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Abstract

Serine hydrolases play critical roles in many biological processes, and several are targets of

approved drugs for indications such as type 2 diabetes, Alzheimer’s disease, and infectious

disease. Despite this, most of the 200+ human serine hydrolases remain poorly characterized with

respect to their physiological substrates and functions, and the vast majority lack selective, in

vivo-active inhibitors. Here, we review the current state of pharmacology for mammalian serine

hydrolases, including marketed drugs, compounds under clinical investigation, and selective

inhibitors emerging from academic probe development efforts. We also highlight recent

methodological advances that have accelerated the rate of inhibitor discovery and optimization for

serine hydrolases, which we anticipate will aid in their biological characterization and, in some

cases, therapeutic validation.

Introduction

Serine hydrolases are one of the largest and most diverse classes of enzymes found in

eukaryotes and prokaryotes. These enzymes, which include lipases, (thio)esterases,

amidases, peptidases, and proteases, all utilize a base-activated serine nucleophile to cleave

amide or (thio)ester bonds in substrates via a covalent acyl-enzyme intermediate (Fig. 1). In

mammals, serine hydrolases represent ~1% of all proteins and play vital roles in many

(patho)physiological processes, including blood clotting1, digestion2, nervous system

signaling3, inflammation4, and cancer5–7. Serine hydrolases also perform critical functions

in bacteria and viruses, where they contribute to pathogen life cycle8, virulence9, and drug

resistance10.

The widespread biological significance of serine hydrolases has motivated many academic

and industrial groups to develop inhibitors for enzymes from this class, both for use as

chemical probes to study enzyme function and as potentially new therapeutic agents. Four

general strategies have been successfully employed: 1) mining natural products (proteins,

polysaccharides, and small-molecules), 2) converting endogenous substrates into inhibitors,

3) screening large compound libraries and optimizing lead scaffolds, and 4) tailoring

compounds containing mechanism-based electrophiles, including carbamates11, 12,

ureas 13, 14, activated ketones15, and lactones/lactams16, 17, that covalently react with the

active-site serine nucleophile. Although the last approach overlaps with the other strategies

—e.g., electrophiles are intrinsic in some natural product scaffolds18, 19 and have been

extensively employed as “warheads” on enzyme substrates and/or products to convert them

into inhibitors20, 21—screening of “hydrolase-directed” electrophile libraries broadly against

serine hydrolases has emerged as a particularly fruitful independent approach for the

identification of inhibitors11, 14. Together, these efforts have yielded a diverse array of

Correspondence to B.F.C. cravatt@scripps.edu.

NIH Public Access
Author Manuscript
Nat Rev Drug Discov. Author manuscript; available in PMC 2013 May 28.

Published in final edited form as:

Nat Rev Drug Discov. ; 11(1): 52–68. doi:10.1038/nrd3620.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



pharmacological tools, including proteins, peptides, polysaccharides, and small-molecules,

that inhibit serine hydrolases with good selectivity, and several of these agents have been

approved for clinical use to treat diseases such a type 2 diabetes, obesity, blood-clotting

disorders, Alzheimer’s disease, and bacterial and viral infections [Table 1 and

Supplementary information S1 (table)].

Despite these advances, the vast majority of eukaryotic and prokaryotic serine hydrolases

still lack selective inhibitors. Further, many serine hydrolases, including some that have

been genetically linked to human disease, remain uncharacterized with respect to their

physiologic substrates and functions. In this Review, we survey the current pharmacological

toolkit and therapeutic potential for human serine hydrolases, giving special attention to

modern chemoproteomic methods that have quickened the pace of inhibitor discovery and

optimization. We also discuss the challenges that must be overcome to create selective

inhibitors for the vast majority, if not all mammalian serine hydrolases, and highlight how

they are being met by advances in screening and the development of classes of compounds

that show preferential capacity to inactivate serine hydrolases.

The human serine hydrolases

There are ~240 human serine hydrolases, which can be divided into two near-equal-sized

subgroups – the serine proteases (~125 members) and the ‘metabolic’ serine hydrolases

(~115 members) (Fig. 2).6 The vast majority of serine proteases, which primarily cleave

peptide bonds in proteins, have chymotrypsin-like or subtilisin-like folds (Fig. 2, black and

red enzymes, respectively), with a catalytic serine nucleophile activated by participation in a

catalytic triad with conserved histidine and aspartic acid residues.22 Serine proteases

typically exist as inactive precursors (i.e., zymogens), which are activated by limited

proteolysis upon specific biological stimuli and subsequently inactivated by endogenous

protein inhibitors.22, 23 These enzymes include the well studied digestive protease trypsin

and the critical blood clotting mediators thrombin and activated factor Xa (FXa).

The ‘metabolic’ serine hydrolases (Fig. 2) are comprised of a wide range of lipases,

peptidases, esterases, thioesterases, and amidases that hydrolyze small-molecules, peptides,

or post-translational (thio)ester protein modifications.6 Consistent with their diverse

substrate repertoire, the metabolic serine hydrolases are comprised of a much more

structurally diverse group of enzymes than the serine proteases (Fig. 2, note branch length).

