The PHEMU97 catalogue of observations of the mutual phenomena of the Galilean satellites of Jupiter*

J.-E. Arlot¹, W. Thuillot¹, C. Ruatti¹, H. Akasawa², S. Baroni¹², W. Beisker¹³, J. Berthier¹, C. Blanco³,
J. Boonstra¹⁶, J. Bourgeois¹⁷, H. Bulder¹⁸, R. Casas¹⁹, J. G. Castano³⁵, F. Colas¹, D. Collins²⁰, J. Cuypers²¹,
W. Czech¹⁵, V. D'Ambrosio³, H. Denzau²², P. Descamps¹, A. Dimitrescu⁸, N. Dinakarian³⁴, G. Dourneau⁵,
N. Emelyanov¹¹, J. M. Enriquez²³, J. M. Fernandez²⁴, D. Fernandez-Barba¹, T. Flatres⁵, S. Foglia¹⁴,
M. Goncalves²⁸, K. Guhl²⁶, G. Helmer⁶, T. Hirose⁴⁴, T. R. Irsmambetova⁹, B. A. Krobusek³⁹, J. Lecacheux⁷,
J.-F. Le Campion⁵, M. Lou³⁰, A. Mallama⁴², F. Marchis⁴, M. A. S. Navarro³⁰, P. Nelson³⁸, N. Okura³¹, J. Park³⁸,
T. Pauwels²¹, S. Pluchino³⁶, V. Priban²⁹, M. Rapaport⁵, J.-J. Sacré²⁵, F. Salvaggio⁴⁰, M. A. Sanchez³⁰,
F. Sanchez-Bajo²⁷, G. Stefanescu⁸, P. Tanga³³, V. G. Tejfel¹⁰, J. L. Trisan³⁰, E. M. Trunkovsky¹¹, J. Van Gestel⁴³,
G. Vandenbulcke³², R. Vasundhara³⁴, G. Vass⁸, P. Vingerhoets²¹, D. T. Vu¹, and R. T. Wilds³⁷

(Affiliations can be found after the references)

Received 7 October 2005 / Accepted 28 November 2005

ABSTRACT

In 1997 the Sun and the Earth passed through the equatorial plane of Jupiter and therefore through the orbital planes of its main satellites. During this period, mutual eclipses and occultations occurred and were observed. We investigate the precision of the catalogue to produce improved data for the development of dynamical models. Light curves of mutual eclipses and occultations were recorded by the observers of the international campaign PHEMU97 organized by the Institut de Mécanique Céleste, Paris, France. We made 275 observations of 148 mutual events from 42 sites. For each observation, information is given about the telescope, the receiver, the site and the observational conditions. This paper gathers together the data and gives a first estimate of the precision. The catalogue of these rare events represents a collection of improved accurate astrometric data useful for the development of dynamical models.

Key words. eclipses – occultations – astrometry – astronomical data bases: miscellaneous

1. Introduction

Observations of mutual events of natural satellites have been performed intensively since 1973 and they have proved to be a very accurate way to obtain astrometric measurements of natural satellites. Many such events involving the Galilean satellites of Jupiter have been observed. In 1994-1996, similar events occurred in the Saturnian system. In 1997, we organized and coordinated an international campaign to observe these rare events. This campaign, named PHEMU97, allowed us to collect 275 lightcurves of 148 mutual events by our international network of 42 sites.

We present our results here. Another paper (Vasundhara et al. 2003) provides the astrometric data extracted from the lightcurves using a sophisticated photometric model including the albedo map deduced from the space probe images. The

* Table 4 and figures are available in electronic form at http://www.edpsciences.org. They are also available on the following ftp server together with the digitized lightcurves available as ASCII files at ftp://ftp.imcce.fr/pub/NSDC/jupiter/ raw_data/phenomena/mutual/1997/

aim of the present paper is to provide the photometric data and the observational parameters useful for future work on the improvement of dynamical models as well as of models of the surfaces of the satellites. These data will be available through the data base NSDC dedicated to the natural satellites (http://www.imcce.fr/nsdc).

2. The mutual events

The Earth and the Sun cross the equatorial plane of Jupiter every six years. The Jovian declinations of the Earth and the Sun become zero and since the orbital plane of the Galilean satellites is very close to the equatorial plane of Jupiter, the satellites occult and eclipse each other.

The 1997 period was favorable since it occurred during the opposition of Jupiter and the Sun.

Arlot (1996) made predictions of all the 1997 events using the G5 ephemerides based on Lieske's theory (Lieske 1977) of the motion of the Galilean satellites. 182 dates of mutual events were computed. Several campaigns of observations took place during the previous occurrences. Table 1 shows the results

Table 1. Results of the past campaigns of observations.

	1985	1991	1997
Number of sites Number of light curves	28 166	56 374	42 275
Number of observed events	64	111	148

obtained during each campaign. Our goal was to observe as many events as possible. Two observations of each event are needed to eliminate observational errors.

Since there is no thick atmosphere around the Galilean satellites, the photometric observations of such phenomena are very accurate for astrometric purposes. The results previously obtained after similar observations of the Galilean satellites (Arlot et al. 1997) show that an accuracy better than 30 mas can be expected.

This allows us to provide data necessary for the improvement of theoretical models of orbital motion and the determination of tide effects in the dynamics of Galilean satellites.

3. The PHEMU97 campaign

The observation of these phenomena required a coordinated international campaign in order to obtain a significant amount of data. These events occur over a short span of time so numerous observers located at several sites are necessary in order to avoid meteorological problems and observe from different longitudes to record different events. Thus observers previously involved in the PHEMU campaigns of observations of the mutual events of the Galilean satellites were invited to join the new campaign.

3.1. Receivers

For the observations of the mutual events only relative photometry is generally possible. Since the elevation of Jupiter above the horizon may be very small, the air mass is often too large and absolute photometry is not possible. The telescopes were equipped with the receivers listed in Table 2. Three kinds of receivers were used: photoelectric photometric single channel receivers, video cameras and two-dimensional CCD receivers. Visual observations are reported for comparison.

3.2. Sites of observation

This campaign, coordinated by the Institut de Mécanique Céleste, involved the different locations given in Table 3. This table gives the names, longitudes and latitudes of these sites.

4. Lightcurve reduction procedure

Lightcurves were derived from photometric measurements either with relative photometry performed with photoelectric photometers or with CCD cameras.

For observations made with CCD cameras in video mode the digitized signal was computed with digitizing boards. The lightcurves were obtained by aperture photometry, as were the observations for which a value of the diaphragm is provided. For CCD observations made in France, images were measured with the Gaussian photometry package of the ASTROL software (Colas 1996). Two dimensional measurements allow us to calibrate the signal of the satellite involved to the signal of a nearby satellite and to use data obtained under very difficult conditions (see for example Arlot et al. 1997).

The determination of the time of the minimum of light and of the value of the magnitude drop was based on a fit of the lightcurve with a sample polynomial. The errors in these determinations are also given. The error on the timing of the minimum is determined as follows: we calculate the noise in magnitude and transform it into a time error through the highest value of the decreasing speed in magnitude during the event. The largest errors occur for faint noisy events and the smallest for the fast ones. The errors are comparable only if the integration time is the same.

5. The catalogue

5.1. The data

Table 4 provides for each event (all dates are in UTC): - prediction of the time of the event:

- 1. Date of the event and its nature;
- 2. Start time of the event;
- 3. Maximum of the event;
- 4. End of the event;
- 5. Calculated magnitude drop;
- 6. Phase angle in degrees;
- 7. Apparent distance satellite-planet in planetary radii.

-for each observation of the event:

- 1. The site of observation;
- 2. -
- 3. The observed time of the maximum of magnitude drop and observational error;
- 4. -
- 5. The observed magnitude drop and observational error;

- 7. -
- (C–O) of the observation in seconds of time; these quantities take into account the phase effect (Aksnes et al. 1986);
- 9. Aperture of the telescope in centimeters (T = reflector; L = refractor);
- 10. Code of the receiver used in column "Recept." (cf. Table 2);
- 11. Elevation of Jupiter above the horizon in degrees;
- 12. Elevation of the Sun above the horizon in degrees;
- The observational conditions in column "Obs. cond.": [0] means no information, [1] means very good conditions, [2] means acceptable and [3] very difficult conditions;
- 14. The filter used, if any, in column "Filter"; no filter used is denoted by "-";
- 15. The integration time of the measurements in seconds; a variable integration time is denoted "v";
- 16. Size of the diaphragm when used.

^{6. -}

Table 2. Receivers used for the observations.

