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Abstract

ARIEL, the Atmospheric Remote sensing Infrared Exoplanet Large survey, is one of

the three M-class mission candidates competing for the M4 launch slot within the

Cosmic Vision science programme of the European Space Agency (ESA). As such,

ARIEL has been the subject of a Phase A study that involved European industry,

research institutes and universities from ESA member states. This study is now

completed and the M4 down-selection is expected to be concluded in November

2017. ARIEL is a concept for a dedicated mission to measure the chemical composition

and structure of hundreds of exoplanet atmospheres using the technique of transit

spectroscopy. ARIEL targets extend from gas giants (Jupiter or Neptune-like) to

super-Earths in the very hot to warm zones of F to M-type host stars, opening up the

way to large-scale, comparative planetology that would place our own Solar System in

the context of other planetary systems in the Milky Way. A technical and programmatic

review of the ARIEL mission was performed between February and May 2017, with

the objective of assessing the readiness of the mission to progress to the Phase B1

study. No critical issues were identified and the mission was deemed technically

feasible within the M4 programmatic boundary conditions. In this paper we give an

overview of the final mission concept for ARIEL as of the end of the Phase A study,

from scientific, technical and operational perspectives.
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1 Introduction

ARIEL is a M4 mission candidate within the Cosmic Vision science programme of

ESA. ARIELwas selected in June 2015 to enter an assessment phase (Phase 0/A), and is

competing against two other missions (THOR andXIPE) for theM4 launch slot in 2026.

The ARIEL mission is the successor of the ESA M3 mission candidate EChO [1]. The

science objectives and mission concept have evolved to fit the new M4 programmatic

constraints. The main changes are the use of a new European launcher (Ariane 6 instead

of Soyuz), a new launch date (2026 instead of 2024) and a slightly reduced cost at

completion to ESA. Other programmatic constraints specific to the M-class missions

still apply (Technology Readiness Levels, payload and S/C development time).

The Phase 0 study of ARIEL involved the preliminary definition of the science and

mission requirements, and an ESA internal Concurrent Design Facility (CDF) study

conducted in June/July 2015.The results of this CDF study are presented in [2].

Following this Phase 0, the Phase A study was kicked-off in early 2016, with two

parallel competitive industrial studies as well as a payload study. This study culminated

in the Mission Selection Review (MSR) in February–May 2017, with the objective of

assessing the technical and programmatic feasibility of all three M4 mission candidates.

With a successful conclusion to the review, all three candidate missions are now

undergoing an independent scientific evaluation. This process is expected to be con-

cluded in November 2017 with the selection of the M4 mission by the ESA Science

Program Committee (SPC).

After November 2017, the selected M4 mission will enter a Phase B1 study that is

expected to conclude in mid-2019 with a Mission Adoption Review (MAR).

In this paper we present a summary of the key aspects of the ARIEL phase A study.

In section 2 we give a brief overview of the science, science requirements and targets of

the mission; in section 3 we provide an overview of the mission requirements, followed

by a description of the mission profile (including operations) in section 4; in sections 5

and 6 we describe the spacecraft design and the assembly/integration/verification/

development plan respectively, with a summary of the way in which the Community

would be able to access ARIEL given in section 7. In section 8 we present the findings

and recommendations of the MSR.

2 Science requirements and targets

2.1 Background and key science objectives

ARIEL is a survey-type mission concept dedicated to the study of exoplanets through

spectral characterisation of their atmospheres. Currently it is predicted that most stars in

our Galaxy contain one or more planets, thus in our galaxy alone ~1011 or more

exoplanets likely exist. Today a few thousand exoplanets have been actually

identified, displaying huge ranges of masses, sizes and orbits: from rocky Earth-like

planets to large gas giants grazing the surface of their host star. However, the essential

nature of these exoplanets remains largely unknown: there is no known, discernible

pattern linking the presence, size, or orbital parameters of a planet to the nature of its

parent star. We have little idea how the chemistry of a planet is linked to its formation
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environment, or whether the type of host star drives the physics and chemistry of a

planet’s birth, and subsequent evolution.

The next step in exoplanet science is to study the planets themselves, both individ-

ually and importantly statistically, with a view to attempt to understand what they are,

and why they are – and how they have become – what they are. ARIEL is designed as a

dedicated survey mission capable of observing a large and well-defined planet sample

of transiting exoplanets within its baseline 4-year mission lifetime. The top-level

science objectives are to address the fundamental questions:

& What are exoplanets made of?

& How do planets and planetary systems form?

& How do planets and their atmospheres evolve over time?

This will be done through the direct measurement of the chemical composition and

thermal properties of a large population of exoplanets. The diversity in compositions is

expected to be linked to different formation and evolution scenarios. ARIEL will

therefore observe spectroscopically approximately 1000 transiting planets of different

sizes, masses, densities, equilibrium temperatures, and orbital properties around a

variety of stellar types to establish what these planets are made of.

By employing time differential techniques of transit, eclipse, and phase-curve

spectroscopy, whereby the signal from a star and planet system is differentiated using

knowledge of the planetary ephemerides, it is possible to measure atmospheric signals

from the planet at levels of 10–100 ppm (ppm) relative to the star. Particularly bright

targets will also allow more sophisticated techniques, such as eclipse mapping, to be

employed promising an even deeper insight into the nature of planetary atmospheres.

Photometric stability rather than angular resolution is key, and is in fact the most

stringent requirement of the ARIEL design driving many engineering design and

operational aspects of the mission. For the brightest targets it would be possible to

obtain high quality spectra in a single visit; for fainter targets the necessary signal-to-

noise would be built up through repeated visits over the mission lifetime.

The instantaneous spectral coverage of the ARIEL design is unique in its breadth,

spanning the 1.25 to 7.8 μm range with three contiguous spectrometer bands, and in

addition three narrow-band photometry channels in the optical. The spectral range is

primarily aimed for the study of warm and hot exoplanets with temperatures ranging from

several hundred to over a few thousand Kelvin, taking advantage of their well-mixed

atmospheres which should show minimal condensation and sequestration of high-Z

materials and thus better reveal their bulk elemental composition (especially C, O, N, S,

Si). The wavelength range covers all the expected major atmospheric gases from e.g. H2O,

CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO,

VO, and condensed species. Furthermore, the broad instantaneous spectral coverage,

importantly including the visible bands, provides an essential means by which to monitor

and subsequently correct for the effects of activity of the host star, which could otherwise

introduce significant uncertainty into the final exoplanet spectrum and its interpretation.

Progress with the science questions requires a large, unbiased spectroscopic survey

of exoplanets. The ARIEL mission would allow scientists to study exoplanets both as a

population and as individuals. It is designed to target super-Earths, Neptune-like, and

Jupiter-like planets, in the warm to very hot zones (planet temperatures of ~500–
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3000 K) of F to M-type host stars. The spectroscopic information on the atmospheres of

the large, select sample of exoplanets that ARIEL would provide would allow the

compositions, temperature profiles, size, diversity and variability to be determined to

levels of accuracy and precision never previously attempted.

A much more detailed description of the science case for ARIEL as well as the key

science objectives of the mission can be found in chapter 2 of the ESA ARIEL

Assessment Study Report [3], as well as in [4], and references therein.

2.2 Scientific requirements and observational strategy

The high-level science objectives of ARIEL flow down to a number of science

requirements, both on the breadth and depth of the survey of exoplanets to be

undertaken by ARIEL, as well as on the science requirements for the mission itself,

see also chapter 3 in [3].

2.2.1 Observational strategy

The ARIEL science objectives call for atmospheric spectra of a large and diverse

sample of known exoplanets covering a wide range of masses, densities, equilibrium

temperatures, orbital properties and host-star taken at various spectral resolving powers,

wavelength intervals and signal-to-noise ratios (SNRs). This can be achieved through

the execution of observation of a large enough well chosen sample of >500 exoplanet

targets, with a goal to observe ~1000 exoplanet targets.

