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Abstract

Dilatometric studies in 18-Ni steel components fabricated by selective laser melting technique were carried out to determine 
the influence of heating rate on transitions occurring during the heating cycle. SLM components have been examined in 
controlled heating and cooling cycles. For analysis, heating of the analysed materials was carried out at heating rates of 10, 
15, 20, 30 and 60 °C min−1. During the heating process, two solid-state reactions were identified—i.e. precipitation of inter-
metallic phases and the reversion of martensite to austenite. A simplified procedure based on the Kissinger equation was used 
to determine the activation energy of individual reactions. For precipitation of intermetallic phases, the activation energy was 
estimated 301 kJ mol−1, while the martensite to austenite reversion was determined at the activation energy 478 kJ mol−1.
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Introduction

Maraging steel contains an extremely low amount of 
carbon (0.03% maximum) and a high amount of nickel 
(17–19%) together with lesser amounts of cobalt (8–12%), 
molybdenum (3–5%), titanium (0.2–1.8%) and aluminium 
(0.1–0.15%). This type of iron alloys belongs to the group 
of materials that are characterised as a martensitic crys-
tal structure and strengthened by ageing heat treatment at 
approximately 500 °C, hence the name ‘maraging’. This 
ultra-low-carbon alloy has very high-strength high-tough-
ness alloy that gain their exceptional mechanical properties 
derived from precipitation of intermetallic compounds and 
a martensitic matrix. The martensitic microstructure is not 
obtained by a high carbon content but by addition of nickel 
as one of the main element in chemical composition. The 
ultra-high-strength maraging steel is attracted by material 
engineers and structural designers of aerospace, machining 

areas, nuclear and defence industries. They are classified 
into M200, M250, M300 and M350 grades according to their 
0.2% proof stress or yield strength levels, namely 200, 250, 
300 and 350 ksi [1, 2].

The maraging steels are usually subjected to heat treat-
ment—hardening and then ageing at a temperature of 
450–510 °C, which causes a significant increase in hardness 
and strength in the effect of precipitations [3, 4] of γ-Ni3Mo, 
η-Ni3Ti, Fe-2Mo, σ-FeMo, µ-Fe-7Mo6, FeTi,  Fe2Ti [4–6]. 
This causes nickel enrichment in the matrix, stabilising the 
austenite and reducing the initial temperature of the mar-
tensite-to-austenite transitions or reversion [7–12]. It should 
be noted that during these transitions, both shear and diffu-
sion mechanisms can occur simultaneously [8, 13]. These 
mechanisms may depend on the heating rate, as was stated 
by Carvalho et al. and Reis et al. [14, 15].

The transitions kinetics of the reaction in solid state in a 
component may be diagnosed by quantifying the variation 
in physical properties such as hardness, dilation, electrical 
resistivity or enthalpy as a function of reaction temperature 
and time. One of the methods that provide precise informa-
tion about transitions in solid state during heating and cool-
ing cycles is dilatometry [16–23]. This technique is a very 
sensitive and appropriate method for examining phase trans-
formations, which revealed its strengths on measurements 
of a wide range of steels, such as maraging steels and low-
carbon steels. The dilatometer is used to precisely measure 
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dimensional changes of a component caused by changes in 
the thermal environment under extreme conditions of con-
trolled heating and cooling. Solid or hollow samples are 
inductively warming up to a temperature plateau and are 
then continuously cooled with different rates (linear or expo-
nential). Common applications embrace thermal expansion, 
annealing studies, determination of phase transformations 
and the glass transition, softening points, kinetics studies, 
development of phase diagrams, including the determination 
of sintering temperature, sintering step and rate-controlled 
sintering. The phase transitions taking place in the continu-
ous cooling process or the isothermal plateau is indicated by 
the determined difference of length [14, 15, 18, 19, 22–25].

The absence of carbon in the chemical composition of 
maraging steel affects good on weldability, and therefore 
makes these alloys favoured candidates for additive manu-
facturing techniques, such as selective laser melting (SLM). 
In this technique, a focused laser beam is used to spot on 
the powder beds and successive melting of the powder layer 
with bonding to existing layers, which result is the manufac-
turing of 3D model. SLM technology has many advantages 
over other parts manufacturing technologies, including con-
siderable material utilisation, comfortable product design, 
good part and production flexibility and functional proper-
ties of the obtained models using the appropriate production 
parameters [26–29].

