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The Phase Distribution of Upward
Co-Current Bubbly Flows in a Vertical
Square Channel

In this work one shows experimental data and numerical results of the void fraction
distribution in vertical upward air-water bubbly flows in a square cross-section channel.
To measure the void fraction distribution one used a single wire conductive probe. The
averaged void fraction ranged from 3.3% to 15%; the liquid and the gas superficial
velocities varied from 0.9 m/s to 3.0 m/s and 0.04 nm/s to 0.5 nVs, respectively. The
experimental results for the void fraction distribution were compared with numerical
calculation performed by an Eulerian-Eulerian implementation of the Two-Fluid Model. In
this work one performs the turbulence modeling with three approaches: using an algebraic
model, the k-& two-phase model and the k-&£ two-phase two-layer model. Comparisons
between the experimental and numerical data revealed, in general, good agreement.
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Introduction

It is usual that two-phase bubbly flows occur iamhels of non-
circular cross section. Equipment having these mblan are
evaporators used in chemical industries, nuclgat-lvater reactors,
gas-liquid separators used in petroleum plantanémtion a few.
The phase distribution on the cross-section of gininfluences
the transport processes. This explains the vastuammf
experimental data, modelling and analysis effocufing the phase
distribution in vertical bubbly flows in round pigeContrasting,
there are not so many reports presenting measutenmesmd
numerical calculation for bubbly flows in non-citau channels.
One of the reasons is, probably, due to the expmeriah difficulties
in measuring the void distribution in sections thatnot have axial
symmetry. Other is the fact that bubbly flows inasty pipes takes
the modelling an its numerical implementation te timit. The
constitutive equations expressing interfacial tfansre not fully
established and there is not enough experimental wasupport
turbulent models that are physically robust. Momgvthe
implementation of a multidimensional Two-Fluid Mddequires
computational effort, power and time, to be solwéth an adequate
level of convergence and resolution. Hence, theesjast a few
papers presenting numerical results of bubbly flaweon-circular
channels and, moreover, comparing them with expartal data.

Most of the work done on gas-liquid flows in nomecilar
channels focused on the mechanistic modelling tiepatransitions
or approach them with one-dimensional models toutate pressure
drop or mean void fraction. These were the subjettdishima et
al. (1994), Troniewsky and Ulbrich (1984), Hibikt al. (1994),
Mishima et al. (1993) and Keska and Fernando (1994)

Among the papers presenting measurements of tliefragtion
distribution in channels having corners one may tnanSadatomi
et al. (1982), Shiralkar and Lahey (1972) e Moujard Dougall
(1987). The former generated a vast data bank dicakair-water
flows in rectangular, isosceles-triangular and #&amnwchannels,
directed towards the calculation of the pressuradignt. The
authors mentioned that the void distribution is afethe most
important aspects of two-phase flows in non-cincakannels. Their
measurements included the cross-sectional disiitbubf void
fraction in bubbly flows, which depicted wall androer peaking.
The later depicted data on void fraction distribntigas and liquid
velocity distribution and bubble size in narrowtsggular channels
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using both an optical fiber probe and a hot filnre@oemeter. Some
of their results for the void fraction, however, reepresented in
terms of the averaged values over the short angl domensions of
the channels, respectively. This procedure filterd local

distribution data and revealed only a limited aspeitthe void

distribution across the channel section. Non-fter void

distribution data was depicted only in the longect®n center-
plane. Similarly to the work of Shiralkar and Lah@®72), who

focused on bubbly flows in eccentric annulus, vasiauthors dealt
with more complicated flow geometry, like those it@kplace in

nuclear reactor fuel rod bundles. For the sakehoftaess, they will
not be mentioned herein.

Lahey et al. (1983) and Lopes de Bertodano et 1#894a,
1994b) measured and modelled air-water verticablyuBows in
triangular channels. Using hot film anemometersglsi and X-
probes, they measured the void fraction and theartaneous
velocity components all over the channel crossiseciand took
fine grid measurements on the corners. From thiesewere able to
calculate the mean velocity and the Reynolds stoessponents,
revealing the turbulent structure of the flow. Agathe void fraction
distribution depicted wall and corner peaking, witlues somewhat
higher in the corners.