The ARIEL observational strategy is to divide the overall survey into three tiers –

Reconnaissance survey, Deep survey, and Benchmark planets. The Reconnaissance survey

mode will allow rapid, broad characterisation of planets so that decisions can be made

about priorities for future observations. For the majority of the targets observed by ARIEL,

the necessary performance can be reached in just 1 or 2 transits/eclipses. The Deep survey

will perform spectroscopy observations of a sub-sample, for the majority of the targets

observed the required performance can be reached with 1 to 10 transits/eclipses. The

Benchmark planet observations will focus in particular on the study of the variability

through time of the exoplanet atmospheres (weather). Repetition through time of the same

observations will cast light on the temporal variability of the exo-atmospheres due to

variations in the cloud coverage or patterns in the global circulation.

An example summary of the tiers, observational strategies, and associated science

cases for each tier is provided in Table 1. A detailed breakdown of the observing time

between the different tiers has not been fixed during the study, however, in order to

achieve the required diversity there is a formal requirement to observe at least 500

planets. Simulations indicate – depending on the details on how the survey is optimised

– that approximately 1000 targets can be observed, with the breakdown in numbers and

fractions of observing time per tier shown.

These simulations and optimisations will continue until – and during – the actual

flight of ARIEL. The target list definition process will involve the general astronomical

community and the ESA Advisory Structure (see section 7). At some point prior to

launch the target list will have evolved into a description of the final nominal pre-

launch ARIEL target list, however, it can – and should – evolve during the mission if

there are compelling scientific reasons.
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2.2.2 Scientific requirements

To maximise the science impact achievable by ARIEL, it is needed to access all the

molecular species expected to play a key role in the physics and chemistry of the

planetary atmospheres. It is also essential to be able to observe warm and hot planets at

a wide range of different temperatures (primarily from ~500 K to 3000 K) to probe the

differences in composition potentially linked to formation and evolution scenarios. The

desired molecular signatures are mainly found in infrared (see Fig. 1 left), however,

characterisation of hazes and stellar activity makes it necessary also to cover shorter

wavelengths in the optical (see Fig. 1 right). It is required that – after post-processing –

stellar variability makes a negligible (<10% RSS) contribution to the noise budget.

The above considerations lead to a set of concrete science requirements in terms of

wavelength coverage, spectral resolving power (R), and required signal to noise (SNR),

which can be mapped to specific scientific motivations, as shown in Table 2.

In addition there are critical requirements on in particular photometric stability, the

driver for overall mission design, and in addition also for sky visibility, temporal

Table 1 Example overview of the three tiers of the ARIEL observational strategy

Tier name Observational strategy Science case

Reconnaissance
survey

(~1000 targets)
(~30% of time)

Low spectral resolution
characterisation of entire
sample

• What fraction of planets are covered by clouds?
• What fraction of small planets have still retained H/He?
• Classification through colour-colour diagrams?
• Constraining/removing degeneracies in the interpretation of

mass-radius diagrams
• Albedo, bulk temperature & energy balance for a subsample.

Deep survey
(~500 targets)
(~60% of time)

Higher spectral resolution
observations of a
subsample

• Main atmospheric component for small planets
• Chemical abundances of trace gases
• Atmospheric thermal structure (vertical/ horizontal)
• Cloud characterization
• Elemental composition

Benchmark
planets

(~50 targets)
(~10% of time)

Very best planets,
re-observed
multiple times with all
techniques

• Very detailed knowledge of the planetary chemistry and
dynamics

• Weather, spatial & temporal variability

Fig. 1 Left: Molecular signatures in the 2–4 μm range with R = 100, and 4–8 μm range with R = 30. Right:

Examples of cloudy and clear-sky spectra, note the large differences in the 0.5–1 μm range, this is also the

prime range to monitor stellar activity
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resolution of measurements, limiting cases for targets, and calibration. A summary of

these is provided in Table 3.

Remarks:

Wavelength coverage: Spectral coverage over a broad wavelength range is

required not only to cover the wide range of planetary temperatures and

molecular/atomic features (the key observables), but also to monitor and remove

the variability of the host star. With an instantaneous baseline wavelength coverage

spanning over 4 octaves, it is necessary to split the waveband in a series of discrete

photometer and spectrometer channels. Baseline and goal requirements have been

formulated that prioritise the protection of key wavelength intervals.

Resolving power: The final spectral resolving power, R (λ/Δλ), and ultimately the

spectral resolution actually achieved for any observation, is a trade-off between the

Table 2 Required spectral range, spectral resolving power (R), and signal to noise (SNR), mapped to

scientific motivations

Wavelength

range

Required R & SNR Scientific motivation

Tier 1 Tier 2 Tier 3

VISPhot
0.5–0.55μm

Integrated band
SNR ≥ 200 on the Stellar SNR
SNR ≥ 7 on the exoplanet (goal)

• Correction stellar activity
(optimised early stars)

• Measurement of planetary albedo
• Detection of Rayleigh

scattering/clouds

FGS1
0.8–1.0 μm

Integrated band
SNR ≥ 200 on the Stellar SNR
SNR ≥ 7 on the exoplanet (goal)

• Correction stellar activity
(optimised late stars)

• Measurement of planetary albedo
• Detection of clouds

FGS2
1.05–1.2 μm

Integrated band
SNR ≥ 200 on the Stellar SNR
SNR ≥ 7 on the exoplanet (goal)

• Correction stellar activity
(optimised late stars)

• Detection of clouds

NIRSpec
1.25–1.95μm

R: 10 averaged
bands for
1.25–7.8 μm

SNR ≥ 7

R ≥ 10
SNR ≥ 7

R ≥ 10
SNR ≥ 7

• Correction stellar activity
(optimised late stars)

• Detection of clouds
• Detection of molecules (esp. TiO.

VO, metal hydrides)
• Measurement of planet temperature

(optimised hot)
• Retrieval of molecular abundances
• Retrieval of vertical and horizontal

thermal structure
• Detection time variability

(weather/cloud distribution)

AIRS (Channels
0 & 1)

1.95–7.8 μm

R ≥ 50 for λ <
3.9 μm;

R ≥ 15 for
λ>3.9 μm
SNR ≥ 7

R ≥ 100 for λ <
3.9 μm;

R ≥ 30 for
λ>3.9 μm
SNR ≥ 7

• Detection of atmospheric chemical
components

• Measurement of planet temps.
(optimised warm-hot)

• Retrieval of molecular abundances
• Retrieval of vertical and horizontal

thermal structure
• Detection time variability

(weather/cloud distribution)
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desire to resolve as many spectral features as possible and the need to detect these

same features at a statistically significant level. It will therefore depend on the

brightness of the star, planet/star contrast and the observing time available, as well

as the sensitivity of the payload.

Photometric stability: Photometric stability is the critical requirement of the

mission. The objective is to observe exoplanets with contrast ratios between the

exoplanet and host star of as low as 10 ppm and typically 100 ppm. To achieve this

with the SNR & resolving power combinations in the different survey tiers

typically requires the co-addition of data taken over a few to – in exceptional

cases –tens of transit/occultation events, depending on the characteristics of the

individual exoplanet/host star systems. In order that the co-addition itself does not

add a systematic noise component to the data, a stability of no more than 100 ppm

(see Fig. 5) would be needed in each transit event. This stability is required over a

frequency range defined by the timing of the transit event itself, which is known

with high accuracy. The maximum timescale is set by the duration of an observa-

tion of an exoplanet known today which has a relatively long transit duration:

assuming an equal observing time spent in- and out- of transit, this sets the interval

to be around 10 h. The minimum relevant timescale is that required to resolve

temporally the exoplanet ingress/egress of ~15 min (GJ436b). These limits togeth-

er were used to set the baseline frequency intervals; the goal limits are set by the

duration of a representative phase curve observation and the shorter cadence time

given below.

Sky visibility/source accessibility: The target list will specify a well-defined set of

targets, with repeat visits typically required to build up the SNR of individual

target spectra. The maximum duration of a visit to a target system would be ~10 h

– the time of the transit itself, plus half that time before and then after the transit.

