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The Phase Distribution of Upward   
Co-Current  Bubbly Flows in a Vertical 
Square Channel 
In this work one shows experimental data and numerical results of the void fraction 
distribution in vertical upward air-water bubbly flows in a square cross-section channel. 
To measure the void fraction distribution one used a single wire conductive probe. The 
averaged void fraction ranged from 3.3% to 15%; the liquid and the gas superficial 
velocities varied from 0.9 m/s to 3.0 m/s and 0.04 m/s to 0.5 m/s, respectively. The 
experimental results for the void fraction distribution were compared with numerical 
calculation performed by an Eulerian-Eulerian implementation of the Two-Fluid Model. In 
this work one performs the turbulence modeling with three approaches: using an algebraic 
model, the k-ε two-phase model and the k-ε two-phase two-layer model. Comparisons 
between the experimental and numerical data revealed, in general, good agreement.  
Keywords: Vertical upward bubbly flow, phase distribution in bubbly flows, bubbly flow in 
square channel 
 
 

Introduction 

It is usual that two-phase bubbly flows occur in channels of non-
circular cross section. Equipment having these channels are 
evaporators used in chemical industries, nuclear light-water reactors, 
gas-liquid separators used in petroleum plants, to mention a few. 
The phase distribution on the cross-section of channels influences 
the transport processes. This explains the vast amount of 
experimental data, modelling and analysis effort focusing the phase 
distribution in vertical bubbly flows in round pipes. Contrasting, 
there are not so many reports presenting measurements and 
numerical calculation for bubbly flows in non-circular channels. 
One of the reasons is, probably, due to the experimental difficulties 
in measuring the void distribution in sections that do not have axial 
symmetry. Other is the fact that bubbly flows in oblong pipes takes 
the modelling an its numerical implementation to the limit. The 
constitutive equations expressing interfacial transfer are not fully 
established and there is not enough experimental data to support 
turbulent models that are physically robust. Moreover, the 
implementation of a multidimensional Two-Fluid Model requires 
computational effort, power and time, to be solved with an adequate 
level of convergence and resolution. Hence, there are just a few 
papers presenting numerical results of bubbly flows in non-circular 
channels and, moreover, comparing them with experimental data.1 

Most of the work done on gas-liquid flows in non-circular 
channels focused on the mechanistic modelling of pattern transitions 
or approach them with one-dimensional models to calculate pressure 
drop or mean void fraction. These were the subjects of Mishima et 
al. (1994), Troniewsky and Ulbrich (1984), Hibiki et al. (1994), 
Mishima et al. (1993) and Keska and Fernando (1994). 

Among the papers presenting measurements of the void fraction 
distribution in channels having corners one may mention Sadatomi 
et al. (1982), Shiralkar and Lahey (1972) e Moujaes and Dougall 
(1987). The former generated a vast data bank on vertical air-water 
flows in rectangular, isosceles-triangular and annular channels, 
directed towards the calculation of the pressure gradient. The 
authors mentioned that the void distribution is one of the most 
important aspects of two-phase flows in non-circular channels. Their 
measurements included the cross-sectional distribution of void 
fraction in bubbly flows, which depicted wall and corner peaking. 
The later depicted data on void fraction distribution, gas and liquid 
velocity distribution and bubble size in narrow rectangular channels 
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using both an optical fiber probe and a hot film anemometer. Some 
of their results for the void fraction, however, were presented in 
terms of the averaged values over the short and long dimensions of 
the channels, respectively. This procedure filtered the local 
distribution data and revealed only a limited aspect of the void 
distribution across the channel section. Non-filtered void 
distribution data was depicted only in the longer section center-
plane. Similarly to the work of Shiralkar and Lahey (1972), who 
focused on bubbly flows in eccentric annulus, various authors dealt 
with more complicated flow geometry, like those taking place in 
nuclear reactor fuel rod bundles. For the sake of shortness, they will 
not be mentioned herein. 

Lahey et al. (1983) and Lopes de Bertodano et al. [1994a, 
1994b) measured and modelled air-water vertical bubbly flows in 
triangular channels. Using hot film anemometers, single and X-
probes, they measured the void fraction and the instantaneous 
velocity components all over the channel cross-section, and took 
fine grid measurements on the corners. From these they were able to 
calculate the mean velocity and the Reynolds stress components, 
revealing the turbulent structure of the flow. Again, the void fraction 
distribution depicted wall and corner peaking, with values somewhat 
higher in the corners. 