Hoping to improve the understanding of the phasgridution
in non-circular square channels, this work presetitcusses and
compares experimental and numerical data on vertipsvard
bubbly flows taking place in a square cross-sectibannel. The
side of the channel was 0.034 m. The flow was at aemospheric
pressure (0.3 bar to 0.55 bar) and ambient temperd23C). To
measure the void fraction distribution one usedirggle wire
conductive probe. The averaged void fraction rarfgech 3.3% to
15%, for liquid and gas superficial velocities vagy from 0.9 m/s
to 3.0 m/s and 0.04 m/s to 0.5 m/s, respectivelye feasurements
depicted the bubbles concentrating close to thésveald a strong
void concentration in the channel corners.

To model the flow one used the Two-Fluid Model. tkagly-
state isothermal flow with no phase change has lwemsidered.
The phase distribution over the channel sectionecant from a
balance between the radial pressure force, thealdié, the wall
force and the turbulence-induced lateral pressetd.fOne expects
the turbulence playing an important role on thesghdistribution
over the channel cross section. For this reasome tiifferent
turbulence models have been tested: an algebraidelmahe
standard ke added with a bubble induced-turbulence term aadth
€ two-layer model. The numerical results and its parison with
the experimental data are presented and commenfed.
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convenience, Phoenics, a CFD software that utilites finite

volume approach, solved the system of equations.

Nomenclature

Latin

Cqi» Co, Cum, Gii = pressure, drag, virtual mass and lateral lift

coefficients, dimensionless
Cq1, Cp = constants in turbulent model
Cy, Cus, G, = constants in turbulent model
Cuips Ca = constants in lateral lift equation
D = bubble diameter, (m)
E = constant
g = gravitational field (m/
k = Von Karman'’s constant (dimensionless)
I, l¢ = scale length, (m)
M,P = generalized interfacial force, (Nfn
M,° = generalized interfacial force, (Nfjn
Ng = phase density function, dimensionless
p = pressure, (N/f
P = kinetic energy production, (J)
r = radial displacement
Re = Reynolds number, dimensionless
t=Time, (s)
u = axial velocity, (m/s)
V = velocity field, vectorial quantity, (m/s)
We = Weber number, dimensionless
X, y = distances from wall, (m)
X,y,Z, = cartesian coordinates, (m)

Greek

o = local void fraction, dimensionless

& = delta de Kroenecker, dimensionless

€ = dissipation rate, (ffs®)

K = turbulent kinetic energy, (ffs%

p = density, (kg/m)

v, v = kinematic viscosity, turbulent two-phase
kinematic viscosity, (rfs)

Vg, Vg = shear induced, bubble induced kinematic

viscosity, (nf/s)

o = surface tension, (N/m)

O, Ok, O¢=constants in turbulence model
& = bubble radius, (m)

T = stress tensor, (N

1™ = turbulent stress tensor, (\9m

0 = azimuthal position
Symbols

X = rotacional operator
0 = gradient operator
< > = indicates mean value

Superscriptsand Subscripts

k=G, k=L, ki, w = subscripts indicating the ppaggas and

liquid)
and the property at the interface and at the wall

+= superscript indicating a non-dimensional quantity

D = indicates generalized force
d = indicates drag force
tp = subscript indicating a two-phase property

The Experimental Apparatus and the Measurement
Technique

Figure 1 shows a sketch of the experimental seffine. air-
water bubbly flow took place in a vertical aluminuchannel of
square cross-section, whose side was 34.1 mm. énntixing
chamber the air entered through an inner porousianed
cylindrical shape, positioned along the channels.axThis
arrangement produced a fairly uniform bubbly flawstj upstream
the chamber in the full range of air and water fleates applied.
After the mixing chamber the bubbly flow developatbng 73
equivalent diameters before reaching the test aecfThe test
section was made of Plexiglas, exactly matchingctbes section of
the aluminum channel, allowing flow visualization.

