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Abstract
The philosophical literature on simulations has increased dramatically during the 
past 40 years. Many of its main topics are epistemological. For example, philosophers 
consider how the results of simulations help explain natural phenomena. This essay’s 
review treats mainly simulations in the social sciences. It considers the nature of 
simulations, the varieties of simulation, and uses of simulations for representation, 
prediction, explanation, and policy decisions. Being oriented toward philosophy of 
science, it compares simulations to models and experiments and considers whether 
simulations raise new methodological issues. The essay concludes that several features 
of simulations set them apart from models and experiments and make them novel 
scientific tools, whose powers and limits are not yet well understood.
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Introduction
Philosophy studies simulations for many reasons. Philosophy of science examines 
simulations because it investigates the methods of science, and the sciences use simula-
tions. Branches of philosophy besides philosophy of science also attend to simulations. In 
philosophy of mind, simulations ground a common account of a person’s understanding 
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of another’s mental activities. According to simulation theory, which Jérôme Dokic 
and Joëlle Proust (2002) describe, we represent the mental processes of other people 
by mentally simulating them. We know how other people will react to an event by 
imagining how we would react if we were in their shoes. For example, one may think, 
I would be mad if I were insulted as he was. In epistemology simulation also plays a 
role. Timothy Williamson (2007) holds that one may learn that a counterfactual condi-
tional is true by robustly obtaining its consequent when using imagination to simulate 
cases in which its antecedent is true. One may suppose that a match is struck and under 
that supposition robustly imagine that the match lights. As a result, one may conclude 
that if one had struck the match, it would have lighted.

The philosophy of simulation examines the conceptual foundations of simulation. 
It explains the nature of simulation and describes the philosophical implications of 
simulations. The epistemology of simulation is a branch of the philosophy of simula-
tion that studies simulations’ epistemic consequences. It explains how simulations 
yield hypotheses and conclusions about natural systems, for example.

This essay reviews the literature of the past 40 years on the philosophy and episte-
mology of simulation. It treats mainly simulations in science and, because of the authors’ 
background, mainly simulations in the social sciences; Gramelsberger (in press) and 
Ruphy (in press) describe simulations in the natural sciences. The second section sur-
veys conceptual issues concerning simulations. The third section discusses the main 
types of simulation used in the sciences. The fourth section examines epistemological 
issues. It considers, for example, whether particular types of simulation represent, predict, 
or explain a natural phenomenon and how they may support policy formulation.

The purpose of this article is twofold. First, it presents a philosophy of science 
perspective for the practitioner of simulations by characterizing simulation in a gen-
eral way and by investigating the conditions of its successful use. Second, it addresses 
a question of interest for the philosopher of science, namely, whether and to what extent 
simulation practices pose new problems for philosophy of science, or whether concep-
tual and epistemic problems they raise fall under the more general discussions of 
modeling and experimenting.

Basic Concepts
Some Definitions

This section focuses on one conceptual issue: What is a simulation? Before looking at 
some definitions, let us look at three examples of simulations. The first simulation 
implements an Ising model on a computer. The model consists of an array of sites each 
having the value !1 or "1, interaction energies between pairs of sites that depend on 
their values and a temperature of the entire array. The interaction energies and the 
temperature determine the probabilities of an arrangement of values at sites. This 
model yields simulations of critical point phenomena, such as the transition from a 
liquid to a vapor (Hughes, 1999). The second simulation employs a model constituting 
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a cellular automaton, again realized on a computer. It assumes that time is discreet and 
that cells in an array have properties at a time that depend on a cell’s and its neighbors’ 
properties at the previous time. In some applications, this model generates simulations 
of the evolution of a spiral galaxy. A disk of concentric rings of cells represents the 
galaxy, and certain events in a cell represent the births of stars (Hughes, 1999). The 
third simulation employs a hydraulic scale model of the San Francisco Bay. On an area 
measuring about 1.5 acres today, hydraulic pumps simulate the action of tidal and 
river flows in the bay, modeling tides, currents, and the salinity barrier where fresh and 
salt water meet (Huggins & Schultz, 1973).

Despite the diversity of these examples, they give some clues about the commonality 
that marks all simulations. First, to simulate is to imitate or replicate. That raises the 
question: What may be simulated? In a typical case, a computer program simulates a 
mathematical model of a natural system. This example of simulation involves abstract 
objects, but other examples involve concrete objects, as, for example, the Bay model. 
Second, simulating produces a simulation. What type of object is a simulation? Granting 
that simulations have runs, a simulation is an abstract pattern for producing concrete runs. 
In another usage, a simulation is a concrete run instantiating an abstract pattern for runs.

Simulations may be classified according to their characteristics. Some involve com-
puters, and others involve scale models. Some use a discrete dynamics, whereas others 
use a continuous dynamics. Simulations may also be classified according to their pur-
poses. Some simulate speech, chess play, flight, or weather. A scientist may simulate 
an experiment because a real experiment is impossible or expensive. Also, a scientist 
may use simulations to explore the consequences of theories. For example, a computer 
simulation may explore a theory of quantum gravity’s implications for space-time’s 
structure.

Philosophers of science have offered a number of definitions of simulations. By 
themselves, such propositions are not very informative. Yet each of them has impor-
tant implications for the questions addressed in this article, whether on the relation of 
simulations to experiments and models, on the typology of simulations, or the scien-
tific uses of simulations. We therefore present some of the prominent definitions here 
(without any claim to comprehensiveness), to see the spectrum of possible approaches 
and to have it as a later reference framework.

Paul Humphreys (1991, p. 500) defined simulation as “any computer-implemented 
method for exploring the properties of mathematical models where analytic methods 
are not available.” His emphasis is on the computational properties of simulations, in 
particular their contrast to analytic and deductive approaches, as well as their realiza-
tion on a computer. Excluded are cases where analytic solutions are available and also 
cases of material simulation, like the Bay model.

Stephan Hartmann (1996) offers a rather different definition, saying,

A simulation imitates one process by another process. In this definition the term 
“process” refers solely to some object or system whose state changes in time. If 
the simulation is run on a computer, it is called a computer simulation. (p. 83)
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Hartmann’s definition accommodates cases in which analytic methods are available. 
Furthermore, his definition rules out computer computations that investigate a model 
without imitating a process, for example, operations that merely assist calculations for 
which analytic methods are not available, such as calculations of the motion of three 
bodies in a Newtonian gravitational system. Last, the implementation on a computer is 
a peripheral aspect of simulations for Hartmann, while it operates much more cen-
trally for Humphreys.

Hughes (1999) objects that Hartmann’s definition incorrectly disqualifies simulations 
that use a model to present a system’s structure rather than its dynamics. Humphreys 
(2004) revises his working definition of a computer simulation in directions that 
Hartmann and Hughes suggest. He claims that a core simulation is a temporal process 
and that a full simulation represents a core simulation’s results using either a static or 
dynamic representation. In his words,

System S provides a core simulation of an object or process B just in case S is a 
concrete computational device that produces, via a temporal process, solutions 
to a computational model . . . that correctly represents B, either dynamically or 
statically. If in addition the computational model used by S correctly represents 
the structure of the real system R, then S provides a core simulation of system R 
with respect to B. (p. 110)

This account of a computer simulation separates the temporal features of its compu-
tational and representational components. The actual computing of the consequences 
of the underlying model is a temporal process that characterizes every simulation. 
However, this process may not be a representation of any dynamical development of the 
simulated system. For all intents and purposes, the simulated system may be static. It 
therefore is not a defining feature of core simulations. However, in important and 
typical computational simulations, the temporal development of the computation also 
represents the temporal development of the simulated system. In this case, Humphreys 
speaks of a full simulation.

