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Abstract
We theoretically study the phase sensitivity of an SU(1,1) interferometer with a
coherent state in one input port and a squeezed-vacuum state in the other input
port using the method of homodyne detection. In this interferometer, beam
splitting and recombination are generated by the parametric amplifiers instead of
the beam splitters. Compared with the traditional Mach–Zehnder interferometer,
the phase sensitivity of this interferometer can be improved due to the ampli-
fication process of the parametric amplifiers. Combined with the squeezed state
input, the sensitivity can be improved further due to the noise reduction. The
phase sensitivity of our scheme can approach the Heisenberg limit and the
associated optimal condition is analyzed. The scheme can be implemented with
current experimental technology.

Keywords: phase sensitivity, interferometers, quantum measure limits

1. Introduction

Quantum metrology (or quantum parameter estimation), which is the use of quantum
measurement techniques to obtain higher statistical precision than purely classical approaches,
has been receiving a lot of attention in recent years [1–10] because essentially all measurements
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are affected by statistical errors. These arise from experimental imperfections or, more
fundamentally, from the Heisenberg uncertainty relations. To reduce the effect of the errors, we
can repeat the measurement under the exact same conditions, averaging the outcomes. The
average has an uncertainty that is reduced by a scaling factor of N1/ , where N is the number of
repetitions. This scaling defines the so-called ‘standard quantum limit’ (SQL) or ‘shot noise
limit’ (SNL)—it has been confirmed that no classical procedure can do better than that [7].
Readout of a continuous variable always has an intrinsic precision. For a continuous parameter
ϕ, if it is not associated with a Hermitian operator. The uncertainty can be inferred from the
variance of some observable A via the relation δϕ Δ ϕ= 〈 〉 −A d A d/ 1, where
Δ = 〈 〉 − 〈 〉A A A2 2 . One can obtain high measurement precision by decreasing the ΔA or
increasing the slope ϕ| 〈 〉 |d A d/ , or operating by doing at the same time. Therefore, recent
research has focused on beating the SQL, and this can be summarized as follows. (1) For
decreasing the ΔA, some research work has considered how to improve the input states to
reduce the noise below vacuum noise, such as by using squeezed states [3, 11, 12] or two-mode
squeezed states [13, 14]. Thus the sensitivity can be improved to beat the SQL. (2) The mean
value 〈 〉A can be written as ϕ ϕ〈 〉 = +A Ap cos ( )0 , where ϕ is a phase shift.

To make the slope ϕ| 〈 〉 |d A d/ larger, some research work has also considered ways to
optimize the input states, such as by using NOON states [15, 16], which to the mean value can
be written as ϕ ϕ〈 〉 = +A Ap Ncos ( )0 . The slope gets larger by a factor of N. Other research
has considered how to change the structure or hardware of the interferometer to enhance
the amplitude Ap to improve slope ϕ| 〈 〉 |d A d/ [17–22]. For example, nonlinear elements
were introduced in the linear interferometers. A class of such interferometers introduced by
Yurke et al [17] is described by the group SU(1,1), as opposed to SU(2), where the 50-50 beam
splitters in a traditional Mach–Zehnder interferometer (MZI) were replaced by optical parameter
amplifiers (OPAs) (see figure 1), and they showed that the sensitivity of this device exhibits
Heisenberg scaling [17].

Recently, an improved theoretical scheme was presented by Plick et al [23], who proposed
to inject a strong coherent beam to ‘boost’ the photon number. Their scheme circumvents the
low photon number problem encountered by Leibfried et al [24] in their experiments.
Experimental realization of this SU(1,1) interferometer was reported recently [25]. The
maximum output intensity of this interferometer can be much higher than the input intensity as
well as the intensity inside the interferometer (the phase-sensing intensity).

Figure 1. The schematic diagram of the SU(1,1) interferometer. Two OPAs take the
place of two beam splitters in the traditional Mach–Zehnder interferometer. g1 (g2) and
θ1 (θ2) describe the strength and phase shift in the OPA process 1 (2), respectively. ai
and bi ( =i 0, 1, 2) denote two light beams in the different processes. A coherent state
β| 〉 is in one input port and a squeezed-vacuum state ξ| 〉0, in the other input port of the
SU(1,1) interferometer. Homodyne detection is at the dark port. The pump field
between the two OPAs has a π phase difference. ϕ: phase shift; M: mirrors.
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More recently, the noise performance of this interferometer was analyzed and under the
same phase-sensing intensity condition an improvement of 4.1 dB in signal-to-noise ratio was
observed [26]. Due to the improved phase measurement sensitivity of this interferometer, it was
proposed for gravitational wave detection; however, it needs strong coherent light input [23].
The very strong coherent light will generate the high-order nonlinear effect and the radiation
pressure noise.