The time between successive transit observations depends on orbital period and

scheduling, and could be as little as less than a day, to as long as a few tens of days.

In principle, the targets may be in any part of the sky: the satellite needs a large

Table 3 Stability, sky visibility, temporal resolution, limiting targets, and calibration requirements

Requirement Value: baseline (goal)

Photometric stability Stability up to 10−4 required in 28 μHz to 11/3.3 mHz range for bright/faint targets. In
effect, this requires the observations to be photon noise dominated for all potential
targets (within the range defined by the limiting targets).

Sky visibility/source
accessibility

30% of the sky should be accessible at any one time. The same 30% shall be accessible
over a period of ~10 h. The complete sky shall be accessible within a year, a source at
the ecliptic shall be observable for >30% of the mission lifetime.

Temporal
resolution/cadence

≤ 90 s for stars with mK ≤ 6.3, ≤ 300 s for fainter stars (interval ≤ 1 s for FGS1 & FGS2
measurements of host star during single transit/occultation).

Limiting target:
faintest

M5V star with mK = 8.8 (equivalent to GJ 1214).

Limiting target:
brightest

K3V star with mK = 3.25 (equivalent to HD 219134).

Calibration Absolute flux calibration to 5% (TBC); knowledge of wavelength to 1/3 of the width of
the relevant spectral resolution element; relative photometric accuracy between the
photometric channels of 100 ppm (achieved using celestial calibrators).
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field of regard, with minimal constraints on the direction in which it can be pointed

(e.g. Earth/Sun pointing restrictions) (Figs. 2 and 3).

Temporal resolution/cadence: Additional constraints on the atmospheric models

are provided by knowledge of the shapes as well as the depths of the transit events:

the accuracy and reliability with which atmospheric parameters can be derived will

depend on both the final SNR of the spectra and on the temporal sampling

achieved. One of the shortest ingress periods known to-date is that of GJ 436, a

hot Neptune, with a ~15 min duration. To sample this ingress/egress with at least

10 measurements, the temporal resolution requirement was set to 90 s.

Limiting targets, sizing cases: A set of sizing targets was specified to establish

the maximum and minimum stellar flux levels that can be expected over the

ARIEL wavelength range. These levels do not preclude the observation of brighter

or fainter examples, and were only used to set the mission and payload require-

ments (“sizing” the mission). At the bright end, the stellar flux can potentially

impact on the maximum sampling time for the detector readout, and also on the

pointing stability requirements of the satellite itself; at the faint end, the target host

stars play an important role in defining the performance requirements for the

telescope, instruments and detectors and determines the accuracy of the fine

pointing.

Calibration: Calibration (amplitude and wavelength) of spectra can be both

relative and absolute. Here absolute calibration is defined as the conversion of

Fig. 2 A plot illustrating the fraction of the year for which a given location in the sky (in equatorial

coordinates) is visible to ARIEL, as seen from a representative operational orbit of ARIEL around L2. Orange

and green targets are the currently known best targets in term of stellar brightness and planetary parameters

(green are the very best, including e.g. 55 Cnc e, HD 189733b, HD 209458 b, GJ 436 b etc.), yellow targets

are currently known transiting planets observable by ARIEL
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the recorded signals from the instrument into physical units and comparison to

some standard system. Absolute knowledge of the target flux is not necessary for

the detection of spectral features or recovery of planetary atmosphere models as

models typically rely on line-to-continuum ratios and, importantly, knowledge of

the relative variation of the continuum as a function of wavelength. Relative

calibration between the various channels of the instrument is however critical.

2.2.3 The target list

Establishing the pool of potential targets from which the actual ARIEL target list would

ultimately be drawn has been a key activity of the science team during the study. A

static radiometric model was used to determine the signal-to-noise achievable for transit

and occultation observations of individual and samples of targets. Based on conserva-

tive assumptions of the achievable mission/instrument performance, as appropriate to

study phase, it was shown that the requirements on the numbers and diversity of targets

in the ARIEL core sample could readily be met [5].

Known targets already make up a diverse sample of exoplanets and host stars, with a

pool from which the targets could be drawn that will continue to increase in breadth and

number with the results of ongoing ground-based and space-based surveys as well as

future planned space missions, in particular by the NASA TESS mission, to be

launched in early 2018 [6].

Efficient scheduling of the large number of individual, time-critical transit events –

needed to complete observations of the complete sample – would be essential to the

success of the mission. Tools has been developed to generate optimized long-term

mission observing plans using ephemerides of exoplanet targets, taking into account

mission-level constraints such as data down-links, satellite station-keeping, calibration

needs and target visibility. Results suggest that it will be possible to schedule a

maximum of around 85% of the total time depending on the exact details of the list

of targets. The resulting gaps would to be filled by extending pre- and post-transit

durations, and possibly by science beyond exoplanet science.

Further details on the scheduling activities can be found in [7, 8].

Fig. 3 Overview of an example ARIEL target list, produced by simulations. The graph shows the three tiers –

Reconnaissance, Deep and Benchmark planets – nested. The current ARIEL design enables the observation of

~1000 planets during the baseline mission lifetime which exceeds the mission requirements. It is clear that this

example list of planets will change over the years depending on the new exoplanet discoveries
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3 Mission requirements

3.1 Flow down to mission requirements - document tree

To fulfill the science objectives detailed in Section 2, the science requirements were

translated into system level engineering requirements in the Mission Requirements Doc-

ument (MRD). The main requirements in the MRD can be grouped into 3 categories and

are summarised in the following subsections: mission, observing and performance require-

ments. Other requirements are also included and relate to defining standards and coordinate

systems, high level ground segment requirements, spacecraft autonomy and reliability

requirements and requirements derived from programmatic constraints.

3.2 Mission requirements

The mission design must be compatible with an Ariane 6 launch from Kourou in 2026.

The baseline injection strategy is to place the ARIEL S/C in an eclipse-free (Earth and

Moon) direct transfer trajectory to the Sun-Earth L2 point. The science operations orbit

is an eclipse-free orbit around the Sun-Earth L2 point, with an amplitude no larger than

1.5 million km (Sun-S/C-Earth angle ≤45°).
In addition to this baseline launch strategy, the mission design is kept compatible

with a few other alternatives:

– Launch into a LEO circular parking orbit before injection into a transfer trajectory

to L2.

– Dual launch (making use of the higher A6 performance compared to Soyuz) with

another passenger. In this case, both injection orbits are also possible (direct

transfer to L2 or circular parking orbit).

The mission design has a number of distinct phases (timeframe for completion of

activity given in brackets): Launch campaign (L); Launch and early operations phase

(LEOP – L + 2 days maximum); Transfer phase + Commissioning phase (initiated

during the transfer phase) (L + 3 months); Performance verification and science

Table 4 ARIEL delta-V requirements

Manoeuvre Delta V [m/s]

Transfer to L2 47.32

Station keeping in L2 22.18

Decommissioning 10

Soyuz to A5 compatibility 23.44

Margin 10

Contingency 15

Total 127.94

Numbers are based on a Soyuz launch. A correction is included to cover the different injection accuracies

between Soyuz and Ariane 5. Predictions of the Ariane 6 injection accuracy are not yet available, but expected

to be at least as good as that of Ariane 5
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demonstration phase (L + 6 months); Nominal (and extended) science operations phase;

decommissioning phase; Post-operations phase (end of in-flight operations +2 years).

The mission lifetime (from launcher separation till the end of the nominal science

operations phase) is set to a duration of 4 years based on the science requirements, with

an additional 2 years extension as a goal which in turn drives the amount of S/C

consumables and the design of radiation-sensitive units.

The delta-V requirements are summarized in Table 4.

3.3 Observing requirements

The overall observation efficiency (or duty cycle) of the ARIEL S/C during the science

operation phases is required to be ≥85%. The remaining 15% included outages such as

orbital manoeuvres, slews between targets, safe modes etc. An average observation

(7.7 h) and angle between consecutive science targets (70 degrees) were defined to

determine the speed and propellant requirements for the slews.