The present work was carried out on components from 
maraging 300 steel fabricated by selective laser melting tech-
nique using an very sensitive computer-controlled BAHR 
DIL805 A/D dilatometer to study the effect of heating rate 
on both the precipitation and the martensite-to-austenite 
transitions, as well as to analyse the activation energies of 
these phase transitions during the heating cycle.

Experimental procedure

In this work, 18-Ni 300 steel supplied by BÖHLER as a 
gas-atomised powder in size 15–45 μm and spherical shape 
was used to manufacture samples by selective laser melt-
ing technique. The chemical composition of the applied 
powder is given in Table 1. Preparation of the components 
by SLM technique, the RENISHAW AM125 AM sys-
tem with a Ytterbium (Yb) fibre laser of maximum laser 
power (200 W), scan speed (2000 mm s−1) and wavelength 
(1074 nm) were used. The samples were produced on the 
mild steel substrate without preheating at an oxygen level 

below 500 ppm. Components were fabricated applying a 
meander scanning strategy which consisted of changing the 
scan direction of each subsequent layer by 67°.

For dilatometric measurements, cylindrical samples 4 mm 
in diameter and 10 mm long were manufactured. The heating 
and cooling process was carried out in the quenching BAHR 
DIL805 A/D dilatometer linked to the personal computer 
with software for data acquisition system was used for the 
experiment, which consisted of heating the samples in a low 
vacuum of  10−4 mbar to 900 °C at different heating rates, 
from 10 to 60 °C min−1. A calibrated S-type thermocouple 
centrally spot-welded to the surface was used for tempera-
ture measurement. All of the samples were held between 
two  Al2O3 push rods, with one of the rods fastened, and 
the other one connected to the linear variable displacement 
transducer (LVDT).

Length increase (∆L) and temperature (T) changes 
were captured during heating for each heating rate. The 
Savitzky–Golay method was used as a signal smoothing 
processing of the differential data.

Results and discussion

Figure 1 presents typical dilatometric curves of components 
fabricated in the SLM technique in as-built condition for 
total heating to 900 °C and cooling cycles, inflections from 
tangents to the curve expressing the phase transitions tem-
peratures. Changes in example length, ΔL, with regard to 
initial length, lo, are graphed as a function of temperature. 
Through the heating and cooling periods, three-phase tran-
sitions in analysed maraging steel can be found and recog-
nised. The first changes in angle slope of the line from the 
primary straight line portion are related to the development 
of the main strengthening precipitates, namely the  Ni3Ti and 
 Ni3Mo phases followed by the  Fe2Mo or  Fe7Mo6 phases. 
The second variation at higher temperature is affected by the 
austenite reversion α′ → γ transition by shear and to the dis-
solution of precipitates [24]. The third deviation found out 
during measurement is a martensitic transition that occurs 
through the continuous cooling cycle. All of the phase tran-
sitions temperatures are given in Table 2.

Generally, investigated material is defined by uniform 
expansion continues till 513–529 °C, when a small shrink-
age takes place, symbolising the beginning of precipitation 
at this temperature (Ps). In the next step, a small quantity of 
linear expansion takes place with increasing temperature to 

Table 1  Chemical composition of the maraging steel 18-Ni 300 powder declared by the producer

Element/mass% Ni Mo Co Ti Cr C Si Mn

18-Ni 300 17–19 4.5–5.2 8.5–10 0.6–1.2 < 0.25 < 0.03 < 0.1 < 0.15
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Fig. 1  Relative sample length change, ∆L/lo, samples at a 10 °C min−1; b 15 °C min−1; c 20 °C min−1; d 30 °C min−1; e 60 °C min−1 SLM sam-
ples as a function of temperature
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583–609 °C (Pf), where precipitation ends. While the tem-
perature is increased to 622–642 °C, a massive shrinkage 
arises in the dilatometry line, which can be identified as the 
beginning of the austenite formation (As). At 818–825 °C, 
the curve reassumes linear expansion; consequently, the 
austenite transformation finishes (Af). The total solution is 
reached by heating continuously to 900 °C and isothermal 
holding at that temperature for 30 min. Through cooling 
cycle to ambient temperature, extreme expansion at approxi-
mately 213–221 °C can be observed, thanks to the rapid 
start and the fast transition from austenite to martensite, 
agreeing to the temperature of martensite start (Ms). Mar-
tensite formation results in expansion because the structure 
is changed from FCC to BCT through polymorphic trans-
formation. The transition to the martensite finishes (Mf) at 
approx. 95–129 °C. Therefore, a single-phase microstructure 
should characterise maraging 300 steel upon cooling to an 
ambient temperature that is martensite.