Simulation, Models, and Theory
Simulations rest on models. Without the Ising model, the neighborhood model, or the 
bay model, the examples of the previous section could not have simulated anything. 
But while it is uncontroversial that models are important and possibly constitutive ele-
ments of simulations, it is less clear whether simulations themselves can be treated as 
models, as Simpson (in press) explains. Of course, in a colloquial sense, models and 
simulations are not properly delineated. For example, most economists think of 
Schelling’s (1971) checkerboard model as a model, while it is also considered to be 
one of the earliest examples of an agent-based simulation (Epstein & Axtell, 1996). 
However, in this section, we discuss whether the accounts of scientific models that 
philosophers of science have offered are sufficient to characterize simulations as well, 
or if not, where the interesting differences lie.
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Autonomy and mediation. The relation between models and theory is at least as prob-
lematic as that between models and simulations, but in contrast to the latter, the former 
has been the subject of an ongoing debate for the past 30 or so years. We skip these 
discussions (for an overview, see Frigg & Hartmann, 2006) and instead stress the 
independence of models. Models are independent from theory, both in their construc-
tion and their functioning (Morgan & Morrison, 1999). The construction of a simulation 
is not a matter of choosing the right theory (like from a vending machine, in Cartwright’s, 
1999, apt analogy) but requires ingenuity, sense of purpose, technical ability, and luck. 
Furthermore, models perform functions that they could not perform if they were a part 
of, or strongly dependent on, theories.

At the same time, models are also distinct from the real world. Although they may 
be objects in the world, models are often used to learn about real entities that are dif-
ferent from them. In short, many statements true of the model are false of the entity the 
model is “about”; yet this link between model and target is nevertheless maintained. 
Models are thus located somewhere in between theory and real world and are often 
ascribed a mediating role between the two.

It is this view of models as autonomous agents and “mediators” between theory and 
world that provides a useful account of simulation as well. Simulations in their construc-
tion are autonomous in the sense that they are not merely put together from theory and in 
that they function as investigative tools independently from theories. However, theories 
often are the starting point from which equations are plucked, to be adjusted and com-
bined in a simulation that goes beyond the scope of the theory; and simulations function 
as tools to improve, test, or develop theory and do not function purely on their own.

Simulations are also often used to learn about something in the world. Yet here, as 
with models more generally, the relation between simulation and target is problematic. 
A lot depends on how the “target” is construed. Some authors claim that the target is a 
prepared description of data. The data are obtained by observation of real-world 
objects or events. It is then “prepared” by redescribing it in more abstract ways, for 
example, by curve fitting. The relation between simulation and world is then seen as a 
relation between the mathematical structure of the simulation (typically, a trajectory 
though state space) and the mathematical structure of the prepared data redescription. 
Typical views of this relation posit that a model and its target have to be isomorphic 
(Suppes, 2002; van Fraassen, 1980) or partially isomorphic (Da Costa & French, 2003) 
to each other.

Another view insists that the target is not the data but the object or event itself (it 
may be more appropriate to speak of phenomena here, in the sense of Bogen & Woodward, 
1988). Because phenomena do not have an inherent mathematical structure, they 
cannot be linked to simulations via isomorphism. Instead, the properties that the simu-
lation exemplifies (in what may be an imaginary or fictional world) are compared to the 
properties instantiated in the real-world situation. The relation between simulation and 
phenomena is then explicated as a similarity relation (Giere, 1988, 2004; Teller, 2001). 
However, there are infinite ways something may be considered similar to something 
else (Goodman, 1972). To fill similarity comparisons with meaning, the relevant 
respects and degrees of similarity must be specified. The specification of such respects 
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and degrees depends on the problem at hand and the larger scientific context and cannot 
be made on the basis of purely philosophical considerations (Teller, 2001).

Yet another view claims that the typical target of a model or simulation is not a 
complete real-world situation but rather a composite part of it. Typical examples of 
such composite parts are tendencies (Mill, 1843), capacities (Cartwright, 1989), or 
causal factors (Mäki, 1994). Models and simulations then relate to the world by isolat-
ing the operation of some such factor from the complex interaction of factors in the 
real world. Thus, while many parts of a simulation are not similar to the real world in 
any way, the factors operating in isolation in the simulation are claimed to be the same 
as the ones operating in the real world.

Note that the above isolation account departs from the notion of a target system 
altogether. The relation model-real situation is replaced by the relation model-real 
factor. This relation would remain even if such a factor was not instantiated in the real 
world. Simulations may thus concern the realm of the possible, a much wider domain 
than the realm of the actual. Once the domain of model targets has been thus widened, 
one can argue that we learn from models about the possible, even if we do not learn 
anything about the actual world. Because many of our beliefs are about what is pos-
sible or necessary, such models can still yield genuine learning (Grüne-Yanoff, 2009b). 
Because such uses of models or simulations have a target and aim at learning, they 
must be distinguished from the minimalist claim that models are used for “conceptual 
exploration” (Hausman, 1992).

Differences between models and simulations. While this broad “models as autono-
mous mediators” view seems to fit simulations rather well, one should also be aware 
of important differences. One important difference is the temporal dimension of simu-
lations. Scientists often speak about a model “underlying” the simulation. The recent 
smallpox infection simulation of Eubank et al. (2004), for example, is based on a 
model of Portland, Oregon, consisting of approximately 181,000 locations, each asso-
ciated with a specific activity, like work, shopping, school, and maximal occupancies. 
Additionally, each model inhabitant is characterized by a list of the entrance and exit 
times into and from a location for all locations that person visited during the day. This 
huge database was developed by the traffic simulation tool TRANSIMS, which in turn 
is based on U.S. census data. When speaking about the model underlying the simula-
tion, people often have such a static model in mind. The simulation itself proceeds by 
introducing a hypothetical “shock” into the system (in this case, a number of infected 
inhabitants) and then observing how the infection spreads through the population. 
This dynamic aspect is often not included when people speak about the underlying 
model. This may be a sensible distinction, as the dynamic aspect of the simulation makes 
various diachronic stability assumptions that were not included in the static model 
(Grüne-Yanoff, in press-a). Of course, the dynamic aspects may be referred to as the 
“dynamic model,” which includes the “static model,” yet common practice in such 
cases seems to be that the “static model” is referred to as the “underlying model.”

A second difference lies in the methods by which models can be analyzed. The 
common way that mathematical models in the natural science or in economics are 
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analyzed is to find a solution to the set of equations that make up the model. For this 
purpose, calculus, trigonometry, and other mathematical techniques are employed. 
Being able to write down the solution this way makes one absolutely sure how the 
model will behave under any circumstance. This is called the analytic solution.

However, analytic solutions work only for simple models. For more complex models, 
the math becomes much too complicated. Instead, the model can be “solved” by simu-
lation. For, say, a differential equation that describes behavior over time, the numerical 
method starts with the initial values of the variables and then uses the equations to 
figure out the changes in these variables over a very brief time period. A computer 
must be used to perform the thousands of repetitive calculations involved. The result 
is a long list of numbers, not an equation. Appropriately presented, numerical simula-
tion is often considered a “solution” of the model.

Some proponents of simulation have argued that for every computation there is a 
corresponding logical deduction (Epstein, 1999); hence from a technical standpoint, 
deductive modeling is but a special case of simulative modeling. However, this claim 
neglects important epistemic and psychological differences. As Lehtinen and Kuorikoski 
(2007) point out, economists largely shun simulations for epistemic and understanding-
related reasons. They explain this observation by arguing that economists place a high 
value on the derivation of an analytical result, based on their belief that the cognitive 
process of solving a model constitutes the understanding of the model. In most simula-
tions, the computer is a necessary tool: Humans could not, even if they wanted to, perform 
the computations needed. The derivation of results in these simulations is outside of the 
reach of human agents. They leave the solution process, in the words of Paul Humphreys, 
“epistemically opaque.” This opaqueness makes economists shun simulation when they 
seek understanding from the analytic solution process itself. It also constitutes an impor-
tant difference between standard (analytically solvable) models and simulations.

To summarize, simulations are, like models, autonomous both from theories and 
from the real world. They differ from models mainly in their temporal expansion (and 
sometimes also in their representation of a temporal process) as well as in their epis-
temic opacity.

Simulations Versus Experiments
Another perspective on simulations links them to experiments (Dowling, 1999; Reiss, 
in press; Rohrlich, 1991). Because simulations are typically based on calculations that 
are intractable, the results of a simulation cannot be predicted at the time when the simu-
lation is constructed or manipulated. This allows seeing the simulation as an unpredictable 
and opaque entity, with which one can interact in an experimental manner. However, 
the legitimacy of a computer simulation still relies on the analytic understanding of at 
least the underlying mathematical equations, if not the computation process itself. 
Thus, the experimental approach to simulations consists in a strategic move to “black-
box” (Dowling, 1999, p. 265) the known program and to interact “experimentally” 
with the surface of the simulation.
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Whether this observation suffices to subsume simulations under experiments remains 
an open question. Most scientists agree that simulations have experimental moment but 
hasten to add a qualifier, for example, that simulations are “computer experiments.” 
Along these lines, many philosophers of science have pointed out that despite their 
experimental moment simulations differ from experiments in important ways.