Requirements on sky accessibility were taken directly from the science requirement

(see section 2.2.2). This translates into requirements for the spacecraft to be able to do a

full 360° and a ± 25° rotation around the spacecraft’s yaw and pitch axes respectively

and to observe a target from any of those attitudes.

The faintest and brightest targets that ARIEL is designed to observe are defined in

Table 3. Their spectral energy distributions (SEDs) are shown in Fig. 4.

3.4 Performance requirements

Requirements on wavelength and resolving power are detailed in section 2.2.2.

The required telescope FoV is small, since only a single star would be observed at

any given time. Additional margins are required to take into account the pointing errors

and operational planning for target acquisition and centring, and result in a FoVof the

order of a few tens of arcsec.
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Since the telescope effective area (Aeff), the throughput (η) of the optics and the

quantum efficiency (QE) of the detectors all have an equivalent effect on the final SNR

achieved, they are grouped into a single figure of merit. The product Aeff x η x QE is

required to be:

– ≥ 0.6 x 40% x 55% = 0.132 [m2.e−/photons] above 1.95 μm.

– ≥ 0.6 x 50% x 55% = 0.165 [m2.e−/photons] below.

This figure of merit is defined as an average value in each channel. The minimum in-

channel figure of merit is required to be no less than 80% of the value above, while a
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Fig. 5 Top: ARIEL relative total noise PSD requirement per spectral bin in all spectroscopic channels. It is the

ratio between the total noise (excess system noise plus photon noise) and the stellar flux. Bottom: Ratio

between the total noise and the astronomical photon noise. This shows the system is close to the photon noise

limit, with the excess noise representing no more than ~10% of the photon noise for bright sources, and no

more than 40% of the photon noise for faint sources
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reduction down to 50% out-of-channel (i.e. in the overlap regions between all channels)

is acceptable, meaning that some significant performance is achieved continuously

throughout the entire wavelength band.

The most important performance requirement is the system-level noise. This is

defined post-processing, and takes into account all noise sources, including photometric

variations (e.g. due to the pointing stability, the thermal background stability etc.) in the

frequency band given in Table 3. It is defined as an allowable excess variance on top of

the fundamental astronomical noise set by the stellar and the zodiacal background shot

noise contributions (photon noise) (Fig. 5 and Tab. 5).

4 Mission profile and operations

4.1 Launcher, launch window and orbit selection

The proposed science operations orbit is an eclipse-free (Earth and Moon) large

amplitude orbit around the Sun-Earth L2 point, offering a very stable environment

(for thermal, power and communication purposes), combined with a very large instan-

taneous field of regard. This orbit offers several other advantages: the radiation

environment in L2 is much more benign compared to LEO orbits, and it is not too

distant from the Earth, allowing a simple communication strategy and communication

subsystem design (Fig. 6).

The baseline launch strategy consists of a Ariane 62 or 64 launch from Kourou into a

direct transfer orbit to L2. The transfer and insertion into L2 are designed to be propellant-

free, however opportunities at day 2, 5 and 10 after launch are available to correct for

launcher dispersion and perigee velocity errors. Due to the still unknownAriane 6 launcher

performance, the Soyuz figures are used for performance assessment. The Soyuz provides

an injected mass performance of about 2.2 t towards L2 (at least 3 t expected with A6). The

Ariel launch mass (wet mass + adapter) is ~1.3 t, including the typical 20% system level

margin. This leaves about 900 kg unused (even more expected with A6). This, combined

with the large volume margin of Ariel inside the A6 fairing, should also allow to use a dual

launch configuration, with a companion spacecraft on top of a dual launch adapter (and

ARIEL underneath to protect its cryogenic payload from direct Sun illumination during

LEOP). Aside from the direct transfer, a launch into an intermediate circular parking orbit is

still being considered as well.

Table 5 As in Fig. 5, but for ARIEL’s photometric channels

Relative total noise PSD

requirement [1/√Hz]
Total noise / astronomical

photon noise [NA]

Faint target VISPhot 4.18E-2 1.24

FGS1 6.04E-3 1.14

FGS2 6.17E-3 1.14

Bright target VISPhot 1.05E-3 1.14

FGS1 5.14E-4 1.14

FGS2 6.62E-4 1.14
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The daily launch window is greatly influenced by the illumination and thermal

constraints (to minimise direct Sun illumination of the cryogenic PLM). Closures of the

launch window occur near the solstices as a consequence of the geometry. As a result,

two launch seasons exist where daily launch windows of up to 90 min are common,

except for around the equinoxes when eclipse avoidance further constrains the launch

window. More generally, the main conditions that were used to constrain the launch

window are:

– No eclipses allowed during the mission lifetime (including the transfer and the

2 year mission extension), for thermal and power generation stability.

– Propellant-free injection into L2 to minimise propellant mass.

– An orbit amplitude around L2 ≤ 1.5 million km to minimise the S/C to Earth

distance for the communications subsystem, leading to a Sun-S/C-Earth angle

≤45°.
– Due to the cryogenic nature of the ARIEL PLM placed on top of the SVM and the

mid-day launch windows (i.e. facing the Sun), additional constraints are placed on

the launch window to minimise the duration during which the PLM is exposed to

direct Sun illumination.

Concerning this last pointhowever, the MSR concluded that the impacts of this Sun

illumination (modifications of materials and coatings on the PLM are needed to survive

this phase, with an impact on the cryogenic performance, plus the need to test and

qualify the PLM against this environmental condition) are severe and should be

mitigated by investigating alternative scenarios where this constraint is no longer

present. Two possibilities are being envisaged:

– The dual launch scenario where ARIEL is protected from the Sun under the dual

launch adapter.

– The addition of an ejectable PLM thermal cover in the S/C design.

To enable this second option, the transfer trajectory to L2 has to be slightly modified to

ensure the thermal cover does not add to the debris population in Earth orbit. This can

be achieved by ensuring the cover returns to Earth and burns in the atmosphere, or by

ejecting it on an Earth escape trajectory. Both scenarios will require an additional

manoeuvre to ensure ARIEL arrives at L2 with a small DV penalty that will need to be

added in Table 4.

Fig. 6 Example of Ariel’s orbit around L2
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4.2 Operations

The ARIEL mission is planned with a short 2 day LEOP, followed by a 90 day

Commissioning Phase. The orbit transfer to L2 occurs within this Commissioning

Phase. After completion of the LEOP activities the first Transfer Correction Manoeuvre

(TCM) would be executed. Two further TCMs are foreseen with nominal arrival at

operational orbit within 30 days of launch. Initial commissioning activities would be

carried out during the transfer phase with completion of commissioning envisaged for

90 days after launch. The Commissioning Phase would be followed by another 90 days

of instrument performance verification and science demonstration phase before the

nominal science operations can start. Standard tasks to be undertaken during these

phases would include commissioning of all the S/C subsystems and verification of the

payload performance and calibration.

The nominal science observing strategy for ARIEL is such that the average obser-

vation of a single science target will be in the order of 7.7 h with a separation of 70

degrees from the previous and next science target. The maximum observation time is in

the order of 10 h. The required overall observation efficiency is ≥85%. Outages in this

observation time are driven mainly by station keeping manoeuvres (approximately

every 30 days), slews between targets and an allocation for safe modes.

The ARIEL mission will be operated out of a single ESAMission Operations Centre

(MOC) located at ESOC in Darmstadt. X-Band will be used for telecommand uplink,

real-time housekeeping downlink and the high rate stored housekeeping telemetry and

science data telemetry downlink. Use of the ESA ESTRACK 35 m antenna network is

planned to support these activities.