Code as		
given in	Description	reference
the tables	I I I	
VISU	Visual	BARCELONA
150	Vistur	CATANIA2 (06-07-1997).CATANIA3 (03-08-1997)
		LUMEZZANE (18-09-1997), MILANO, SEVILLA, MADRID
	Single channel receivers	
PM	EMI9893	CATANIA1 (Blanco)
PM1	Photoelectric lp21	LUMEZZANE
PM2	Photometer (RCA 4840)	PARIS
PM3	Hamamatsu R647-04	FUNAHO,OKAYAMA
PM4	RCA931A	SAN-FERNANDO
PM5	UBV (Shugarov)	NAUCHNY (07-10)
PM6	Optec SSP3 Pin-Diode	ESSEN
PMW	Photometer WBVR	NAUCHNY
PMIR	Photometer IR	TENERIFE
PM7	Teloc II B channel photometric system	(CALERN)
PM7	Teloc II V channel photometric system	(CALERN)
PM7	Teloc II R channel photometric system	(CALERN)
	Video receivers	
V	Video OS25 (18-06)	PRAHA
V1	Video OS45D	PRAHA
V2	Ikegama B/W camera ICD-42E TypeF	WILP-ACHTERHOEK
V3	CCD MKII in video mode	MEUDON
	CCD receivers	
CCD	Starlight SX Xpress	CACERES,ZARAGOZA
CCD1	TH7863	BORDEAUX,OHP
CCD2	TC-211	BOWIE, ELLINBANK, NEW-YORK, SASSOEIROS, TORINO
CCD3	IRAC2	ESO
CCD4	SPT-M102CE Sony B/W	LISBOA
CCD5	NXA 1001/03	REUX
CCD6	VC100-camera B/W	COMTHUREY
CCD7	CCD B/W camera	OOSTDUINKERKE
CCD8	KAF-6300 KODAK	UKKEL
CCD10	Hi-SIS11	CHATEAUGIRON
CCD11	LYNX CCD camera 192x168 pixel-chip	STUTTGART
CCD12	0.01 lux CCD video camera	TOPEKA
CCDI	Hisis-22	BUCHAREST1 (Vass), PIC-DU-MIDI
CCDL	LYNX PC	ASHEVILLE
CCDM	TC245 (IOC)	MUNICH
CCDS	Chip CCD Sony	RAGUSA
CCDW	Wright 1024x1024	TENERIFE
CCDST	ST-6V SBIG	ALMA-ATA, BUCHAREST2 (Stefanescu)
CCDVX	HCS MXRII	BOSKOOP
CCDC	Thomson-CSF 7862 CDA chip	
	(photometrics CCD system)	KAVALUR

For each observation, a corresponding lightcurve is provided in Figs. 1 to 33 showing the magnitude drop versus UTC time scale.

These data and light-curves are available at the Natural Satellite Data Center (NSDC) server (http://www.imcce.fr/nsdc).

5.2. Discussion

This catalogue provides observational information and reduced data issued from the PHEMU97 campaign. Another paper

(Vasundhara et al. 2003) provides the astrometric data extracted from the lightcurves.

The quality of each lightcurve may be judged either by the value of the errors on the determined parameters (time of the minimum of light and lightflux drop) or the appearance of the lightcurve itself.

As for the previous catalogues of such events, we computed the errors on the determined parameter as follows. The error on the lightflux drop is deduced from the standard deviation of the fit to the model light curve. The error on the date of the minimum is determined from the error on the magnitude drop combined with the speed of the decrease of the lightflux Table 3. Main sites of observation.

Main observatories	Telescope		Long	itude			Lati	ude		elevation
	diameter	0	,	"		o	,	"		meters
ASHEVILLE (USA)	T20	82	25	45	W	35	36	00	Ν	670
ALMA-ATA (Kazakhstan)	T60	77	52	45	Ē	43	13	20	N	2750
BARCELONA (Spain)	T16	02	12	07	Ē	41	25	18	N	40
BORDEAUX (France)	T62	00	32	00	W	44	50	00	Ν	73
BOSKOOP (The Netherlands)	T30	04	41	35	Е	52	04	35	Ν	0
BOWIE (USA)	T20	76	48	00	W	39	00	00	Ν	50
BUCAREST (Romania)	L38	26	05	46	Е	44	24	50	Ν	86
CACERES (Spain)	T25	06	23	00	W	39	27	00	Ν	440
CALERN, OCA/CERGA (France)	T150	06	55	18	Е	43	45	17	Ν	1282
CATANIA1 (Italy)	T91	14	58	45	Е	37	41	30	Ν	1725
CATANIA2 (Italy)	T20	15	03	20	Е	37	39	43	Ν	300
CATANIA3 (Italy)	T20	14	57	40	Е	37	39	43	Ν	1250
CHATEAUGIRON (France)	T21	01	30	01	0	48	02	41	Ν	70
COMTHUREY (Germany)	L18	13	11	31	E	53	16	04	Ν	150
ELLINBANK (Australia)	T32	145	57	30	Е	38	14	47	S	138
ESO, La Silla (Chile)	T220	70	43	45	W	29	15	26	S	2200
ESSEN (Germany)	T36	07	04	15	E	41	24	35	Ν	40
FUNAHO (Japan)	T28	33	42	43	Е	34	34	43	Ν	8
KAVALUR (India)	T235	78	49	49	Е	12	34	49	Ν	725
LISBOA (Portugal)	T20	09	07	42	W	38	43	30	Ν	96
LUMEZZANE (Italy)	T40	09	08	22	Е	45	28	11	Ν	122
MADRID (Spain)	—	03	49	09	W	40	17	49	Ν	680
MEUDON (France)	T100	02	14	00	Е	48	48	00	Ν	162
MILAN (Italy)	L08	09	07	22	Е	45	27	19	Ν	138
MUNCHEN (Germany	T28	11	34	30	Е	48	11	17	Ν	520
NAUCHNY (Crimea)	T60	34	01	00	Е	44	43	37	Ν	600
NEW-YORK (USA)	T20	78	00	00	W	43	00	00	Ν	200
OHP, Haute-Provence Obs. (France)	T80	05	43	00	Е	43	56	00	Ν	665
OKAYAMA (Japan)	T35	33	52	36	E	34	36	25	Ν	3
OOSTDUINKERKE (Belgium)	T25	02	40	45	E	51	06	48	Ν	4
PIC-DU-MIDI, OMP (France)	T105	00	09	00	E	42	56	00	N	2861
PARIS (France)	L38	02	20	00	E	48	50	00	N	67
PRAHA (Czech Republic)	L15	14	28	41	E	50	08	30	N	325
RAGUSA (Italy)	T20	14	39	43	E	36	46	15	N	25
REUX (Belgium)	T30	05	05	27	E	50	14	43	N	317
SAN FERNANDO (Spain)	133	06	12	21	W	36	27	40	N	30
SASSOEIROS (Portugal)	125	09	19	34	W	38	42	01	N	64 50
SEVILLA (Spain)	121	05	58	47	W	37	23	40	N	50
TENERIFE (Canarian Islands)	120	16	30	38	w	28	1/	45	N	23/4
STUTIGART (Germany)	130	09	08	15	E	48	42	00	N	441
TOPEKA (USA)	L38	95	44	38	w	39	00	03	N	313
IOKINO (ITALY)	113	0/	38 21	10	E	45	02	51 55	IN N	022
UUULE (Beigium) WILD ACHTEDHOEKE (The Netherland)	185	04	21 02	29 50	E	50	4/	22 20	IN NT	105
WILP-ACHTEKHUEKE (The Netherlands)	120 T15	00	03	52 20		52 41	12	29 16	IN N	0
ZAKAGOZA (Spain)	115	00	52	30	W	41	38	46	N	247

during the event. This explains that this error depends on the number of points, on the integrating time and on the depth of the light curve. Because of that, the error bars may be compared only between events recorded with the same time constants and, preferably, with the same equipment in order to obtain the observational error and a measurement of the quality of the observation.

6. Conclusion

We give in this paper the results of the PHEMU97 campaign. To record the maximum of events, it was necessary to organize an international campaign. The phenomena recorded occur every 6 years and they lead to very accurate astrometric measurements which are very difficult to obtain with groundbased techniques. Such data may allow us to determine surface parameters by comparison of lightcurves with synthetic models.

Acknowledgements. These observations have been made possible by the CNRS (Centre National de la Recherche Scientifique), the INSU (Institut National des Sciences de l'Univers) and the CNES (Centre National d'Etudes Spatiales) through the PNP (Programme National de Planétologie) who supports the PHEMU97 campaign and the Institut de Mécanique Céleste et de Calcul des Éphémérides.

We also thank the staff of the observatories where these observations were made for their help during this campaign and Mrs Raoult for her help writing the paper.

References

- Aksnes, K., Franklin, F., & Magnusson, P. 1986, AJ, 92, 1436
- Arlot, J.-E., & Thuillot, W. 1993, Icarus, 105, 427
- Arlot, J.-E., & Stavinschi, M. (eds.) 1996, PHESAT95 workshop, Suppl. Ann. Phys., 21, 1
- Arlot, J.-E., & Blanco, C. (eds.) 1999, PHEMU97 workshop, Institut de mécanique céleste, Paris
- Arlot, J. E., Thuillot, W., Colas, F., Allet, C., & Vu, D. T. 1989, Celest. Mech., 45, 129
- Arlot, J.-E., et al. 1996, Proc. IAU Symp., 172, ed. S. Ferraz Mello, B. Morando, & J.-E. Arlot (Kluwer Acad. Pub.), 423
- Arlot, J.-E. and 70 observers 1997, A&AS, 125, 399
- Colas, F. 1996, in Proceedings of the PHESAT95 workshop, Supp. Ann. Phys., 21, 133
- Dourneau, G. 1987, Thesis, Bordeaux University
- Dourneau, G. 1993, A&A, 267, 292
- Duriez, L., & Vienne, A. 1991, A&A, 243, 263
- Emelianov, N. V., et al. 1997, Sol. System Res., 31, 436
- Emelianov, N. V., et al. 1999, A&AS, 139, 47
- Froeschlé, et al. 1988, A&AS, 262, 308
- Le Campion, J.-F., Montignac, G., Chauvet, F., et al. 1992, A&A, 266, 568
- Soma, M. 1992, A&A, 265, L21
- Strugnell, P. R., & Taylor, D. B. 1990, 83, 289
- Thuillot, W., Arlot, J.-E., Colas, F., et al. 1996, Proceedings of the Colloquium Journées Systèmes de Référence, DANOF, Paris Observatory, 34
- Vasundhara, R., Arlot, J. E., Lainey, V., & Thuillot, W. 2003, A&A, 410, 337
- Vienne, A., & Duriez, L. 1991, A&A, 246, 619
- Vienne, A., & Duriez, L. 1992, A&A, 257, 331
- Vienne, A., & Duriez, L. 1995, A&A, 297, 588
- ¹ Institut de mécanique céleste et de calcul des éphémérides, Observatoire de Paris, UMR 8028 CNRS, 77 avenue Denfert-Rochereau, 75014 Paris, France
- e-mail: Jean-Eudes.Arlot@imcce.fr
- ² Funaho, Japan
- ³ Dipartimento di Fisica e Astronomia dell'Universita di Catania, Italy
- ⁴ European Southern Observatory, La Silla, Chile