To get the same measurement sensitivity and reduce the required intensities of the input
states, we consider a squeezed state to replace one of the two input coherent states, which can
eliminate the disadvantages due to input strong coherent states. In addition, we use homodyne
detection instead of intensity detection, which is convenient for experimental detection of
squeezing operation. Our scheme is the case that decreases the ΔA and increases the slope

ϕ| 〈 〉 |d A d/ at the same time to improve phase sensitivity approaching the Heisenberg limit (HL).
In this paper, we study the phase sensitivity of the SU(1,1) interferometer for coherent light

combined with squeezed vacuum light as input using homodyne detection. We give the
requirement to approach the Heisenberg limit among the input coherent state, the input
squeezed vacuum state, and the OPA process. In the presence of loss, the sensitivity can beat
the SQL under a certain range of loss rates. Here, the phase shift studied is not the general phase
but is sufficiently close to the optimal phase point [27, 28].

2. An SU(1,1) interferometer with coherent ⊗ squeezed light input

2.1. Model

An SU(1,1) interferometer is shown in figure 1, where the OPAs replaced the 50-50 beam
splitters in a traditional MZI. Here, we consider a coherent light combined with a squeezed
vacuum light as input. After the first OPA, one output is retained as a reference, while the other
experiences a phase shift process. After the beam recombines in the second OPA with the
reference light, the output fields are dependent on the phase difference ϕ between the two
beams. â ( ˆ†a ) and b̂ ( ˆ†

b ) are the annihilation (creation) operators for the two modes,
respectively. The total transform of the operators by the SU(1,1) interferometer is given by
[23, 29],

 ˆ = ˆ − ˆ †
a a b , (1)02 0

 ˆ = ˆ − ˆ †ϕ ( )b e b a , (2)0
i

2 0

where  = + ϕ θ θ− −g g e e g gcosh cosh sinh sinh( )i i
1 2 1 2

2 1 and  = +θ ϕ θ−e g g e esinh coshi i i
1 2

1 2

g gcosh sinh1 2, so  − = 12 2 . g1 (g2) and θ1 (θ2) describe the strength and phase shift
in the process of OPA in the atomic cell 1 (2), respectively. The balanced situation is
θ θ π− =2 1 and = =g g g1 2 that the second OPA will ‘undo’ what the first did when the phase
shift ϕ is 0.

In our scheme, the detected variable is amplitude quadrature X̂ instead of the photon
number N̂ that has been studied in references [23, 29]. The output amplitude quadrature
operator can be written as

3

New J. Phys. 16 (2014) 073020 D Li et al



ˆ ≡ ˆ + ˆ †( )X a a
1

2
. (3)22

Using the amplitude quadrature X̂ , the phase sensitivity of the SU(1,1) interferometer is given
by

Δϕ
Δ

ϕ
=

ˆ

∂ ˆ ∂

( )X

X
( ) . (4)2

2

2

Now, we first consider a balanced configuration, i.e., = =g g g1 2 and θ θ π− =2 1 . For a
coherent light β| 〉 (β β= | | θβei ) together with a squeezed vacuum ξ| 〉0, (ξ = ηrei ) as input, the
noise of the output amplitude quadrature X̂ is given by

 
Δ

Θˆ =
+ −

( )X
r r[cosh (2 ) sinh (2 ) cos ( )]

2
, (5)

2
2 2

where Θ η θ= + 2 , θ is given by   θ= | | iexp ( ). With no squeezed vacuum input
(r = 0), the noise of equation (5) can be written as Δ〈 ˆ 〉 = + | |X( ) 1/22 2, which is larger than
the vacuum noise Δ〈 ˆ 〉 =X( ) 1/22 . With a squeezed-vacuum light input at one port, and letting
ϕ = 0 and η = 0, the noise of equation (5) can be written as Δ〈 ˆ 〉=X( )2 −e /2r2 , which is below
the vacuum noise. And the slope of the output amplitude quadrature X̂ is

ϕ
β Φ∂ ˆ ∂ =X

gsinh (2 ) cos

2
, (6)

2 2 2 2

where Φ θ θ ϕ π= − − −β /22 . When Φ = 0, the slope of the SU(1,1) interferometer is
β gsinh (2 )/22 2 . However, for a traditional MZI using the same input state (coherent ⊗
squeezed-vacuum light) the slope is β 2 [3]. For >gsinh (2 )/2 12 , the slope of the SU(1,1)
interferometer is enhanced compared with a traditional MZI. Therefore, under certain
conditions the SU(1,1) interferometer can decrease the ΔX and increase the slope ϕ〈 〉d X d/
at the same time to improve phase sensitivity enough to beat the SQL.