Ordinary tap water and air were the working fluilewing at
nearly atmospheric pressure, from 0,3 barg to (h&fgy, and
ambient temperature of A3. A centrifugal pump circulated the
water. The air came from a compressed air tank taiaigd at
constant pressure. To measure the air and the \latgrrates
within 2% of overall accuracy, one used a laminament and a
vortex meter, respectively. The range of water amdsuperficial
velocities - referred to the channel hydraulic dééen at the test
section conditions - applied in the experimentsener 0.9 m/s to
3.0 m/s andd = 0.04 m/s to 0.5 m/s, respectively. The mean void
fraction in the test section varied frontix = 3.3% to 15%. The
bubble size was in the range of 2.5 mm to 3.5 mersured from
digital images generated by a fast (1000 framekfsewvie camera.
As the channel had square cross-section, the mdasliebdiameter
was taken, sampling a number of bubbles from varifozen
images of the channel lateral view, by comparisith the channel
side.
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Figure 1. Scheme of the experimental set-up.

A fully description of the conductive probe usedneasure the
void fraction, including the electronics and thdadacquisition can
be found in Dias et al. (2000) and Matos et al9@)9

An inner insulated copper wire of 130m diameter, was the
cathode in the electrical circuit. The anode waspftobe stem, i.e.,
the stainless steel needle that sustained the \miner The wire was
cut in such a way that exposed a cross sectionharaag, roughly,

1,1 x 16 mz. When immersed in water, the exposed tip of the wi
established electrical contact with the probe stenmugh the water.
When the tip was inside a gas bubble the electciceliit was open.
This is the typical on-off signal generated by asslcal conductive
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probe, from which one calculates the local voicttien. The void
fraction uncertainty does not follow straightforaiarfrom
experiments like this, as non-intrusive direct nobeasents were not
performed for comparisons. However, it can be amkf®m global
measurements of liquid and gas superficial velesjtsee Dias et al.
for details.

Figure 2 is a scheme of the assembly used to med#sedocal
void fraction over a curved surface enclosed bydhannel walls.
To perform the measurements the probe was insented the
channel through a small hole and was driven by ehar@sm that
allowed radial, r, and rotational positioning. Thebe was then
positioned at 105 points (measuring stations) aés surface.
These measuring stations were then projected oolmanel cross-
sectional plane — the measuring reduced plane fevthey could be
specified by the coordinates (x, y) at the axiatakion z. This
resulted in a detailed void fraction mapping, reegifor a proper
averaging process in a strongly non-uniform distin. A
micrometer with a digital read-out measured the iatad
displacement, r, with an accuracy #f0,02 mm. The azimuthal
position, 8, could be set withint 1°. The fact that the actual
measurements were not performed over a cross-satptane is of
minor significance since the flow is developed tmelaxial distance
between the most apart measuring stations is gudg.

Channel axis, z!

Curved surface

]

Probe
vement .
N
Measuring stations

on reduced plane,
(xy.2)

Channel cross-section
(reduced plane)

Figure 2. Measuring stations for the local void fraction.

The hardware for the data acquisition consisted\afional

Instrument§’ AT-MIO16, a 12 bits ISA bus board and a 486 P

computer. The hardware sampled, acquired and stheegignals
generated by the probe at every measuring stattamnfrequency of

A. de Matos et al

The Mathematical M odelling

One used a rather complete formulation of the TwndF
Model, Ishii (1975) and Drew and Lahey (1979), fthe
mathematical representation of gas-liquid bubbbw8 inside a
vertical channel of square cross-section. A balabesveen the
radial pressure force, the lateral lift, the watirde and the
turbulence-induced lateral pressure field goverie tphase
distribution on the channel section. Interfaciansport in two-
phase flows is embodied in the mass, momentumtanéhterfacial
transfer equations. In a steady-state isothermal fvith no phase
change, these equations reduce, after some dafisitiand
operations, to Egs. (2), (3) and (4):

Dtﬁdkkak)=0r @

O E(kakaVk):-GkDPk+D ElakTEeJﬂxkpkngf
+ (P ~POak MY

©)

The interfacial momentum transfer equation linkes phases:

(MP)=mg @)
k=G,L

The subscript k indicates the phase (k=G or k=ls, galiquid)
and the subscript defines proper values of the variables at the
interface, like the velocity and the pressure ofiggh k at the
interface. The local void fraction s, p is the density, V is the
velocity, p is the pressure, g is the gravitatiofield, t,"¢ is the
turbulent stress tensor, Rlis the generalized interfacial force and
M,C stands for the force due to the surface tensidm Wiscous
tensor in both phases was considered to vanish adwepared with
TkRe.

