another map, perhaps

the restriction of f to S. As before, we consider the projections from a thickened

version of Gg to the two components. Letting ϕr and ψr be the corresponding maps

induced in homology, we write

ǫr ′

t,r : Et (ϕr , ψr ) → Et (ϕr ′ , ψr ′) (30)

for the map between the eigenspaces. In a nutshell, our result is a relationship between

the dimension of Et (φ) and the rank of ǫr ′

t,r , for special values of r and r ′.

Inference Theorem Let X ⊆ R
ℓ be a compact absolute neighborhood retract, S ⊆

X, and let f : X → X, be a map such that the distance functions for X and G f are

tame. Then any map g : S → S satisfies

dim Et (φ) = rank ǫ3ε
t,ε, (31)

for all Hdf(G f , Gg) < ε < 1
4

min{hfs(X), hfs(G f )}.

Proof Recall that pr andqr are the projections of G f r to the two components, and

μr andνr are the maps induced in homology. For r ≤ r ′, we write δr ′

t,r : Et (μr , νr ) →

Et (μr ′ , νr ′) for the induced map on eigenspaces. In view of the ANR Lemma, it

suffices to prove

dim Et (μr , νr ) = rank ǫ3ε
t,ε (32)

for r < min{hfs(X), hfs(G f ). To prove (32), set h = f and k = g in the diagram in

Fig. 7. Applying the eigenspace functor now gives

Et (μa, νa) Et (μd , νd)

Et (ϕb, ψb) Et (ϕc, ψc)

❄

✲δ

✲ǫ
✻ . (33)

The rest of the argument does the accounting for particular choices of the parameters.

Let e > Hdf(G f , Gg), assume b ≤ c, and set a = b − e and d = c + e. Consider the

image of Et (μa, νa) in Et (μd , νd). We can either follow the horizontal arrow from

left to right, or the down-right-up path, and because of commutativity, we get the same

image either way. Dropping the arrows at the end and the beginning of the path does

not decrease the dimension of the image. We therefore get inequalities between the

dimensions of the images of the horizontal maps, which we now decorate with their

parameters:
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rank δc+e
t,b−e ≤ rank ǫc

t,b, (34)

rank ǫc+e
t,b−e ≤ rank δc

t,b, (35)

where we get the second inequality by symmetry, switching the assignments to h = g

and k = f in Fig. 7. Next, choose a positive η < ε small enough such that the

Hausdorff distance between the graphs of f and g is less than ε − η. By assumption,

the homological feature sizes of X and G f are both larger than 4ε and therefore larger

than 4(ε − η). Substituting b = ε, c = 3ε, e = ε − η in (34), and b = 2ε − η, c =

2ε + η, e = ε − η in (35), we obtain

rank δ
4ε−η
t,η ≤ rank ǫ3ε

t,ε ≤ rank δ
2ε+η
t,2ε−η. (36)

By definition of ε and η, there are no homological critical values of dX and dG f in

[η, 4ε − η]. It follows that the dimensions of the images of δ
η
t,η, δ

4ε−η
t,η , and δ

2ε+η
t,2ε−η are

all the same. Hence,

rank δ
η
t,η = rank ǫ3ε

t,ε. (37)

Since rank δ
η
t,η = dim Et (μη, νη), we see that (32) is satisfied for r = η. ⊓⊔

The Inference Theorem may be interpreted as a statement of convergence of our

algorithm: if the sampling is fine enough, then we are guaranteed to get the dimensions

of the eigenspaces as dimensions of persistent homology groups.

5.6 Stability

Next, we strengthen the convergence result and prove the stability of the persistence

diagrams of the eigenspace towers under perturbations of the input. This is interesting

because we may sample the same self-map twice and wonder what we can say about

the relationship between the two results. Most of the work that allows us to give a

meaningful answer to this question has already been done. To set the stage, we consider

two self-maps, h : U → U and k : V → V, in which both U and V are embedded in

R
ℓ. As before, we assume that the distance functions, dU, dV, dGh, anddGk are tame.

We can now form towers in Pairs(Top) consisting of projections from the sublevel sets

of dGh and dGk to the sublevel sets of dU and dV; see Fig. 7. To formalize the result,

we define the bottleneck distance between two persistence diagrams as the maximum

distance between pairs in an optimal bijection:

Bot(E, F) = inf
ι:E→F

max
P∈E

‖P − ι(P)‖∞. (38)

Here, P = [ab, ad) is a persistence interval in E, now using the original convention in

which ab and ad are the birth- and death-values. If Q = [cb, cd) is another persistence

interval, then we compute ‖P − Q‖∞ = max{|ab − cb|, |ad − cd|}, as for points in
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the plane.8 Letting Et and Ft be the towers of eigenspaces in Vect we get for h and k,

we write Dgm(Et ) and Dgm(Ft ) for their persistence diagrams.