When Φ = 0 and at the optimal phase point ϕ = 0, from equations (5) and (6) the best
phase sensitivity of our scheme is

Δϕ =
+

′
β

( ) ( )e N N N

1 1 1

2
, (7)

r

2

2
OPA OPA

where the factor e2r results from the input squeezed-vacuum light, β=βN 2 is the amount of
input coherent light, and =N g2 sinh2

OPA
is the amount of light emitted from the OPA with

vacuum input. If vacuum input is present, the sensitivity by intensity detection is
Δϕ = +N N( ) 1/ ( 2)2

OPA OPA
, which is the result of Yurkeʼs scheme [17].

2.2. Heisenberg Limit

In this section, we compare the optimal phase sensitivity of our scheme with the HL. In our
scheme the HL is

Δϕ =
N

1
, (8)HL

Tot
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where NTot (≡ 〈 ˆ ˆ + ˆ ˆ 〉† †
a a b b1 11 1 ) is the total photon number inside the SU(1,1) interferometer, not

the input photon number as in the traditional MZI. According to transformation, the total photon
number is

β= + + +( )( )N N r N1 sinh . (9)Tot
2 2

OPA OPA

The first term on the right-hand side corresponds to the amplification process of the input
photon number β + rsinh2 2 and the second term results from the spontaneous process. In the
SU(1,1) interferometer the HL is dependent not only on the input photon number but also on the
strength g of the parametric process.

Let Δϕ Δϕ≃′ HL, according to equations (7) and (8) the optimal condition is

β = g etanh (2 )
2

. (10)
r

The condition gives the requirement for the input coherent state β , the input squeezed vacuum
state r, and the OPA process g. The difference between Δϕ′ and ΔϕHL can been seen in
figure 2(a), where we plot the phase sensitivity ϕ△ ′ as a function of the strength g for this
optimal condition. Given r = 2.5, the phase sensitivity ϕ△ ′ can approach the HL when >g 2
( ≃gtanh (2 ) 1). Under this condition, equation (10) is reduced to β ≃ ≃e r/2 sinhr . The total
photon number inside the interferometer is ≃ =βN N N N r2 2 sinhTot

2
OPA OPA

. The phase
sensitivity Δϕ′ can approach the HL:

Δϕ =
+

≃′
β

( ) N N N r e N

1
2

1

2 sinh

1
. (11)

Tot
2r

2

2 2
OPA OPA

When g is very small, increasing the input squeezed strength r and increasing the input coherent
light intensity enables the phase sensitivity to beat the SQL, but it cannot approach the HL.

To approach the HL, the optimal condition is β ≃ ≃e r/2 sinhr and ≃gtanh (2 ) 1. The
mean photon numbers in the coherent state and the squeezed vacuum state must balance, which
means that for a MZI fed by coherent and squeezed-vacuum light the phase sensitivity of a

single measurement is β +e r1/ sinhr2 2 2 [12]. When β ≃ ≃ ˜r nsinh /22 2 and ˜ ≫n 1, the phase
sensitivity reaches the HL ñ1/ , where the mean photon numbers in two input ports are balanced
under this optimal condition [12]. For an SU(1,1) interferometer, the parametric processes only

Figure 2. The phase sensitivity Δϕ′ of the SU(1,1) interferometer (a) versus g with
r = 2.5, and β| | = g etanh (2 ) /2r ; (b) versus r with β| | = 3, and g = 2.
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amplify the input lights and generate correlations between them. Similar to MZI, the photon
numbers in two input ports of the SU(1,1) interferometer also need to balance to approach the
HL when ≫N 1

OPA
, which is also obviously seen in figure 2(b). It is shown that there is an

optimal degree of squeezing r at the other input for given values of β and g, which makes the

Δϕ′ approach the HL. The numerical optimal degree meets the condition β ≃ e /2r when
≃gtanh (2 ) 1. That is, the mean photon numbers in two input ports also need to balance to

approach the HL in the SU(1,1) interferometer.