The majority (>60%) of metabolic serine hydrolases have an α/β-hydrolase fold and Ser-

His-Asp catalytic triad, but this sub-family also includes several structurally and

mechanistically distinct enzyme clades such as the patatin domain-containing lipases24 and

the amidase signature enzymes25, 26, which use Ser-Asp dyads and Ser-Ser-Lys triads for

catalysis, respectively. Although several members of the metabolic serine hydrolase family

have been extensively characterized, including acetylcholinesterase (ACHE), fatty acid

amide hydrolase (FAAH), and dipeptidyl peptidase-4 (DPP-4), the majority are still

unannotated with respect to their physiological substrates and functions.6

Clinically approved inhibitors of human serine hydrolases

Small-molecule inhibitors have been clinically approved for six distinct human serine

hydrolase targets, four of which are described below (Table 1). As several of these

compounds are not perfectly selective for a single enzyme, and at least one, orlistat, is

thought to derive therapeutic benefit from inhibiting several related enzymes27, the actual

number of human serine hydrolases targeted by commercial drugs is likely higher than six.

Interestingly, despite the pharmaceutical industry’s perceived aversion to developing

therapeutics that form covalent bonds with protein targets28, five of these drugs,

rivastigmine29, saxagliptin30, vildagliptin31, orlistat32, and sivelestat33, 34, contain
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electrophilic chemical groups that interact covalently with their target’s active-site serine

nucleophile. Additional examples of electrophilic drugs that target serine hydrolases include

the β-lactam antibiotics35, which inhibit bacterial transpeptidase and β-lactamase enzymes,

and the recently approved hepatitis C virus (HCV) drugs boceprevir and telaprevir36, which

are α-keto amides that inhibit the HCV NS3 protease [Supplementary information S1

(table)]. In addition to these small-molecule inhibitors, several large biomolecules and their

derivatives (proteins, peptides, polysaccharides) that target serine hydrolases, such as

thrombin, are either in clinical development or have been approved for clinical use37.

However, due to space limitations, we will focus on small-molecule inhibitors of human

serine hydrolases in this Review.

Inhibitors of serine proteases involved in coagulation

Venous and arterial thromboembolic diseases, which are characterized by occlusion of blood

vessels by thrombi (i.e., aggregations of platelets, fibrin, and cells), are a major cause of

morbidity and mortality worldwide37. Several serine proteases play central roles in the blood

coagulation pathway, where sequential activation of protease zymogens results in the rapid

formation of insoluble fibrin blood clots1, 38, and have long been the main targets of

anticoagulant drug development efforts. For the past half-century, heparins and vitamin K

antagonists (e.g. warfarin), both of which indirectly inactivate several proteases in the

cascade, have been the two major anticoagulant drug classes. However, these agents have

important clinical drawbacks; heparins require parenteral administration due to their large

size, and warfarin, although orally available, has a narrow therapeutic window, many food-

drug interactions, and requires frequent monitoring37. More recent research efforts have

focused on the development of selective and orally available small-molecules that directly

block one of two key coagulation proteases, thrombin (also known as factor IIa) and

activated factor Xa (FXa).

Thrombin, the final protease in the clotting cascade, cleaves fibrinogen into fibrin, potently

activates platelets, and indirectly activates itself through a feedback loop39. Injectable direct

thrombin inhibitors (DTIs) have been known for many years; the leech salivary peptide

hirudin40, the hirudin-derivative bivalirudin41, and the small-molecule argatroban42 (Table

1) are all clinically approved DTI anticoagulants43. The first orally available small-molecule

DTI, ximelagatran (Exanta; AstraZeneca) was developed starting from a peptide scaffold

that mimicked the thrombin substrate fibrinogen39. Ximelagatran, however, exhibited

serious liver toxicity, and consequently was not approved in the United States and was

withdrawn in Europe in 200644. The next attempt to develop an orally available DTI

originated from an X-ray crystal structure of the peptide-like inhibitor NAPAP in complex

with bovine thrombin45. Replacement of the central NAPAP glycine residue with a more

rigid isostere and subsequent optimization resulted in the reversible inhibitor dabigatran,

which exhibited excellent anticoagulant activity in human blood with good selectivity for

thrombin over related serine proteases46. However, dabigatran was not orally bioavailable,

likely due to a highly basic amidine residue that was included to mimic the fibrinogen

substrate. In order to achieve oral bioavailability, dabigatran was masked as a double

prodrug (Table 1) (Dabigatran etexilate; Pradaxa; Boehringer Ingelheim), which is

hydrolyzed to release dabigatran in vivo47. Importantly, dabigatran etexilate did not show

any evidence of liver toxicity48, and has recently gained regulatory approval worldwide.

FXa, the other major protease target for anticoagulant development, cleaves prothrombin

into active thrombin49. Potent parenteral FXa inhibitors have been known for decades,

including the polypeptides antistasin50, 51 and the tick anticoagulant peptide (TAP)52. These

agents, together with more recently introduced pentasaccharide fondaparinux (Arixtra;

GlaxoSmithKline)53, an analog of the heparin core that selectively inhibits FXa but not

thrombin, were critical in elucidating the role of FXa in thrombosis and validating selective
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FXa inhibition as a therapeutic strategy54. Initial small-molecule FXa inhibitors all

contained amidine residues that served as prothrombin mimetics55, 56. As was observed with

dabigatran, this highly basic group, although critical for potency, contributed to poor oral

bioavailability57, 58. Bayer opted instead to screen a large (~200,000) library of compounds

to identify a novel inhibitor scaffold59. From a lead with modest micromolar potency and

structure-activity knowledge emanating from previous efforts, this team developed the

highly potent, reversible FXa inhibitor rivaroxaban (Xarelto; Bayer HealthCare)54, 59.