The first argument for such a difference points to a perceived difference in the simi-
larity relations of experiments and simulations to their targets. Gilbert and Troitzsch 
(1999), for example, argue that in a real experiment one controls for the actual object of 
interest, while in a simulation one is experimenting with a model rather than the object 
itself. Following a thought of Herbert Simon (1969), Guala (2005) addresses a similar 
issue, arguing that in a real experiment the same material causes are at work as those in 
the target system, while in simulations, not the same material causes are at work, and the 
correspondence between the simulation and its target is only abstract and formal.

Parker (2009) contradicts these claims. She points out that the use of simulations in 
what she calls “computer simulation studies” involves intervention, just as laboratory 
experiments do. Computer simulation studies intervene on a material system, namely, 
the programmed computer. Such studies are thus material experiments in a straightfor-
ward sense.

The second argument for the difference between experiments and simulations 
points out the different epistemological challenges that experiments and models face. 
Morgan (2003, p. 231) argues that they differ in their “degree of materiality” and that 
this makes experiments epistemically privileged compared to simulations. One can argue 
for the external validity of laboratory experiments by pointing out that they share “the 
same stuff” with their targets. Simulations, however, only have a formal relation to 
their targets, which makes establishing their external validity that much harder. Note 
that this argument draws on the ontological difference identified above; yet Morgan 
stresses the epistemological implications of these differences and does not claim that 
simulations are otherwise fundamentally different from experiments.

Winsberg (2009) offers another version of this epistemological argument. Instead of 
drawing on the makeup of simulations, he argues that the justification for the claim that 
a simulation stands for a target rests on something completely different from a similar 
justification for experiments. The justification for a simulation rests on our trust in the 
background knowledge that supports the construction of the simulation, in particular, 
principles deemed reliable for model construction. The justification for experiments, in 
contrast, relies on a variety of factors, the most prominent maybe being that experimen-
tal object and target are of the same kind. Thus, Winsberg denies, pace Morgan, that 
experiments are epistemically privileged, but insists that the knowledge needed for a 
good simulation is different from the knowledge needed for a good experiment.

The Novelty Claim
Related to the above discussions is the question whether and to what extent simulation 
poses a novelty for philosophy of science. While it is obvious that simulation has 
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brought many innovations to science, it is more controversial whether simulation 
poses new problems for the philosophy of science. Schweber and Waechter (2000), for 
example, suggest that the widespread use of simulation in the sciences constitutes a 
“Hacking-type revolution.” By this they mean that modeling and simulation have achi-
eved a qualitatively new level of effectiveness, ubiquity, and authority. Consequently, 
new problems arise for philosophy of science. Rohrlich (1991) argues that computer sim-
ulations require a new and different methodology for the physical sciences. Humphreys 
(1991, p. 497) agrees that computer simulations require “a new conception of the rela-
tion between theoretical models and their application.” He advances similar arguments 
in his 2004 book, Extending Ourselves. Finally, Winsberg (2001, p. 447) claims that 
“computer simulations have a distinct epistemology.”

Against these novelty claims, others have argued that simulations are very similar 
to traditional tools of science and do not constitute a revolution in the principles of 
methodology (Stöckler, 2000). To understand these arguments better, it is helpful to 
analyze in which way simulations are supposed to pose new problems for the phi-
losophy of science. Frigg and Reiss (2009) present the following list of purportedly 
novel problems:

a. Metaphysical: Simulations create some kind of parallel world in which 
experiments can be conducted under more favorable conditions than in the 
“real world.”

b. Epistemic: Simulations demand a new epistemology.
c. Semantic: Simulations demand a new analysis of how models/theories relate 

to concrete phenomena.
d. Methodological: Simulating is a sui generis activity that lies “in between” 

theorizing and experimentation.

Against (a) Frigg and Reiss (2009) argue that the parallel world claim already has 
been made with respect to standard deductive models (see also Sugden, 2000). Against 
(b) they argue that the issues with simulation are part of the larger problem, from where 
(complex) models get their epistemic credentials. Against (c) they argue, first, that 
simulations do not clash with either the semantic or the syntactic view and, second, that 
the dynamic aspect of simulation is not new. Against (d) they argue, first, that simul-
ation does not have an “in between status” with respect to its reliability, but that, second, 
other interpretations of simulations being “in between”—like being a hybrid or a 
mediator—are not new and have been claimed for models already.

Against this skeptical position, Humphreys (2009) argues for the truth of at least 
(b) and (c). He argues that the epistemic opacity of simulations and their dynamic 
aspects are new features that are not sufficiently captured by existing accounts of phi-
losophy of science. In addition, he claims that the application process of the simulation 
to the real world requires a new conceptual framework and that the limitations of what 
is computable and hence simulatable in a given time have important implications for 
the philosophical debate as well.
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In this debate, a lot obviously depends on how simulation is defined (see Section 
“Some Definitions”). Frigg and Reiss (2009) prefer a more abstract account of simula-
tion that is not strongly differentiated from models, while Humphreys (2009) prefers 
an account that is clearly embedded in the programming and computer implementa-
tion of simulation. We feel that both positions have their merits. The skeptical position 
helps one not get too distracted when trying to explain how modern science works: It 
avoids the abandonment of central but enduring issues for novel but possibly super-
ficial problems of current practice. The novelty position takes the actual practices of 
scientists very seriously, as have previous philosophers of science (e.g., Kuhn or 
Hacking). We believe that the debate between these two factions will not be resolved 
soon. Many of the problems of more traditional practices of science, which the skep-
tics claim can account for simulation as well, have not been given a satisfactory 
solution so far. Whether there are special problems of simulation remaining may only 
come into high relief once these more general issues have been adequately addressed, 
and the relevance of their answers for simulations explored (see Table 1).

Types of Simulations
Simulations come in many different guises and can therefore be categorized in 
many different ways. We will discuss two distinctions here, which will help illustrate 
the different uses of simulations. The first distinction concerns the difference between 
computations and simulations. The second concerns the difference between equation-
based and agent-based simulations.

Computation Versus Simulation
Mathematicians and scientists often compute the properties of models or mathemati-
cal objects with the help of so-called Monte Carlo simulations. For example, the value 
of # can be approximated using this method. Draw a square of unit area on the ground, 
then inscribe a circle within it. Now, scatter some small objects (e.g., grains of rice or 
sand) throughout the square. If the objects are scattered uniformly, then the proportion 

Issue

Definitions of simulations
Comparison of simulations, 

models, and theories 

Comparison of simulations and 
experiments

Novel features of simulations

Key Ideas

Computation, imitation, representation
Analytic solvability, autonomy, epistemic opacity, isolation 

of causal factors, isomorphism, mediation, temporal 
expansion

Computer experiments, degree of materiality, epistemic 
privilege

Epistemology, metaphysics, methodology, semantics

Table 1. Conceptual Issues
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of objects within the circle versus objects within the square should be approximately 
#/4, which is the ratio of the circle’s area to the square’s area. Thus, if we count the 
number of objects in the circle, multiply by four, and divide by the total number of 
objects in the square (including those in the circle), we get an approximation to #.

Monte Carlo simulations, as this example shows, are methods of calculation. The 
approach starts with a deterministic system (in this case, the inscribed circle). Instead 
of observing or calculating properties of this system directly, the Monte Carlo method 
constructs a probabilistic analogy of the deterministic system (in the above case, dis-
tribution of objects throughout the square). The stochastic properties of this construct 
are then used to compute an approximation of the relevant property of the deterministic 
system. Thus, the Monte Carlo approach does not have a mimetic purpose: It imitates 
the deterministic system not in order to serve as a surrogate that is investigated in its 
stead but only in order to offer an alternative computation of the deterministic system’s 
properties. In other words, the probabilistic analogy does not serve as a representation 
of the deterministic system.