2.3. Losses

As has been previously pointed out, the loss is the limiting factor in precision measurement
[21, 30–32]. Now, we investigate the effects of photon losses on the phase sensitivity for
coherent ⊗ squeezed-vacuum light as input. Here, we concentrate on the losses generated by
light field propagation in both arms of the interferometer and by the imperfect detectors. As
shown in figure 3, losses can be modeled by adding the fictitious beam splitters. Considering
both arms of the interferometer to have the same internal and outside transmission rates Ti,
passing through the internal beam splitters, the mode transform of the fields â1 and b̂1 is
ˆ = ˆ + − ˆ′a T a T v11 a1 1 1 1

, and ˆ = ˆ + − ˆ′ ϕb T b e T v11
i

b1 1 1 1
. And passing through the outside

beam splitters the mode transform of the fields â2 and b̂2 is ˆ = ˆ + − ˆ′a T a T v12 a2 2 2 2
, and

ˆ = ˆ + − ˆ′b T b T v12 b2 2 2 2
.

For calculation and analysis convenience, we use loss rates ≡ −L T1i i =i( 1, 2). After
taking into account these losses, we introduce the idea that X̂L, compared with equation (3), can
be written as

⎡
⎣⎢

⎤
⎦⎥ˆ ≡ ˆ + ˆ ′′

†( )X a a
1

2
, (12)2L 2

where the field ˆ = − − ˆ + − ˆ − ˆ′ †θ−a L L a L L g v e g v(1 )(1 ) (1 ) (cosh sinh )b2 a
i

1 2 2 1 2 2 21
2

1

+ ˆL va2 2
. Considering the losses, the slope is ϕ β|∂〈 ˆ 〉 ∂ | = − −X L L g/ (1 )(1 ) sinh (2 )L

2
1 2

2 2

Φcos /22 , and the fluctuation is Δ Δ〈 ˆ 〉 = − − 〈 ˆ 〉 + −X L L X L L g( ) (1 )(1 ) ( ) (1 ) cosh (2 )L
2

1 2
2

1 2

+L2. Then, in the presence of loss the sensitivity for the balanced case is given by

⎡
⎣⎢

⎤
⎦⎥Δϕ Δϕ

β Φ
= +

− +
− −

( )
( )( )g

g L L L

L L
( )

1

sinh (2 )

cosh (2 ) 1

1 1 cos
, (13)L

2
2 2

1 2 2

1 2
2

1 2

where Δϕ Δ ϕ= ˆ |∂〈 ˆ〉 ∂ |X X/ / is from equations (5) and (6). The second term on the right-hand
side of equation (13) is the extra term due to the internal and outside losses.
The extra term is generated from the vacuum noise, which can be seen from the Δ〈 ˆ 〉X( )L

2 .
When considering only the internal loss ( ≠L 01 and =L 02 ), the extra term is

Figure 3. A lossy interferometer model; the losses in the interferometer are modeled by
adding fictitious beam splitters.
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β Φ× −g g L L1/ sinh (2 ) cosh (2 ) /(1 ) cos2 2
1 1

2 , and when considering only the extra outside
loss ( =L 01 and ≠L 02 ), the extra term is β Φ× −g L L1/ sinh (2 ) /(1 ) cos2 2

2 2
2 . When

>gcosh (2 ) 1, the influence of the internal loss on the phase sensitivity is greater than the
outside loss. Because the vacuum noise induced by the internal beam splitters is amplified.

Since ≫N gsinhTot
2 , at the optimal point the preceding equation (13) can be rewritten as

⎡
⎣⎢

⎤
⎦⎥Δϕ Δϕ

β
= +

− +
+

− −
′

( ) ( )( )
L

L

e N

r

e L

L L
1

1 sinh 1 1
. (14)

r r

L
1

1

2
Tot

2 2

2
2

1 2

1 2

Comparing the internal loss, this equation is similar to equation (24) in [29] but with an external
term e2r, because without considering the losses our sensitivity is almost er times better than that
of [29] (see equation (18)). In figure 4(a), we plot the sensitivities with the same internal
(dashed line) and outside loss (dot-dashed line), respectively. It is obviously seen that the
sensitivity reduction by the internal loss is larger when ≃gtanh (2 ) 1. The sensitivities as a
function of loss rate L1 (solid line) and L2 (dashed line) are plotted in figure 4(b). In the presence
of photon losses, as can be seen in figure 4, the sensitivity cannot reach the HL, but it can beat
the SQL for a certain range of L1 and L2.