For routine operations the ARIEL mission is foreseen to be operated in a highly

autonomous way. The ARIEL mission on board capability is foreseen to handle

simplified commanding for execution of slews between observations based on request-

ed target position; reaction wheel momentum management will be controlled on board

and all operations executed on board from preloaded mission timelines. This approach

reduces the need for ground-based definition of the slew profiles and momentum

management. The mission timelines are uplinked on a periodic basis (e.g. weekly)

and the shortened pass durations (~14 h per week split in 3 passes) are primarily used

for downlink of the science data and collection of tracking data needed for orbit

determination. The orbit control is anticipated to be of a predictive nature allowing

the mission to apply rule based planning for engineering windows for platform

operations, this allows for the remaining science planning to be done on a long-term

basis by the SOC. Thanks to a steerable Medium Gain Antenna (MGA), the ground

station passes can be scheduled independently of the science observations, and these

passes do not affect the observation efficiency as science observations and ground

contact can be performed in parallel.

The ARIEL mission will be designed for a nominal 4 year lifetime, resulting in a

3.5 year nominal science operations phase (after deduction of the commissioning and

science performance verifications phases). Mission consumables are sized for an additional

2 year extended science operations phase. The ARIELmission would be terminated with a

de-orbiting and mission disposal phase where ARIELwould be removed from the L2 orbit

and put in a heliocentric orbit with a very low probability for a return to Earth. This final

decommissioning/disposal phase is foreseen to last up to 90 days.
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4.3 Ground segment and science operations

The ARIEL Ground Segment (GS) provides the means and resources with which to

manage and control the mission via telecommands, to receive and process the telemetry

from the satellite, and to produce, disseminate and archive the generated products.

Responsibility for and provision of the ARIEL GS is split between ESA and a

nationally-funded Instrument Operations and Science Data Centre (IOSDC), with the

ESA part comprising the MOC, the tracking station network (ground stations), and the

Science Operations Centre (SOC) located at ESAC near Madrid. A schematic view of

the operational interfaces for the ARIEL mission is presented in Fig. 7.

The core of the scientific mission planning consists in generating and maintaining a

long-term observation plan of the ARIEL surveys including the needed calibration

observations, based on the list of target observation and mission constraints. Inputs to

the target list will be solicited from the wider scientific community (e.g. through

whitepapers, meetings, and other mechanisms) that will be kept informed about the

status of the target list.

The rule-based inputs of MOC constraints and the independency of ground

station bookings lead to a highly simplified and optimized monthly mission

planning cycle. An automatic planning tool developed by the IOSDC based on

a figure-of-merit optimization process would deliver the initial long-term plan

before launch based on the selected target list by the ARIEL science team, and

updates in regular intervals as new targets may be added. The target list would

be converted into a sequence of observations with high scheduling efficiency to

maximize the scientific return. These observation sequences consisting of sched-

uled pointings and payload configurations for each observation are sent from

SOC to MOC as part of payload and spacecraft commands in the mission

timeline for uplink to the spacecraft.

Data products from raw telemetry to the extracted target (star + planet) spectra, free

of instrumental signatures, would be produced at the SOC using processing pipelines

developed by the IOSDC and delivered to SOC in form of virtual machines for

autonomous operation. The extraction of the final exoplanet spectra from the stacked

target observations throughout the mission is under the responsibility of the IOSDC

using state-of-the-art tools. These core science products would be delivered to the SOC

for ingestion into the ARIEL archive hosted at ESAC. Re-processing of the data is

foreseen when new calibration data would become available or new insights into

processing steps require modifications to the pipeline modules. Cadence is currently

foreseen to be approximately once per year.

The ARIEL archive will be developed by ESA and would be the repository for all

data associated with all phases of the mission, fulfilling the role of mission database and

science data archive. Before launch it would be used for instrument-level testing and

on-ground calibration. During operations it would be used to store raw telemetry,

processed science data products, calibration products as well as relevant support data.

The higher-level data products together with the relevant pipelines and calibration data

would be made available to the scientific community through the archive based on the

agreed data release policy (see section 7), with user support provided by SOC in close

collaboration with the IOSDC. This will allow the scientific users to re-process the

science data using their own preferred tools for exoplanet science if they so wish. Post-
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operations and following the archiving phase, final versions of all calibration files, data

products and support data as well as processing software/pipelines including user

documentation would reside in the archive as part of the long-term science data

preservation plan of the science data archives at ESAC.

5 Spacecraft design

5.1 Design drivers

The most stringent requirements applicable to the ARIEL mission are:

– Wavelength range.

– Near photon noise limited system.

– Photometric stability of up to ~10−4 or better (depending on the target).

These requirements have the following system level impacts:

– The noise threshold over the wavelength range means low read out noise and low

dark current Mercury-Cadmium-Telluride (HgCdTe) detectors operated at a tem-

perature as low as ~40 K (for AIRS channel #1) are required. This necessitates an

active cryo-cooler.

– The instrument box should have a temperature of ~55 K to reduce its thermal

background and limit its variations, as well as operate the detector cold Front End

Electronics (FEE). This can be achieved by a passive cooling system.

Fig. 7 ARIEL Ground Segment interfaces and data flow. SOC as part of the Science Ground Segment (SGS)

is the nominal point of contact to MOC during in-orbit operations, exceptions include the commissioning

phase and the case of contingency handling, where a direct link between IOSDC and MOC can be established

through the instrument workstation (IWS). Comunication paths (commanding and data flow) are indicated by

arrows. The raw telemetry (science and housekeeping TM) is distributed to the SGS via the Data Disposition

System (DDS) at MOC, which is managing the private communication to the ARIEL spacecraft through the

ground stations as part of the Operational Ground Segmant (OGS). The operational location of the data

processing pipelines up to the final exoplanet spectra (Level 3 data), archiving and interface to the scientific

community are indicated as well
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– Similarly, the telescope also needs to be at a temperature of ≤70 K (or less to ease

the thermal background stability requirement) to reduce its thermal background.

For simplicity of the thermal/cryogenic design of the PLM, the complete PLM

(optical bench, instrument box and telescope) is passively cooled to 55 K to

minimize the number of different temperature stages.

– A small Pointing Drift Error (PDE) of the instrument Line of Sight is needed, down

to ~ 100 mas over 10 h for observations of up to 90 s (half-angle, radial, 3 sigma).

The pointing requirements impose the adoption of a Fine Guidance Sensor (FGS),

used in the closed control loop of the Attitude and Orbit Control System (AOCS)

of the spacecraft..

5.2 Instrumentation

This section presents a brief summary of the ARIEL payload design as baselined by the

payload Consortium.

The science case (see section 2.2), calls for medium resolution near and mid infrared

spectroscopy and parallel photometry in the visible and near infrared with high

accuracy and stability.

The baseline payload consists of a PLM containing a telescope assembly (operating

below 70 K), an optical bench carrying the cold instruments (operating at 55 K) and a

radiator, V-groove shields for passive cooling and an active cryocooler system (specif-

ically for cooling the AIRS channel#1 NEOcam detector between 42 K and 35 K), and

the warm payload electronics units accommodated on the SVM. The payload architec-

ture is shown in Fig. 8.

The prime science payload for ARIEL is a broadband, low resolution infrared spec-

trometer operating between 1.95 and 7.8 μm (AIRS, see Table 6). This is a single module

that incorporates two channels covering the 1.95–3.9 μm and 3.9–7.8 μm ranges. Wave-

length splitting between the two channels is achieved by a dichroicmirror. For wavelengths

shorter than 3.9 μm a resolution of 100 is required, and 30 for longer wavelengths.

The visible/near infrared photometer and spectrophotometer comprises four chan-

nels: two wide band channels which also serve as the fine pointing system (FGS)

operating between 0.8–1.0 and 1.05 and 1.2 μm, a near infrared spectrometer operating

Fig. 8 ARIEL PLM. Top view (left) and back view (right) with the radiator removed, showing the different

instrument channels
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at 1.25–1.9 μm and a visible photometer at 0.5–0.55 μm. The FGS’s main task is to

provide the fine pointing knowledge to the satellite, but it will also provide high

precision photometry of the target for science. In particular, the data from the FGS

will be used for de-trending pointing jitter effects in the science data and for other noise

reduction data analysis on ground and to ensure that the atmospheric retrieval can be

made without confusion.