Stability Theorem Let U, V ⊆ R
ℓ, and h : U → U k : V → V such that the

associated distance functions are tame. Then

Bot(Dgm(Et ), Dgm(Ft )) ≤ Hdf(Gh, Gk). (39)

Proof According to [4, Thm. 4.9], we only need to verify the ε-strong interleaving of

the two towers for ε equal to the Hausdorff distance between Gh and Gk, but this is

guaranteed by the Interleaving Lemma. ⊓⊔

Letting h and k be finite samples of f : X → X, the Stability Theorem implies that

the information they convey about the given function cannot be arbitrarily different.

Setting h = f and k = g, the theorem quantifies the extent to which the persistence

diagram for the sampled points can deviate from that of the original self-map.

6 Experiments

In this section, we present the results of a small number of computational experiments

based on the implementation of the algorithm described in Sect. 4. We begin with a

brief review of the algorithm and a discussion of the design decisions used in writing

the software.

6.1 Implementation

We implement the three steps of the algorithm using the C++ language and methods

from its STL library. As mentioned before, we use Vietoris–Rips complexes as the

basis of persistence computations, as opposed to the theoretically more satisfying

but computationally more expensive Čech complexes. With each simplex, we store

the vertices so that their images can be easily computed. Conversely, we use a map

in STL to find the simplex for a given set of vertices. In addition, we compute the

kernels and the quotients in Step 3 using methods from the CAPD library [24] and the

CAPD::RedHom library [25].

Step 1 compute the bases of the towers X = (X i , ξi ) and Y = (Yi , ηi ) defined by

the filtrations of the domains and complexes. We use the original persistence

algorithm with a sparse-matrix representation in which the non-zero elements

of each column are stored in a data structure referred to as a vector in C++.

Step 2 compute the matrix representations of the morphisms ϕ,ψ : X → Y . Similar

to Step 1, the algorithm works by incremental reduction of two matrices. The

result is a compact representation of the maps ǫt,i in the eigenspace tower.

8 Following [6], we assume that each persistence diagram contains copies of all empty intervals—points

of the form (a, a)—which are used to complete a bijection or decrease the maximum distance.
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Table 1 Time in seconds for constructing the 2-skeleton of the Vietoris–Rips complex and executing the

steps of our algorithm for one eigenvalue

No. of points Skeleton Step 1 Step 2 Step 3

40 0.14 0.39 0.00 0.04

60 0.67 2.12 0.00 0.15

80 2.21 6.84 0.01 0.39

100 5.18 23.49 0.01 0.86

120 11.13 63.09 0.01 1.50

140 19.53 137.86 0.03 2.18

Step 3 construct the sequence of eigenspaces and compute the corresponding persis-

tence diagram. Since the matrices representing the maps ǫt,i tend to be small

and dense, we use their full representations and the algorithm in the proof of

the Basis Lemma.

All experiments are conducted with an Intel Core2 Quad 2.66 GHz processor with

8 GB RAM, but using only one core. To convey a feeling for the performance of the

software, Table 1 states the time needed to process datasets of size between 40 and

140 points, giving complexes between 10,000 and 460,000 simplices.

We mention that the running time can be further improved. In particular, the current

implementation is generic, working for any field of coefficients, and the code imple-

menting Step 1 has not yet been optimized. Note the dramatic drop in the running

time from Step 1 to Step 2. The reason is the surprisingly small numbers of generators

needed in the construction of the matrices � and �. In the first set of experiments,

we get between 3 and 21 generators for the filtration of dom κ and between 5 and 24

generators for the filtration of K . Compare this with the 10,700 to 457,450 simplices in

the 2-skeleta of the Vietoris–Rips complex which have to be processed in Step 1. The

code for Step 3 takes more time than for Step 2 because it executes computationally

demanding procedures in linear algebra.

6.2 Expansion

In our first set of computational experiments, we consider the unit circle in the complex

plane, and the function f : S
1 → S

1 defined by f (z) := z2. It maps each point on the

circle to the point with twice the angle. The 1-dimensional homology of the circle has

rank 1, with the circle itself being a generator. Under f , the image of this generator is

the circle that wraps around S
1 twice. We see that the map expands the space, doubling

the angle between any two points. Our main interest is to see whether the methods of

this paper can detect this simple fact.

We chose values for three parameters to generate the datasets on which we run

our software: the order of the cyclic field, Zk with k = 1009, the number of points,

m = 100, and the width of the Gaussian noise, σ ∈ [0.00, 0.30]. The finite field

is used because we lack a general algorithm for eigenvalues; instead, we try out all

possible values. The sample of the function f is computed by picking points z j :=

cos(
2 jπ
m

) + i sin(
2 jπ
m

), for 0 ≤ i < m, where i is the imaginary unit. Next, we let
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Fig. 8 The representation of the function f (z) := z2 using m = 100 points with Gaussian noise σ = 0.18.