In order to solve this system of equations for lggsid bubbly
flows, one has to constitute it with proper equagidor I\/U’, M,C,
the phasic pressure difference,{m), T° and other variables.
Besides some questioning, the first three terms rassonably
established. The mathematical representation of tthe-phase
Reynolds tensor™® however, is far from being settled. It plays an
important role in shaping the multidimensional sttwe of bubbly
flows since there is a coupling between the twosghdlow
turbulence and the phase distribution. In a dewofiow, for

Cexample, the radial force balance accounts foratal components

of forces embedded in the generalized interfacatd, the radial
pressure field and the turbulence-induced lateresgure field. As
mentioned by Lee (1988)if the subtle changes in the void

50 kHz, during the periodt of 10 seconds. To calculate the IOCaldistribution are to be modeled, the non-uniforntrdbstion and the

void fraction from this raw signal, one appliechaeshold level and
converted it to a Dirac-delta function. This fuilcti- in other words,

the phase density functiongf¥,y,z,t) - indicates the occurrence of

gas (a bubble) at the measuring station on tinlehtis, the local
void fraction, a(x,y,z),
Ng(X,y.z.t),

a(x,y,z)zi{Ng (x,y,z,t)dt, ()]

where At is the sampling period. Details of the data pssc®
technique can be found in Dias et al (2000). lwizrthwhile to
mention that using the above-described procedusentimber of
digitally acquired points used to calculate the dvdraction
distribution over the channel section amounted2ax410.
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comes from the time averaging of

anisotropy of liquid phase turbulence have to Beranto account.

The Reynolds Stress Tensor

As the gas is much less dense than the liquids as bubbly
flows herein reported, it is enough to constitute Reynolds, or
turbulent, stress tensor in the liquid phas_@?. Every known model
available to constitute it has limitations and dvaeks. Some are
not robust enough to represent the physics of thengmenon,
others bring additional complexities to the systefnequations,
failing the convergence of the numerical solutifirone adds the
fact that some disagreement persists in regarcgergnental data
provided by different authors, it is clear that tkebject of
turbulence modelling in two-phase bubbly flows @ar from being
settled. Being aware of this, in this work one aapbshed it with
three approaches: using an algebraic model, tletwe-phase
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model and the l-two-phase two-layer model. So, the Reynolds

T
stress tensor is written according the Boussineddy-giscosity y, |
approximation: yt = P , vt=_Y , 9)
VL Tw
Re _ T|_2 Y
T _pLVT(DVL_DVL )‘gkéij (5) p
where k is the turbulent kinectic energy awdis the two-phase The derivative of ¥ in regard to V is the non-dimensional
turbulent kinematic viscosity, respectively. kinematic viscosityv<"*. which. by its turn. is v
Following Bertodano et all (1994c), one assumes tiha two- Wsi e ' \;SI+ = S'VL )

phase turbulent viscosity is a superposition of Wiseosity due 10 pence, differentiating Eq. (6) in regard to" \gives rise to the
the Reynolds stress, the shear-induced viscosifyplus a bubble  yrpylent viscosity:

induced viscosityg,: + +

= + =
VT =vg|*vgl- (6) VsITVL e

The bubble-induced turbulent viscosity stems frdm mixing Thek-£model.

length concept, Now the shear induced viscosity is set by trenkedel,

vp| =CygagdVg -V

BI =CuBaG | G L| @ Ve =CHL2
where Gg is equal to 0.69 and d is the mean bubble diameter ‘ (11)

In order to solve the phasic mass and momentumtiegseone

needs to define closure laws for the shear indwszbsity. Three where k is the turbulent kinetic energyis the dissipation rate and
approaches were used to calculatg an algebraic relation, the constant  is equal to 0.09. The turbulent kinetic energy and
mentioned herein as the |-vel model, the standardniodel and the the dissipation rate come from the simultaneoustisol of the two-
k-€ two-layer model. The I-vel model is said not beinbust, i.e., it phase version of the the standard k-e model [19]:
does not represent the physics of the phenomenmetifigally, the
signal change of the Reynolds stress over the pijgeneter,
or?ginated b?/ the non-cen%/ered peak of the velopitlfglwif?ltzn that D[ﬁO(LVL k): DEFGL[VL +VTJDK}+GL(P‘E)+ 12)
experimental data have shown. It is, however, gasynplement
and does not impose complexities, like additioniéfexential
equations that could lead to systems that do novexge. The le + D':E
is, nowadays, a turbulence reference model, withidespread use
in single-phase flows. However, the standarg rkodel is referred
to not giving a good representation of the Reyndltitess tensor DE(O(LVLE)=DE%O(L{VL+VT}D€}+