Both instruments are fed by a common optics module including dichroic mirrors to

separate the various channels.

Current visible and near-infrared detector technology, employed in the photometer,

spectrophotometer and FGS channels, requires operating temperatures below 55 K,

which in the baseline design can be achieved passively.

To cover with a high quantum efficiency the full wavelength band range of the AIRS

system, two HgCdTe HAWAII-1RG detectors from Teledyne are baselined. The first

one has a cut-off of 5.3um and the second one was developed for the NEOCam mission

with a cut-off around 10–11 μm. This NEOcam detector will be cooled actively by a JT

Ne cooler to a temperature of ≤42 K. Potential alternative European detectors for the

AIRS instrument are under development and show some promising results. For the

FGS, the HAWAII-1RG detector is also considered as the baseline while the ALFA

(Astronomy Large Format Array) is envisaged as a potential European alternative. All

detectors are coupled to cold Front End Electronics (FEE) low-power dissipation to

control the detector and insure the analogue-to-digital conversion.

The telescope is an un-obscured, off-axis Cassegrain all Aluminium telescope with

an elliptical 1.1 m × 0.7 m primary mirror. It is foreseen that the secondary mirror will

be equipped with a re-focussing mechanism. A third powered mirror collimates the

beam before it is passed to the instruments. The telescope is accommodated horizon-

tally on the PLM (see Fig. 8). The image quality of the telescope system is planned to

be diffraction limited at wavelengths ≤3 um over a field of view (full angle) of

30 arcsec. The overall envelope of the optics is 1400 mm× 950 mm× 1200 mm.

The overall payload mass allocation is 460 kg including margins, of which 39 kg are

for the warm units, 90 kg for the V-grooves and PLM support struts, 300 kg for the

telescope subsystem and 31 kg for the cold units on the optical bench including cryo-

harness. The power allocation for all warm units during operations is 140 W. It is

expected that the instruments will generate, during routine operations, 25 Gbits per day

of science data. During commissioning or observations of specific (bright) science

targets peak data rates of a factor of 20 higher may be expected.

Table 6 ARIEL instrument suite

Channel Name Wavelength (μm) Resolving power

VisPhot 0.5–0.55 Photometer

FGS-1 0.8–1.0 Photometer

FGS-2 1.05–1.2 Photometer

NIRSpec 1.25–1.95 R ≥ 10

AIRS-Channel #0 1.95–3.9 R ≥ 100

AIRS-Channel #1 3.9–7.8 R ≥ 30
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5.3 S/C platform

5.3.1 Structures, configuration and thermal

The spacecraft is designed in a modular way, with the SVM upper panel acting as a

clear physical separation between the SVM and PLM (see Fig. 9). This will simplify

the procurement and Assembly, Integration and Verification (AIV) approach by

allowing both modules to be procured and tested in parallel and independently.

The SVM structural design differs in shape and size between the two industrial

contractors, but uses a common and standard approach, based on a central cylinder or

cone, side walls and shear panels, and bottom and top panels (see Fig. 10). The central

cylinder/cone is the main structural elements that carries the launch loads and interfaces

with the LVadapter at its bottom end, while holding the propellant tank(s) inside. All other

S/C units are accommodated on the side walls. The SVM also carries the warm payload

elements (cryo-cooler, ICU and FCU). The SVM is thermally controlled at ~ 20 °C for

nominal operations of all the S/C subsystem units. This is achieved through dedicated

heaters where required and some radiator areas are available on SVM walls that are

constantly looking towards the cold sky.

The overall configuration of the S/C is driven by the thermal requirements and the

accessible sky requirements. The SVM upper panel shape and size drives the design of

Fig. 9 Industrial S/C designs (courtesy of TAS and ADS) with alternative PLM designs compared to the

Consortium baseline PLM

Fig. 10 Inside view of industrial SVM designs (courtesy of TAS and ADS)
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the PLM thermal shield assembly following the required cut angles defined in section

3.3, while it also acts as Sun shield (or V-groove #0) for the PLM.

5.3.2 Attitude and orbit control subsystem (AOCS) and propulsion

Note that all pointing errors detailed in this section are half cone angles expressed with

a 99.7% confidence level.

The Attitude and Orbit Control Subsystem (AOCS) provides control of the S/C attitude

and of the telescope and instrument Line of Sight (LoS). The AOCS requirements are split

into 2 main pointing modes: a coarse pointing mode and a fine pointing mode.

The coarse pointing mode is achieved by only using the AOCS units accommodated

in the SVM, with the star tracker as the main sensor and the reaction wheels as the sole

actuactors (i.e. without the FGS in the control loop). This mode is used to slew between

target stars. The resulting coarse Absolute Performance Error (APE) of 8″ across the

LoS of the FGS channels is included in the sizing of the FGS Field of View (FoV). As

such, this mode ensures the FGS can acquire the target star within its FoV, to then

successfully transition to the fine pointing mode.

The fine pointing mode is the precise pointing mode that will be used during

observations of all science targets. It is achieved with the FGS in the control loop to

provide fine pointing knowledge around the 2 axes across the LoS of the instruments,

hybridised with the star trackers for a coarse determination of the attitude around the

3rd roll axis (pointing errors around the roll axis of the telescope/instruments are less

constrained since ARIEL is observing a single target at a time in the centre of the FoV).

The main fine pointing requirements achieved by the system across the instruments

LoS are:

– Fine APE ≤1”
– Relative Performance Error (RPE) ≤ 200 mas up to 90 s

– Performance Drift Error (PDE) ≤ 100 mas up to 10 h for integrations of 90 s

These requirements are applicable when observing bright targets. This is because the

brighter the target is, the larger the photometric variation induced by a pointing variation

is. As a corollary, for fainter targets, these pointing requirements are more relaxed (see Fig.

5). This benefits the AOCS subsystem, since the FGS centroiding error increases slightly

with a lower input flux. The bright target pointing requirements given above are to be

achieved with a specification on the FGS measurement error ≤ 20 mas at 10 Hz.

Similarly to the coarse APE and the sizing of the FGS FoV, the fine APE is taken

into account in the sizing of the entrance slits of both AIRS channels.

The RPE contains all the high frequency jitter terms. Most of this jitter is un-

resolved, because the detector read out rates are slower than most sources of high

frequency jitter (FGS error at 10 Hz, reaction wheel and cryo-cooler micro-vibrations in

the 10s to 100 s Hz range). This jitter induces a small blur of the large system PSF

(driven by the telescope diffraction limit at approximately 3 μm), but does not result in

photometric variations in the frequency range of the science observations.

The PDE is the most important pointing requirement, as it translates directly into

photometric variations that add to the instrument noise budget. As the PSF drifts on the
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focal plane detectors, the number of photons incident on the individual pixels will vary.

This photometric variation is taken into account in the instrument noise and photomet-

ric stability budget. Since the PDE applies to very low frequencies (minutes to hours), it

is more easily met than the RPE. The main phenomena that translate into attitude drifts

in this frequency range are thermo-elastic errors due to changes in attitude of the S/C

between targets (and therefore changes in attitude with respect to the Sun leading to

different thermal loads on the S/C) and the Solar Radiation Pressure (SRP). In the case

of ARIEL the SRP is more than one order of magnitude lower than that of typical

astrophysics missions with telescopes that are accommodated vertically (e.g. Herschel

or Euclid). This is because the horizontal accommodation of the PLM on the SVM

allows for a well-balanced S/C which minimises the torque that originates from the

misalignment between the centre of gravity of the S/C and the centre of pressure of the

SRP. Any drifts occurring from thermo-elastic effects and the SRP are in any case seen

by the FGS as it is operating at a much higher frequency, and are therefore corrected by

the AOCS subsystem.