- ⁵ Observatoire de Bordeaux, France
- ⁶ Observatoire de la Côte d'Azur, France
- ⁷ Observatoire de Paris, France
- ⁸ Institutul Astronomic, Bucuresti, Romania
- ⁹ Krimean Laboratory of the Sternberg Astronomical Institute, Moscow, Russia
- ¹⁰ Fesenkov Astrophysical Institute, Almaty, Kazakhstan
- ¹¹ Sternberg Astronomical Institute, Moscow, Russia
- ¹² Milano, Italy
- ¹³ GSF, Munchen, Germany
- ¹⁴ Observatorio S. Zani, Lumezzane, Italy
- ¹⁵ Stuttgart, Germany
- ¹⁶ Buinen, Netherlands
- ¹⁷ Reux, Belgium
- ¹⁸ Boskoop, The Netherlands
- ¹⁹ IAC, Tenerife, Spain
- ²⁰ WWC, Asheville, USA
- ²¹ ORB, Bruxelles, Belgium
- ²² Essen, Germany
- ²³ San Fernando, Spain
- ²⁴ Sevilla, Spain
- ²⁵ Chateaugiron, France
- ²⁶ Marwitz, Germany
- ²⁷ Universidade de Extramadura, Badajoz, Spain
- ²⁸ Lisboa, Portugal
 ²⁹ Planetarium Prah
- ²⁹ Planetarium Praha, Czech Rep.
- ³⁰ GAS, Zaragossa, Spain ³¹ Okayama Japan
- ³¹ Okayama, Japan
 ³² Oosterduinkerke Belg
- ³² Oosterduinkerke, Belgium
 ³³ OCA, Nice, France
- ³⁴ IIA, Bangalore, India
- ³⁵ Madrid, Spain
- ³⁶ OAIN, Scicli, Ragusa, Italy
- ³⁷ Topeka, Kansas, USA
- ³⁸ Ellinbank, Australia
- ³⁹ Farmington, New-York, USA
- ⁴⁰ GAC, Catania, Italy
- ⁴¹ Barcelona, Spain
- ⁴² Bowie, Maryland, USA
- ⁴³ Belgium
- ⁴⁴ Tokyo, Japan

Online Material

Table 4. Observed data.

Dates Phenomena Locations	Begins hm s	Maxi. hm s	Ends hms	Magn. drop	Ph. (s)	Dist. (Rj)	C-O (s)	Ap. (cm)	Rec.	El. Jup. (°)	El. Sun (°)	Cd.	Filt.	T. int. (s)	Dia. (")
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
96/ 6/ 8 1 O2(P)	1 38 51	1 48 32	1 58 33	.040	-14.2	2.0									
OHP		1 50 6 ± 199		.111 ± .067			-94	T 80.	CCD1	24	-17	3	-	-	-
97/ 4/24 4 O2(T)	3 52 31	3 55 48	3 59 6	.295	5.7	4.4									
BORDEAUX		3 55 59		1.346			-11	T 62.	CCD1	14	-11	2	R	2.	-
OHP		$^{\pm 6}_{3 55 56}$		± .067 1.289			-8	Т 80.	CCD1	18	-8	2	Ι	1.	-
ZARAGOZA		35557		± .064 .817			-9	Т 15.	CCD	11	-18	1	-	10.	-
MADRID		35621		± .139 5.548 + .245			-33	Т 0.	VISU	15	-16	1	-	-	-
MUNICH		3 56 1 ± 15		1.225 ± .208			-13	T 28.	CCDM	17	-2	1	*4	-	-
97/ 4/25 4 O3(P)	2 43 49	3 15 39	3 48 19	.187	-87.5	5.3		-	_			-	-	-	
OHP		3 16 17		.367			-38	Т 80.	CCD1	13	-14	3	Ι	2.	-
CATANIA				± .129 .038 ± .005			122	T 91.	РМ	22	-11	2	V	0.1	21.
97/ 5/ 2 2 E1(p)	2236 46	2238 28	224012	.028	-3.3	4.9									
KAVALUR		2238 1 ±35		.044 ± .022			28	T 102.	CCDC	39	-25	3	*3	-	
97/ 5/12 4 O3(P)	2 33 38	2 37 39	2 41 40	.166	10.8	6.9							-	-	
BOSKOOP		2 37 36		.119			3	Т 30.	CCDVX	11	-10	2	-	0.04	-
MUNICH		$ \begin{array}{r} \pm 119 \\ 2 37 34 \\ \pm 36 \end{array} $		± .102 .301 ± .104			5	T 28.	CCDM	20	-7	2	*4	-	-
97/ 5/13 2 O3(A)	2 20 15	2 23 29	2 26 44	.479	9.6	5.6						•		•	
RAGUSA		2 33 4 ± 38		.280 ± .076			-575	T 25.	CCDS	25	-16	2	V	0.2	-
97/ 5/15 3 O1(P)	2057 6	21 0 8	21 3 10	.152	7.3	4.8		0	1			T	n	n	1
KAVALUR		2059 45 ± 3		.207 ± .006			23	Т 235.	CCDC	28	-43	1	*3	2.	-
97/ 5/21 3 O4(P)	8 26 26	8 44 27	925	.279	39.6	14.6		·	1	i	i	•		i	
ASHEVILLE		8 43 28 ± 62		.168 ± .026			59	T 20.	CCDL	29	-17	2	V	0.5	20.
97/ 5/29 1 E2(P)	1 6 58	1 9 50	1 12 42	.809	-4.8	5.8		1	T	1	1		1	1	
LUMEZZANE		$1\ 11\ 0\ +\ 10$.477 + 087			-70	Т 40.	PM1	15	-18	3	V	0.5	-
BOOSKOOP		1 10 2 ± 9		1.641 ±.377			-12	Т 30.	CCDVX	8	-14	2	-	0.04	-
MUNICH		1 10 4 ± 4		1.945 ± .156			-14	T 28.	CCDM	13	-15	1	*4	-	-
97/ 5/29 3 O2(P)	23 3 16	23 6 60	231044	.228	6.7	7.6									
KAVALUR		23 7 3 ± 2		.566 ± .009			-3	Т 235.	CCDC	60	-16	1	*3	2.	-
97/ 5/30 3 O1(T)	3 0 18	3 5 18	3 10 22	.321	10.1	5			•						
PARIS		3 5 15		.358			3	L 38.	PM2	22	-7	2	V	0.3	-
RAGUSA		± 59 3 5 45		± .122 .962 + 157			-27	T 25.	CCDS	36	-7	1	R	0.2	-
TORINO		3528 + 4		.551			-10	T 15.	CCD2	27	-6	2	-	3-6	-
BORDEAUX		3 5 14 ± 16		.728 ± .064			4	T 62.	CCD1	14	-11	2	R	3-2	-
OHP		3 5 17 ± 6		.665 ± .033			1	T 80.	CCD1	27	-8	1	-	-	-
97/ 5/31					1					•	•	-			

Dates Phenomena Locations	Begins hm s	Maxi. hm s	Ends hms	Magn. drop	Ph. (s)	Dist. (Rj)	C-O (s)	Ap. (cm)	Rec.	El. Jup. (°)	El. Sun (°)	Cd.	Filt.	T. int. (s)	Dia. ('')
(1) 3 O1(P)	(2) 0 19 39	(3) 0 30 14	(4) 0 40 8	(5) .150	(6) 17.6	(7) 5.8	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
STUTTGART		0 30 6		.219			8	Т 30.	CCD3	8	-18	2	R	3-1	-
RAGUSA				± .053 .429			188	Т 25.	CCDS	18	-27	2	V	0.2	-
MUNICH				± .097 .227 ± .192			-28	T 28.	CCDM	9	-18	2	*4	-	-
97/ 6/ 6 3 O2(P)	2 15 10	2 18 49	2 22 28	.176	6.8	7.9			1	I	I	I	I		1
TENERIFE		2 19 21		.430			-32	Т 80.	CCDW	24	-36	0	В	5.	-
BORDEAUX		$ \begin{array}{r} \pm 1 \\ 2 19 3 \\ \pm 9 \end{array} $		± .003 .431 ± .028			-14	T 62.	CCD1	22	-15	2	R	3.	-
97/ 6/ 7 3 O1(P)	4 26 41	4 32 42	4 3836	.239	9.9	5.9		1	I	1	1	1	1	1	
TENERIFE		4 32 29 ± 8		.365 ± .017			13	T 80.	CCDW	44	-18	0	В	1.	-
97/ 6/18 2 E1(A)	1 2 15	1 4 44	1714	.647	-4.0	3		1		1	1	n	T	n	
OCA		1 4 35		.834			9	T 150.	PM7	23	-20	0	В	0.2	-
OCA		1 4 42		.962			2	Т 150.	PM7	23	-20	0	V	0.2	-
OCA		1 4 36		± .048			8	Т 150.	PM7	23	-20	0	R	0.2	-
PRAHA		1 4 43 + 10		± .072 .550			1	L 15.	v	21	-12	3	-	0.02	-
CATANIA		1 4 45		± .208 .103			-1	Т 91.	PM	32	-22	2	V	0.1	-
BOSKOOP		1 4 49		± .004 .792			-5	Т 30.	CCDVX	16	-12	0	-	-	-
LISBOA		1 4 39		± .552 1.155			5	Т 20.	CCD4	28	-24	0	-	-	-
BORDEAUX				± .292 1.087 ± .085			-2	T 62.	CCD1	19	-20	2	R	0.2	-
97/ 6/19 1 E2(P)	7 53 56	7 56 57	7 5958	.576	-4.6	6.1			1	1	1	I	1	I	1
TOPEKA		7 57 19 ± 199		.055 ± .001			22	L 38.	CCD12	27	-23	1	-	-	-
97/ 6/22 1 E2(P)	21 2 36	21 5 35	21 8 34	.468	-4.4	6.1		1	I	1	1	1	1	1	1
ALMA-ATA		$\begin{array}{ccc} 21 & 5 & 50 \\ \pm & 4 \end{array}$.755 ± .048			-15	T 60.	CCDST	29	-16	2	-	0.8	-
97/ 6/25 2 E1(A)	3 14 42	3 17 9	3 1936	.640	-3.6	3.2		i	i	i	i	i	i	i	i
TENERIFE		3 17 9		1.105 ± 000			0	Т 80.	CCDW	43	-30	0	В	1.	-
SEVILLA		3 17 17		.848			-8	T 21.	VISU	37	-17	1	-	-	-
LISBOA		3 17 8		±.115 .781			1	Т 20.	CCD4	36	-8	0	-	0.04	-
OHP				$\pm .143$ 1.155 $\pm .024$			0	T 80.	CCD1	31	-6	1	-	-	-
97/ 6/28 2 E1(A)	1620 54	1623 19	162544	.601	-3.4	3.0		1	I	1	1	1	1	1	1
ELLINBANK		1623 16 ± 2		1.004 ± .043			3	Т 32.	CCD2	35	-22	2	V	1.5	-
97/ 6/29 1 E2(P)	2320 31	2323 22	232614	.272	-3.7	6.1		1	1	1	1		1	r	
STUTTGART		2323 17		.368			5	Т 30.	CCD3	14	-18	0	R	4.	-
BUCHAREST1		2323 29		.384			-7	L 38.	CCDI	25	-21	3	GG	1.5	-
BUCHAREST2		$2323 \begin{array}{c} \pm 5\\ 28\\ \pm 19\end{array}$		± .044 .338 ± .070			-6	Т 50.	CCDST	25	-21	1	V	2.	-
97/ 6/30 4 E2(p)	5 34 55	5 39 35	5 44 14	.546	-3.7	2.4		1	1	1	1	1	1	1	1
NEW-YORK		5 39 48 ± 5		.833 ± .050			-13	T 20.	CCD2	22	-24	2	V	3.	-
97/ 7/ 2															