O¢

HKDGL
Oa

close to channel walls, i.e, when the Reynolds remb low,
besides requiring a very high numerical resolutioie to the steep

radient of dissipation rate of turbulent energyin these regions. € \Y,
) P il 9 + O(L(Ej(celp‘ Cezt)+ 0 EETEDO(L]

. (13)

In order to improve computational efficiency ansheergence rates,
as well as to introduce established length-scadgiblution in the
region near the walls, one alternative is to use standard le | hese equationsi = 1,0, = 1.314,0, = 1, G, = 1.44, @, =
model in the fully turbulent region and an algebmkpression fot 1 95 p is the kinetic energy production term:

in the damping layer. This is known as the two-layer model, the
third approach one used to calculaig.

The algebraic model (I-vel).

The algebraic model is set by the non-dimensioelationship The single phase “law of the wall” equation bridgke fully

between the distance from the wall,, yand velocity, V. The  y,lent flows with the flow near the wall. Thelwas of k anc
classical Spalding’s (1994) law of the wall is: near the wall come from:

+ + 075+ 15
dovt) g b f (®) eotw [T G 15
2 = c £ (15)
u

a

- : 14
P=viloysov] OVL o

pL 043y

6 24 wherety and y are the wall shear stress and the normairdis
from the wall, respectively.

Thek-&two-layer model.

The strategy when using theskwo-layer model, according to
Chen (1995), is to distinguish flow regions. Thenstard ke model
is applied in the fully turbulent region. In the/ém near the wall, an
one-equation model, the kequation combined with an algebraic
expression fog, is used:

where the constanks(von Karman) and E are equal to 0.417 and
8.6, respectively, and the non-dimensional varsble
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=, (16)
|8
3 %
wherelg = C1Yn , C| =kC A, and Ry =K n 7)
53 H v
1+—
Ry
In the damping layer near the wall the eddy viggasi
Vg| = Cuk}élu (18)
where
Ry 25
Auat
Iy =Cjyn/1-e" " (19)
TheInterfacial Pressure Term
In the liquid phase, the pressure at the interfageis
PLi =P ~CpiPL (VG_VL)2 (20)

where p is the bulk liquid pressure.

This expression results from the solution of a mmwous flow
around a sphere. In this case the coefficienti€p.25. Lance and
Bataille (1991) suggested values between 0.5~0.@dtal bubbly
flows. Lahey (1990) used,C= 1 in distorted bubbly flows. The
value used in the present work was a function adl Waction, as
suggested by Spalding (1994),

Cpi = Cpipa(lJr a)(l— 0‘)2 , (21)

where Gjpa is 0.5. Following Stuhmiller (1977) one considetkelt
the pressure difference is equal for both phasemgXthe Laplace
equation the relationship between the gas andidhélpressure at
the interface could be stated:

Fei-Fe=Ri R (22)

PGi—PLi = 2%

whereao is the surface tension agds the bubble radius.

(23)

Thelnterfacial Forces

The generalized interfacial force acting on thesghk, MP, is
usually divided in the drag force, #and the non-drag force, M.
The non-drag force accounts for the lateral foraed the virtual
mass force. The drag force arises due to the veldisplacement of
the bubble. The drag force on a bubble of dian@tesr:

- _3Cp
ME——M%—ZFDLGG(VG—VLMVG—VJ (24)

According Lahey (1990), the drag coefficienty, @epends on
the Reynolds number based on the liquid propeifties Antal et al.
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(1991), conversely, the Reynolds number must beutsted for the
gas-liquid mixture properties. In this work one Idols the

proposition of Kuo and Wallis (1998). According tteese authors,
the drag coefficient is

16 . 2068 .