While these fine pointing requirements impose the need for the FGS as a fine sensor

in addition to the star trackers, they can still be met with reaction wheels as the sole

actuators (i.e. no need for a fine pointing actuation system). To achieve this, the reaction

wheels need to be operated in a narrow angular speed range, away from any peak

vibration mode and away from any possible amplification frequency of the S/C

structure (first modes, in the tens of Hz). This derives into the need to very frequently

off-load the reaction wheel momentum to ensure they remain within this narrow

operating range, as the angular speed will continuously be evolving as the wheels are

constantly gaining momentum to counteract the SRP. This off-loading is performed

with the propulsion subsystem and can be done as frequently as between every target

observation, in parallel to the slew to the next science target. In addition, the reaction

wheels could also be accommodated on dampers to minimise all high frequency micro-

vibrations (in the hundreds of Hz) as an additional mitigation measure, as such high

frequency terms cannot be accurately predicted at a Phase A level.

Similarly, the micro-vibrations from the cryo-cooler must be controlled to ensure

they do not excite any structural mode of the S/C and are sufficiently damped. With the

capability to fine tune and adjust the exact operating frequency of the cooler compres-

sors to within a few Hertz, this enables the cryo-cooler to comply with the pointing

budgets allocations.

Based on this, all the fine pointing requirements have been demonstrated to be met.

The only exception is the RPE which becomes marginal when also taking into the

reaction wheel spikes (more accurately referred to as friction torque variations) when

observing bright targets (faint targets are fine with the more relaxed RPE requirement).

Such spikes have been measured on past missions and this is considered as a complex

phenomenon that is due to multi-body interactions of the different balls and the

distribution of lubricant within the bearing. Several mitigation measures are possible

to overcome this problem, but the current baseline simply involves accepting that the

science frames taken during suck spikes are lost, as this phenomenon would be

sufficiently infrequent to still allow the mission to be compliant with the overall

observation efficiency requirement (see section 4.2).

The propulsion system is a simple mono-propellant system (hydrazine) that is based

around standard qualified off-the-shelf components (typically 1 to 20 N thrusters
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depending on the industrial Contractor). All thrusters are redundant, and provide

control of the S/C around the 3 rotational degrees of freedom for reaction wheels off-

loading and safe modes, as well as thrust for orbital correction manoeuvres.

5.3.3 SVM electrical architecture

The power subsystem uses standard qualified off-the-shelf components. Solar cells are

accommodated on the bottom floor of the SVM which provides sufficient area to cover

the needs of the mission without requiring deployable Solar arrays. The required

packaging ratio of the cells leave sufficient areas for all the other units accommodated

under the SVM (e.g. antennas and mechanism, Sun sensors etc.). Since the orbit is

eclipse-free, batteries are only necessary during the launch phase.

The communication subsystem uses X-band only, with at least 2 Low Gain Antennas

(LGA) distributed around the S/C to provide a full 4π steradian sky view to allow for

S/C recovery in case of a safe mode or loss of attitude. These antennas provide only a

low bit rate and can therefore only be used for such recovery cases and for uplink

telecommands. For science data downlink, a high bit rate is achieved with a MGA

located on the bottom of the SVM. It is accommodated on a 2 DoF mechanism to ensure

that ground contact can be achieved whatever the attitude of the S/C. This enables

parallel data downlink and science observations to optimise the observation efficiency

budget. More importantly, it relieves any constraint on the observation plan (as the

transit/eclipse observations are time critical) while allowing for fixed pre-planned

ground contact times and durations in order to simplify the MOC schedule and keep

the operations cost low. Any of the 3 ESA 35 m antennas (Cebreros, Malargue and New

Norcia) is suitable, selection will be made closer to the launch date when the antennas’

usage are better known. 14 h of ground contact are planned every week, split in 3 passes

of ~ 4 h to 6 h. Each ground contact includes 15 min at its beginning and end for ranging

and Doppler activities, in parallel to the full contact time for telemetry.

Memory is sized to enable continuous science operations without any loss of science

data in the case of 1 missed ground contact, while the S/C is sized to survive autono-

mously for at least a week in the case of 2 successive ground contacts being missed.

5.3.4 Spacecraft budgets

The ARIEL industrial mass budgets are presented in Table 7. Note that the PLM mass

refers to the industrial alternative designs (see Fig. 9). The baseline PLM mass budget

from the payload Consortium with the heavier Aluminium telescope and optical bench

is indicated in section 5.2, however the SVM structural designs with the mass budgets

presented here have been sized to support this heavier Consortium PLM.

For both designs, the resulting dry mass is about ~ 1 t (wet mass < 1.2 t). Note that

the addition of a PLM thermal cover is currently being investigated (see discussion in

section 4.1) and should result in an increase in the mass budget ≤50 kg.

The ARIEL industrial power budgets are presented in Table 8. The budgets are

shown for two of the main mission modes:

– Commissioning and decontamination. This mode occurs during the first 3 months

of the mission after launch, with the SVM going through its commissioning phase
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and the payload (optics and detectors at least, possibly the baffle as well) is kept

warm in decontamination mode while the rest of the cryo-structure is left to

passively cool down until it reaches its operational temperatures.

– Science and communications. This is the main mode used during observations in

the nominal science operations phase, and allows for parallel communications with

ground thanks to the antenna mechanism to optimise the observation efficiency.

Table 7 ARIEL S/C mass budgets from the two industrial designs (in kg) with their alternative PLMs

ADS TAS

PLM Telescope structure, optics and baffles 126 100

Thermal shield assembly (V-grooves and struts + others
(e.g. harness, mounts etc.)

130 138

Payload 51 70

Total PLM 307 307

SVM Warm instrument units and cryocooler 41 41

Structure and thermal control 222 211

Communications 37 39

CDMS 37 44

AOCS 30 54

Propulsion 58 46

Electrical power 72 39

Harness 61 30

Total SVM 558 504

S/C total dry 866 812

20% system margin 173 162

S/C total dry with margin 1039 974

Propellant 107 138

Wet mass 1146 1112

With the baseline ConsortiumPLM (and impact on the systemmargin), an additional ~200 kg have to be considered

Table 8 ARIEL S/C power budgets from the two industrial design for two different modes (in W)

Commissioning and decontamination Science and communications

ADS TAS ADS TAS

Payload 0 72 117 140

Thermal control 365 290 12 120

TT&C 112 112 112 147

Data handling 61 53 103 73

AOCS + propulsion 38 151 38 138

Electrical power 46 20 45 20

Total power without margins 633 698 434 670

Unit uncertainty margins 93 38 59 35

30% system margin + losses 228 221 155 211

Total power with margins 943 957 641 916
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Note that the exact definition of each mode varies between each contractor and

therefore the budgets are not directly comparable (different units used at different times,

e.g. AOCS actuators versus propulsion system, various payload units on or off during

the SVM commissioning phase etc.).

Overall, these budgets indicate that the power needs of the S/C are rather modest (under

1 kW) and can be met with the bottom panel mounted solar cells described above.

6 Spacecraft AIV and development plan

6.1 Model philosophy

The spacecraft development plan is based on a standard Proto Flight Model (PFM)

approach, although with some adaptations due to the specifics of the ARIEL mission:

optics in cryogenic conditions, and a clear SVM / PLM separation (both physically and

in terms of responsibility between ESA / industry and the payload Consortium /

Member States). This implies that all final qualification tests are conducted on a S/C

PFM. Such an approach carries an acceptable amount of risk and avoids having to

produce and pay for two full S/C models in parallel (one for testing / qualification and

one for launch). To consider environmental tests only at final S/C FM level would

further decrease the cost but would increase the risks to a level that is no longer

acceptable (i.e. large cost impact if a test fails so late in the development phase and

results in the need for re-design and re-qualification).

The PFM model is typically supported by additional models earlier in the develop-

ment plan. The following models are baselined:

– an Avionics Model (AVM) to verify the electrical and electronics interfaces

– a Structural Thermal Model (STM) to de-risk the structural and thermal design

with a focus on environmental testing

– a Performance Verification Model (PVM) of the PLM only under the responsibility

of the payload Consortium.