Hoping to improve the understanding of the phase distribution 
in non-circular square channels, this work presents, discusses and 
compares experimental and numerical data on vertical upward 
bubbly flows taking place in a square cross-section channel. The 
side of the channel was 0.034 m. The flow was at near atmospheric 
pressure (0.3 bar to 0.55 bar) and ambient temperature (23oC). To 
measure the void fraction distribution one used a single wire 
conductive probe. The averaged void fraction ranged from 3.3% to 
15%, for liquid and gas superficial velocities varying from 0.9 m/s 
to 3.0 m/s and 0.04 m/s to 0.5 m/s, respectively. The measurements 
depicted the bubbles concentrating close to the walls and a strong 
void concentration in the channel corners. 

To model the flow one used the Two-Fluid Model. A steady-
state isothermal flow with no phase change has been considered. 
The phase distribution over the channel section came out from a 
balance between the radial pressure force, the lateral lift, the wall 
force and the turbulence-induced lateral pressure field. One expects 
the turbulence playing an important role on the phase distribution 
over the channel cross section. For this reason, three different 
turbulence models have been tested: an algebraic model, the 
standard k-ε added with a bubble induced-turbulence term and the k-
ε two-layer model. The numerical results and its comparison with 
the experimental data are presented and commented. For 
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convenience, Phoenics, a CFD software that utilizes the finite 
volume approach, solved the system of equations. 

Nomenclature 

Latin 

Cpi, CD, Cvm, Cli = pressure, drag, virtual mass and lateral lift 
coefficients, dimensionless 

Cε1, Cε2 = constants in turbulent model 
C1, CµB, Cµ = constants in turbulent model 
Cpipa, Cla = constants in lateral lift equation 
D = bubble diameter, (m) 
E = constant 
g = gravitational field (m/s2) 
k = Von Karman’s constant (dimensionless) 
lµ, lε = scale length, (m) 
Mk

D = generalized interfacial force, (N/m3) 
Mk

σ = generalized interfacial force, (N/m3) 
Ng = phase density function, dimensionless 
p = pressure, (N/m2) 
P = kinetic energy production, (J) 
r = radial displacement 
Re = Reynolds number, dimensionless 
t = Time, (s) 
u = axial velocity, (m/s) 
V = velocity field, vectorial quantity, (m/s) 
We = Weber number, dimensionless 
x, y = distances from wall, (m) 
x,y,z, = cartesian coordinates, (m) 

Greek 

α = local void fraction, dimensionless 
διϕ = delta de Kroenecker, dimensionless 
ε = dissipation rate, (m2/s3) 
κ = turbulent kinetic energy, (m2/s2) 
ρ = density, (kg/m3) 
ν, νT = kinematic viscosity, turbulent two-phase 
kinematic viscosity, (m2/s) 
νSI , νBI = shear induced, bubble induced kinematic 
viscosity, (m2/s) 
σ = surface tension, (N/m) 
σα,  σκ, σε = constants in turbulence model 
ξ = bubble radius, (m) 
τ = stress tensor, (N/m2) 
τRe = turbulent stress tensor, (N/m2) 
θ = azimuthal position 

Symbols 

x = rotacional operator 
∇  = gradient operator 
< > = indicates mean value 

Superscripts and Subscripts 

k=G , k=L, ki , w  = subscripts indicating the phases (gas  and 
liquid) 

and the property at the interface and at the wall 
+ = superscript indicating a non-dimensional quantity 
D = indicates generalized force 
d = indicates drag force 

tp = subscript indicating a two-phase property 
 
 
 

The Experimental Apparatus and the Measurement 
Technique 

Figure 1 shows a sketch of the experimental set-up. The air-
water bubbly flow took place in a vertical aluminum channel of 
square cross-section, whose side was 34.1 mm. In the mixing 
chamber the air entered through an inner porous media of 
cylindrical shape, positioned along the channel axis. This 
arrangement produced a fairly uniform bubbly flow just upstream 
the chamber in the full range of air and water flow rates applied. 
After the mixing chamber the bubbly flow developed along 73 
equivalent diameters before reaching the test section. The test 
section was made of Plexiglas, exactly matching the cross section of 
the aluminum channel, allowing flow visualization. 

Ordinary tap water and air were the working fluids, flowing at 
nearly atmospheric pressure, from 0,3 barg to 0,55 barg, and 
ambient temperature of 23oC. A centrifugal pump circulated the 
water. The air came from a compressed air tank maintained at 
constant pressure. To measure the air and the water flow rates 
within 2% of overall accuracy, one used a laminar element and a 
vortex meter, respectively. The range of water and air superficial 
velocities - referred to the channel hydraulic diameter at the test 
section conditions - applied in the experiments were jL = 0.9 m/s to 
3.0 m/s and jG = 0.04 m/s to 0.5 m/s, respectively. The mean void 
fraction in the test section varied from <α> = 3.3% to 15%. The 
bubble size was in the range of 2.5 mm to 3.5 mm, measured from 
digital images generated by a fast (1000 frames/sec) movie camera. 
As the channel had square cross-section, the mean bubble diameter 
was taken, sampling a number of bubbles from various frozen 
images of the channel lateral view, by comparison with the channel 
side. 
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Figure 1. Scheme of the experimental set-up. 