= > . = :

Cp e if Re= 049, Cp = 0643 if 0.49<Re<100;
6.3 .
Cp=—-F3gz I(fRe2100; (25)
Re0.385
We . 2065.1 8 .
Cp=— IifRe= and cp=— if We=8
D 62'6 D 3

where Re is the Reynolds number and We is the Walraber,
both expressed as a function of the bubble diansetdrthe bubble
relative velocity, (\s-VL). The expressions for fCare valid for
bubbly flows in an infinitum medium. Marié (1987hasved that
next to the pipe wall the drag force alters. Irsthiork, however,
one does not account for the wall effect on the doace.

A lateral force, M =-M'g, arises when the bubble displaces
through a liquid with a non-uniform velocity didttition. In an
upward bubbly flow it acts to displace the bublolard the wall:

Mt =-mk =cLp ac(Ve-vi)x([OxvL) (26)

According to Drew and Lahey (1987), the lift coeiffint G
varies between 0.05 and 0.1 in air-water bubblywdlo More
recently their co-authors have suggested greataesaAntal et al.
(1991) used values in the range 0.01 ~ 0.5 and Warad. (1987)
adopted 0.5. The correlation used in this work das to Spalding
(1994)]:

CL =Ca[t- 278min(02,a)) @7)

One varied G, in order to find the most appropriate value fijtin
the experimental data and foungd,& 0.5. The resulting values for
C_ were between 0.22 and 0.48.

In bubbly gas-liquid flows the bubble expansion rdually
changes the relative displacement between the mgshe liquid,
giving rise to a virtual mass force. The virtualssdorce is, Drew
and Lahey (1987):

M{™=-M¥" = Cymp aclVeOVe -V OV(] (28)

As the virtual mass coefficient, & relates with displaced
volumes, one expected it to depend upon the vadtifm, a.
However, various authors have used constant vadtues,,,. Drew
and Lahey (1987) suggested 0.5; Kuo and Wallis§)198ed values
within the range 2.0 ~ 3.0, and Lance and Bat#ile91) adopted
values ranging from 1.2 to 3.4.

Similarly with has been done with the lift coeféat, the virtual
mass coefficient has been adjusted to fit numeandlexperimental
data. The values that have assured the best agreereg the “ideal
values” of G and G, will be subject of prospective comments.

The Numerical Method

The computations were performed in a workstationNSU
Ultral0, running the CFD PHOENICS 3.2, the packdgeeloped
by Spalding (1994). PHOENICS is a transport equasiolver with
two-fluid model capability. It is based on the SIMP algorithm.
The IPSA algorithm simulated the interfacial monuentexchange.
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A computational grid was set up with 20x20x50 n@des

corresponding to the coordinates (x,y,z), respebtivA marching

procedure, exploring the parabolic nature of tlwsvflwas used to
solve the conservation equations. The initial cbonj at the mixer
position, matched up to uniform velocity field andid fraction

distribution; the pressure was fixed, indirecttysaugh the setting of
the gas density. The calculation then proceedengal@ equivalent
diameters until reaching the measuring reducedeplan

When working with the k-e turbulence model, careftibntion
was given when setting the first control volume foumerical
integration, in order to follow the constraints iosed by the “law of
the wall”. With the Reynolds number ranging fron080 to 40000,
the outermost face of the first control volume \gasated at 2.5 mm
from the wall. This makes the position of the finstasuring station
different from the first numerical volume. Hendeg thumerical and
the experimental results at the measuring stafiosest to the wall,
in every xz plane, should not, ideally, be compak&tien working
with the algebraic model and theekwo-layer model this limitation
does not exist: the numerical grid could be refibedather small
distances from the wall.

Regarding the numerical convergence, one adjusteditear
under-relaxation parameter, LINRLX, used in PHOESICThis
parameter varies between 0 and 1 and updates trentwariable
by a percentage of the previous value. If LINRLXegual to one
there is no under-relaxation; if LINRLX is equal &ero, the
variables are not updated between two steps ofirttegration
process. Due to the strong coupling between thesgshahe set of
equations had to be under-relaxed at differenbsafihe pressure
used a 0,8 factor, the void fraction was undemedaat 0.4; the
velocities in the principal and secondary direcdiomere under-
relaxed at 0.7 and 0.01, respectively. The othew frariables, such
as the turbulent kinematic viscosity and the reéatvelocity were
under relaxed at 0.15. These values might not lee oftimum
under-relaxation factor, but assured a steady aodverging
solution. To reach this converged solution, evenyerational
condition, established by the gas and liquid sigiaffvelocities,
required 5 hours of computation.