Some major payload design aspects will also be de-risked earlier (starting in Phase A

and continuing in Phase B1) in the program using development models where possible

within the programmatic constraints.

The AVMwill integrate Engineering Models (EMs) of the payload warm electronics

elements (e.g. M2 mechanism electronics, Instrument and FGS Control Units, cryo-

cooler drive electronics) that will be delivered to the S/C prime and assembled with the

SVM AVM model. This model typically enables to check all the functional and

electrical (power, data and communications) interfaces between all units, to verify the

functionality of the avionics including the on-board software and the AOCS closed

control loop (which will require a simulator of the FGS output).

The STM allows to qualify the structure and demonstrate the thermal performance of

the design. The SVM and PLM can each have a separate STM model that will be

developed and tested in parallel. Mating these models into a single S/C STM is

potentially not required due to the clear mechanical and thermal interface and different

temperature conditions experienced by both modules. Based on heritage and fidelity of
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the structural and thermal analysis tools, the SVM STM could potentially be considered

unnecessary, leaving the full qualification of the SVM structural and thermal design

only to the PFM with an acceptable risk.

In addition to the AVM and STM, an additional PVM is baselined by the Consortium

early in the development process, so as not to leave the full performance testing of the

payload (including optics and detectors) in cryogenic conditions too late in the develop-

ment process. This model will be stand-alone, i.e. will not require any other S/C or SVM

units and models to mate and interface with, and as such does not require to interface with

the industrial contracts and be delivered to the S/C prime. It may include flight spares for

the telescope mirrors and will use engineering models of the detector (functionally

representative in terms of performance, but not flight grade) and will enable performance

validation of the payload in cryogenic conditions (although some simplifications might be

possible, e.g. depending on the need or not for straylight verification, the mirrors’

roughness could be relaxed if not affecting the PSF quality, enabling a faster

development/polishing time at a reduced cost), and more importantly validation of all

payload performance software models based on correlation between test data and analysis

results. If enhanced with some SVM elements, it could also be used to validate the micro-

vibrations impact on the instrument LoS.

The final model is the PFM. It will be built from the SVM and PLM PFM models

that will then be assembled together. The FM units of all payload units (telescope,

instrument, cryo-cooler etc.) will be included, aligned and functionally tested in

operating conditions at PLM PFM level only. Therefore, no cryogenic or optical test

is needed at full S/C PFM level.

6.2 Technology development activities

A number of Technology Development Activities are running for ARIEL, some

managed by ESA and others by the payload Consortium. They all relate to payload

developments, as no need for any new technology has been identified on the SVM.

Some of these are developments that are required in the baseline design, while others

are only back-ups or nice-to-have for enhanced performance (these latter ones are not

included in the list below). The objective of these activities is to ensure that all elements

of the ARIEL design have reached a TRL ≥ 6 by mission adoption at the end of the

Phase B1 study, which is expected no earlier than Q4/2018. These are:

– Development of an Aluminium path finder telescope mirror. This activity aims at

demonstrating an Aluminium primary mirror is feasible for ARIEL, considering

the optical quality and cryogenic environmental requirements of the mission. In

addition to the Aluminium mirror itself, demonstration of the baseline Silver

coating in cryogenic conditions on this mirror is also necessary.

– Cryogenic re-focussing M2 mechanism. This activity aims at qualifying, under

cryogenic conditions, a re-focussingmechanism (≥ 3 DoF) that will be put behindM2.

– Performance verification of a Ne JT cooler at ≤30 K. This activity aims at verifying

the performance of the European JT cooler (evolution from the Planck cooler) with

Ne instead of He as the working fluid. In parallel, an activity dedicated to

qualifying a new cooler compressor is on-going.
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– Development of European back-up low noise HgCdTe detectors and read-out

electronics. Several activities exist on this topic, covering detectors with different

cut-off wavelengths to cover all the channels of ARIEL (from VNIR to AIRS#1).

7 Science management and community access to Ariel

ARIEL is a survey mission with the primary objective to observe a diverse sample

of known, transiting exoplanets as described in chapters 2 and 3. The choice of

targets shall meet the science requirements that govern the target sample, and will

be made before launch. Inputs will be solicited from the wider community (e.g.

through whitepapers, meetings, and other mechanisms) that will be kept informed

about the status of the target list, as will the ESA Advisory Structure whose

feedback will be solicited. By the time of launch it will have evolved into a

description of the final nominal pre-launch ARIEL target list, however, it can –

and should – evolve during the mission if there are compelling scientific reasons,

such as e.g. including previously unknown particularly interesting targets and

actual mission in-flight performance.

ARIEL is an ESA mission with Consortium lead, it is recognized that ARIEL data

and science will be of interest to a large community of ‘external’ exoplanetary scientists,

and there is a strong wish to embrace them. The intention is to provide high quality data

products in a timely manner and to have a continuous dialogue with the wider commu-

nity, ultimately maximising the science that can be achieved by the mission.

The last step before commencing the nominal science operations of the mission will be

the on-orbit performance verification and science demonstration phase, lasting no more

than 3 months. The data from this phase will be released as soon (1-month TBC) as

practical after observing, and a public workshop will be organized in connection to the data

(levels 1 and 2) release.

In the nominal science operations phase the ARIEL observing strategy will be to

observe the targets in three tiers as described in chapter 2. The data will be pipeline

processed to different levels of data products labelled ‘raw telemetry’ (level 0), ‘raw

spectral frame cubes’ (level 1), ‘target (star + planet) spectra’ (level 2), and ‘individual

planet spectra’ (level 3, respectively.

Datasets up to and including level 2 products for Tier 1 targets will be released

quarterly, the objective is to achieve this 1 month after the end of each calendar quarter,

e.g. 1 May for Q1 etc. Early in the mission this delay may need to be longer, if this is

the case this interval will be reduced to 1 month as soon as possible as the mission

progresses and a more complete understanding of the instrument characteristics, cali-

bration needs and data processing/correction or systematics is gained.

Datasets up to and including level 2 products for Tier 2 and Tier 3 targets will

be released similarly, after each semester where the required signal-to-noise (SNR)

and spectral resolution for a particular target requiring multiple observations has

been achieved. Early in the mission this delay may need to be longer, until the

calibration needs and the knowledge needed for data processing and correction of

systematics are fully understood.

Release of associated ancillary data, pipeline input files, and similar will be per-

formed in connection with the above-mentioned releases.
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In addition, level 3 products will be produced and publicly released. These are not

pipeline products but involve manual processing, and require a good understanding of

ARIEL data, their instrumental signatures, and any possible peculiarities that will only

be obtained once in orbit. It is in the interest of the ARIEL consortium to have level 3

data processed, published and released soon and frequently. It is foreseen to provide

level 3 products at least on an annual basis, and sooner/more frequently when the

knowledge to produce them is firmly in hand.

8 Conclusions of the Ariel mission selection review

The main conclusions of the MSR were (full details in [9]):

Technical aspects:

– The mission design was considered to be feasible and adequate to meet the mission

requirements.

– At SVM level, no critical item was identified. All components have a high TRL

and the overall design does not exhibit any particular complexity. The only

exception is the AOCS subsystem, it will require further consolidation in the next

phases, but is also expected to be feasible.

– At PLM level, the design was considered to be adequate to meet the performance

requirements. A number of items however have a low TRL and will require further

consolidation, but are well covered by technology development activities (see

section 6.2).

– The Sun illumination of the PLM was judged to be a major risk. As a main

mitigation measure, a recommendation was made to investigate the addition of a

PLM thermal cover (discussed in previous sections).

– The development risk was judged to be low, but the micro-vibrations impact on the

RPE budget will need to be closely monitored and might require additional

characterization of the system (as opposed to verification by system analysis with

characterization of units only).

Programmatic aspects:

– The main programmatic risk resides in the overall scope (a complete cryogenic

PLM plus payload warm units) of the work under the responsibility of the

Consortium and to be supported by the Member States.

– However the development schedule was considered consistent with a 2026 launch,

and the ESA cost at completion in line with the M4 constraints.
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