 
A fully description of the conductive probe used to measure the 

void fraction, including the electronics and the data acquisition can 
be found in Dias et al. (2000) and Matos et al. (1999). 

An inner insulated copper wire of 120 µm diameter, was the 
cathode in the electrical circuit. The anode was the probe stem, i.e., 
the stainless steel needle that sustained the inner wire. The wire was 
cut in such a way that exposed a cross section area having, roughly, 

1,1 x 10-8 m
2
. When immersed in water, the exposed tip of the wire 

established electrical contact with the probe stem through the water. 
When the tip was inside a gas bubble the electrical circuit was open. 
This is the typical on-off signal generated by a classical conductive 
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probe, from which one calculates the local void fraction. The void 
fraction uncertainty does not follow straightforward from 
experiments like this, as non-intrusive direct measurements were not 
performed for comparisons. However, it can be acessed from global 
measurements of liquid and gas superficial velocities, see Dias et al. 
for details. 

Figure 2 is a scheme of the assembly used to measure the local 
void fraction over a curved surface enclosed by the channel walls. 
To perform the measurements the probe was inserted into the 
channel through a small hole and was driven by a mechanism that 
allowed radial, r, and rotational positioning. The probe was then 
positioned at 105 points (measuring stations) over this surface. 
These measuring stations were then projected onto a channel cross-
sectional plane – the measuring reduced plane – where they could be 
specified by the coordinates (x, y) at the axial location z. This 
resulted in a detailed void fraction mapping, required for a proper 
averaging process in a strongly non-uniform distribution. A 
micrometer with a digital read-out measured the radial 
displacement, r, with an accuracy of ± 0,02 mm. The azimuthal 
position, θ, could be set within ± 1o. The fact that the actual 
measurements were not performed over a cross-sectional plane is of 
minor significance since the flow is developed and the axial distance 
between the most apart measuring stations is quite short. 

 

Figure 2. Measuring stations for the local void fraction. 

 
The hardware for the data acquisition consisted of National 

Instruments AT-MIO16, a 12 bits ISA bus board and a 486 PC 
computer. The hardware sampled, acquired and stored the signals 
generated by the probe at every measuring station, at a frequency of 
50 kHz, during the period ∆t of 10 seconds. To calculate the local 
void fraction from this raw signal, one applied a threshold level and 
converted it to a Dirac-delta function. This function - in other words, 
the phase density function Ng(x,y,z,t) - indicates the occurrence of 
gas (a bubble) at the measuring station on time t. Thus, the local 
void fraction, α(x,y,z), comes from the time averaging of 
Ng(x,y,z,t), 

 

( ) dt )t,z,y,x(N
t

1
z,y,x

t
g∫∆

=α , (1) 

 
where ∆t is the sampling period. Details of the data processing 
technique can be found in Dias et al (2000). It is worthwhile to 
mention that using the above-described procedure the number of 
digitally acquired points used to calculate the void fraction 
distribution over the channel section amounted to 4.2 x 107. 

The Mathematical Modelling 

One used a rather complete formulation of the Two-Fluid 
Model, Ishii (1975) and Drew and Lahey (1979), for the 
mathematical representation of gas-liquid bubbly flows inside a 
vertical channel of square cross-section. A balance between the 
radial pressure force, the lateral lift, the wall force and the 
turbulence-induced lateral pressure field governs the phase 
distribution on the channel section. Interfacial transport in two-
phase flows is embodied in the mass, momentum and the interfacial 
transfer equations. In a steady-state isothermal flow with no phase 
change, these equations reduce, after some definitions and 
operations, to Eqs. (2), (3) and (4): 

 

( ) 0Vkkk =⋅∇ ρα , (2) 

 

( ) [ ]
Mpp

gpVV
D
kkkki

kkk
Re
kkkkkkkk

 )(                                                     

 -=

+∇−+

++τ⋅∇+∇⋅∇

α

ραααρα  (3) 

 
The interfacial momentum transfer equation links the phases: 
 

( ) MM k
D
k
L,Gk

σ∑
=

=  (4) 