Dates Phenomena Locations	Begins hm s	Maxi. hm s	Ends hms	Magn. drop	Ph. (s)	Dist. (Rj)	C-O (s)	Ap. (cm)	Rec.	El. Jup.	El. Sun	Cd.	Filt.	T. int.	Dia. ('')
(1) 2 E1(A)	(2)	(3)	(4)	(5) 539	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
ТОРЕКА	0270	5 30 48 ± 35	0.0111	.030 ± .008		210	83	L 38.	CCD12	14	-27	1	-	-	-
97/ 7/ 4 3 O2(P)	1439 24	1443 24	144725	.123	5.5	8.7			1	1	1	1	1		
OKAYAMA		1443 28 ± 29		.249 ± .061			-4	Т 35.	PM3	23	-32	1	V	0.2	40.
97/ 7/ 5 3 O1(T)	1557 42	16 1 4	16 4 24	.321	3.6	4.4		[1	1	1	r	1	
ELLINBANK		16 0 58 ± 4		.532 ± .026			6	Т 32.	CCD2	35	-25	2	V	1.	-
97/ 7/ 6 3 E4(P)	2218 18	2232 40	224711	.547	-15.3	17.3			1	1	1	1			
CATANIA2		2233 36		.318			-56	T 20.	VISU	22	-29	2	-	-	-
SEVILLA		2234 24		1.269			-104	T 21.	VISU	9	-24	1	-	-	-
TORINO		$2232 \begin{array}{c} 50\\ 50\\ \pm 36\end{array}$.796 ± .077			-10	T 15.	CCD2	14	-21	2	-	5.	-
97/7/7 1 E2(p)	1 39 36	1 42 14	1 44 52	.116	-2.7			[1	1	1	1	Γ		
TENERIFE		$1\ 42\ 33$ + 0		.156 + 000			-19	Т 80.	CCDW	38	-39	0	В	1.	-
SAN-FERN.		14233 + 62		.227			-19	Т 33.	PM4	35	-28	0	-	-	-
LISBOA		1 42 21 + 20		.153			-7	Т 25.	CCD2	32	-27	0	-	-	-
BORDEAUX		$1 42 31 \pm 19$.126 ± .030			-17	T 62.	CCD1	29	-19	2	R	-	-
97/ 7/ 9 2 E3(p)	0 13 3	0 16 22	0 19 41	.095	-3.7	1.5			1	1	1	1	Γ		
SEVILLA		0 17 41		.017			-79	T 21.	VISU	26	-30	1	-	-	-
REUX		0 16 27 ± 193		.043 ± .269			-5	Т 30.	CCD5	20	-17	0	-	0.04	-
97/ 7/12 2 E1(P)	2045 35	2047 45	2049 53	.297	-2.2	2.3		i	1	i	i	i	i	ii	
KAVALUR		2047 43 ± 3		.254 ± .012			1	Т 235.	CCDC	62	-45	1	*3	-	-
97/ 7/15 1 O3(P)	1855 42	1858 12	19 0 42	.169	3.5	3.1			1	1	1				
ALMA-ATA		1856 6 ± 14		.132 ± .025			126	T 60.	CCDST	26	-25	2	-	0.8	-
97/ 7/16 2 E3(A)	3 25 16	3 28 57	3 32 37	.208	-3.4	1.5		Γ		1	1	1	r	1	
TENERIFE		3 28 58		.214			-1	Т 80.	CCDW	45	-30	0	В	1.	-
SAN-FERN.		$3 30 8 \pm 4$		2.153 ± .443			-71	Т 33.	PM4	35	-18	0	-	-	-
97/ 7/18 3 E2(p)	1851 31	1856 37	19 1 43	.240	-3.1	8.6									
ALMA-ATA		1856 44		.222			-6	Т 60.	CCDST	27	-26	0	2	0.8	
KAVALUR				± .033 .232 ± .010			-17	T 102.	CCDC	54	-56	0	1 *3	-	
97/ 7/18 3 O2(P)	2042 49	2047 48	205248	.182	4.1	9.1									
TORINO		2048 46		1.325			-58	Т 15.	CCD2	6	-14	0	2	3.5	
ALMA-ATA		$ \begin{array}{r} \pm 4 \\ 2047 & 55 \\ \pm 7 \end{array} $		± .028 .390 ± .018			-7	T 60.	CCDST	31	-21	0	2	0.5	
97/ 7/19 3 O1(P)	2056 28	2059 23	21 2 17	.293	2.1	3.4		Γ	1	Γ			ſ		
TORINO		2059 17		.977			6	T 15.	CCD2	8	-16	0	2	2.	-
ALMA-ATA		2059 15		± .102 .520			8	T 60.	CCDST	30	-20	0	2	0.5	-
OHP				± .036 .620 ± .078			8	T 80.	CCD1	23	-25	0	2	-	-