Rivaroxaban became the first selective small-molecule inhibitor of FXa approved for

clinical use in 200854. Several additional small-molecule inhibitors of both thrombin and

FXa are currently in clinical development and have been recently reviewed60.

Acetylcholinesterase inhibitors to treat Alzheimer’s associated dementia

Acetylcholinesterase (ACHE) is a metabolic serine hydrolase that cleaves and inactivates the

neurotransmitter acetylcholine61. More than 30 years ago, a decrease in cholinergic

signaling was first observed in patients with Alzheimer’s disease62–64, leading to the

hypothesis that a loss in cholinergic neurotransmission contributed to the decline in

cognitive function in these patients65. Consequently, it was proposed that increasing

acetylcholine levels by inhibiting ACHE could alleviate symptoms of this disease. This

premise has been validated clinically, and three ACHE inhibitors are currently used for the

treatment of Alzheimer’s associated dementia (Table 1). A fourth inhibitor, tacrine (Cognex;

Shionogi), is approved but not recommended for use due to poor bioavailability and

toxicity66. Essential to the successful use of these drugs is a graduated dosing regimen that

avoids overt cholinergic toxicity67, such as that observed with large doses of

organophosphorus nerve agents and insecticides that potently, but nonselectively inhibit

ACHE68.

The three ACHE inhibitors in clinical use have notably different origins. Only one of these

compounds, donepezil (Aricept; Eisai), is entirely synthetic, a result of derivatization of a

scaffold identified from “blind” compound screening69. Donepezil reversibly inhibits

ACHE, and has the highest selectivity (>1,000 fold) of the approved compounds for ACHE

over the related serine hydrolase butyrylcholinesterase (BCHE)70, 71. Galantamine

(Razadyne; Ortho-McNeil Janssen) is a natural product alkaloid first isolated in 1952 from

the bulbs of the Caucasian snowdrop Galanthus woronowi 72. Like donepezil, galantamine is

a reversible inhibitor, but has a more modest 50-fold selectivity for ACHE over BCHE73, 74.

The third approved compound, rivastigmine (Exelon; Novartis), is an optimized version of

physostigmine, a natural product alkaloid with cholinergic activity75, with improved

selectivity for the brain isoform of ACHE over peripheral ACHE and BCHE76.

Rivastigmine, like physostigmine, contains an aryl carbamate group that acts as a slowly

turned over ACHE substrate, effectively leading to the irreversible inactivation of the

enzyme29. Following on the success of rivastigmine, carbamates have emerged as a versatile

chemotype for serine hydrolase inhibitors, as embedding this tempered reactive group into

various structural scaffolds has generated selective inhibitors for a diverse number of serine

hydrolases11, 77, 78, as described in more detail below.

Dipeptidyl peptidase 4 (DPP-4) inhibitors for type 2 diabetes

Dipeptidyl peptidase 4 (DPP-4) is a serine peptidase that cleaves N-terminal dipeptides from

a variety of polypeptides that contain a proline or an alanine residue at the penultimate

position79. Prominent among DPP-4 substrates are the incretins glucagon-like peptide-1

(GLP-1) and gastric inhibitory polypeptide (GIP), which are released from the gut after food

intake to promote insulin secretion and improve pancreatic β cell function80–84. Inhibition of

DPP-4 prolongs the beneficial actions of GLP-1 and GIP, designating this enzyme as a

therapeutic target for the treatment type 2 diabetes85.
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Since 2007, five DPP-4 inhibitors have been approved for clinical use (Table 1), although

vildagliptin31 (Zomelis; Novartis) and alogliptin86 (Nesina; Takeda) have not been approved

in the United States. The earliest reported DPP-4 inhibitors were proline (or alanine)-based

dipeptides (i.e., analogs of DPP-4 cleavage products) bearing chemical warheads, including

boronic acids21, diphenyl phosphonates87, and nitriles20. Appropriately positioned nitrile

groups, in particular, which form covalent reversible bonds with the serine nucleophile of

DPP-4 to give high affinity binding30, 88, 89, resulted in selective and orally bioavailable

compounds. These lead compounds were ultimately optimized to give vildagliptin31, 90 and

saxagliptin 91, 92 (Onglyza; Bristol Myers Squibb). Sitagliptin93 (Januvia; Merck) and

linagliptin94 (Tradjenta; Boehringer Ingelheim), in contrast, were both optimized from novel

structures—a β-amino acid scaffold95 and xanthene-based scaffold94, respectively—

identified from screening compound libraries. Finally, alogliptin emerged from medicinal

chemistry efforts around a quinazolinone scaffold predicted to inhibit the active-site of

DPP-4 by structure-based design86. Sitagliptin, linagliptin, and alogliptin inhibit DPP-4

through non-covalent, reversible mechanisms.