 
The subscript k indicates the phase (k=G or k=L, gas or liquid) 

and the subscript ki defines proper values of the variables at the 
interface, like the velocity and the pressure of phase k at the 
interface. The local void fraction is α, ρ is the density, V is the 
velocity, p is the pressure, g is the gravitational field, τk

Re is the 
turbulent stress tensor, Mk

D is the generalized interfacial force and 
Mk

σ stands for the force due to the surface tension. The viscous 
tensor in both phases was considered to vanish when compared with 
τk

Re. 
In order to solve this system of equations for gas-liquid bubbly 

flows, one has to constitute it with proper equations for Mk
D, Mk

σ, 
the phasic pressure difference, (pki-pk), τk

Re and other variables. 
Besides some questioning, the first three terms are reasonably 
established. The mathematical representation of the two-phase 
Reynolds tensor, τRe, however, is far from being settled. It plays an 
important role in shaping the multidimensional structure of bubbly 
flows since there is a coupling between the two-phase flow 
turbulence and the phase distribution. In a developed flow, for 
example, the radial force balance accounts for the radial components 
of forces embedded in the generalized interfacial force, the radial 
pressure field and the turbulence-induced lateral pressure field. As 
mentioned by Lee (1988), if the subtle changes in the void 
distribution are to be modeled, the non-uniform distribution and the 
anisotropy of liquid phase turbulence have to be taken into account. 

The Reynolds Stress Tensor 

As the gas is much less dense than the liquid, as is in bubbly 
flows herein reported, it is enough to constitute the Reynolds, or 
turbulent, stress tensor in the liquid phase, τL

Re. Every known model 
available to constitute it has limitations and drawbacks. Some are 
not robust enough to represent the physics of the phenomenon, 
others bring additional complexities to the system of equations, 
failing the convergence of the numerical solution. If one adds the 
fact that some disagreement persists in regard to experimental data 
provided by different authors, it is clear that the subject of 
turbulence modelling in two-phase bubbly flows in far from being 
settled. Being aware of this, in this work one accomplished it with 
three approaches: using an algebraic model, the k-ε two-phase 
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model and the k-ε two-phase two-layer model. So, the Reynolds 
stress tensor is written according the Boussinesq eddy-viscosity 
approximation:  

  

( ) δ−∇−∇νρ=τ ijL
T

LTL
Re
L k

3

2
VV  (5) 

where k is the turbulent kinectic energy and νT is the two-phase 
turbulent kinematic viscosity, respectively.  

Following Bertodano et all (1994c), one assumes that the two-
phase turbulent viscosity is a superposition of the viscosity due to 
the Reynolds stress, the shear-induced viscosity, νSI, plus a bubble 
induced viscosity, νBI: 

 

ν+ν=ν BISIT . (6) 
 
The bubble-induced turbulent viscosity stems from the mixing 

length concept, 
 

VVdC LGGBBI −α=ν µ  (7) 
 

where CµB is equal to 0.69 and d is the mean bubble diameter. 
In order to solve the phasic mass and momentum equations one 

needs to define closure laws for the shear induced viscosity. Three 
approaches were used to calculate νT: an algebraic relation, 
mentioned herein as the l-vel model, the standard k-ε model and the 
k-ε two-layer model. The l-vel model is said not being robust, i.e., it 
does not represent the physics of the phenomenon. Specifically, the 
signal change of the Reynolds stress over the pipe diameter, 
originated by the non-centered peak of the velocity profile that 
experimental data have shown. It is, however, easy to implement 
and does not impose complexities, like additional differential 
equations that could lead to systems that do not converge. The k-ε 
is, nowadays, a turbulence reference model, with a widespread use 
in single-phase flows. However, the standard k-ε model is referred 
to not giving a good representation of the Reynolds stress tensor 
close to channel walls, i.e, when the Reynolds number is low, 
besides requiring a very high numerical resolution due to the steep 
gradient of dissipation rate of turbulent energy, εεεε, in these regions. 
In order to improve computational efficiency and convergence rates, 
as well as to introduce established length-scale distribution in the 
region near the walls, one alternative is to use the standard k-ε 
model in the fully turbulent region and an algebraic expression for ε 
in the damping layer. This is known as the k-ε two-layer model, the 
third approach one used to calculate νTtp. 

The algebraic model (l-vel). 