The dots mark the points in S and the crosses mark their squares. The solid polygon generates the 1-cycle

visible in the persistence diagram of the eigenspace tower for eigenvalue t = 2; its image is drawn in blue

dashed lines and wraps twice around the origin, as expected (Color figure online)

x j be a point randomly chosen from the isotropic Gaussian kernel with center z j and

width σ . Let S be the set of points x j . Finally, we set the image of x j to the point in

S that is closest to x2
j under the Euclidean metric in the plane. For an example, see

Fig. 8. The m points define n ≤
(

m
2

)

different distances and therefore n + 1 different

Vietoris–Rips complexes. We are only interested in the 1-dimensional homology, so

we can limit ourselves to the 2-skeleta of these complexes. To construct them, we use

the algorithm in [22] to compute the complete 2-complex over S. Sorting the edges by

length, we get the filtration K0 ⊆ K1 ⊆ . . . ⊆ Kn . Figure 9 shows the 1-dimensional

persistence diagrams thus obtained for four different values of the width σ .

As expected, the persistence of the interval decreases as the noise increases. For

σ = 0.30, we get a low-persistence interval for every value of t . While we do not

observe this all the time, this is a generic phenomenon, and we will shed light on it

shortly. For now we just mention that the occurrence of every field value as eigenvalue

indicates that we do not have sufficient data to see the features of the map.

6.3 Reflection

In our second set of computational experiments, we let f : S
1 → S

1 be defined by

f (z) := z̄, where z̄ = a − ib if z = a + ib. Going around the circle once, in a

counterclockwise order, the image under f goes around the circle once in a clockwise

order. Again we are interested whether the methods in this paper can detect this fact.

The points and their images are chosen in the same way as before, except that the
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Fig. 9 The 1-dimensional persistence diagrams of f (z) := z2 obtained for data that samples the function

with Gaussian noise. Crosses mark the persistence intervals for eigenvalue t = 2. The dots alert us of the

fact that we see this interval for all values, not just for t = 2

image of x j is chosen to be the closest point to x̄ j . Figure 10 shows the result for

σ = 0.27.

Instead of showing the individual 1-dimensional persistence diagrams, we super-

impose them into one diagram. To further facilitate the comparison with the first set of

experiments, we draw the superimposed diagrams side by side in Fig. 11. In both cases,

the Gaussian noise varies between 0.00 and 0.30. We limit the comparison to the eigen-

values t = 2 for the expansion, and t = −1 (the inverse of 1 in the used finite field)

for the reflection. The diagrams clearly show that the persistence interval shrinks with

increasing noise. Indeed, the birth-coordinate grows and the death-coordinate shrinks,

so that the sum stays approximately constant, with a faint tendency to shrink. We also

see that for the larger noise levels, there are sometimes spurious persistence intervals.

6.4 Abundance of Eigenvalues

We wish to shed light on the phenomenon that for some datasets and some complexes

in the filtration, every field value is an eigenvalue of the pair of linear maps. While

it might be surprising at first, there is an elementary explanation that has to do with

computing the eigenvalues for a pair instead of a single map.
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Fig. 10 The representation of the function f (z) := z̄ using m = 100 points with Gaussian noise σ = 0.27.

The solid polygon generates the 1-cycle visible in the persistence diagram of the eigenspace tower for

eigenvalue t = −1; its image is drawn in blue dashed lines. The dotted polygon generates a second

(spurious) 1-cycle in the same diagram. Correspondingly, there are two persistence intervals, drawn as

crosses in Fig. 11 (Color figure online)

Here is an illustrative example. Let Yr be generated by two loops, A and B, and let

Xr be generated by a single loop, C . Suppose also that ϕr maps both A and B to C ,

while ψr maps A to C and B to 2C . Setting y = i A + j B, we have ϕr (y) = (i + j)C

and ψr (y) = (i + 2 j)C . Elementary number theoretic considerations show that for

every t ∈ Zk , there are i and j such that t =
i+ j

i+2 j
. In other words, we can find i and

j such that ϕr (y) is the t-fold multiple of ψr (y). Intersecting the two kernels, we get

i + j = i + 2 j = 0 and therefore i = j = 0. Hence, taking the quotient has no effect,

implying that Et (ϕr , ψr ) has non-zero rank for every t . Indeed, because the two loops

in Yr map to different multiples of the same loop in Xr , we have enough flexibility

to form combinations whose images under the two maps are arbitrary multiples of

each other. This can also happen for an endomorphism φr : Yr → Yr , for example by

setting C = B, but in this case we do not have a second map to compare and therefore

get t = 2 as the only non-zero eigenvalue.