Human serine hydrolases with emerging therapeutic potential

Many additional members of the serine hydrolase class have been implicated in disease, and

inhibitors for several of these targets are in clinical development (Table 2). For example,

fatty acid amide hydrolase (FAAH) inactivates a large class of amidated lipid transmitters,

including the endogenous cannabinoid anandamide96. Genetic deletion or chemical

inactivation of FAAH in rodents increases the levels of anandamide and related fatty acid

amides to produce analgesia, anti-inflammation, anxiolysis, and anti-depression without the

psychotropic side effects typically observed with direct cannabinoid receptor (CB1)

agonists77, 97, 98. Recently, a high-throughput screen of the Pfizer chemical library

uncovered a novel urea-containing FAAH inhibitor, which irreversibly inactivates the

enzyme by covalently modifying FAAH’s active-site serine99. The subsequent optimization

of this scaffold resulted in the discovery of PF-04457845 (Table 2)13, a urea with

exceptional selectivity for FAAH over other serine hydrolases and excellent

pharmacokinetic properties in rats and dogs. The oral administration of PF-04457845 at 0.1

mg/kg exhibited similar antihyperalgesic effects as naproxen at 10 mg/kg in a rat model of

inflammatory pain, and has since entered clinical trials.

A second example of an emerging drug target in the serine hydrolase class is PLA2G7 (or

Lp-PLA2), a calcium-independent phospholipase A2 principally secreted by leukocytes and

associated with circulating low density lipoprotein (LDL)100. Elevated levels of PLA2G7

were discovered to strongly correlate with an increased risk of coronary heart disease,

suggesting a potential role for this enzyme in atherogenesis101. PLA2G7 can hydrolyze

polar phospholipids in oxidized LDL to generate two key pro-inflammatory mediators,

lysophosphatidylcholine (LPC) and oxidized nonesterified fatty acids (NEFAs)102, 103. LPC

and oxidized NEFAs have been implicated in the development of atherosclerosis through

several mechanisms, including homing of inflammatory cells and induction of apoptosis100.

To investigate the biology and therapeutic potential of PLA2G7, GlaxoSmithKline

optimized a selective, picomolar PLA2G7 inhibitor, darapladib (Table 2)104, from an initial

micromolar HTS screening hit105. Darapladib blocked LPC and NEFA production in

oxidized LDL103 and significantly decreased coronary atherosclerotic plaque development

in a diabetic and hyperchloesterolemic swine model through an anti-inflammatory

mechanism independent of cholesterol106. Darapladib is currently being evaluated in Phase

III clinical trials.

More preliminary studies using gene knockouts, lead chemical inhibitors, and protein and

gene expression profiling have implicated other serine hydrolases as being of potential

therapeutic importance. For example, mice lacking prolylcarboxypeptidase (PRCP), which
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cleaves C-terminal amino acids after proline in bioactive peptides, including angiotensin II

and III107, have reduced body weight, food intake, and fat mass, designating PRCP as a

potential target for obesity108. Merck has reported initial attempts to develop PRCP

inhibitors109, 110, the first of which, ‘compound 8o’(Table 2), reversibly blocked PRCP

activity with nanomolar potency and high selectivity over a panel of related serine

peptidases109. Encouragingly, ‘compound 8o’ significantly reduced food intake, body

weight, and fat mass of wild-type mice compared with PRCP−/− mice. However, a recently

reported second generation PRCP inhibitor reduced body weight and food intake similarly in

wild-type and PRCP–/– mice110, indicating the effects, at least in this case, were independent

of PRCP. The authors speculate that ‘compound 8o’ may achieve higher levels of peripheral

and/or central PRCP engagement than the second generation compound, and are currently

pursuing more structurally diverse inhibitors with improved bioavailability to further

evaluate this premise.

In addition, murine knockouts of three serine triglyceride (TG) hydrolases, triacylglycerol

hydrolase (TGH), adipose triglyceride lipase (ATGL), and endothelial lipase (LIPG or EL),

have implicated these enzymes as possible therapeutic targets for hypertriglyceridemia,

cancer-associated cachexia, and cardiovascular disease, respectively. TGH, also referred to

as carboxylesterase 3 (CES3) in mice and carboxylesterase 1 (CES1) in humans, can cleave

TG stores in hepatocytes, which, after lipolysis, can serve as substrates for the assembly of

apolipoprotein B (apoB)-containing very low-density lipoprotein (VLDL) particles111–113.

Excitingly, TGH–/– mice have significantly decreased plasma triacylglycerol and apoB

levels accompanied by improved insulin sensitivity and glucose tolerance114.

GlaxoSmithKline has introduced the TGH inhibitor GR148672X (Table 2)115, but the

selectivity, bioavailability, and molecular interactions of this compound with TGH have not

been disclosed. ATGL, which can also mediate the lipolysis of stored TGs116, was recently

evaluated for its role in an animal model of cancer-associated cachexia (CAC)117, a wasting

syndrome characterized by the uncontrolled loss of muscle and adipose tissue. In this model,

ATGL–/– mice resisted the loss of white adipose tissue and muscle mass observed in wild-

type mice, suggesting ATGL inhibition could slow or stop CAC progression. However, to

our knowledge ATGL inhibitors have not yet been reported. LIPG is an extracellular TG

lipase that also possesses significant phospholipase activity118. LIPG–/– mice have increased

high-density lipoprotein (HDL) levels compared to wild-type mice119, 120, whereas mice

with transgenic overexpression of LIPG have significantly reduced HDL levels120. As HDL

levels are inversely correlated with risk of cardiovascular disease, these genetic models

strongly suggest that LIPG is a potential therapeutic target for this indication.