The algebraic model is set by the non-dimensional relationship 
between the distance from the wall, y+, and velocity, V+. The 
classical Spalding’s (1994) law of the wall is: 

 

( ) ( )

( ) ( )  −κ−κ

−κ−κ−−
+=

++

+
+κ

++

+

...
24

V

6

V
-                                                

2

V
V1e

 
E

1
 V y

43

2
V  (8) 

 
where the constants κ (von Karman) and E are equal to 0.417 and 
8.6, respectively, and the non-dimensional variables are 
 

ρ
τ

=
ν

ρ
τ

= ++

wL

w

V
V         ,

y

y , (9) 

 
The derivative of y+ in regard to V+ is the non-dimensional 

kinematic viscosity, νSI
+, which, by its turn, is  (

ν
νν =+

L
SI

SI
). 

Hence, differentiating Eq. (6) in regard to V+ gives rise to the 
turbulent viscosity: 

( ) ( )  −
κκ

−κ−−
κ

+=
++

+κ +ννν ...
6

V
 - 

2

V
V1e  

E

32
VL

LSI
 (10) 

The k-εεεε model. 

Now the shear induced viscosity is set by the k-ε model, 
 

C kSI
2

ε
µ=ν  

 (11) 
 

where k is the turbulent kinetic energy, ε is the dissipation rate and 
the constant Cµ is equal to 0.09. The turbulent kinetic energy and 
the dissipation rate come from the simultaneous solution of the two-
phase version of the the standard k-e model [19]: 

 

( ) ( )  ∇⋅∇+

+ε−+ ∇ +⋅∇=⋅∇

α
σ
ν

α
σ
νναα

α

ε

L
T

L
T

LLL

k                                                               

PkkVL  (12) 

 

( )

( )  ∇ε⋅∇+ε− ε+

+ ε∇ +⋅∇=ε⋅∇

α
σ
να

σ
νναα

α
εε

ε

L
T

21L

T
LLL

CC

V

P
k

                                

L

 

(13) 

 
In these equations, σk = 1, σe = 1.314, σα = 1, Cε1 = 1.44, Cε2 = 
1.92. P is the kinetic energy production term: 

 

[ ] VLT :P VV T
LL

∇= ν ∇+∇
 (14) 

 
The single phase “law of the wall” equation bridges the fully 

turbulent flows with the flow near the wall. The values of k and ε 
near the wall come from: 

 

µρ
τ

=
C

1
k

L

W      
y43.0

kC 5.175.0

⋅
⋅

=ε µ
 (15) 

 
where τW and y are the wall shear stress and the normal distance 
from the wall, respectively. 

The k-εεεε two-layer model. 

The strategy when using the k-ε two-layer model, according to 
Chen (1995), is to distinguish flow regions. The standard k-ε model 
is applied in the fully turbulent region. In the layer near the wall, an 
one-equation model, the k-ε equation combined with an algebraic 
expression for ε, is used: 

 



A. de Matos et al 

312 / Vol. XXVI, No. 3, July-September 2004 ABCM 

ε
=ε

l

k 2
3

, (16) 

 

where 

k

nl

R

3.5
1

yC
l

+
=ε , 4

3

l CC
−
µκ= ,  and  

L

n2
1

k
yk

R
ν

=  (17) 

In the damping layer near the wall the eddy viscosity is 

 

µµ=ν lkC 2
1

SI  (18) 

 
where 

  −=
−

µ
+µ A

25

A

R

nl

k

e1yCl   (19) 

The Interfacial Pressure Term 

In the liquid phase, the pressure at the interface, pLi, is 
 

( )VVCpp LG
2

LpiLLi −ρ−=   (20) 

 
where pL is the bulk liquid pressure. 

This expression results from the solution of a non-viscous flow 
around a sphere. In this case the coefficient Cpi is 0.25. Lance and 
Bataille (1991) suggested values between 0.5~0.7 for actual bubbly 
flows. Lahey (1990) used Cpi = 1 in distorted bubbly flows. The 
value used in the present work was a function of void fraction, as 
suggested by Spalding (1994), 

 

( )( )2pipapi 11CC α−α+= , (21) 

 
where Cpipa is 0.5. Following Stuhmiller (1977) one considered that 
the pressure difference is equal for both phases. Using the Laplace 
equation the relationship between the gas and the liquid pressure at 
the interface could be stated: 

 

LLiGGi PPPP −=−  (22) 
 

 ξ
σ=− 2PP LiGi  (23) 

 
where σ is the surface tension and ξ is the bubble radius. 

The Interfacial Forces 

The generalized interfacial force acting on the phase k, Mk
D, is 

usually divided in the drag force, Mk
d, and the non-drag force, Mk

nd. 
The non-drag force accounts for the lateral forces and the virtual 
mass force. The drag force arises due to the relative displacement of 
the bubble. The drag force on a bubble of diameter D is: 

 

( ) VVVV
D

C
4

3
MM LGLGGL

Dd
G

d
L −−αρ=−=   (24) 

 
According Lahey (1990), the drag coefficient, CD, depends on 

the Reynolds number based on the liquid properties. For Antal et al. 