This contrasts with other uses of simulation discussed so far. Schelling’s (1971) 
checkerboard simulation and the San Francisco Bay simulation clearly are simulations 
of something. Furthermore, they are used to learn something about the world, and they 
are used as stand-ins or surrogates for whatever is of interest for the simulationist. It is 
this lack of  “mimetic characteristic” (Hughes, 1999, p. 130), the purpose of “imitating 
another process” (Hartmann, 1996, p. 83), that distinguishes computations like the 
Monte Carlo approach from imitating simulations. Other authors have added to this an 
epistemic distinction between mere calculation and computation for theory articulation 
and simulations as quasi-experimental (Lehtinen & Kuorikoski, 2007; Winsberg, 2003).

Within the set of simulations for imitation purposes, however, it is important to 
distinguish at least two further categories. On one hand, simulations may imitate a 
system by using equations that describe the behavior of the whole system or of aggre-
gatable subsystems. On the other hand, simulations may imitate a system by generating 
its dynamics through the imitation of its microconstituents. We discuss these two cat-
egories in turn.

Equation-Based Simulations
Equation-based simulations describe the dynamics of a target system with the help of 
equations that capture the deterministic features of the whole system. Typical exam-
ples of such equation-based simulations are system dynamics simulations, which use 
a set of difference or differential equations that derive the future state of the target 
system from its present state. System dynamics simulations are restricted to the macro 
level: They model the target system as an undifferentiated whole. The target system’s 
properties are then described with a set of attributes in the form of “level” and “rate” 
variables representing the state of the whole system and its dynamics.

A good example of a model using difference or differential equations is the replica-
tor dynamics model. The replicator dynamics govern strategies for interactive behavior 
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transmitted from generation to generation in a population. The dynamics rest on four 
simplifying assumptions: (a) the population is infinite, (b) an individual in the popula-
tion has the same probability of interacting with any other member of the population, 
(c) strategies breed true, and (d) reproduction is asexual. The replicator dynamics are 
applicable to both genetically and culturally evolved behavior.

Peter Taylor and Leo Jonker (1978) were the first theorists to formulate the equation 
for the replicator dynamics. Peter Schuster and Karl Sigmund (1983) called it the rep-
licator equation and the pattern of change it describes the replicator dynamics. Larry 
Samuelson (1997) reviews the history and motivation of the replicator dynamics.

The following presentation of the replicator equation, drawn from Brian Skyrms 
(1996), begins with a population that evolves in steps from one generation to the next. 
The proportion of individuals following a strategy in one generation, and the strate-
gy’s consequences for their fitness, yields the proportion of individuals following the 
strategy in the next generation. To make this precise, let U(A) be the average fitness of 
a strategy A, and let U be the average fitness of all strategies. Then the proportion of 
the population using A in the next generation equals the proportion of the population 
using A in the current generation times the ratio U(A)/U. That is, if p(A) is the propor-
tion using strategy A in the current generation and p$(A) is the proportion using A in 
the next generation, then p$(A) = p(A)U(A)/U.

If A has greater than average fitness, its proportion increases. A little algebra yields 
the following difference equation specifying the change from one generation to the 
next in the proportion of the population using strategy A:

 p$(A) " p(A) = p(A)[U(A) " U]/U.

Next, suppose that evolution is continuous with respect to time. Then the popu-
lation evolves according to the following differential equation:

 dp(A)/dt = p(A)[U(A) " U]/U.

The equation gives the rate of change in the proportion of the population using strategy 
A. Given that the average fitness of the population is positive, the following simpler 
differential equation describes the structural features of the population’s evolution:

 dp(A)/dt = p(A)[U(A) " U].

This equation characterizes the replicator dynamics. Only in rare cases can a diffe-
rential equation be solved explicitly to yield an expression for dp/dt as a function of 
p0 and t. Instead, an analytical treatment commonly only allows identifying the 
stability conditions and stationary states of a differential equation. Different notions 
and degrees of stability and stationarity are distinguished, the details of which need 
not interest here. What is of interest, however, is that such an analytic treatment does 
not give a sufficient characterization of the replicator dynamics. For example, it does 
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not tell us anything about the paths that the system takes through state space and the 
speed with which it converges (if at all) to the stable points. For these characterizations, 
the equations have to be numerically solved (i.e., simulated), and many solution runs 
compared with each other. This yields a state-space diagram, in which each line 
describes the path of the system during one simulation run.

How may equation-based simulations represent natural phenomena such as the evo-
lution of cooperation? A simulation replicates structural features of a natural system to 
represent phenomena occurring in the system. Simulations may have various represen-
tational goals. For instance, a simulation may represent the occurrence of a phenomenon 
such as hurricanes. Another simulation may represent not only the occurrence of the 
phenomenon but also the process that produces the phenomenon. For example, a sim-
ulation may have an internal clock. Time in the simulation may be isomorphic to time 
in the natural system. A second in the simulation may represent a year in the system. 
In the latter case, a simulation, if successful, has the same dynamics as the natural 
system it targets. It may be partially successful if it approximates or partially replicates 
those dynamics. It exemplifies those structural features, as a swatch of fabric exempli-
fies properties of the fabric in a suit. Simulations represent by exemplifying structural 
features of natural systems. If a simulation and a natural system share structural prop-
erties, results in the simulation also represent phenomena in the natural system that 
depend on those structural properties.

Agent-Based Simulations
Agent-based simulations (ABS), in contrast to equation-based simulations, lack an 
overall description of the system’s macro properties. Instead of simulating the sys-
tem’s dynamics by numerically calculating the equations that describe the system’s 
dynamics, ABS generate the system’s dynamics by calculating the dynamics of the 
system’s constituent parts and aggregating these dynamics into the system dynamics.

Early versions of this approach are exemplified by so-called cellular automata 
(CA). CA consist of cells in a regular grid with one to three dimensions. Every cell has 
a number of states, which change in discreet time. The states of a cell at a given time 
period are determined by the states of that same cell and of neighboring cells at earlier 
times. The specific kind of these influences is laid down in behavioral rules, which are 
identical for all cells. A famous example of a CA is Conway’s Game of Life (Berlekamp, 
Conway & Guy, 1982), in which each cell is either “dead” or “alive.” “Dead” cells with 
exactly three neighbors become “alive,” and “alive” cells with fewer than two or more 
than three neighbors die. Conway’s Game of Life has attracted much interest because 
of the surprising ways in which patterns can evolve. It illustrates the way that complex 
patterns can emerge from the implementation of very simple rules.

When the internal processing abilities of automata are designed in higher complex-
ity, one speaks about “agents,” not CA. Agents share with CA their autonomy from others’ 
direct control, their ability to interact with others, react to environmental changes and 
actively shape the environment for themselves and others. In contrast to CA, agents 
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are not fixed on a grid, can change their neighbors, may have multiple relations with 
different agents, and can change on multiple levels.

A typical example of an agent-based simulation is the program SUGARSCAPE 
(Epstein & Axtell, 1996). It simulates the behavior of artificial people (agents) located on 
a landscape of a generalized resource (sugar). Agents are born onto the SUGARSCAPE 
with vision, a metabolism, a speed, and other genetic attributes. Their movement is 
governed by a simple local rule: “Look around as far as you can; find the spot with the 
most sugar; go there and eat the sugar.” Every time an agent moves, it burns sugar at 
an amount equal to its metabolic rate. Agents die if and when they burn up all their 
sugar. A remarkable range of social phenomena emerge. For example, when seasons 
are introduced, migration and hibernation can be observed. Agents are accumulating 
sugar at all times, so there is always a distribution of wealth. SUGARSCAPE also 
allows the simulation of a “proto-history.” It starts with agents scattered about a twin-
peaked landscape; over time, there is self-organization into spatially segregated and 
culturally distinct “tribes” centered on the peaks of the SUGARSCAPE. Population 
growth forces each tribe to disperse into the sugar lowlands between the mountains. 
There, the two tribes interact, engaging in combat and competing for cultural domi-
nance, to produce complex social histories with violent expansionist phases, peaceful 
periods, and so on. The proto-history combines a number of ingredients, each of which 
generates insights of its own. One of these ingredients is sexual reproduction. In some 
runs, the population becomes thin, birth rates fall, and the population can crash. Alter-
natively, the agents may overpopulate their environment, driving it into ecological 
collapse. Finally, when Epstein and Axtell introduce a second resource (spice) to the 
SUGARSCAPE and allow the agents to trade, an economic market emerges. The 
introduction of pollution resulting from resource mining permits the study of eco-
nomic markets in the presence of environmental factors.