Dates Phenomena Locations	Begins hm s	Maxi. hm s	Ends h m s	Magn. drop	Ph. (s)	Dist. (Rj)	C-O (s)	Ap. (cm)	Rec.	El. Jup. (°)	El. Sun (°)	Cd.	Filt.	T. int. (s)	Dia. ('')
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
97/ 7/19 2 E1(p)	22.57 57	2259 54	23 1 50	.149	-1.4	1.9			1	1	1	1	1	1	1
REUX		23 0 8		.115			-14	Т 30.	CCD5	17	-18	0	-	0.04	-
BORDEAUX				± .313 .087 ± .069			33	T 62.	CCD1	19	-23	0	R	0.5	-
97/ 7/23 2 E3(A)	6 37 43	6 41 35	6 45 27	.313	-2.7	1.4		-		-		-	-		
TOPEKA		6 40 56 ± 151		.042 ± .017			0	L 38.	CCD12	33	-31	0	1	-	-
97/ 7/24 1 E4(p)	1815 11	1821 30	1827 55	.000	-3.6	6.7									
ALMA-ATA		1821 29 ± 21		.247 ±.038			1	T 60.	CCDST	26	-27	0	2	0.5	-
97/ 7/25 1 E4(A)	2045 0	2052 2	205858	.300	-3.6	4.2						_			
NAUCHNY		2051 50		.396			12	Т 60.	PMW	23	-24	0	2 V	-	35.
ALMA-ATA		$^{\pm 20}_{2051 \ 37}$		± .059 .470			25	Т 60.	CCDST	30	-22	0	2	0.5	-
OHP		± 13 2051 27		± .039 .431			35	T 80.	CCD1	9	-15	0	2	-	-
97/ 7/25 3 E2(P)	2225 55	± 43	22 37 25	±.120	-2.5	8.9							l		
SEVILLA		2232 43		.806			-63	T 21.	VISU	21	-27	0	1	-	-
CATANIA		$\begin{smallmatrix} \pm & 10 \\ 2232 & 3 \end{smallmatrix}$		± .050 .036			-23	Т 91.	PM	31	-32	0	1 V	0.1	21.
ALMA-ATA		$\begin{smallmatrix} \pm & 29 \\ 22 & 32 & 0 \end{smallmatrix}$		± .006 .321			-20	Т 60.	CCDST	21	-10	0	2	0.5	-
OCA		± 36 2232 17		± .090 .181			-37	T 150.	PM7	23	-25	0	В	0.2	-
OCA		$\begin{array}{c} \pm 22\\2232 & 7\end{array}$		± .063 .543			-27	T 150.	PM7	23	-25	0	R	0.2	-
OCA		$\begin{array}{r} \pm 19 \\ 2232 24 \end{array}$		± .141 .184			-44	T 150.	PM7	23	-25	0	V	0.2	-
BUCHAREST1		± 23 2231 59		± .071 .302			-19	L 38.	CCDI	28	-26	0	1 <i>GG</i>	1.	-
LISBOA		± 23 2231 48		± .049 .319			-8	Т 25.	CCD2	19	-24	0	-	-	-
OHP		± 69 2232 18 ± 15		± .253 .453 ± .044			-38	T 80.	CCD1	22	-25	0	2	-	-
97/7/25 3 ()2(P)	22.44.19	23.40 56	22 55 26	± .044	2.0	0.2									
JUMEZZANE	2544 18	2349 30	25 35 30	.220	2.9	9.2	27	T 40	PM1	28	25	0	V	0.01	
NAUCHNY		$2350 23 \\ \pm 20 \\ 2350 6$		± .060			-10	т 60	PMW	28	-20	0	1 V	0.01	35
OCA		± 14 2350 42		± .039			-46	T 150	PM7	29	_27	0	B	0.2	-
OCA		± 14 2351 10		± .055			_74	T 150	PM7	29	_27	0	R	0.2	_
OCA		± 16 2350 49		± .203			-53	T 150.	PM7	29	-27	0	v	0.2	-
SAN-FERN		± 17 2350 13		± .060 .476			-17	Т 33.	PM4	32	-33	0	-	-	-
BOSKOOP		± 50 2350 7		± .163 .341			-11	Т 30.	CCDVX	21	-18	0	-	0.04	_
LISBOA		$^{\pm 53}_{2350 11}$		± .108 .441			-15	Т 25.	CCD2	29	-31	0	-	-	-
OHP				$\pm .066$.466 $\pm .019$			-93	T 80.	CCD1	29	-27	0	1	-	-
97/ 7/26 3 F4(p)	1 47 40	1 52 51	1 57 50	.067	_2 3	62		1	1	1	1	1	1	1	1
CATANIA	1 47 40	1 54 17	1 5757	.002	2.0	0.2	-86	T 91.	PM	31	-21	0	1 V	0.1	21.
97/ 7/26 3 O1(B)	22.20.22	± 2/1	22.26.0	± .004	1.2	2.0		1	1	1	1	I	1	1	1
	2520 55	2323 21	2320 8	.290	1.3	5.0	Д	T 91	РМ	35	_33	0	2 V	0.1	21
OCA		± 5 2324 19		± .002			-58	T 150	PM7	28	_27	0	R	0.1	-
OCA		± 15 2324 18		± .119			-57	T 150	PM7	28	-27	0	R	0.2	_
OCA		± 6 2324 13		± .132 .749			-52	T 150	PM7	28	-27	0	v	0.2	_
SAN-FFRN		±7 2323 16		± .112 .438			5	Т 33	PM4	29	_32	0		-	_
GILLY I LIVIN.		± 30		± .166				. 55.			52				

Dates Phenomena Locations	Begins hm s	Maxi. hm s	Ends hms	Magn. drop	Ph. (s)	Dist. (Rj)	C-O (s)	Ap. (cm)	Rec.	El. Jup. (°)	El. Sun (°)	Cd.	Filt.	T. int. (s)	Dia. (")
(1) OHP	(2)	(3) 2323 9 + 4	(4)	(5) .533 + 027	(6)	(7)	(8) 12	(9) T 80.	(10) CCD1	(11) 27	(12) -27	(13) 0	(14) 1	(15)	(16)
97/ 7/27 2 E1(p)	1 10 26	1 12 3	1 1341	.050	8	1.5		L				I		I	
SEVILLA		1 12 40 ± 18		.194 ± .022			-37	T 21.	VISU	36	-32	0	1	-	-
97/ 7/29 1 E3(p)	23 8 44	2311 26	2314 7	.035	-1.1	4.4									
TENERIFE		2311 39		.034			-13	T 150.	PMIR	30	-35	0	K	2.5	20.
SEVILLA		$2310 \begin{array}{c} \pm 21 \\ 55 \\ \pm 3 \end{array}$.327 ± .012			31	T 21.	VISU	29	-31	0	1	-	-
97/ 7/29 1 O3(P)	2346 47	2349 40	23 52 34	.206	1.8	4.1					I			I	
TENERIFE		2349 58 ± 21		.118 ±.026			-18	T 150.	PMIR	36	-39	0	K	2.5	20.
CATANIA		2349 24 ± 11		.016 ± .002			16	T 91.	РМ	36	-33	0	2 V	0.1	21.
BUCHAREST1		2349 41 ± 19		.231 ±.055			-1	L 38.	CCDI	29	-24	0	3 <i>GG</i>	0.5	-
BOSKOOP		2349 23 ± 41		.112 ± .065			17	Т 30.	CCDVX	21	-19	0	-	0.04	-
REUX		$2350 \ 2 \pm 48$.336 ± .144			-22	Т 30.	CCD5	23	-21	0	-	0.04	-
COMTHUREY		$2349 24 \pm 62$.217 ±.131			16	L 18.	CCD6	20	-18	0	2	0.04	-
07/8/1		2349 42 ± 14		± .032			-2	1 80.	CCDI	29	-28	0	1	-	-
4 E3(A)	0 5 56	0 20 50	0 35 52	.601	-4.7	14.		1		1	1	1	1	1	
BARCELONA		0 21 15		6.516 + .495			-25	T 16.	VISU	32	-30	0	2	-	-
TENERIFE		0 20 45 ± 2		.926 ± .006			5	T 150.	PMIR	40	-42	0	K	4.	20.
SEVILLA		0 21 30 ± 15		2.210 ± .146			-40	T 21.	VISU	35	-35	0	1	-	-
CATANIA		0 20 54 ± 10		.079 ± .003			-4	T 91.	PM	35	-31	0	2 V	0.1	21.
SAN-FERN.		0 20 34 ± 68		.163 ± .280			16	Т 33.	PM4	36	-35	0	-	-	-
LISBOA		0 20 17 ± 38		.936 ± .124			33	T 25.	CCD2	33	-33	0	-	-	-
OHP		0 21 7 ± 8		.947 ± .025			-17	Т 80.	CCD1	30	-27	0	1	-	-
97/ 8/ 1 4 E2(p)	20 6 24	2011 34	201642	.191	-1.1	7.5		1			1	1		1	
KAVALUR		2011 49 ± 3		.193 ± .004			-15	T 235.	CCDC	59	-54	0	1 *3	4.	-
97/ 8/ 2 3 E2(P)	2 4 40	2 11 6	2 17 31	.393	-1.5	9.2					i				
SEVILLA		2 13 46		.541			-161	T 21.	VISU	34	-30	0	1	-	-
TENERIFE		2 12 2 + 37		.012 + 005			-57	T 150.	PMIR	45	-42	0	K	4.	20.
CATANIA		2 11 9 ± 27		.046 ± .010			-4	T 91.	РМ	25	-19	0	2 V	0.1	21.
97/ 8/ 2 3 O2(T)	2 46 44	2 53 4	2 59 27	.259	1.6	9.3									
TENERIFE		2 53 3		.330			1	T 150.	PMIR	42	-38	0	K	4.	20.
OCA		253 5 + 24		± .042 .608 + .056			-1	T 150.	PM7	19	-14	0	В	0.2	-
OCA		$251 \begin{array}{c} \pm 23 \\ 27 \\ \pm 37 \end{array}$.452 + 232			97	T 150.	PM7	19	-24	0	R	0.2	-
OCA		25255 + 27		.600 ± .084			9	T 150.	PM7	19	-24	0	V	0.2	-
SAN-FERN.		2 54 30 ± 178		.164 ± .077			-86	Т 33.	PM4	31	-26	0	-	-	-
CATANIA		2 53 14 ± 37		.590 ± .102			-10	T 91.	РМ	19	-13	0	2 V	0.1	28.
OHP		2 53 20 ± 14		.512 ± .042			-16	T 80.	CCD1	20	-14	0	1	-	-
97/ 8/ 3 4 E1(A)	0 0 17	053	0948	.770	8	3.7									
TENERIFE		0 5 2 ± 1		1.556 ± .013			1	T 150.	PMIR	40	-41	0	K	4.	20.