Let us now look at the linear algebra of the situation. In Step 2, we compute matrices

�r and �r representing ϕr , ψr : Yr → Xr , and in Step 3, we compute the nullspace

of �r − t�r . The entries of this matrix are degree-1 polynomials in t . Let t0 be a

value at which the matrix reaches its maximum rank, which we denote as k0. Clearly,

k0 ≤ min{#rows, #columns}. Note that �r − t0�r has a full-rank minor of size k0

times k0. Let �(t) be the determinant of that minor, but now for arbitrary values t . It is a

polynomial of degree k0, and because �(t0) �= 0, it is not identically zero and therefore

has at most k0 roots. By choice of t0, this implies that the matrix has maximum rank for
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Fig. 11 The superposition of the 1-dimensional persistence diagrams for f (z) := z2 and t = 2 on the left

and for f (z) := z̄ and t = −1 on the right. The crosses are labeled by the level of the Gaussian noise used

to generate the datasets. The dots are labeled similarly, but they alert us of the fact that these persistence

intervals occur for all values of t

all but at most k0 values of t . Correspondingly, the nullspace has minimum dimension,

#columns − k0, for all but at most k0 values of t . This is the dimension of Ēt (ϕr , ψr ).

We still take the quotient by dividing with ker ϕr ∩ ker ψr , which amounts to reduce

the dimension by the dimension of that intersection, which we denote as k1. The

resulting dimension of the nullspace is the same for all but at most k0 values of t ,

namely #columns − k0 − k1. If k1 < #columns − k0, then Et (ϕr , ψr ) has positive

rank for every value of t . This is what happens for the expanding datasets generated

with width σ = 0.15, 0.24, and0.30 and for the persistence intervals represented by

the dots in the left diagram in Fig. 11. In all other cases, we have k1 = #columns− k0.

In conclusion, we mention that the extension of the eigenvalue problem to pairs

of linear maps for not necessarily square matrices is not well understood. A relevant

unpublished manuscript is [5], in which properties of the solution are discussed and a

reduction algorithm is given.

6.5 Torus Maps

We test the method to see if it can distinguish between some torus maps. We identify

S
1 with the quotient space R/Z and consider the torus T := S

1 × S
1 ∼= R

2/Z
2,

equipped with the metric induced by the Euclidean distance in the plane. Each 2-by-2

matrix with integer entries induces a self-map on the torus. Using the cycles S
1 × 0

and 0 × S
1 as a basis, the same matrix represents the map induced on first homology.

We consider the following three matrices,

A1 :=

[

2 0

0 2

]

, A2 :=

[

0 1

1 0

]

, A3 :=

[

1 1

0 1

]

.

Note that A1 is diagonal with non-trivial eigenspace for the eigenvalue 2, which is

spanned by two eigenvectors. Matrix A2 is non-diagonal with diagonal Jordan form.
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It has one-dimensional eigenspaces for the eigenvalues 1 and −1. Matrix A3 has

non-diagonal Jordan form and has only one non-trivial, one-dimensional eigenspace.

We denote the corresponding self-maps by f1, f2, and f3. Selecting a set of 200

points uniformly at random on the torus, we compute approximations of the fi . The

persistence diagrams of the eigenspaces of the maps induced in first homology are

shown in Fig. 12. In each case, the expected eigenvectors clearly separate from the

rest of the diagram, facilitating the easy distinction between the three maps.

7 Discussion

The main concept introduced in this paper is the eigenspace tower of a filtered self-map.

Together with its persistence diagram, it forms a powerful tool in the study of discretely

sampled dynamical systems. Besides the mathematical development, which is based

on a category theory approach to persistence, we give an algorithm for computing

persistence diagrams of eigenspace towers, and we provide evidence of its efficacy by

presenting results obtained with a software implementation. The work reported in this

paper raises a number of yet unanswered questions.

• Can the persistence of the eigenspace towers of a pair of morphisms be computed

directly, for all eigenvalues simultaneously? To answer this question, we may have

to study the persistence of generalized eigenspaces and Jordan form representations

of endomorphisms.

• The category approach to persistence opens the door to a number of derived tow-

ers, including generalized kernels and generalized images. How can we use their

persistence to enhance our understanding of discretely sampled dynamical systems?

We remark that the traditional notion of a discrete dynamical system discretizes time

but not space. In contrast, discretizations of space are needed for rigorous numerics

of dynamical systems; see e.g. [14, Sect. 10.6]. There, the space is divided into boxes

and estimates of the images of the boxes are used as input for the algorithm that

computes topological invariants. This is different from the more radical discretization

suggested by the work in this paper where we sample the dynamical system only in

a finite collection of points. Such an approach may be useful when the dynamical

system is available only via experiments. It may also be used to replace rigor in

high-dimensional problems where reasonable rigorous estimates are not possible. We

believe that it is interesting to continue the program started here and embed persistence

more comprehensively in discrete approaches to dynamical systems.
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