3. Discussion and conclusions

Now we consider the unbalanced situation ≠g g1 2 and still assume that θ θ π− =2 1 as above. In
figure 5 the behavior of the phase sensitivity Δϕ as a function of g g/2 1 is shown. Obviously, a
large unbalance will degrade the phase sensitivity. The optimal form is ≃g g2 1 and g2 slightly
larger than g1. In terms of phase sensitivity and convenience in conducting experiments, the
balance case is optimal.

If the squeezed vacuum is replaced by another coherent light α| 〉, that is, at the input
ports are coherent states α| 〉 and β| 〉, as in [23] and [29]. From equation (14) of [29] by
Marino et al the sensitivity at the optimal phase point according to intensity detection
is Δϕ α β α β= + +N N( ) ( )/[4 ( 2)]

M
I 2 2 2 2 2

OPA OPA
,3 where the subscript M denotes the

Figure 4. (a) The phase sensitivity as a function of g in the presence of loss with r = 3
and β| | = g etanh (2 ) /2r . (b) The phase sensitivity of the solid line (dashed line) versus
the loss rate L1 (L2) with g = 2, r = 3 and β| | = g etanh (2 ) /2r .

3 For convenience, we use NOPA to replace ns in the expression.
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sensitivity from Marino et al and the superscript I denotes intensity detection. If homodyne
detection is used instead of intensity detection, the sensitivity at the optimal phase point is
Δϕ α β α β= + + + +N N N N N N( ) 1/[ ( 2) 2 ( 2) ]2

M
H 2 2 2

OPA OPA OPA OPA OPA OPA
, where the

superscript H denotes homodyne detection. For conveniently comparing our obtained phase
sensitivity with the one for coherent states at both inputs, we consider both of them to be at
optimal condition and take α β= , β = rsinh . Thus,

Δϕ
β

=
+( )( )

N N

1

2 2
, (15)

M
I 2

2
OPA OPA

⎡
⎣⎢

⎤
⎦⎥

Δϕ
β

=
+ + +( )

( )
N N N N

1

2 1 2
, (16)

M
H 2

2
OPA OPA OPA OPA

and

Δϕ
β

=
+

′
( )N N

( )
1

4 2
. (17)2

4
OPA OPA

Comparing the two results ΔϕM
I and ΔϕM

H with Δϕ′, we then obtain

Δϕ

Δϕ
β= ≃

′

( )
e

( )
2 2, (18)M

I

r

2

2

2 2

Δϕ

Δϕ
β=

+

+ + +′( ) ( )
( ) N

N N N
2

2

1 2
. (19)M

H 2

2
2 OPA

OPA OPA OPA

When + >N N( 2) 1
OPA OPA

, the sensitivity ΔϕM
H is slightly better than ΔϕM

I . Using the same
intensity input for the SU(1,1) interferometer, and a coherent light combined with a squeezed
vacuum light as input, the sensitivity is almost β2 2 times higher than that of one for coherent
states at both inputs. To obtain the same sensitivity with two coherent states as input, the

Figure 5. The phase sensitivity as a function of g g/2 1. The parameters are as follows:
r = 3, =g 11 , β| | = 10, and Θ = 0. The inset shows a zoom of the graph around =g g2 1.
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coherent ⊗ squeezed-vacuum light as input can reduce the intensity inside the interferometer
and eliminate the disadvantages, such as radiation-pressure noise.

In table 1, we summarize the quantum limits for MZI and an SU(1,1) interferometer with
different input states. For the same input states, the sensitivities of the SU(1,1) interferometer
are higher than those of the MZI by a factor of +N N( 2)OPA OPA due to the amplification
process. For the SU(1,1) interferometer with coherent ⊗ squeezed-vacuum light as input, the
phase sensitivity is improved the most due to the noise reduction and phase-sensing field
amplification. In an optical parameter process, g = 2.25 has been reported [33]. According to
equation (8), the photon number is improved substantially, as is the absolute accuracy.

In conclusion, we investigated the phase sensitivity of an SU(1,1) interferometer for
coherent ⊗ squeezed-vacuum light as input. The phase sensitivity was improved compared with
that of the traditional MZI as a result of the noise reduction and phase-sensing field
amplification. The optimal condition to approach the HL for the SU(1,1) interferometer is
given, which will help others realize it experimentally.
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