Dates Phenomena Locations	Begins h m s	Maxi. h m s	Ends h m s	Magn. drop	Ph. (s)	Dist. (Rj)	C-O (s)	Ap. (cm)	Rec.	El. Jup. (°)	El. Sun (°)	Cd.	Filt.	T. int. (s)	Dia. ('')
PRAHA	(2)	0 4 56	(4)	.901	(0)	(7)	7	T 30.	V1	23	-21	0	2	0.02	-
CATANIA2				± .107 1.410			6	Т 20.	VISU	35	-33	0	2	-	-
CATANIA				± .080 .528			0	T 91.	PM	35	-33	0	2 V	0.1	21.
NAUCHNY				± .079 1.414			0	T 60.	PMW	24	-20	0	V	-	35.
OCA				± .066 1.163			7	T 150.	PM7	30	-28	0	В	0.2	-
OCA		$^{\pm 4}_{0 5 7}$		± .060 1.457			-4	T 150.	PM7	30	-28	0	R	0.2	-
OCA				± .084 1.475			2	T 150.	PM7	30	-28	0	V	0.2	-
COMTHUREY		$ \begin{array}{r} \pm 9 \\ 0 5 5 \\ \pm 23 \end{array} $		± .166 1.911 ± .404			-2	L 18.	CCD6	20	-18	0	2	0.04	-
97/ 8/ 3 3 O1(P)	1 42 20	1 45 4	1 47 48	.311	.6	2.5			1		1	1			1
BOSKOOP		1 44 54 ± 28		.273 ±.094			10	Т 30.	CCDVX	19	-16	0	-	-	-
97/ 8/ 6 1 O3(P)	2 14 14	2 17 26	2 20 40	.245	.7	4.5									
TENERIFE		2 17 29		.169			-3	Т 150.	PMIR	44	-42	0	K	4.	20.
OCA		$^{\pm 2}_{2 17 42}$		± .004 .332			-16	T 150.	PM7	21	-19	0	В	0.2	-
OCA		± 12 2 16 36		± .049 .184			50	T 150.	PM7	21	-19	0	R	0.2	-
OCA		± 71 2 17 35		± .050 .412			-9	T 150.	PM7	21	-19	0	V	0.2	-
MUNICH		$ \begin{array}{r} \pm 20 \\ 2 17 13 \\ \pm 31 \end{array} $		±.077 .257 ±.118			13	T 28.	CCDM	16	-14	0	2 *4	-	-
97/ 8/10 3 O1(T)	4 2 52	4 5 34	4 8 16	.320	1	2.0									
TENERIFE		4 5 26 ± 1		1.002 ±.018			8	T 150.	PMIR	28	-29	0	K	4.	20.
97/ 8/10 3 E4(A)	11 9 58	1116 55	11 23 52	.597	.3	5.6									
ELLINBANK		1116 48 ± 12		.188 ± .018			7	Т 32.	CCD2	21	-21	0	2 V	2.	25.
97/ 8/13 1 O3(P)	4 44 2	4 47 38	4 51 15	.291	8	4.9			-						
TOPEKA		4 47 42 ± 69		.056 ± .023			4	L 38.	CCD12	31	-32	0	1	-	-
97/ 8/23 3 O2(P)	1221 7	1229 46	123832	.259	-4.1	9.3									
OKAYAMA		1229 56 ± 25		.495 ± .045			-10	T 35.	PM3	33	-31	0	2 V	0.2	40.
97/ 8/23 3 E2(P)	1354 32	14 3 34	141245	.284	4.0	9.2									
KAVALUR		14 4 24 ± 17		.314 ± .022			50	T 102.	CCDC	27	-16	0	1 *3	-	-
97/ 8/27 1 E3(A)	1122 40	1129 28	11 36 25	.452	5.2	4.9				-			-		
OKAYAMA		1129 17		.535			12	Т 35.	PM3	28	-22	0	1 V	0.2	40.
FUNAHO				± .100 .449 ± .095			9	T 28.	PM3	28	-22	0	2 V	0.2	-
97/ 8/28 1 E3(P)	0 25 0	0 36 22	0 47 55	.199	-9.8	2.2									
TENERIFE		0 36 24		.233			-2	Т 150.	PMIR	43	-51	0	K	4.	20.
CATANIA		$ \begin{array}{r} \pm 10 \\ 0 36 45 \\ \pm 99 \end{array} $		± .006 .021 ± .006			-23	T 91.	PM	22	-37	0	1 V	0.1	21.
97/ 8/28 1 E4(p)	2 41 7	2 52 10	3 3 39	.128	-7.5	4.8									
TENERIFE		25240 ± 25		.106 ±.012			-30	T 150.	PMIR	26	-44	0	K	4.	20.
97/ 8/30 3 O2(P)	1553 52	16 3 17	161253	.184	-7.7	9.2									

Table 4. continued.

Dates	Begins	Maxi.	Ends	Magn.	Ph.	Dist.	C-0	Ap.	Rec.	El.	El.	Cd.	Filt.	T.	Dia.
Locations (1)	h m s (2)	n m s (3)	1 m s	drop (5)	(s) (6)	(K J) (7)	(S) (8)	(cm) (9)	(10)	(°) (11)	(°) (12)	(13)	(14)	(s) (15)	(¹)
OKAYAMA		16 4 59		.449			-69	Т 35.	PM3	28	-44	0	3 V	0.2	40.
ALMA-ATA		$^{\pm 63}_{16 3 42}$		± .104 .309 ± .015			-25	T 60.	CCDST	27	-26	0	2 R	2.	-
97/ 8/30		10		1.015											
3 E2(p)	1834 54	1845 10	185541	.111	6.5	8.8									
OHP		1845 53 ± 150		.099 ± .064			-43	T 80.	CCD1	13	-6 28	0	2 I 2 P	3.	-
ALMA-AIA KAVALUR		1844 40 ± 112		.074 ± .041 239			30 183	T 102	CCDC	20 53	-38	0	2 K 2 *3	0.5	-
KAVALOK		± 34		± .030			105	1 102.	CEDE	55	-07	0	2 5	-	
97/ 9/ 3 1 E3(A)	1515 3	1526 7	153750	.486	12			1	1	1		1			
ALMA-ATA		1525 41 ±14		.761 ± .034			26	T 60.	CCDST	25	-22	0	2 R	1.	-
97/ 9/ 4 1 E3(P)	1379	1313 13	131913	.298	6.5	7.0									
OKAYAMA		1313 5		.324			8	Т 35.	PM3	38	-41	0	1 V	0.2	40.
97/ 9/ 8		± 23		± .055											
3 E2(P)	1052 60	11 4 5	111458	.999	8.3	9.3	0	т 29	DM2	21	21	0	1.17	1	
OKAYAMA				± .043			-13	T 35	PM3	31	-21	0	1 V 2 V	1.	40
97/ 9/10		± 4		± .049								-	/		
1 O3(A)	16 8 49	1617 16	1626 3	.356	-16.2	5.8									
ALMA-ATA		$1617 28 \pm 21$.363 ± .028			-12	T 60.	CCDST	29	-32	0	R	-	-
οκαγαμα		$1017 37 \pm 27$ 1617 38		.314 ± .034 321			-21	T 28.	PM3	18	-47	0	2 V 1 V	1.	- 40
ORTHINIT		± 27		± .039			22	1 55.	1 1015	10	-17	Ů	17	1.	40.
97/ 9/11 1 O3(P)	0 21 20	0 32 28	0 43 24	.204	17.7	1.4		I		1	1	1		1	
CATANIA		0 33 35 + 159		.034			-67	T 91.	РМ	13	-42	0	2 V	0.1	28.
BORDEAUX		$ \begin{array}{r} 0 & 32 & 23 \\ \pm & 178 \end{array} $.240 ± .140			5	T 62.	CCD1	17	-40	0	2	1.	-
97/ 9/11 1 O3(P)	14 3 50	14 8 15	141236	.124	-6.9	5.8									
OKAYAMA		14 9 13		.232			-58	Т 35.	PM3	34	-49	0	3 V	1.	40.
FUNAHO		± 13 14 8 4 ± 17		± .028 .385 ± .040			11	T 28.	PM3	34	-49	0	2 V	0.2	-
97/ 9/11	1625 6	± 17	1625.21	± .049	()	()			I						
KAVALUR	1023 0	1630 20	1055 51	.951	0.9	0.9	18	T 102.	CCDC	60	-54	0	1 *3	-	-
97/ 9/15		± 2		± .020											
3 E2(P)	15 0 12	15 9 28	15 18 38	.986	8.4	9.2		[
ALMA-ATA		15 9 34 ± 5		5.807 ± .250			-6	T 60.	CCDST	27	-24	0	2 R	1.	-
97/ 9/18 1 E3(A)	1930 10	1934 52	193931	.472	7.1	6.7			-	-	-	-			-
LUMEZZANE		1934 57		.696			-5	T 11.	VISU	25	-23	0	2	-	20.
BARCELONA		1934 45 + 9		£ .002 6.884 + 610			7	T 16.	VISU	27	-19	0	-	-	-
MILANO		1935 36 ± 0		.716 ± .003			-44	L 8.	VISU	25	-23	0	2	-	-
OCA		1934 39 ± 6		.727 ± .044			13	T 150.	PM7	26	-22	0	В	0.2	-
OCA		1934 29 ± 6		.678 ± .039			23	T 150.	PM7	26	-22	0	R	0.2	-
OCA		1934 47 ± 13		.773 ±.111			5	T 150.	PM7	26	-22	0	V	0.2	-
PRAHA		1954 39 ± 8 1934 51		.051 ± .056 .689			13	T 30	V1	21	-30	0	2	0.00	35. 8