GlaxoSmithKline has reported initial sulfonylfuran urea-based LIPG inhibitors (Table 2),

but these compounds also inhibit the related enzyme lipoprotein lipase (LPL) and have not

yet been evaluated in vivo121.

Another potential serine hydrolase drug target is prolyl endopeptidase (PREP), which is also

referred to as prolyl oligopeptidase (POP). PREP is a post-proline cleaving enzyme that is

highly expressed in the brain, kidney, and muscle, and testes122, and can degrade a variety

of neuroactive peptides, including arginine-vasopressin (AVP), substance P, and

thyrotropin-releasing hormone, among others123. As several of these substrates are involved

in learning and memory, the inhibition of PREP has been suggested as a strategy for the

treatment of cognitive defects associated with Alzheimer’s disease, Parkinson’s disease, and

aging124. The majority of PREP inhibitor discovery efforts have centered around the

modification of Z-prolyl-prolinal (ZPP), a peptide-based transition-state analog that

competitively inhibits PREP125. Two compounds that emerged from this approach,

JTP-4819126 and the S 17092127 (Table 2), inhibit PREP selectively over related peptidases

and elevate the levels of several PREP peptide substrates in the brains of compound treated-

animals126, 128–130. Encouragingly, the inhibition of PREP has been shown to produce gains
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in cognitive function in aging rats131 and in a chemically-induced model of early

Parkinsonism in monkeys132. In humans, S 17092 showed preliminary evidence of eliciting

improvements in a delayed memory task and in mood stabilization133, 134. Current work

focused on the continued development of inhibitors with improved bioavailability and

potency, combined with detailed mechanistic studies to molecularly understand the

cognition enhancing effects of these compounds, should clarify the therapeutic potential of

this target135.

Multiple serine hydrolases, such as fatty acid synthase (FASN)5, protein methylesterase-1

(PME-1)136, and the urokinase-type (uPA) and tissue-type (tPA) plasminogen activators137,

have also been implicated in cancer138. Especially intriguing among potential cancer targets

is fibroblast activation protein (FAP), the serine peptidase most homologous to DPP-4 (Fig.

2), which is highly expressed by stromal fibroblasts in most epithelial cancers139–141.

Transfection of FAP in cancer cells promotes tumor growth in animals142. The nonselective

dipeptide boronic acid FAP inhibitor PT-100 (Table 2) (Talabostat; Point Therapeutics)

slowed tumor growth in mice, but PT-100’s lack of specificity precludes assignment of the

precise role of FAP inhibition in this model143, 144. A recent study demonstrated that

removing the FAP+ subpopulation of tumor stromal cells arrests the growth of solid tumors

by inducing an immune response145. The pursuit of selective FAP inhibitors should further

elucidate the role that this enzyme plays in tumorigenesis146, 147.

Activity-based protein profiling for target discovery

As noted above, many serine hydrolases are regulated by post-translational mechanisms,

which means that changes in their activity may not correlate well with their expression

levels as measured by conventional proteomic148–151 or genomic152, 153 methods. This

problem has been addressed by the development of a chemoproteomic technology termed

activity-based protein profiling (ABPP)154, 155, which utilizes small-molecule probes to

record changes in enzyme activity directly in native biological systems. An activity-based

chemical probe typically contains at least two key features: 1) a reactive group that binds

and covalently modifies the active sites of a large number of enzymes that share conserved

mechanistic and/or structural features, and 2) a reporter tag (e.g., a fluorophore or biotin) to

enable detection, enrichment, and identification of probe-labeled enzymes (Fig. 3a).

Activity-based probes have been developed for numerous enzyme classes, including serine

hydrolases156, cysteine-dependent enzymes157–159, kinases160, and histone deacetylases

(HDACs)161, 162. Importantly, ABPP can be applied to any biological sample (cell line,

tissue, or fluid) and coupled with either gel- or mass spectrometry (MS)-based readouts to

characterize numerous enzyme activities in parallel155. The most commonly employed

activity-based probes for serine hydrolases contain a fluorophosphonate (FP) reactive group

that covalently reacts with the conserved serine nucleophile of these enzymes (Fig. 3b). A

recent global analysis of tissue and cell line proteomes demonstrated that > 80% of

mammalian metabolic serine hydrolases react with FP probes11. Although it is considerably

more challenging to perform an equivalent survey of the serine proteases, which typically

exist endogenously in their inactive zymogen or inhibitor-bound forms, many of these

proteases have also been demonstrated react with FP-probes163–166.

ABPP has been applied to discover serine hydrolases that are involved a wide range of

biological processes, including cancer138, nervous system signaling167, immune cell

function168, obesity169, 170, and infectious disease171. For example, ABPP studies first

identified AADACL1 as highly elevated in aggressive cancer cells172, where it functions as

a 2-acetyl monoalkylglycerol ether (MAGE) hydrolase that controls the levels of the MAGE

class of neutral ether lipids (NELs)173. Stable knockdown or chemical inhibition (with the

carbamate inhibitors AS115 or JW480, Table 3) of AADACL1 in cancer cells reduces the

levels of MAGEs and downstream bioactive lysophospholipids, ultimately impairing cancer
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cell migration and invasion and in vivo tumor growth173, 174. In addition, monoacylglycerol

lipase (MGLL), which can cleave a variety of monoglycerides into free fatty acids and

glycerol, was similarly discovered to be highly elevated in aggressive cancer cells and

primary tumors7, where it controls a free fatty acid (FFA) network that includes many

oncogenic signaling lipids. Overexpression of MGLL in nonaggressive cancer cells

promotes their pathogenicity, whereas knockdown or inhibition of MGLL with the selective

inhibitor JZL18478 (Table 3) impairs of tumor growth7, 175. In addition to its potential role

in cancer, MGLL is responsible for the hydrolysis and inactivation of the endocannabinoid