The crucial aspect in these micro-level generative approaches is that the dynamics 
of the system’s constituent elements affect each other. This distinguishes CA and ABS 
from so-called microsimulations, in which the effect of aggregate changes (e.g., taxa-
tion changes) on aggregate results (e.g., tax revenue) is predicted by calculating the 
effect of the aggregate change on subgroups or individuals and then aggregating the 
individual results. No interaction between groups or individuals is taken into account 
here; rather, the effect on each group is determined by equations pertaining to this 
group. Thus, despite its focus on the micro level, and the subsequent constitution of 
the macro result as an aggregate of the micro level, microsimulations belong in the 
equation-based category. What sets CA and ABS apart is that they model interactions 
between autonomous cells or agents, thus including a level of complexity not existent 
in equation-based models.

The complexity of ABS also makes them special with respect to their comprehen-
sibility. As argued in Section “The Novelty Claim,” traditional formal modeling puts 
great emphasis on understanding the analytic process. However, in ABS, the emergent 
macro-level properties only appear as a result of running the simulation. These emer-
gent patterns in computer simulations form the basis for what Mark Bedau (1997) has 
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characterized as “weak emergence.” Traditional modeling techniques will not gener-
ate them from the agent base. They can only be arrived at by simulation. The details 
of the process between the model and its output are often inaccessible to human scien-
tists. This constitutes a level of “epistemic opacity” in ABS that is unprecedented in 
previous modeling or simulation practices (Humphreys, 2009). For more on agent-
based modeling, see Grüne-Yanoff (in press-b) (see Table 2).

The Scientific Uses of Simulations
The sciences use simulations for multiple purposes. In this section, we first explicate 
how scientists pursue their aims with the help of simulations and, second, point out the 
conditions necessary to justifiably pursue these aims with simulations.

Proof
In 1611, Kepler described the stacking of equal-sized spheres into the familiar arrange-
ment we see for oranges in the grocery store. He asserted that this packing is the tightest 
possible. This assertion is now known as the Kepler conjecture and has persisted for 
centuries without rigorous proof. In 1998, Thomas Hales offered a five-step program 
resulting in a proof. This project involved extensive computation, using an interval 
arithmetic package, a graph generator, and Mathematica. The journal Annals of Math-
ematics decided to publish Hales’s article, but with a cautionary note. As they explain, 
although a team of referees is “99% certain” that the computer-assisted proof is sound, 
they have not been able to verify every detail (Hales, 2005; see also Szpiro, 2003).

This case seems to reflect a general suspicion of computer-assisted mathematics 
and automated theorem proving. One possible reason for this suspicion lies in the 
claim that mathematicians—maybe in a somewhat similar way as economists, as dis-
cussed in Section “The Novelty Claim”—seek understanding through the practice of 
constructing an analytic proof (Thurston, 1994). The development of computer-
assisted proving techniques robs mathematicians of “deductive control” over their 
proofs and introduces “epistemic opacity” into the proving process. Another possible 
reason for this suspicion lies in the fact, stressed by Humphreys (2004) and Parker 
(2009), among others, that a simulation or computation crucially involves running a 
program on a machine, which brings with it a host of possible hardware problems and 
software bugs.

Table 2. Types of Simulation

Type

Computational simulations
Imitating simulations

Variety

Monte Carlo simulations
Equation based (including microsimulations) and agent based 

(including cellular automata)



Grüne-Yanoff and Weirich 35

Prediction

A prediction is a claim that a particular event will occur (with certain probability) in 
the future. A simulation may predict a phenomenon without explaining it. For exam-
ple, a model bridge may show that a design will work without explaining why it will 
work. A model car’s performance in a wind tunnel simulation may indicate the car’s 
wind resistance without explaining its wind resistance. However, such cases might be 
restricted to material simulations: One may be able to successfully exploit the material 
causes operating in such a simulation for predictive purposes, without being able to 
identify these causes, and hence without being able to explain why the system operates 
in the way it does. In nonmaterial simulations, in particular, in computer simulations, 
one has to explicitly construct the principles governing the simulation. Claiming that 
such a simulation could predict without explaining would then raise the “no miracles” 
argument: Predictive success would be miraculous if the simulation and its underlying 
principles did not identify the actual causes at work in the real system. Full structural 
validity of the model—that is, the model not only reproduces the observed system 
behavior but truly reflects the way in which the real system operates to produce this 
behavior—vouches for both predictive and explanatory success.

Crash simulations. Yet there are different ways in which simulations are based on 
“underlying principles.” The simplest is the case in which the simulation is based on 
natural laws. Take, for example, vehicle crash simulations. A typical “first principle” 
crash simulation takes as input the structural geometry of a vehicle and the material 
properties of its components. The vehicle body structure is analyzed using spatial 
discretization: The continuous movement of the body in real time is broken up into 
smaller changes in position over small, discrete time steps. The equations of motion 
hold at all times during a crash simulation. The simulation solves the system of equa-
tions for acceleration, velocities, and the displacements of nodes at each discrete point 
in time and thus generates the deformation of the vehicle body (see Haug, 1981).

Such “first principle” simulations were built to predict effects of changes in vehicle 
composition on the vehicle’s crash safety. They analyze a vehicle “system” into its 
components and calculate the behavior of these components according to kinematic 
laws (partly expressed in the equations of motion). Because the computational genera-
tion of the behavior strictly adheres to the causal laws that govern the behavior in 
reality, the generation also causally explains it.

The builders of crash simulations are in the lucky position that the generated events 
match the findings of empirical crash tests very precisely, while their models are fully 
based on laws of nature. This is often not the case. One reason may be the absence of 
true generalizable statements about the domain of interest. Take, for example, Coops 
and Catling’s (2002) ecological simulation. Their aim is to predict the spatial distribu-
tion and relative abundance of mammal species across an area in New South Wales, 
Australia. They proceed in the following steps. First, they construct a detailed map of 
the area indicating for each pixel the “habitat complexity score” (HCS), which mea-
sures the structural complexity and biomass of forested vegetation. This map is estimated 
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from the relationship between HCS observed from selected plots and aerial photo-
graphs taken of the whole area. Second, they estimate a frequency distribution of HCS 
for each selected plot. From this they predict the HCS of each pixel at any time period. 
This prediction in effect constitutes a simulation of the HCS dynamics for the whole 
area. Finally, they estimate a linear regression model that links HCS to spatial distribu-
tion and relative abundance of the relevant mammal species. Based on this model, 
they simulate the dynamics of the mammal population throughout the area.

Clearly, Coops and Catling (2002) cannot base their simulation on natural laws, 
because there aren’t any for the domain of phenomena they are interested in. Instead, 
their research article has to fulfill the double task of estimating general principles from 
empirical data and then running the simulation on these principles. Understanding this 
also makes clear that the main predictive work lies in the statistical operations, that is, 
the estimations of the HCS frequency distributions and the linear regression model. 
The simulation of the HCS dynamics is a result of the HCS frequency estimations. It 
then helps provide the data for the linear regression model; but it can only do so (and 
one would accept the data it provides as evidence only) if the HCS frequency distribu-
tions were estimated correctly. The predictive power of the simulation thus clearly 
depends on the principles used in it, and the validity of these principles seems not very 
secure in this case.

Climate simulations. Another reason for failing to incorporate independently vali-
dated principles is that many simulations do not successfully match the target events 
or history when relying solely on laws, even if those laws are available. Take, for 
example, the following case from climate research (described in Küppers & Lehnhard, 
2005). In 1955, Norman Phillips succeeded in reproducing the patterns of wind and 
pressure of the entire atmosphere in a computer model. Phillips used only six basic 
equations in his model. They express well-accepted laws of hydrodynamics, which are 
generally conceived of as the physical basis of climatology.

Phillips’s model was a great success, because it imitated the actually observed 
meteorological flow patterns well. But the model also exhibited an important failure: 
The dynamics of the atmosphere were stable only for a few weeks. After about 4 weeks, 
the internal energy blew up, and the system “exploded”—the stable flow patterns dis-
solved into chaos.