Based on captured results, it can be stated that the transi-
tion temperatures are dependent on heating rate as Kapoor 
et al. [13] revealed that the reversion process are taking place 
by diffusion or by shear, and it depends on the heating rates. 
Increase in the heating rate causes increase in the transition 
temperatures. That aspect may be interpreted with reference 
to the diffusional character of the reaction, which depends on 
the temperature and the time at that temperature [3]. As the 
heating rate is raised, the time at that particular temperature 
of the mechanism decreases, and therefore, the mechanism 
takes place at a much higher temperature.

Figure 2 displays marked places of the temperatures 
where the highest rate of phase transitions for precipitation 
and martensite reversion takes place. It should be noted that 
for higher applied in experiment heating rates, the time avail-
able for precipitation is decreasing influencing to a smaller 
specimen shrinkage. It is attributable to the low quantity of 
precipitates generated during heating at higher heating rates 
[13, 14]. However, it must be noted that this kind of material 
has a tendency to the segregation of alloying elements so the 
shrinkage can be different for different heating rates.

Phase transformations can occur by a number of mech-
anisms such as a shear process, a short-range diffusion 
process like a shuffle of atoms, or a diffusion-controlled 

nucleation and growth process. The driving force (ther-
modynamics) and the time available (kinetics) decide the 
transformation process. In general, a diffusion-controlled 
nucleation and growth transformation is affected by the 
heating rate, and a shear or shuffle transformation is not. 
In addition, Fig. 2 leads to the conclusion that the austen-
ite transition separates in two stages, i.e. in the first state 
through diffusion and the second stage through shear for 
lower heating rates and one stage through diffusion for 
higher heating rates. On the other hand, the beginning of 
martensite transform at lower heating rates to austenite 
takes place by shear process. At higher heating rates, the 
thermodynamic driving forces take over; therefore, trans-
formation to austenite the residual martensite takes place 
by the diffusion mechanism. Because at higher heating 
rates, there is unsatisfactory time for shear occurring, con-
sequently the whole martensite is changing to austenite by 
a single-stage diffusion mechanism. It is also capable to 
recognise that as the heating rate rises, the scale of pre-
cipitation reduces. This result means that precipitation in 
300-grade maraging steel is primarily diffusion controlled.

Viswanathan et al. [24] reported that activation energies 
of transitions, estimated by the Kissinger method [14], may 
be expressed easier to understand the form:

where Φ is the heating rate, E is activation energy, R the uni-
versal gas constant, and TM is the temperature at maximum 
phase transition rate. The mentioned equation is applicable 
only for a maximum transition rate. The kinetic parameter 
as expressed by activation energy for the reaction may be 
calculated from the slope of the straight line received by 
plotting TM

2/Φ on a logarithmic scale in relation to the reci-
procity of TM.

Figures 3 and 4 show the linear regression determined 
for the estimation the activation energies for precipitation 
of intermetallic phases and reversion of martensite applying 
the Kissinger equation, and Table 2 presents summarised 
activation energies (E) estimated based on the slope of linear 

(1)ln
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T
2

M

Φ

)

= ln

(

E
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)

− ln (A) +
E
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Table 2  Phase transition 
temperatures of analysed 
maraging steel with different 
heating rates

Heating 
rate/°C min−1

Ps-precip-
itations 
start/°C

Pf-precip-
itations 
finish/°C

As-austenite 
transition 
start/°C

Af--austenite 
transition 
finish/°C

Ms-
martensite 
start/°C

Mf-
martensite 
finish/°C

10 521 583 622 821 221 110

15 523 596 629 824 219 112

20 529 598 624 823 220 106

30 516 596 631 818 215 95

60 513 609 642 825 213 96
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regression in relation to the results reported by other scien-
tists [3, 13, 14, 24].