(1991), conversely, the Reynolds number must be calculated for the 
gas-liquid mixture properties. In this work one follows the 
proposition of Kuo and Wallis (1998). According to these authors, 
the drag coefficient is 

 

    ;49.0Re if    
Re

16
CD ≥= 100;Re0.49 if    

Re

68.20
C

643.0D ≤≤=  

100Re if    
Re

3.6
C 385.0D ≥= ; (25) 

   and    
We

2065.1
Re if    

3

We
C 2.6D ≥= 8 Weif    

3

8
CD ≥=  

 
where Re is the Reynolds number and We is the Weber number, 

both expressed as a function of the bubble diameter and the bubble 
relative velocity, (VG-VL). The expressions for CD are valid for 
bubbly flows in an infinitum medium. Marié (1987) showed that 
next to the pipe wall the drag force alters. In this work, however, 
one does not account for the wall effect on the drag force. 

A lateral force, ML
L=-ML

G, arises when the bubble displaces 
through a liquid with a non-uniform velocity distribution. In an 
upward bubbly flow it acts to displace the bubble toward the wall: 

 

( ) ( )VVVCM LLGGLL
L
G

L
LM ×∇×−αρ=−=  (26) 

 
According to Drew and Lahey (1987), the lift coefficient CL 

varies between 0.05 and 0.1 in air-water bubbly flows. More 
recently their co-authors have suggested greater values: Antal et al. 
(1991) used values in the range 0.01 ~ 0.5 and Wang et al. (1987) 
adopted 0.5. The correlation used in this work was due to Spalding 
(1994)]: 

 
( )[ ]α−= ,2.0min78.21CC LaL   (27) 

 
One varied CLa in order to find the most appropriate value fitting 

the experimental data and found CLa = 0.5. The resulting values for 
CL were between 0.22 and 0.48. 

 
In bubbly gas-liquid flows the bubble expansion eventually 

changes the relative displacement between the gas and the liquid, 
giving rise to a virtual mass force. The virtual mass force is, Drew 
and Lahey (1987): 

 

[ ]VVVVC LLGGGLvm
vm
G

vm
L MM ∇−∇αρ=−=  (28) 

 
As the virtual mass coefficient, Cvm, relates with displaced 

volumes, one expected it to depend upon the void fraction, α. 
However, various authors have used constant values for Cvm. Drew 
and Lahey (1987) suggested 0.5; Kuo and Wallis (1988) used values 
within the range 2.0 ~ 3.0, and Lance and Bataille (1991) adopted 
values ranging from 1.2 to 3.4. 

Similarly with has been done with the lift coefficient, the virtual 
mass coefficient has been adjusted to fit numerical and experimental 
data. The values that have assured the best agreement, i.e., the “ideal 
values” of CL and Cvm, will be subject of prospective comments. 

The Numerical Method 

The computations were performed in a workstation SUN 
Ultra10, running the CFD PHOENICS 3.2, the package developed 
by Spalding (1994). PHOENICS is a transport equation solver with 
two-fluid model capability. It is based on the SIMPLE algorithm. 
The IPSA algorithm simulated the interfacial momentum exchange. 
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A computational grid was set up with 20x20x50 nodes, 
corresponding to the coordinates (x,y,z), respectively. A marching 
procedure, exploring the parabolic nature of the flow, was used to 
solve the conservation equations. The initial condition, at the mixer 
position, matched up to uniform velocity field and void fraction 
distribution; the pressure was fixed, indirectly, through the setting of 
the gas density. The calculation then proceeded along 73 equivalent 
diameters until reaching the measuring reduced plane. 

When working with the k-e turbulence model, careful attention 
was given when setting the first control volume for numerical 
integration, in order to follow the constraints imposed by the “law of 
the wall”. With the Reynolds number ranging from 30000 to 40000, 
the outermost face of the first control volume was located at 2.5 mm 
from the wall. This makes the position of the first measuring station 
different from the first numerical volume. Hence, the numerical and 
the experimental results at the measuring station closest to the wall, 
in every xz plane, should not, ideally, be compared. When working 
with the algebraic model and the k-ε two-layer model this limitation 
does not exist: the numerical grid could be refined to rather small 
distances from the wall. 