Subsequent research searched for adequate smoothing procedures to cancel out the 
errors before they could blow up. This strategy was oriented at the ideal of modeling 
the true process by deriving the model from the relevant laws in the correct fashion. 
Instabilities were seen as resulting from errors—inaccurate deviations of the discrete 
model from the true solution of the continuous system.

The decisive breakthrough, however, was achieved through the very different 
approach of Akio Arakawa. It involved giving up on modeling the true process and 
instead focused on imitating the dynamics. To guarantee the stability of the simulation 
procedure, Arakawa introduced further assumptions, partly contradicting experience 
and physical theory. For example, he assumed that the kinetic energy in the atmo-
sphere would be preserved. This is definitely not the case in reality, where part of this 
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energy is transformed into heat by friction. Moreover, dissipation is presumably an 
important factor for the stability of the real atmosphere. So, in assuming the preserva-
tion of kinetic energy, Arakawa “artificially” limited the blow-up of instabilities. This 
assumption was not derived from the theoretical basis and was justified only by the 
results of simulation runs that matched the actually observed meteorological flow pat-
terns over a much longer period than Phillips’s model.

This last example requires us to be more precise when talking about the validity of 
a model. Structural validity we encountered before: It requires that the model both 
reproduces the observed system behavior and also truly reflects the way in which the 
real system operates to produce this behavior. But Phillips’s model obviously violates 
structural validity and still seems to be successful at predicting global weather. In that 
case, we must speak of predictive validity, in which the simulation matches data that 
were not used in its construction. (One may add that Coops and Catling’s, 2002, simu-
lation may not be predictively but replicatively valid: It matches data already acquired 
from the real system.) By distinguishing structural and predictive validity, we admit 
that some simulations may predict but do not explain.

Explanation
Agent-based simulations are often claimed to be explanatory (Axtell et al., 2002; 
Cederman, 2005; Dean et al., 2000; Epstein, 1999; Sawyer, 2004; Tesfatsion, 2007). 
Often these claims are ambiguous about how agent-based simulations are explanatory 
and what they explain. In the following, we discuss three possible accounts of what 
kind of explanations ABS may provide.

Full explanations. Some simulations are claimed to explain concrete phenomena. 
Such singular explanations purport to explain why a certain fact occurred at a certain 
time in a certain way, either by providing its causal history or by identifying the causal 
relations that produced it. For example, Dean et al. (2000) conduct a simulation that 
aims to explain the historical population dynamics of a particular people during a 
particular time period.

Dean et al. (2000) examine the Anasazi community that lived in Long House 
Valley, Arizona, from 800 AD to 1350 AD. They construct an agent-based model of 
the community’s population and its distribution into settlements. Their model uses 
potential maize yields in various parts of the valley to generate the target phenomena, 
namely, archaeological data about population and its distribution. Information about 
crop potential comes from soil analysis and from evidence about climate history that 
tree rings provide. The model specifies potential maize production for each hectare in 
the valley under various climate conditions. The simulation it generates shows how 
population size and distribution respond to changes in potential maize production as 
environmental factors change.

In the model, an agent is a household. It is a group of five individuals varying in age 
and other characteristics. If a household’s maize production falls below the subsis-
tence level for the household, the household cultivates a new, unoccupied plot and 
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may move to a new settlement to reside near its new plot. The simulation generates 
settlement locations and sizes annually using potential maize production for plots of 
land. The simulation matches patterns of growth and decline in the number of house-
holds from 800 BCE to 1300 AD but overreports the total number of households.

After many years of drought, the Anasazi abandoned the valley around 1300 AD. 
However, the simulation shows a small population persisting in the valley from 1300 
AD to 1350 AD, and robustly shows this as the simulation’s parameters vary. Although 
the simulation matches data during most of the period studied, it does not match data 
at the period’s end. Dean et al. (2000) conclude that some factor outside the simulation 
influenced population and its distribution at that time. They conjecture that some 
households left the valley because of social ties to other households leaving the valley 
and not because potential maize production was not enough to sustain them.

Thus, by the authors’ own account, the simulation fails as a full explanation of the 
particular Anasazi history. It omits, besides social pull, social institutions and property 
rights. It may nonetheless yield a partial explanation that treats some explanatory fac-
tors, such as maize production, and controls for other explanatory factors, such as social 
pull. It may control for an explanatory factor by, say, treating a period during which 
that factor does not operate. Elaboration of the simulation may add explanatory factors, 
such as social pull, to extend the simulation’s range and make its explanation more 
thorough. The next section further explores simulations’ power as partial explanations 
of particular phenomena.

However, as Grüne-Yanoff (2009a) argues, it is unlikely that this history could ever 
be explained via simulation, as it is unlikely that the underlying model could ever be 
sufficiently validated. Instead of providing full or partial explanations of particulars, 
simulation may only provide possible explanations. Such possible explanations, which 
will be discussed in Section “Robustness,” may help in the construction of actual 
explanations but do not constitute actual explanations themselves.

Partial explanation. A model attempting to explain a phenomenon generally involves 
idealizations. Its idealizations control for explanatory factors. To simplify, a model of 
motion may put aside friction, for instance. Given its idealizations, a model cannot 
attain a complete explanation of the phenomenon, but it may attain a partial explana-
tion of the phenomenon. A partial explanation describes the operation of some factors 
behind a phenomenon’s occurrence. This requires the model to successfully isolate 
these explanatory factors (Mäki, 1994). Despite putting aside some explanatory fac-
tors, a model may partially explain a phenomenon using the explanatory factors it treats 
(Weirich, 2008).

Suppose that force, mass, and acceleration are related according to the equation 
F = ma. A full explanation of force mentions mass and acceleration. For objects with 
the same mass, however, a partial explanation of force may mention just acceleration. 
The explanation is partial because it mentions just one explanatory factor and because 
it invokes a restricted law. An idealization imposes a restriction to control for some 
explanatory factors. A law using the idealization covers the operation of the remaining 
factors. Partial explanations typically treat causal factors responsible for a phenomenon, 
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but also may treat factors constitutive of a phenomenon. A partial explanation is typically 
for a recurring phenomenon but also may be for a single instance of the phenomenon.

To illustrate assessment of simulations as partial explanations, take Brian Skyrms’s 
(1990) simulations of deliberations in simultaneous-move, noncooperative games of 
strategy. His simulations generate a Nash equilibrium in such games. Do the simula-
tions explain the emergence of equilibrium?

The moves in a simultaneous-move game are decisions that occur instantaneously 
and so do not constitute a process. Although the moves do not constitute a process, the 
deliberations of agents do. A simulation may replicate their deliberations. Skyrms’s 
simulations derive a Nash equilibrium’s realization from principles of deliberation for 
agents with bounded rationality.

As Skyrms envisages agents, they deliberate in stages instead of all at once. They 
use the results of one stage of deliberation as additional information for the next stage. 
Because agents in games of strategy take account of each other’s deliberations, the 
results of an agent’s deliberation in one stage provide evidence about other agents’ 
strategies. The agent can then use this evidence in his deliberation’s next stage.

An agent begins deliberation with an initial assignment of probabilities to his strat-
egies and those of other agents. Using the probabilities for others’ strategies, he finds 
a strategy for himself that maximizes expected utility. Typically, he then increases that 
strategy’s probability. He does not increase its probability all the way to one because 
he is aware that his probability assignments are tentative. They do not accommodate 
all relevant considerations, so he expects revisions as his deliberations proceed. Next, 
the agent revises his probability assignment for other agents’ strategies in light of his 
new probability assignment for his own strategies. Then using the revised probabili-
ties, he recalculates the expected utilities of his own strategies and readjusts their 
probabilities. The process of revision uses each stage of deliberation as input for a rule 
of bounded rationality that brings the agent to the next stage. This process continues 
until the probabilities of the agent’s strategies do not lead to any further revision in his 
probability assignment for other agents’ strategies. When all the agents reach this stop-
ping point, they achieve a joint deliberational equilibrium. In suitable conditions this 
joint deliberational equilibrium is a Nash equilibrium.

In games with multiple Nash equilibria, the equilibrium reached depends on the 
agents’ initial probability assignments. Although the dynamics do not explain the par-
ticular equilibrium reached, Skyrms (1990) holds that they explain why deliberations 
culminate in a Nash equilibrium. He shows a theorem with the following form. Under 
certain assumptions, “A joint deliberational equilibrium on the part of all the players 
corresponds to a Nash equilibrium point of the game” (p. 29).