2-arachidonoylglycerol (2AG), an endogenous ligand for the cannabinoid receptors CB1 and

CB2. Acute MGLL inhibition with JZL184 results in CB1-dependent hypomotility and

antinociception176, 177, suggesting MGLL inhibition could also be a therapeutic strategy for

the treatment of pain. It should be noted that ABPP not only played an important role in

discovery of AADACL1 and MGLL as therapeutic targets, but also that a competitive

version of ABPP, described below, was instrumental in the development of AADACL1 and

MGLL inhibitors. Moreover, ABPP analysis has recently shown that the retinoblastoma-

binding protein 9 (RBBP9), which was initially discovered as a protein that could override

TGF-β-mediated antiproliferative signaling178, exhibits elevated activity in tumors and

promotes anchorage-independent growth and pancreatic carcinogenesis179. Preliminary lead

inhibitors for RBBP9 have been recently discovered using the high-throughput competitive

ABPP strategies described below180, 181. Further research into other enzymes identified in

ABPP studies, many of which remain poorly characterized, should yield insights into their

basic biological functions and reveal whether they possess clinical relevance.

Promising new strategies for inhibitor discovery

Main challenges

Selective chemical inhibitors are notably lacking for the vast majority of human serine

hydrolases, hindering investigations of their physiological roles and relationships to human

disease. The dearth of inhibitors is likely due to at least three reasons: 1) many enzymes, in

particular for those that are poorly characterized, lack suitable activity assays to enable

compound screening, 2) achieving inhibitor selectivity for one enzyme is difficult amongst

such a large, related protein family, and 3) compound libraries often do not contain tractable

starting points for inhibitor optimization. Below, we discuss recently introduced approaches

to address these challenges.

Gel-based competitive ABPP

When applied in a competitive format that assays the ability of compounds to block probe

labeling of enzymes, ABPP enables inhibitor discovery for enzymes independent of their

degree of functional annotation15, 182, 183. Competitive ABPP traditionally involves

incubation of a native proteome with a small-molecule, followed by labeling with a

fluorescent activity-based probe, separation of proteins by SDS-PAGE, and quantification of

the fluorescence intensity of probe-labeled enzymes relative to a control proteome (Fig. 3c;

“gel-based competitive ABPP”).12, 15 A complementary MS-based platform termed

competitive ABPP-MudPIT has been introduced to further enhance the total protein

coverage of these experiments12, 78 (Fig. 3c). ABPP-MudPIT experiments require larger

quantities of sample and more time than gel-based ABPP and are therefore typically

reserved for more in-depth analysis of interesting lead inhibitors. In either gel or MS

formats, a key advantage of competitive ABPP is that it permits simultaneous optimization

of both the potency and selectivity of inhibitors against numerous related enzymes without

requiring protein purification.
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Gel-based competitive ABPP screening has enabled the discovery of selective inhibitors for

many serine hydrolases (Table 3), including MGLL78, ABHD611, 12, and FAAH15, 184

(Table 2, OL-135). Key to the success of these efforts was the iterative optimization of

compounds containing mechanism-based electrophiles, including carbamates, ureas, and

activated ketones. Recently, to expand the number of enzyme-inhibitor interactions

evaluated by competitive ABPP, a library of ~150 carbamates was screened against a

representative 72-member panel of metabolic serine hydrolases11. Lead compounds were

identified for numerous serine hydrolases, including currently pursued drug targets (e.g.,

PLA2G7, FAAH) and uncharacterized enzymes (e.g., ABHD11). Two compounds were

subsequently optimized to create the first potent, selective, and in vivo-active inhibitors for

the poorly characterized enzymes ABHD1111 and AADACL111, 174. Interestingly, this

global analysis also identified several unanticipated pharmacological crosspoints within the

serine hydrolase class, where two enzymes distantly related by sequence were found to share

inhibitor sensitivity profiles. Such findings underscore the value of chemoproteomic

methods like competitive ABPP that can assess compound selectivity broadly across an

entire enzyme class. Some clades of enzymes (e.g., the dipeptidyl peptidases), however,

were not inhibited by any of the tested carbamates, indicating that additional chemotypes

may be necessary to successfully target most/all subsets of serine hydrolases. Consistent

with this premise, competitive ABPP analysis of a library of triazole ureas recently

identified selective inhibitors for enzymes that were insensitive to carbamates, including

platelet-activating factor acetylhydrolase-2 (PAFAH2) and acyl-peptide hydrolase (APEH)

(Table 3)14.