Dates Phenomena Locations	Begins hm s	Maxi. hm s	Ends h m s	Magn. drop	Ph. (s)	Dist. (Rj)	C-O (s)	Ap. (cm)	Rec.	El. Jup. (°)	El. Sun (°)	Cd.	Filt.	T. int. (s)	Dia. ('')
	(2)	(3) ± 9	(4)	(5) ± .081	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
CATANIA		1934 39 ± 8		.055 ± .052			15	T 15.	DM	20	-22	0	2.1	1.	-
DUCHADESTI		1934 37 ± 7		± .005			13	1 91.	CCDI	28	-50	0	1.00	0.1	21.
BOSKOOP		± 14		± .099			14	L 30. Т 30	CCDVX	18	-55	0	100	0.4	-
PEUX		± 21		± .082			33	т 30	CCD5	20	18	0		0.04	
LISBOA		± 21		± .127			15	T 20	CCD4	32	25	0		0.04	
OOSTERDUIN		± 39		± .163			9	T 25	CCD7	19	-16	0	2	0.04	
BORDEAUX		± 26 1934 35		± .011 736			17	т 62	CCD1	23	-16	0	2 R	0.5	_
		± 11		± .076											
97/ 9/19 4 O3(P)	22 8 16	2214 47	222120	.061	-13.3	14.8			1	1	1	1		1	
UCCLE		2218 23 + 177		.00.095			12	Т 85.	CCD8	19	-35	0	2	0.06	-
BORDEAUX		$2215 13 \pm 84$.092 ± .049			-26	Т 62.	CCD1	25	-39	0	3 R	0.5	-
97/ 9/21 3 E1(P)	2027 45	2031 11	203438	.726	3.8	3.0									
MEUDON		2031 1		1.533			10	Т 100.	V3	23	-26	0	1	0.04	-
PRAHA		$\begin{array}{r} \pm 2\\ 2031 \end{array}$		± .046 1.259			7	L 19.	V1	21	-31	0	2	0.00	8
STUTTGART		$^{\pm 6}_{2034}$ 3		± .137 1.337			46	Т 30.	CCD11	23	-29	0	2 R	1.	-
CACERES		$\begin{smallmatrix} \pm 2 \\ 2031 & 0 \end{smallmatrix}$		± .045 1.564			11	T 25.	CCD	31	-25	0	V	2-7	-
CHATEAUGIRON				± .028 .518			9	T 21.	CCD10	24	-24	0	2	1.2	-
PIC-DU-MIDI		$\begin{smallmatrix} \pm & 3 \\ 2031 & 1 \end{smallmatrix}$		± .060 .397			10	T 100.	CCDI	29	-28	0	2 V	0.1	-
ZARAGOZA		$\begin{smallmatrix}&\pm&2\\&2031&2\end{smallmatrix}$		± .011 1.263			9	T 15.	CCD	29	-23	0	2	-	-
OCA		$\begin{smallmatrix} \pm 3 \\ 2031 & 7 \end{smallmatrix}$		± .050 .969			4	T 150.	PM7	28	-31	0	В	0.2	-
OCA		$^{\pm 9}_{2030}$ 52		± .111 1.168			19	T 150.	PM7	28	-31	0	R	0.2	-
OCA		$^{\pm 3}_{2030 50}$		± .068 1.288			21	T 150.	PM7	28	-31	0	V	0.2	-
UCCLE		$^{\pm 7}_{2030}$ 59		± .149 1.739			6	Т 85.	CCD8	21	-26	0	2	0.06	-
BUCHAREST1		±7 2031 0		± .0191 1.538			11	L 38.	CCDI	25	-40	0	1 <i>GG</i>	0.4	-
BUCHAREST2		$^{\pm 3}_{2030}$ 56		± .082 1.540			15	L 38.	CCDST	25	-40	0	2 V	3.	-
BOSKOOP		$2031 \frac{\pm 4}{5}$		± .127 1.100			6	Т 30.	CCDVX	20	-25	0	-	0.04	
REUX		$^{\pm 10}_{2031}$		± .189 3.789			8	Т 30.	CCD5	22	-26	0	-	0.04	-
WILP-ACHTER.		± 9 2031 0		± .771 4.224			11	Т 20.	V2	20	-26	0	3	0.04	-
OOSTERDUIN.		± 16 2031 6		± .935 1.529			5	Т 25.	CCD7	21	-25	0	2	0.04	-
LISBOA		± 16 2031 0		± .312 1.612			11	Т 25.	CCD2	31	-23	0	-	-	-
MUNICH		$ \begin{array}{r} \pm 2 \\ 2031 & 5 \\ \pm 9 \end{array} $		± .046 1.568 ± .239			6	T 28.	CCDM	23	-31	0	1 *4	-	-
97/ 9/22 3 E2(P)	1854 22	19 1 56	19 9 24	.673	8.6	9.0									_
OOSTERDUIN.		19 2 3		.367			-7	Т 25.	CCD7	17	-13	0	3	0.04	-
MEUDON		± 110 19 2 3		± .267 1.040			-7	Т 100.	CCDVX	19	-13	0	1	0.04	-
PRAHA		± 10 19 2 10		± .059 .837			-14	L 19.	V1	21	-20	0	2	0.00	8
CHATEAUGIRON		$^{\pm 30}_{19150}$		± .154 1.001			6	T 21.	CCD10	19	-11	0	2	0.6	-
ZARAGOZA		± 19 19 2 3		± .117 1.062			-7	Т 15.	CCD	22	-7	0	2	-	-
UCCLE				± .022 1.402			-8	Т 85.	CCD8	18	-14	0	2*1	0.06	-
BUCHAREST1		192 6		± .020 1.087			-10	L 38.	CCDI	28	-30	0	1 <i>GG</i>	0.4	-
BUCHAREST2		± 12 19 2 19		± .0/2 1.013			-23	L 38.	CCDST	28	-30	0	1 V	2.	-
BOSKOOP				± .069 .919			-3	Т 30.	CCDVX	17	-13	0	-	0.04	-
REUX				±.140 1.171 ±.217			0	Т 30.	CCD5	19	-14	0	-	0.04	-

Dates Phenomena Locations	Begins hm s	Maxi. hm s	Ends hms	Magn. drop	Ph. (s)	Dist. (Rj)	C-O (s)	Ap. (cm)	Rec.	El. Jup. (°)	El. Sun (°)	Cd.	Filt.	T. int. (s)	Dia. ('')
(1) WILP-ACHTER.	(2)	(3) 19 1 56	(4)	(5) 2.956	(6)	(7)	(8) 0	(9) T 20.	(10) V2	(11) 17	(12) -14	(13) 0	(14)	(15) 0.04	(16)
BORDEAUX		± 59		± .961 1.082			-6	Т 62.	CCD1	22	-12	0	2R	1.5	-
MUNICH		±7 192 4		± .038 1.049			-8	T 28.	CCDM	22	-19	0	1 *4	-	-
KAVALUR		± 10		$\pm .062$ 1 422			-11	T 102	CCDC	31	-76	0	1 *3	_	_
07/ 0/22		± 10		± .109				1 102.	севе	51	70	Ŭ	1 5		
1 O2(P)	22 6 6	22 7 10	22 8 14	.002	-2.0	5.9		1	1	1	1	1	1	1	1
CATANIA		22 8 39 ± 282		.001 ± .006			-89	T 91.	РМ	25	-51	0	2 V	0.1	21.
97/ 9/25 1 O3(P)	1951 50	1954 25	195658	.063	-5.7	5.2			r		1				
LUMEZZANE		1955 45		.130			-80	Т 40.	PM	26	-28	0	2	0.1	129.
OHP		1953 56		± .036 .167			29	Т 80.	CCD1	28	-26	0	2	1.5	-
MEUDON		1954 32		± .047			-7	T 100.	V3	23	-22	0	1	0.04	-
PARIS		± 45 1954 21		± .048 .061			4	L 38.		23	-22	0	3 V	0.3	-
UCCLE		$^{\pm 100}_{1954 34}$		± .096 0.070			-22	Т 85.	CCD8	21	-22	0	3 *1	0.06	-
BOSKOOP		± 136 1954 28		± .162 .075			-3	Т 30.	CCDVX	20	-22	0	-	0.04	-
MUNICH		$^{\pm 145}_{1954 44}$		± .101 .061			-19	T 28.	CCDM	24	-28	0	3 *4	-	-
		± 72		± .070											
97/ 9/25 1 E3(A)	2228 21	2232 35	223648	.449	7.1	6.5		1	Γ		1				
MUNICH		2232 22		.614			13	T 28.	CCDM	15	-42	0	1 *4	-	-
BOSKOOP		2232 17		.492			18	Т 30.	CCDVX	14	-38	0	-	0.04	-
REUX		2232 15		± .147 .541			20	Т 30.	CCD5	16	-39	0	-	0.04	-
WILP-ACHTER.		2232 13		± .197 .603			22	Т 20.	V2	14	-38	0	-	0.04	-
BORDEAUX		± 67 2232 25		± .433 .668			10	Т 62.	CCD1	22	-43	0	2 R	0.5	-
PRAHA		$^{\pm 8}_{2232}$ 27		± .057 .650			8	L 19.	V1	12	-41	0	2	0.00	8
STUTTGART				± .184 .666			21	Т 30.	CCD11	15	-42	0	2 R	2.	-
LUMEZZANE		± 9 2233 26		± .076 .161			-51	T 40.	PM	17	-45	0	2	0.1	129.
OHP		± 36 2232 17		± .055 .651			18	Т 80.	CCD1	21	-46	0	2	1.5	-
PARIS		± 8 2232 17		± .053 .609			18	L 38.		18	-40	0	1 V	0.3	-
PIC-DU-MIDI		± 11 2232 31		± .069 .641			4	T 100.	CCDI	24	-45	0	2 K	0.1	-
OCA		±5 2232 11		± .026 .659			24	T 150.	PM7	20	-46	0	В	0.2	-
OCA		± 8 2232 23		± .056 .667			12	Т 150.	PM7	20	-46	0	R	0.2	-
OCA		± 21 2232 7		± .126 .674			28	Т 150.	PM7	20	-46	0	V	0.2	-
UCCLE		± 19 2232 24		± .118 847			12	Т 85	CCD8	15	_39	0	3 *1	0.06	_
ESSEN		± 20		± .212			10	т 36	PM6	14	38	0	1 V	0.00	105
ESSEIV		± 11		± .095			17	1 50.	1 100	14	-50	0	1 V	0.2	105.
97/ 9/28 3 E1(P)	2314 4	2317 26	232047	.483	4.3	3.7		n	r	n	1		n	n	1
PIC-DU-MIDI		2317 18		.753			8	T 100.	CCDI	18	-49	0	3 K	0.1	-
CATANIA				± .055 .063 ± .011			-35	T 91.	РМ	12	-54	0	1 V	0.1	21.
97/ 9/29 3 O2(P)	1835 38	1842 19	184856	.196	-9.8	9.3									
CHATEAUGIRON		1842 28		.394			-9	T 21.	CCD10	20	-10	0	3	0.6	-
MEUDON		± 45 1840 49		± .013 .973			90	Т 100.	V3	20	-12	0	2	0.04	-
PIC-DU-MIDI		$ \pm 27 1842 52 $		± .129 .173			-33	Т 100.	CCDI	25	-12	0	2 K	0.1	-
CATANIA				± .033 .070			-20	T 91.	РМ	33	-24	0	1 V	0.1	21.
UCCLE		$^{\pm 19}_{1842}$		± .006 .355			-24	Т 85.	CCD8	19	-13	0	2	0.06	-
BUCHAREST1		± 55 1842 45		± .103 .345			-26	L 38.	CCDI	28	-29	0	1 <i>GG</i>	0.4	-
		± 39		± .059											