Skyrms’s theorem has intrinsic interest because it shows how a Nash equilibrium in 
a game may arise from the agents’ deliberations. His theorem exposes a deep connec-
tion between joint deliberational equilibrium and Nash equilibrium. The significance 
of this connection is moreover supported by his investigations of its robustness. 
Although the theorem may offer an approximate explanation of realization of a Nash 
equilibrium, the assumptions on which it rests are too restrictive to yield a partial 
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explanation of that phenomenon. For a partial explanation, each assumption must con-
trol for a factor that explains rational behavior, or else the theorem’s results must be 
robust with respect to variation in the assumption. Yet we now show that the theorem’s 
assumptions fall short of this standard.

Some assumptions meet the standard of evaluation. Take the assumption of common 
knowledge. It controls an explanatory factor, namely, each agent’s knowledge about 
others. Clearly, a general theory of rational behavior uses this factor to help explain 
rational behavior in strategic situations. Likewise, the assumption of a common prior, 
in the context of the assumption of common knowledge, controls each agent’s knowl-
edge about others.

Other assumptions, however, lack this sort of theoretical warrant. Consider the 
assumption that the adaptive rule seeks the good. This assumption excludes adaptive 
rules that permit raising the probabilities of strategies that are just as good as one’s 
tentative mixed strategy. Because probability increases of this sort are not irrational, 
excluding adaptive rules that permit them does not control for an explanatory factor.

Moreover, the exclusion of the permissive adaptive rules is not merely a matter of 
technical convenience. It is necessary for the correspondence between deliberational 
and Nash equilibrium. To see this, consider a game with a unique Nash equilibrium 
that is not strict. Given a permissive adaptive rule, the agents may be at a Nash equi-
librium but not achieve joint deliberational equilibrium. They may oscillate away 
from and back to the Nash equilibrium until lack of time forces them to halt delibera-
tions, perhaps away from the Nash equilibrium.

Because not all assumptions of the deliberational dynamics either control for 
explanatory factors or else are modifiable, Skyrms’s simulations do not partially 
explain realization of a Nash equilibrium, as Weirich (2004) argues more fully. Hence, 
the theorem and simulations displaying its instances do not yield a partial explanation 
of a Nash equilibrium’s realization in a game of strategy with rational players.

Robustness. Lacking robustness is a widespread problem for the success of partial 
explanations with simulation studies. Take, for example, Huberman and Glance (1993), 
who examine simulations of generations of players in Prisoner’s Dilemmas. The simu-
lations use cellular automata, with cells located in a square. One simulation treats time 
as discreet and has all cells update at the same time to produce the next generation. 
Another simulation, more realistically, treats time as continuous so that at any moment 
at most one cell updates to produce an offspring. Suppose that both the synchronous 
and the asynchronous simulations begin with the same initial conditions: a single 
defector surrounded by cooperators. The synchronous simulation maintains wide-
spread cooperation even after 200 rounds, whereas the asynchronous simulation has 
no cooperation after about 100 rounds. Cooperation is not robust with respect to 
updating’s timing in these simulations. So unless timing is an explanatory factor in the 
world and not just an artifact of the simulation, a simulation that generates cooperation 
using synchronous updating does not yield a partial explanation of cooperation.

Consequently, proponents of the explanatory value of a simulation show that the 
simulation robustly generates the target phenomenon’s representation. That is, the 
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simulation generates the phenomenon’s representation over a wide range of variation 
in the simulation’s unrealistic assumptions. The robustness may be with respect to 
variation in initial conditions, dynamical laws, or values of the simulation’s parame-
ters. D’Arms, Batterman, and Górny (1998), for example, use robustness as a guideline 
for assessment of simulations and models of adaptive behavior. They say that a result 
is robust if it is achieved across a variety of different starting conditions and/or param-
eters. They take robustness as necessary but not sufficient for a successful simulation.

Proponents of robustness analysis hold that it shows whether a simulation’s results 
depend on the essence of its model or the details of its simplifying assumptions. Stud-
ies of robustness separate a model’s important features from accidents of representation. 
Some critics claim that if robustness analysis is purely mathematical, then it does not 
provide empirical information and so does not confirm a simulation’s model. Weis-
berg (2006) argues that because of the model’s background assumptions, robustness 
analysis may confirm the model.

Robustness analysis’s bearing on a model’s explanatory value depends on the mod-
el’s ambitions. It depends on the type of explanation the model attempts. Does it 
attempt to explain a phenomenon or just explain the phenomenon’s possibility?

Although studies of robustness provide insight concerning a simulation’s opera-
tion, robustness is neither necessary nor sufficient for explanatory value. A predictive 
but nonexplanatory simulation may be robust, and an explanatory simulation of a frag-
ile phenomenon may not be robust. The types of robustness that are virtues depend on 
the simulation and the model directing it.

Furthermore, a model’s robustness with respect to all assumptions is neither neces-
sary nor sufficient for a phenomenon’s partial explanation. A partial explanation 
requires robustness with respect to variation in assumptions that introduce features 
irrelevant to the model’s target phenomenon. Altering those assumptions should not 
make a difference to the model’s results. In contrast, robustness need not hold with 
respect to assumptions that control for explanatory factors. In fact, a good model, as it 
becomes more realistic by incorporating more explanatory factors, does not robustly 
yield the same results. When it is completely realistic, it exhibits a limited type of 
robustness. It steadfastly yields its target phenomenon as the model’s parameters vary 
in ways that replicate the phenomenon’s natural range of occurrence. Thus, a partial 
explanation requires only limited robustness, namely, robustness with respect to varia-
tion in assumptions that do not control for explanatory factors.

Potential explanation. We have argued that simulations often do neither fully nor 
partially explain any particular phenomenon. Nevertheless, many authors of simula-
tion studies claim that their simulations are in some way explanatory. It may therefore 
make sense to expand the notion of explanatoriness to include not only full or partial 
explanations but also potential explanations. A model or theory may be considered a 
potential explanation if it shares certain properties with actual explanations but need 
not have a true explanation (see Hempel, 1965). In that sense, simulations may be 
potential explanations, or as some simulation authors prefer, “candidate explanations” 
(Epstein, 1999), and hence may be considered to have explanatory significance.
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Emrah Aydinonat (2008) offers a good example of such reasoning. He argues that 
Menger’s theory of the origin of money, and more recent simulations building on 
Menger’s work, are partial potential explanations.

Carl Menger (1982) investigated the question how money arose as a medium of 
exchange. His question was theoretical in that it asked for the general underlying 
causes for the origin of money and not for the causal history of any particular instance 
of money. Envisioning a world of direct exchange, Menger postulated that some goods 
are more salable than others, depending on properties like their durability, transport-
ability, and so on. Self-interested economic agents, he then argued, would tend to 
purchase the most salable good, even if they do not need it, in cases where they cannot 
directly exchange their goods for goods that they do need. Because everyone would 
gravitate toward the most salable good in the marketplace in such situations, it is that 
good that emerges as the medium of exchange—as the unintended consequence of 
economizing agents.

Aydinonat (2008) admits that Menger’s model neglects many institutional particu-
larities and in general is not able to verify its assumptions. It thus cannot offer a full or 
partial explanation. However, he argues that “Menger’s conjecture alerts us to certain 
explanatory factors that may have been important in the development of a medium of 
exchange” (p. 48, italics added). In particular, Menger’s model identifies some fac-
tors, not all; hence his model offers only a partial explanation. Furthermore, the 
model identifies only possible factors, not actual ones; hence it offers only a potential 
explanation.

Many authors have since tried to develop Menger’s model further. As an example, 
take the simulation study by Marimon, McGrattan, and Sargent (1990). They model 
the trade interactions of three types of agents in the population. Each type consumes a 
different good, which the agents do not produce themselves. To be able to consume, 
the agents have to exchange with others. Yet each agent can only store one kind of 
good, and storage costs for a specific kind of good depend on the type of agent who 
stores it. In the simulation, agents are matched pairwise at random, offer their goods 
simultaneously, and decide whether to accept the trade offer. Offers of an agent’s con-
sumption good are always accepted. But if they are not offered their consumption 
good, they have to decide whether to accept a good they cannot consume. Agents 
know a menu of behavioral rules (including “accept if storage costs are low,” “accept 
if other agents accept,” etc.) and attach strength to each rule. This strength index deter-
mines how probable it is that an agent chooses a certain rule. After each round, agents 
update the strength index according the success of the rule used.