Competitive ABPP was also employed to assess the selectivity of the urea FAAH inhibitor

PF-04457845 before this compound entered clinical trials13. PF-04457845, as well as other

urea inhibitors of FAAH185, irreversibly inactivate this enzyme by carbamylating its serine

nucleophile. Even though there are many irreversibly acting drugs on the market today, the

pharmaceutical industry tends to prefer non-covalent, reversible inhibitors in large part due

to concerns that irreversible inhibitors will lack specificity for a single protein target28. This

concern, however, can be directly addressed by competitive ABPP and related

chemoproteomic methods186, and when these approaches were applied to urea inhibitors of

FAAH, such as PF-04457845, the compounds were found to be extremely selective for

FAAH relative to serine hydrolases (and the rest of the proteome)13, 185. Once such a high

degree of selectivity has been established for irreversible inhibitors, their distinctive

advantages over reversibly acting compounds can be highlighted, namely that they can often

inactivate their protein targets at very low doses (and with suboptimal pharmacokinetic

properties) in vivo28, 186, 187. Moreover, the enzyme itself serves as a biomarker for

compound activity in that in vivo inhibition can be experimentally verified by ABPP of cell,

tissue, or fluid proteomes from compound-treated animals78.

High-throughput screening by competitive ABPP

Competitive ABPP has traditionally been limited by throughput, as only a few hundred

compounds can be reasonably screened by gel-based methods. To overcome this barrier, a

high-throughput version of competitive ABPP has recently been introduced where the

interaction between an activity-based probe and an enzyme is monitored by fluorescence

polarization (fluopol-ABPP)180 (Fig. 4). Fluopol-ABPP has been successfully applied to

numerous enzymes from multiple mechanistic classes181, 188, 189, including several serine

hydrolases. In one example, protein methylesterase-1 (PME-1), a serine hydrolase that

removes an unusual post-translational carboxymethylation from the C-terminus of PP2A190

and has been implicated in Alzheimer’s disease191 and cancer136, was screened against the

NIH-300,000+ small-molecule library189, 192. This effort uncovered an aza-β-lactam

inhibitor (ABL127; Table 3) that selectively and covalently inhibits PME-1 with nanomolar
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potency. ABL127, without any medicinal chemistry optimization, showed excellent activity

in living cells and mice, where it selectively inhibited PME-1 relative other serine

hydrolases and decreased the levels of demethylated PP2A. Interestingly, ABL127

originated from an academic contribution to the NIH library from a synthetic chemistry

laboratory exploring the substrate scope of a chiral catalyst193. That ABL127 was

contributed to the NIH library without any specific protein target in mind underscores the

potential of academic chemistry, when paired with high-throughput screening, to serve as a

driving force for the discovery of new bioactive chemotypes and chemical probes.

Substrate activity screening

Even though competitive ABPP platforms address several critical challenges in serine

hydrolase inhibitor discovery, many enzymes still do not have lead inhibitors, perhaps due to

the absence of suitable lead compounds in chemical libraries. This deficiency should be met,

at least in part, by the introduction and exploration of new hydrolase-directed chemotypes,

as described above. In a complementary strategy, Ellman and coworkers introduced a

technique called ‘substrate activity screening’ (SAS). This method involves the screening of

a diverse library of N-acyl aminocoumarins, which fluoresce when cleaved, to identify

initial, weak-binding enzyme substrates194. After a substrate is optimized for improved

binding, the cleaved bond can then be replaced with a mechanism-based pharmacophore to

covert it directly into an inhibitor. Although SAS has been successfully applied to select

cysteine194, 195 and serine (chymotrypsin)196 proteases, it requires some intrinsic activity on

at least one member N-acyl aminocoumarin library, which not all serine hydrolases will

likely possess. One potential future direction could involve the creation of an even more

diverse N-acyl aminocoumarin compound library for initial substrate screening.

Alternatively, poor enzyme substrates, including those without any intrinsic fluorescence,

can also be identified by other methods, for example by appearing as weak inhibitors in

competitive ABPP experiments181. These substrates could potentially be converted into

effective inhibitors via the introduction of appropriate chemical warheads in a similar

manner.

Serine traps as ‘tethers’ for starting point discovery

Electrophilic traps, regardless of their inherent capacity for enzyme selectivity and/or

bioavailability, can also be employed as ‘tethers’ to enable the initial identification and

optimization of lead compound scaffolds that would otherwise be too weak-binding to

detect. For example, Merck researchers screened a library of α-keto heterocyles, a

chemotype well known to inhibit serine hydrolases15, 197, to achieve a starting point for the

development of PRCP inhibitors109. After some compound optimization, the α-keto

heterocyle group was replaced with an isostere to improve the selectivity for PRCP over

related enzymes, avoid potential bioavailability liabilities due to the ketone moiety, and

facilitate derivative synthesis. Similarly, an electrophilic ketone was used in the early stages

in the development of ximeligatran39. We should note that a conceptually analogous

strategy, called “tethering”, which involves the engineering of a cysteine residue into a

protein (or utilizing a native cysteine, if one exists) that can capture weak-binding, disulfide-

containing compounds, has shown promise for the identification of starting points for ligand

development for several protein classes198, 199, and could also prove useful for the discovery

of serine hydrolase inhibitors.