The as-built specimens may contain a large number of 
crystal defects, such as cell boundaries and dislocations 
developed through rapid solidification that occurs during 
SLM in a range  103 ÷ 108 K s−1 [29]. Certain defects react 
as preferential paths for atom migration, accelerating the 
diffusion-controlled precipitation mechanism. Some sci-
entists discovered comparable activation energy values for 
strengthening precipitates formation in maraging steels 
manufactured through the traditional way. The activa-
tion energy for precipitation notified by Carvalho et al. 
[14] was 272 kJ mol−1 in the case of 300-grade marag-
ing steel, while Viswanathan [24] reported a value of 
145 kJ mol−1 in a 350-grade maraging steel. Guo et al. [3] 
acquired values of 205 kJ mol−1 in relation to a 250-grade 
maraging steel, while Kapoor et al. [13] gained a value of 
265 kJ mol−1 in a 350-grade maraging steel.

Activation energy values for martensite reversion of 
562 kJ mol−1 and of 224 kJ mol−1 were reported by Car-
valho et al. and Viswanathan et al. and [14, 24], while 
342  kJ  mol−1 and 423  kJ  mol−1 for Φ < 2  °C  s−1 and 
828 kJ mol−1 Φ > 2 °C s−1 were reported by Guo et al. and 
Kapoor et al. [3, 13].

Besides, Table 3 indicates that there is a variance in 
the activation energy values of the precipitation of inter-
metallic phases as a function of the heating rate. It can 
be noted that the lattice diffusion mechanism is domi-
nant for lower heating rates, since the activation energy 
(301 kJ mol−1) is near to those of titanium (272 kJ mol−1), 
nickel (246 kJ mol−1) and molybdenum (238 kJ mol−1). (In 
ferrite, the mechanism is diffusion.) It also can be observed 
that there is a variance in the activation energy of mar-
tensite reversion as a function of the heating rate. In work 
[13] for higher heating rates, propose that for Φ < 2 C° s−1, 
activation energy of martensite reversion is 423 kJ mol−1 
and for Φ > 2 °C s−1 activation energy is 828 kJ mol−1. 
The research has revealed that activation energy is more 
massive due to the shear mechanism that takes place more 
expressively. In the presented work, analysis was carried 
out on similar material, however, manufactured in a non-
conventional way such as selective laser melting technique 
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Table 3  Precipitation of intermetallic phases and martensite reversion activation energies for different grades of maraging steels

References

SLM (maraging 300) Carvalho et al. 
(maraging 300)

Viswanathan 
et al. (maraging 
300)

Guo et al. (maraging 250) Kapoor et al. (maraging 
350)

Heating rate 10 ÷ 60/°C min−1 1 ÷ 28/°C s−1 10 ÷ 40/°C min−1 5 ÷ 50/°C min−1 0.2 ÷ 200/°C s−1

Precipitation (kJ mol−1) 301 272 ± 18 145 ± 4 205 265

Martensite reversion 
(kJ mol−1)

478 562 ± 69 224 ± 4 342 423; Φ < 2/°C s−1

828; Φ > 2/°C s−1



1017The phase transitions in selective laser-melted 18-NI (300-grade) maraging steel  

1 3

and showed that the shearing mechanism also takes place 
with larger intensity for higher heating rates.

Conclusions

A non-isothermal dilatometric technique with different heat-
ing rates of 10, 15, 20, 30 and 60 °C min−1 was applicated 
to analyse the kinetics of solid-state transitions in an 18-Ni 
300-grade maraging steel manufactured by selective laser 
technique. The results are summarised as follows:

• The martensite reversion to austenite transition in ana-
lysed compounds discloses a trend to split into two stages 
for low heating rates. The first stage of these transitions, 
become by a low heating rate, occurs within a lattice dif-
fusion mechanism, while the second stage, enhanced by a 
high heating rate, takes place within a shear mechanism.

• The activation energy of 301 kJ mol−1 was found out for 
the precipitation of intermetallic phases. For the rever-
sion of martensite to austenite, the activation energy of 
478 kJ mol−1 was found.

• The non-isothermal dilatometric method can be taken 
into consideration as a uncomplicated substitute for 
labour-intensive and time-consuming isothermal hard-
ness analysis.
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