Marimon et al. (1990) find that under specific conditions the population converges 
on an equilibrium where every agent prefers a lower-storage-cost commodity to a 
higher-cost commodity, unless the latter is their own consumption good. Thus, they 
show that under these conditions a medium of exchange emerges as an unintended 
consequence of the agents’ economizing behavior. However, they also find that this 
convergence is rather sensitive to the initial conditions. Aydinonat (2008) therefore 
concludes that the simulation “teaches us what we may consider as possible under 
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certain conditions. Yet they do not tell us whether these conditions were present in 
history or whether there are plausible mechanisms that may bring about this possibil-
ity” (p. 112). The simulation offers neither a full nor a partial explanation of the origin 
of money. But it makes more precise the possible worlds in which Menger’s conjec-
ture holds; it specifies in precise detail some environments and some sets of causal 
relations under which a medium of exchange emerges. In this sense, the simulation 
may be considered progress with the possible explanation offered by Menger.

In a similar vein, one may consider the Anasazi simulation progress with possible 
explanation of the Anasazi population dynamics. Yet what does the progress consist in? 
What distinguishes serious contenders for such possible explanations from mere fan-
tastic constructs? Hempel had the formal rigor of the DN account to fall back onto 
when referring to the “other characteristics” of an explanation. But in the age of simu-
lation, indefinite numbers of potential explanations can be produced. With so many 
possible causes identified, simulation may confuse instead of clarify, and reduce 
understanding instead of improving it.

One problem, Grüne-Yanoff (2009a) argues, may lie in the focus on causes and 
mechanisms. Aydinonat (2008), for example, claims that simulations “try to expli-
cate how certain mechanisms . . . may work together” (p. 115). Yet these simulations 
operate with thousands of agents and indefinitely many possible mechanisms. Iden-
tifying a single set of possible mechanisms that produce the explanandum therefore 
does not, pace Aydinonat improve the chances of identifying the actual mechanisms. 
The numbers of possible mechanisms is just too large to significantly improve these 
chances.

Instead, Grüne-Yanoff (2009a) suggests that a simulation run offers an instance of 
the simulated system’s functional capacities and its functional organization. Func-
tional analysis shows how lower-level capacities constitute higher-level capacities. 
The capacity of the Anasazi population to disperse in times of draught, for example, is 
constituted by the capacities of the household agents to optimize under constraints and 
their capacity to move. The dispersion is nothing but the individual movings. Yet there 
are many different household capacities that constitute the same higher-level capacity. 
The role of simulation studies, Grüne-Yanoff (2009a) argues, is not to enumerate pos-
sible household capacities (or mechanisms) but to explore the system’s possible 
functional organizations under which different sets of household capacities constitute 
higher-level capacities and hence the “working” of the whole system. This is in line 
with current practice. Reports of simulations do not offer comprehensive lists of pos-
sible mechanisms that produce the explanandum. Rather, they offer one or a few 
selected settings, and interpret these as instances of how the system may be function-
ally organized in order to yield the explanandum. Occasionally, they also conclude 
from such singular simulation settings that the simulation is not correctly organized 
and that additional functional components are needed. In the Anasazi case, for exam-
ple, the authors conclude that additional push and pull factors are needed. For this 
reason, it may be preferable to think of simulations as providing potential functional 
instead of potential causal explanations.
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Policy Formulation

Simulations have long been used to support policy formulation. Drawing on economic 
theory, Jan Tinbergen constructed a macroeconomic model of the Dutch economy. It 
led to simulations of six policies for alleviating the Great Depression. Because of the 
simulations’ results, Tinbergen recommended that the Dutch government abandon the 
gold standard, which it did.

Today, agent-based models are widely used to simulate the impact of external 
shocks on complex social phenomena. For example, a number of recent articles have 
investigated how a smallpox epidemic would spread through a population and how 
different vaccination policies would affect this spread. Some of these simulations stay 
on a relatively abstract level, while others become incredibly detailed and in fact pur-
port to simulate the population behavior of a whole city (Eubank et al., 2004, who 
simulate Portland, Oregon) and even a whole country (Brouwers, Mäkilä, and Camitz, 
2006, who simulate Sweden). Authors of such simulations, in particular from the latter 
category, often give policy advice based on the simulation results alone.

What kind of policy decisions can be made of course depends on the validity of the 
simulation. If correct predictions can be made on the basis of the simulation, a straight-
forward utility maximization or cost-benefit analysis can be performed. But with most 
ABS, such point-predictions are out of reach. Instead, ABS at best offer possible sce-
narios and allow weeding out certain scenarios as inherently inconsistent or not cotenable 
(Cederman, 2005). The goal of simulation studies then is exploratory modeling, in which 
researchers run a number of computational experiments that reveal how the world would 
behave if the various conjectures about environments and mechanisms were correct.

The results of exploratory modeling are sets or ensembles of possible worlds. This 
leads to the question of how such resulting sets of scenarios can be used as the basis 
of policy decisions. If the parties to the decision do not know the probabilities of the 
models in the ensemble, situations of “deep uncertainty” arise (Lempert, 2002). Under 
deep uncertainty, models of uncertain standing produce outcomes with uncertain rel-
evance. Instead of predicting the future of the system with one model or with a set of 
probabilistically weighted models, simulations only yield a “landscape of plausible 
futures” (Bankes, Lempert, & Popper, 2001, p. 73).

How can the policy maker base his or her decisions on such a set? Two different 
strategies have been discussed. The first focuses on worst-case scenarios, against 
which policies should be hedged. This approach is similar to the maximin decision 
rule: The policy maker chooses that policy that maximizes the minimal (worst) out-
come. The second approach pays equal attention to all models and chooses that policy 
that performs relatively well, compared with the alternatives, across the range of plau-
sible futures. If “performs relatively well” is interpreted as performing well against a 
set minimal threshold, then this approach is similar to the satisficing decision rule: The 
policy maker sets a threshold in the light of the specific policy goals and then evalu-
ates the different policy alternatives by their performance in a sufficiently large 
number of simulation runs.
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Both maximin and satisficing are very sensitive to the number of models consid-
ered. The wider the scope, the more likely the inclusion of some outlandish terrible 
future, which will affect maximin choice. Similarly, the wider the scope, the more 
likely the inclusion of some outlier below the threshold, which will affect satisficing 
choice. Given the uncertain status of many model specifications, exploratory model-
ing is prone to such misspecifications. This leads to the question of how the scope of 
the model ensemble can be constrained.

Grüne-Yanoff (in press-a) argues that neither references to the actual world nor 
references to intuitions are sufficient to appropriately restrict the scope of model ensem-
bles. Only through integrating the simulation ensemble under a theory does exploratory 
modeling gain sufficient systematicity. In such a setting, simulations would unpack 
the implications of their theoretical hypotheses. If implications are found untenable, 
the authors can go back to the theory, which provides constraints on how alternative 
hypotheses can be constructed. Yet current modeling practice rarely follows this 
approach. The usefulness of exploratory modeling for policy formation is therefore 
not entirely clear (see Table 3).

Conclusion
In this article, we argued that simulation is an important new tool for the social scien-
tist. Although it shares many features with both models and experiments, its dynamic 
aspects, its ability to compute vast amounts of data, and its epistemic opacity are novel 
features that set it apart from other scientific tools. This novelty leads to a number of 
potentially new uses in the sciences. Yet the conceptual foundations for these new 
employments are still shaky. In particular, we pointed out not only the potential but 
also the difficulties of explaining with simulations and of supporting policy advice. 
We hope that this article helps sharpen the understanding of these problems, which 
may eventually lead to their solution.
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Table 3. Scientific Uses of Simulations
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Proof
Prediction
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Key Ideas

Epistemic opacity
Predictive validity, replicative validity, structural validity
Causal and functional explanation; full, partial, and potential explanation; 

robustness as a test of explanatory power
Exploratory modeling, satisficing and maximin choice, simulation validity
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