Engineering of biologics

While the inhibition of intracellular serine hydrolases is still the exclusive domain of small-

molecules, some extracellular serine hydrolases may also be targeted by large

macromolecules (e.g., hirudin and TAP). Encouragingly, the engineering of such

macromolecular protease inhibitors has already been successful in improving existing and
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uncovering novel pharmacological tools41, 200. For example, Craik and coworkers used

phage display to optimize the E. coli protein ecotin, which naturally inhibits several trypsin-

fold proteases, for selective inhibition of plasma kallikrein201. Similarly, Kunitz domain-

containing proteins have been modified for selective blockade of plasma kallikrein200 and

tissue factor-factor VIIa (TF-FVIIa)202. In addition to natural protein scaffolds with intrinsic

protease inhibitor activity, antibodies have been elicited to selectively block the activity of

certain serine proteases203–205. One advantage such protein scaffolds offer is the ability to

inhibit regions of the protein outside of the enzyme active-site, which are traditionally

challenging to bind with small-molecules205.

Conclusions

Serine hydrolases have already yielded numerous targets of marketed drugs to treat a wide

array of human diseases. Given this precedent, it is tantalizing to extrapolate that many

additional drug targets may be found among the numerous enzymes from this class that

remain poorly characterized. Achieving this goal, however, will require much more

extensive efforts to elucidate the biochemical and physiological roles, as well as disease-

relevance for serine hydrolases. Here, we believe that the development of selective and in

vivo-active inhibitors is critical. Indeed, many serine hydrolases play complex roles in

mammalian physiology that cannot easily be modeled in cell culture experiments. Consider,

for instance, the regulation of the GLP-1 incretin by DPP-4 or the termination of cholingeric

and endocannabinoid signaling in the nervous system by ACHE and FAAH, respectively.

These pathways, and likely many others regulated by serine hydrolases, require the

integrated physiology of an intact animal for their characterization.

So far, in vivo-active inhibitors are available for only a handful of serine hydrolases. While

it might be tempting to prioritize, based on current biological knowledge, enzymes from the

class for future inhibitor development efforts, we would urge against this inclination. As has

been nicely delineated in a recent Perspective by Edwards and colleagues, there appears to

be a strong correlation between the volume of research activity (and biological

understanding) on a particular protein and the availability of high-quality chemical tools to

probe this protein’s function206. This type of meta-analysis suggests that the creation of

inhibitors often precedes and drives our biological understanding of enzymes, rather than the

other way around, and argues for the development of inhibitors for all enzymes, regardless

of their current perceived biological and/or therapeutic importance.

Encouragingly, inhibitors emerging from competitive ABPP span the full range of serine

hydrolases to include enzymes that are biologically characterized and those that are devoid

of functional annotation. Continued efforts following the inhibitor discovery strategies

described in this Review, in particular, high-throughput screening of compound libraries and

diversification of mechanism-based electrophiles, show particular promise, in our mind, to

deliver new chemical probes for serine hydrolases. We also believe that further expansion of

the NIH small-molecule library with structurally diverse compounds, like the aza-β-lactams,

should provide useful new starting points for drug development, as well as an exciting

opportunity for academic synthetic chemists. While achieving the ultimate goal of

developing a selective and in vivo-active inhibitor for every mammalian serine hydrolase (as

well as critical serine hydrolases in important human pathogens) may seem far away, we

believe that it can be accomplished. The resulting pharmacopeia would not only power

biological discovery, but also serve as a starting point for next-generation therapeutics for

the betterment of human health.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic representation of the serine hydrolase catalytic cycle
A base-activated serine nucleophile attacks the carbonyl carbon of the scissile bond, forming

a covalent intermediate and releasing the first reaction product. A water molecule then

hydrolyzes the covalent intermediate to release the second reaction product and regenerate

the active enzyme. X= N, O, or S.
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Figure 2. The human serine hydrolases
A dendrogram showing the ~240 predicted human serine hydrolases with branch length

depicting sequence relatedness. The metabolic serine hydrolases are colored blue. The

remaining enzymes are serine proteases, with chymotrypsin-like enzymes colored black,

subtilisin-like enzymes colored red, and other, smaller serine protease clans colored green.
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Figure 3. Overview of the current pharmacological toolkit for serine hydrolases
The electrophilic moieties of each compound, if applicable, are colored red.
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Figure 4. Activity-based protein profiling (ABPP) for enzyme and inhibitor discovery
(a) Schematic representation of an activity-based probe. (b) A fluorophosphonate (FP)

reactive group can be coupled to a tag (e.g., rhodamine, biotin, or alkyne) to covalently label

and then detect, enrich, and identify active serine hydrolases. (c) In a typical competitive

ABPP experiment, a cell or animal model is treated with an inhibitor (or vehicle control),

after which proteomes are prepared and incubated with an activity-based probe. SDS-PAGE

separation for fluorophore-tagged probes or mass spectrometry analysis of affinity-enriched

biotin-tagged probes enables detection and identification, respectively, of the active

enzymes in a biological sample. Note that an enzyme that is the target of an inhibitor will

show reduced signals in the inhibitor-treated samples relative to vehicle controls (“<”).
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Table 3

Selective inhibitors recently discovered by competitive ABPP

Target Compound Structure Ref. Potential Indication(s)

AADACL1

AS115 173

cancer

JW480 174

ABHD6 WWL123 11 unknown

ABHD11

AA44-2 14

unknown

WWL222 11

APEH AA74-1 14 unknown

MGLL JZL184 78 cancer, pain

PAFAH2 AA39-2 14 unknown

PME-1 ABL127 189 cancer, Alzheimer’s disease

The electrophilic moieties of each compound are colored red.
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