Regarding the numerical convergence, one adjusted the linear 
under-relaxation parameter, LINRLX, used in PHOENICS. This 
parameter varies between 0 and 1 and updates the current variable 
by a percentage of the previous value. If LINRLX is equal to one 
there is no under-relaxation; if LINRLX is equal to zero, the 
variables are not updated between two steps of the integration 
process. Due to the strong coupling between the phases, the set of 
equations had to be under-relaxed at different ratios. The pressure 
used a 0,8 factor, the void fraction was under-relaxed at 0.4; the 
velocities in the principal and secondary directions were under-
relaxed at 0.7 and 0.01, respectively. The other flow variables, such 
as the turbulent kinematic viscosity and the relative velocity were 
under relaxed at 0.15. These values might not be the optimum 
under-relaxation factor, but assured a steady and converging 
solution. To reach this converged solution, every operational 
condition, established by the gas and liquid superficial velocities, 
required 5 hours of computation. 

Experimental and Numerical Results 

Initial tests were conducted to access the verticality of the 
channel. The void fraction distribution over the channel cross-
section, appearing in the contour map in Fig. 3, showed that 
reasonable vertical positioning had been achieved. The software 
Surfer® produced the contour map. 

Even using a less refined measuring grid, these first 
measurements pointed out to results that occurred in every 
operational condition: bubbles concentrating near the wall, specially 
on the channel corners. The void peaking near the wall, typical in 
vertical upward bubbly flows in round pipes, also occurred in the 
square cross-section channel. 

Definite and more detailed measurements were performed on 
half of the test section. Exploring the axis-symmetrical nature of the 
flow, the local void fraction was measured in 105 stations for 
various operational conditions. The measuring grid was particularly 
refined in the channel region close to the wall. Corresponding 
numerical results for the void fraction distribution have been 
computed. The numerical results refer to: (i) the three turbulent 
models described in a previous section, and (ii) specific 
formulations for the lift and virtual mass forces with “ideal values” 
for CL and CVM, as discussed. 

Figure 4 is a set contour maps showing the experimental and 
numerical distribution of the void fraction over the channel cross-
section. The maps have been plotted using a commercial package, 
Surfer®. Due to the fact that one does 
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Figure 3. Contour map of the void fraction distribution over the entire 
cross-section. Superficial velocities (JL ;JG), equal to (0,946 m/s;0,041 
m/s), average void fraction, <α>, equals to 3,3%. 

 
not have control over the interpolation procedure embedded in the 
package, it is not possible to state that they are a true representation 
of the data. However, they are a good overview of the void fraction 
distribution over the channel section and permit a quick, besides 
rough, comparison between the experimental and numerical data. 

To the left, the outermost map represents the experimental data. 
The three subsequent maps to the right stand for the numerical 
results, each one representing a turbulence model, k-e two-layer, 
standard k-e and algebraic l-vel. Every sub-set stands for a pair of 
superficial velocities: the upper, #1, (JL= 2,12 m/s; JG = 0,13 m/s); in 
the middle, #2, (JL = 1,33 m/s; JG = 0,14 m/s) and the lowest, #3, 
(JL= 0,84 m/s; JG = 0,03 m/s). The respective mean void fractions 
are: #1: <α> = 5.8% ; #2: <α> = 9.5% and #3: <α> = 3.4%. The 
numerical results were obtained, after extensive calculations, for 
“ideal values” of the lift and the virtual mass coefficients, i.e., the 
ones that fitted the best the void fraction distribution over the 
channel wall. 

Looking at the contour maps one can state that, in a broad sense, 
the present implementation of the Two-Fluid Model was able to 
represent the phase distribution of an ascending vertical bubbly flow 
in a square cross-section channel. Moreover, the k-e two-layer 
turbulence model, among those used as constitutive equations, gave 
the best representation of the phase distribution in the range of the 
applied superficial velocities. The “ideal value” for the lateral lift 
coefficient depended on the local void fraction and was in the range 
CL = 0.22 ~0.48; for the virtual mass coefficient, was CVM = 2. 
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Figure 4. Contour map of the void fraction distribution over a half of the 
channel cross-section: experimental and numerical values. Superficial 
velocities (JL ;JG) are: #1, (2.12 m/s;0.13 m/s); #2, (1.33 m/s;0.14 m/s) and 
#3, (0.84 m/s;0.03 m/s). Mean void fraction for experimental data, <αααα>, 
are: 5.8%; 9.5% and 3.4%, respectively. 
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Figure 5.Void fraction distribution on xz planes. Superficial velocities (JL 
;JG) and mean void fraction, <αααα>, are (2.12 m/s;0.13 m/s) and 5.8%, 
respectively. 