Dates Phenomena Locations	Begins hm s	Maxi. hm s	Ends h m s	Magn. drop	Ph. (s)	Dist. (Rj)	C-O (s)	Ap. (cm)	Rec.	El. Jup. (°)	El. Sun (°)	Cd.	Filt.	T. int. (s)	Dia. ('')
(1) BUCHAREST2	(2)	(3) 1842 18	(4)	(5)	(6)	(7)	(8)	(9) L 38.	(10) CCDST	(11)	(12)	(13)	(14) 1 V	(15)	(16)
OHP				± .050 .476 ± .041			-43	Т 80.	CCD1	25	-15	0	3 V	5.	-
97/ 9/29 3 E2(P)	2240 42	2246 24	2252 7	.229	7.1	8.7		1	1		1	1	1	1	1
PIC-DU-MIDI		2246 32 + 29		.173			-8	T 100.	CCDI	21	-47	0	2 K	0.1	-
BORDEAUX		2246 33		.226			-9	Т 62.	CCD1	19	-46	0	2 R	1.	-
MUNICH		$2246 34 \\ \pm 60$.235 ± .119			-10	T 28.	CCDM	12	-44	0	2 *4	-	-
97/10/ 2 1 O3(P)	2238 13	2240 14	224216	.041	-5.0	4.7		1	1	1	1	1	1	1	1
CATANIA		2241 15		.005			-61	T 91.	PM	16	-56	0	1 V	0.1	22.
BORDEAUX		2240 35 ± 55		.181 ± .086			-21	T 62.	CCD1	19	-46	0	3 R	1.	-
97/10/ 3 1 E3(A)	1 21 36	1 25 21	1 29 9	.335				1	1	1	1	1	1	1	1
NEW-YORK		1 25 2		.448 + .056			19	Т 20.	CCD2	29	-29	0	2 V	1.	10.
BOWIE		$125 \frac{1}{3} \pm 4$.444 ±.023			18	T 20.	CCD2	33	-31	0	2 V	4.	14.
97/10/ 5 3 O1(P)	2323 48	2326 4	23 28 20	.141	-4.6	2.4		1	1	1		1			1
ESO		2326 2 ± 3		.356 ± .017			2	Т 220.	CCD3	69	-10	0	1 *2	0.5	-
97/10/ 6 3 O2(P)	22 6 22	2212 30	221836	.217	-9.5	9.3			T	I	1	1		1	
TENERIFE		2212 41		.358			-11	Т 80.	CCDW	41	-46	0	В	1.	-
CATANIA		$2213 \begin{array}{c} \pm 17 \\ 9 \\ \pm 45 \end{array}$		± .033 .031 ± .007			-39	T 91.	РМ	18	-57	0	2 V	0.1	42.
97/10/ 7 4 O1(P)	1934 6	1935 43	193720	.028	-3.9	3.7		1	I	1	1	1	1	1	
PARIS		1937 6		.211			-83	L 38.	PM2	23	-23	0	3 V	0.3	-
NAUCHNY		1935 18 ± 35		.464 ± .338			25	T 125.	PM5	22	-44	0	3 V	-	28.
97/10/16 2 O3(P)	1733 46	1736 23	1739 1	.208	-7.6	2.0		1	1	1	1	1		1	
TORINO		1736 33 ±15		.232 ±.032			-10	T 15.	CCD2	25	-11	0	1	1.5	-
97/10/18 1 O2(P)	1820 40	1822 22	1824 4	.024	-4.1	5.7			T	I	1	1		1	
UCCLE		1823 12 ± 599		.012 ± .091			75	T 85.	CCD8	21	-16	0	2 *1	0.06	-
97/10/20 3 O1(P)	4 43 24	4 45 53	4 4821	.138	-5.6	3.6		1		1			T		n
TOPEKA		4 47 2 ± 58		.004 ± .004			69	L 38.	CCD12	17	-56	0	2	-	-
97/10/23 2 O3(P)	2040 18	2042 58	204539	.219	-8.0	2.4						1			r
TENERIFE		2043 33 ± 28		.083 ± .027			-35	T 80.	CCDW	42	-30	0	В	1.	-
97/10/24 4 O3(P)	9 58 32	10 3 7	10 7 41	.445	-10.7	4.8		1		1	1	T	1	1	r
FUNAHO		10 3 19 ± 4		.707 ±.033			-12	T 28.	PM3	37	-22	0	2 V	0.2	-
97/11/ 3 3 O1(P)	1024 20	1027 29	103040	.190	-7.3	4.8				I	1	1		1	r
FUNAHO		1027 37		.272			-8	T 28.	PM3	35	-29	0	2 V	0.2	-
OKAYAMA		$1027 38 \\ \pm 5$		± .023 .274 ± .013			-9	Т 35.	PM3	35	-29	0	2 V	1.	40.
97/11/ 9	1		I			I –	1								_

Dates Phenomena	Begins hms	Maxi. hm s	Ends hms	Magn. drop	Ph. (s)	Dist. (Rj)	C-O (s)	Ap. (cm)	Rec.	El. Jup.	El. Sun	Cd.	Filt.	T. int.	Dia. (")
Locations (1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(°) (11)	(°) (12)	(13)	(14)	(s) (15)	(16)
4 O2(P)	1639 24	1649 27	165949	.139	-24.9	9.1					1			1	
BOSKOOP		1650 58 ± 112		.489 ± .185			-91	Т 30.	CCDVX	20	-8	0	-	0.04	-
97/11/11 3 O2(T)	1533 37	1538 11	154244	.259	-7.3	8.3									
KAVALUR		1538 29 ± 9		.675 ± .045			-18	T 102.	CCDC	34	-49	0	1 *3	-	-
97/11/11 3 E1(p)	1541 53	1547 53	155348	.181	9.7	5.6									
KAVALUR		1548 7 ±11		.198 ± .017			-14	T 102.	CCDC	32	-51	0	2 *3	-	-
97/11/17 3 O1(P)	1642 40	1647 27	165218	.278	-10.4	5.7									
CATANIA		$\begin{array}{rrr}1647 & 43\\ \pm 10\end{array}$.038 ± .003			-16	T 91.	РМ	35	-12	0	2 V	0.1	42.
97/11/18 3 O2(P)	19 4 57	1998	191319	.259	-6.8	8.0		r			r		-	n	
CATANIA		19 9 25		.045			-17	T 91.	РМ	22	-40	0	2 V	0.1	21.
CHATEAUGIRON		199 28 + 45		± .010 .443			-20	T 21.	CCD10	21	-27	0	3	1.2	-
OCA		19 9 32		.399			-24	T 150.	PM7	21	-33	0	2 B	0.2	-
OCA		19 9 42		.535			-34	Т 150.	PM7	21	-33	0	2 R	0.2	-
OCA		19 9 32 ± 24		.451 ± .111			-24	T 150.	PM7	21	-33	0	2 V	0.2	-
97/11/18 3 E1(p)	1915 22	1917 46	192010	.007	3.9			-			-	-		-	
CATANIA		1918 39 ± 141		.002 ± .008			-54	T 91.	РМ	21	-42	0	2 V	0.1	21.
97/11/24 3 O1(P)	2025 2	2032 5	203920	.312	-15.4	5.9									
TENERIFE		2032 17		1.022			-13	Т 150.	PMIR	32	-31	0	K	4.	20.
TENERIFE		$ \begin{array}{r} \pm 2 \\ 2032 \\ \pm 8 \end{array} $		± .009 .473 ± .022			-22	T 80.	CCDW	32	-31	0	В	1.	-
97/11/25 3 O1(P)	1834 39	1839 19	1843 55	.106	-8.9	5.8				i					
UCCLE		1839 39		.184			-19	Т 85.	CCD8	17	-27	0	2	0.06	-
CATANIA				± .135 .028 ± .012			23	T 91.	РМ	23	-35	0	2 V	0.1	21.

J.-E. Arlot et al.: The PHEMU97 Campaign, Online Material p 13

Fig. 1. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

Fig. 2. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

Fig. 3. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

Fig. 4. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

Fig. 5. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

Fig. 6. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

J.-E. Arlot et al.: The PHEMU97 Campaign, Online Material p 15

Fig. 7. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

Fig. 8. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

Fig. 9. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

J.-E. Arlot et al.: The PHEMU97 Campaign, Online Material p 16

Fig. 10. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

Fig. 11. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

Fig. 12. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

J.-E. Arlot et al.: The PHEMU97 Campaign, Online Material p 17

Fig. 13. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

Fig. 14. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

Fig. 15. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

J.-E. Arlot et al.: The PHEMU97 Campaign, Online Material p 18

Fig. 16. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

Fig. 17. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

Fig. 18. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

J.-E. Arlot et al.: The PHEMU97 Campaign, Online Material p 19

Fig. 19. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

Fig. 20. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

Fig. 21. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

J.-E. Arlot et al.: The PHEMU97 Campaign, Online Material p 20

Fig. 22. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

Fig. 23. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

Fig. 24. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

Fig. 25. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

Fig. 26. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

Fig. 27. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

J.-E. Arlot et al.: The PHEMU97 Campaign, Online Material p 22

Fig. 28. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

Fig. 29. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

Fig. 30. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

J.-E. Arlot et al.: The PHEMU97 Campaign, Online Material p 23

Fig. 31. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

Fig. 32. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.

Fig. 33. Lightcurves from the observations of the mutual events of the Galilean satellites in 1996–1997.