Experimental and Numerical Results

Initial tests were conducted to access the veitycaf the
channel. The void fraction distribution over theaphel cross-
section, appearing in the contour map in Fig. 3owsd that
reasonable vertical positioning had been achieVdw: software
Surfer® produced the contour map.

Even using a less refined measuring grid,
measurements pointed out to results that occurredevery
operational condition: bubbles concentrating nkanwall, specially
on the channel corners. The void peaking near thig typical in
vertical upward bubbly flows in round pipes, alstcarred in the
square cross-section channel.

Definite and more detailed measurements were peedron
half of the test section. Exploring the axis-synmmicat nature of the
flow, the local void fraction was measured in 1Q&tiens for
various operational conditions. The measuring grig particularly
refined in the channel region close to the wall.rrf€sponding
numerical results for the void fraction distributiochave been
computed. The numerical results refer to: (i) thee¢ turbulent
models described in a previous section, and (iiecHic
formulations for the lift and virtual mass forceg&lw'ideal values”
for C_ and Gy, as discussed.

Figure 4 is a set contour maps showing the expeartaheand
numerical distribution of the void fraction overetithannel cross-
section. The maps have been plotted using a coneh@ackage,
Surfef’. Due to the fact that one does
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Figure 3. Contour map of the void fraction distribution over the entire
cross-section. Superficial velocities (J, ;Jg), equal to (0,946 m/s;0,041
m/s), average void fraction, <a>, equals to 3,3%.

not have control over the interpolation procedumbedded in the
package, it is not possible to state that theyaatree representation
of the data. However, they are a good overvievhefvoid fraction

distribution over the channel section and permiuick, besides
rough, comparison between the experimental and ricah€eata.

To the left, the outermost map represents the erpetal data.
The three subsequent maps to the right stand ferntmerical
results, each one representing a turbulence mdéeeltwo-layer,
standard k-e and algebraic I-vel. Every sub-setdstdor a pair of
superficial velocities: the upper, #1,%32,12 m/s; d= 0,13 m/s); in
the middle, #2, (J= 1,33 m/s; d = 0,14 m/s) and the lowest, #3,
(J.= 0,84 m/s; d = 0,03 m/s). The respective mean void fractions
are: #1: «> = 5.8% ; #2: > = 9.5% and #3: & = 3.4%. The
numerical results were obtained, after extensiieutations, for
“‘ideal values” of the lift and the virtual mass fagents, i.e., the
ones that fitted the best the void fraction disttibn over the
channel wall.

Looking at the contour maps one can state that kiroad sense,
the present implementation of the Two-Fluid Modedswable to
represent the phase distribution of an ascendintgcakbubbly flow
in a square cross-section channel. Moreover, the tio-layer
turbulence model, among those used as constitajuations, gave
the best representation of the phase distributiothé range of the
applied superficial velocities. The “ideal valuesrfthe lateral lift
coefficient depended on the local void fraction aras in the range
C_ = 0.22 ~0.48; for the virtual mass coefficientswiz, = 2.
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Figure 4. Contour map of the void fraction distribution over a half of the
channel cross-section: experimental and numerical values. Superficial
velocities (J. ;Jg) are: #1, (2.12 m/s;0.13 m/s); #2, (1.33 m/s;0.14 m/s) and
#3, (0.84 m/s;0.03 m/s). Mean void fraction for experimental data, <a>,
are: 5.8%; 9.5% and 3.4%, respectively.
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Figure 5.Void fraction distribution on xz planes. Superficial velocities (J_
;Je) and mean void fraction, <a>, are (2.12 m/s;0.13 m/s) and 5.8%,
respectively.
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The analysis of the Cartesian plots appearing g %j 6 and 7
provided “de-facto” comparisons between experinmengad
numerical data. Every plot in the figures referghe void fraction
distribution in a transversal y-z plane definedaby position, each
figure relating to a pair of (;Is). The lowest the x value, the closest
to the lateral wall the y-z plane is. The highestakue, x= 17.35
mm, defines the mid-transversal plane.