The analysis of the Cartesian plots appearing in Fig. 5, 6 and 7 
provided “de-facto” comparisons between experimental and 
numerical data. Every plot in the figures refers to the void fraction 
distribution in a transversal y-z plane defined by a x position, each 
figure relating to a pair of (JL;JG). The lowest the x value, the closest 
to the lateral wall the y-z plane is. The highest x value, x= 17.35 
mm, defines the mid-transversal plane. 

When one looks at the void distribution on the two planes close 
to the wall, x= 0.8 mm and x = 1.8 mm, it is clear that the numerical 
distribution, in general, did not have a good agreement with the 
experimental data. In these planes, spanning from corner to corner, 
the experimental void fractions were, in general, greater than the 
numerical results. The difference amplified as the mixture velocity 
decreased, from Fig. 5 to Fig. 7. Also, the experimental distribution 
showed subtle changes the numerical calculations were not able to 
pair. The statement holds true no matter the turbulence relation 
embedded in the Two-Fluid Model and the magnitude of the gas and 
liquid superficial velocities. There are several factors, different in 
nature, which could explain the discrepancies between experimental 
and numerical results.  

The experimental distribution lacked symmetry in some cases, 
pointing out to experimental difficulties in measuring the void 
fraction distribution at locations very close to the lateral wall or in 
the channel corners. The probe positioning could be argued as one 
of these difficulties. Furthermore, at these locations, where the 
velocities are lower and secondary flows exist, the probe might 
interfere with the flow field. If one looks at the similitude between 
the experimentation and the mathematical representation of the 
flow, new problems arise. The actual distribution of the void 
fraction at locations close to the wall depends on a “physical” 
characteristic of the flow, the bubble size distribution function. The 
Two-Fluid Model does not have the bubble size as a constraint when 
calculating the void fraction distribution. In other words, in real 
world the gas volume has a finite dimension – the probe only “sees” 
bubbles greater than a certain size, for example, while the Two-
Fluid Model deals with the mixture as a continuum. Hence, it might 
not make sense to compare experimental and numerical results in 
locations close to the wall if the calculation grid was smaller than 
the bubble size, for example. This was the case of the measuring 
stations on the first transversal planes, which had x = 0.8 mm and x 
= 1.8 mm. 

When one analyses the experimental and numerical void 
distribution on inner planes, from x= 3.5 mm to x = 17.35 mm, a 
different figure appeared. Good agreement was achieved, no matter 
the magnitude of the mixture velocity or the mean void fraction. 
Among the turbulence models used, the k-ε two-layer gave, 
consistently, the best results. On inner planes the void fraction 
profile was quite flat in the channel center region and the numerical 
results delivered by the Two-Fluid Model with the k-ε two-layer 
model embedded matched up to it. Getting closer to the walls the 
experimental and numerical profiles were somewhat detached. 
However, the numerical results delivered by the Two-Fluid Model 
with the k-ε two-layer model embedded had the highest gradient. 
Thus, if not agreed with the experimental data in shorter distances 
from the wall, at least had a similar trend. 

The numerical results of the Two-Fluid Model with the standard 
k-ε and the algebraic l-vel models embedded did not pair the 
experimental profiles as close as the solution provided by the k-ε 
two-layer model. The numerical results were higher than the 
experimental ones in the channel center region, and were lower 
close to the wall. 
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Conclusion 

A vast number of measurements of the void fraction distribution 
in an air-water vertical bubbly flow in a square cross section channel 
has been made and disclosed. To perform the measurements a single 
wire conductive probe has been used. The experimental data 
revealed that the void fraction profiles presents the wall peaking that 
is typical in upward bubbly flows in round pipes. Moreover, the 
void concentration in the pipe corners was particularly high. The 
void fraction profile has been calculated using a rather complete 
implementation of the Two-Fluid Model, constituted with three 
turbulence models: an algebraic l-vel model, the standard k-e and 
the k-e two-layer models. 

The Two-Fluid Model with the k-ε two-layer model embedded 
gave the best representation of the void fraction distribution. Close 
to the walls and on the channel corners the experimental and 
numerical profiles were somewhat detached, in some cases. 
However, the solution provided by the k-ε two-layer model, having 
the highest void gradient next to the wall, showed the same trend as 
the experimental data. 
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Figure 6. Void fraction distribution on x-z planes. Superficial velocities (JL 
;JG) and mean void fraction, <αααα>, are (1.33 m/s;0.14 m/s) and 9.5%, 
respectively. 
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Figure 7. Void fraction distribution on xz planes. Superficial velocities (JL 
;JG) and mean void fraction, <αααα>, are (0.84 m/s;0.03 m/s) and 3.4%, 
respectively. 
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