When one looks at the void distribution on the planes close
to the wall, x= 0.8 mm and x = 1.8 mm, it is cltzat the numerical
distribution, in general, did not have a good agremt with the
experimental data. In these planes, spanning fromet to corner,
the experimental void fractions were, in generabater than the
numerical results. The difference amplified as ithigture velocity
decreased, from Fig. 5 to Fig. 7. Also, the expental distribution
showed subtle changes the numerical calculatiomre wet able to
pair. The statement holds true no matter the termd relation
embedded in the Two-Fluid Model and the magnitudde gas and
liquid superficial velocities. There are severattéas, different in
nature, which could explain the discrepancies betwexperimental
and numerical results.

The experimental distribution lacked symmetry inmsocases,
pointing out to experimental difficulties in measigr the void
fraction distribution at locations very close te tlateral wall or in
the channel corners. The probe positioning couldrdgeed as one
of these difficulties. Furthermore, at these lamagi where the
velocities are lower and secondary flows exist, pinebe might
interfere with the flow field. If one looks at thsmilitude between
the experimentation and the mathematical representaf the
flow, new problems arise. The actual distributioh tbe void
fraction at locations close to the wall depends ariphysical”
characteristic of the flow, the bubble size disttibn function. The
Two-Fluid Model does not have the bubble size esrsstraint when
calculating the void fraction distribution. In othevords, in real
world the gas volume has a finite dimension — tlube only “sees”
bubbles greater than a certain size, for examplélewthe Two-
Fluid Model deals with the mixture as a continuttence, it might
not make sense to compare experimental and nurheeisalts in
locations close to the wall if the calculation gvihs smaller than
the bubble size, for example. This was the casth@fmeasuring
stations on the first transversal planes, which}&d0.8 mm and x
=1.8 mm.

When one analyses the experimental and numericéd vo
distribution on inner planes, from x= 3.5 mm to XL#.35 mm, a
different figure appeared. Good agreement was eetlieno matter
the magnitude of the mixture velocity or the meaidvfraction.
Among the turbulence models used, the kwo-layer gave,
consistently, the best results. On inner planes vbie fraction
profile was quite flat in the channel center region the numerical
results delivered by the Two-Fluid Model with thee kwo-layer
model embedded matched up to it. Getting closehéowalls the
experimental and numerical profiles were somewhetached.
However, the numerical results delivered by the Frkad Model
with the ke two-layer model embedded had the highest gradient.
Thus, if not agreed with the experimental datahorer distances
from the wall, at least had a similar trend.

The numerical results of the Two-Fluid Model wittetstandard
k-¢ and the algebraic |-vel models embedded did not e
experimental profiles as close as the solution igex) by the ke
two-layer model. The numerical results were highiean the
experimental ones in the channel center region, wack lower
close to the wall.
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Conclusion

A vast number of measurements of the void fractistribution
in an air-water vertical bubbly flow in a squaress section channel
has been made and disclosed. To perform the measate a single
wire conductive probe has been used. The experahetdta
revealed that the void fraction profiles preseh&swall peaking that
is typical in upward bubbly flows in round pipes.oMover, the
void concentration in the pipe corners was partidylhigh. The
void fraction profile has been calculated usingather complete
implementation of the Two-Fluid Model, constitutedth three
turbulence models: an algebraic |-vel model, ttengard k-e and
the k-e two-layer models.

The Two-Fluid Model with the le-two-layer model embedded
gave the best representation of the void fractistridution. Close
to the walls and on the channel corners the exmeriah and
numerical profiles were somewhat detached, in socases.
However, the solution provided by thes kwo-layer model, having
the highest void gradient next to the wall, showeslsame trend as
the experimental data.
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Figure 6. Void fraction distribution on x-z planes. Superficial velocities (J_
;Je) and mean void fraction, <a>, are (1.33 m/s;0.14 m/s) and 9.5%,
respectively.
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Figure 7. Void fraction distribution on xz planes. Superficial velocities (J_
;Je) and mean void fraction, <a>, are (0.84 m/s;0.03 m/s) and 3.4%,
respectively.
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