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ABSTRACT:

The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin 
(mTOR) signaling axis plays a central role in cell proliferation, growth, and survival 
under physiological conditions. However, aberrant PI3K/Akt/mTOR signaling has been 
implicated in many human cancers, including acute myelogenous leukemia (AML). 
Therefore, the PI3K/Akt/mTOR network is considered as a validated target for innovative 
cancer therapy. The limit of acceptable toxicity for standard polychemotherapy has 
been reached in AML. Novel therapeutic strategies are therefore needed. This review 
highlights how the PI3K/Akt/mTOR signaling axis is constitutively active in AML 
patients, where it affects survival, proliferation, and drug-resistance of leukemic cells 
including leukemic stem cells. Effective targeting of this pathway with small molecule 
kinase inhibitors, employed alone or in combination with other drugs, could result in 
the suppression of leukemic cell growth. Furthermore, targeting the PI3K/Akt/mTOR 
signaling network with small pharmacological inhibitors, employed either alone or in 
combinations with other drugs, may result in less toxic and more efficacious treatment 
of AML patients. Efforts to exploit pharmacological inhibitors of the PI3K/Akt/mTOR 
cascade which show efficacy and safety in the clinical setting are now underway.

INTRODUCTION

Acute myelogenous leukemia (AML) is a highly het-

erogeneous group of malignant clonal diseases character-

ized by deregulated proliferation of hematopoietic stem 

cells and myeloid progenitors. This results in accumula-

tion, in the bone marrow, of myeloid cells with an impaired 

differentiation program and resistant to cell death. AML 

accounts for about 80% of adult leukemias and is a dis-

order of the elderly, with a median age at diagnosis of 65 

years and a growing incidence over 65 years [1]. Most 

AML cases respond well to initial polychemotherapy, but 

disease relapse occurs in the large majority of patients. The 

standard therapeutic approach for AML patients is high-

dose polychemotherapy, consisting of cytarabine and an 

anthracycline antibiotic like daunorubicin or idarubicin, 

or the anthracendione mitoxantrone [2]. While results of 

AML treatment have improved in younger patients who 

can tolerate intensified treatment strategies, there have 
been limited changes in outcome among individuals who 

are older than 60 years. Therefore, the prognosis of AML 

remains severe, with an overall 5-year survival rate around 

20%, despite continuous advances in our understanding 

of AML biology. Furthermore, patients with AML arising 

out of myelodysplastic syndrome or who are older than 60 

years have an even worse prognosis (<10% survival at 5 

years) [3]. Therefore, there remains a need for innovative, 

rationally designed, minimally toxic, therapies for AML, 
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especially for the elderly [4]. 

Only one subtype of AML, acute promyelocytic leuke-

mia (APL), displays a much better prognosis, as differenti-

ation therapy with arsenic trioxide or all-trans retinoic acid 

(ATRA), used alone or in combination with chemothera-

peutic drugs, has proven quite successful in APL patients 

[5]. It is now clear that a hierarchical organization of the 

hematopoietic system does exist in AML, as in normal 

hematopoiesis. Indeed, AML is initiated and maintained by 

a small, self-renewing population of leukemic stem cells 

(LSCs), which give rise to a progeny of more mature and 

highly cycling progenitors (colony forming unit-leukemia, 

CFU-L). CFU-Ls do not self-renew, however they are com-

mitted to proliferation and limited differentiation. By doing 

so, they originate a population of blast cells which consti-

tute the majority of leukemic cells in both the bone marrow 

and peripheral blood of patients. The exact phenotype of 

LSCs is still debated, but they are comprised in the CD34+/

CD38-/low population [6]. The majority of LSCs are quies-

cent and insensitive to traditional chemotherapeutic drugs. 

This latter feature explains, at least in part, the difficulties 
in eradicating this cell population by conventional poly-

chemotherapy. Thus, novel therapeutic strategies for AML 

eradication should also target LSCs [7]. In AML, aberrant 

activation of several signal transduction pathways strongly 

enhances the proliferation and survival of both LSCs and 

CFU-Ls [8, 9]. Therefore, these signaling networks are 

attractive targets for the development of innovative thera-

peutic strategies in AML [10].

The phosphatidylinositol 3-kinase (PI3K, a family of 

lipid kinases)/Akt/mammalian target of rapamycin (mTOR) 

signaling cascade is crucial to many widely divergent 

physiological processes which include cell cycle progres-

sion, transcription, translation, differentiation, apoptosis, 

Fig. 1.  The PI3K/Akt/mTOR signaling pathway. GPCRs, RTKs, and Ras activate PI3K. PI3K generates PtdIns (3,4,5)P
3
 from PtdIns (4,5)

P
2
. PtdIns (3,4,5)P

3
 attracts to the plasma membrane PDK1 which phosphorylates Akt on Thr308. Full Akt activation requires Ser473 phos-

phorylation which is effected by mTORC2. Most of the Akt substrates are inactivated by phosphorylation. Active Akt inhibits TSC2 activity 

through direct phosphorylation. TSC2 is a GAP that functions in association with TSC1 to inactivate the small G protein Rheb. Akt-driven 

TSC1/TSC2 complex inactivation allows Rheb to accumulate in a GTP-bound state. Rheb-GTP then activates the protein kinase activity 

of mTORC1. mTORC1 targets p70S6K and 4E-BP1 which are critical for translation. 4E-BP1 phosphorylation by mTORC1 results in the 

release of eIF4E, while p70S6K phosphorylates ribosomal S6 protein. The TSC1/2 complex is required to activate also mTORC2. However, 

other signaling cascades impinge on mTORC1, including GSK3β, the Ras/Raf/MEK/ERK1/2/p90RSK pathway, and the LKB1/AMPK network 

which is sensitive to the ADP/ATP ratio. Arrows indicate activating events, whereas perpendicular lines indicate inhibitory events. 
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motility, and metabolism [11]. However, the PI3K/Akt/

mTOR signaling pathway represents one of the major sur-

vival pathways that is deregulated in many human cancers 

and contributes to both cancer pathogenesis and therapy 

resistance. Over the last few years, it has been reported 

that constitutive activation of the PI3K/Akt/mTOR signal-

ing network is a common feature of AML patients [12]. 

Furthermore, pathway activation confers leukemogenic 

potential to mouse hematopoietic cells [13]. Therefore, this 

signal transduction cascade may represent a valuable target 

for innovative therapeutic treatment of AML patients. The 

aim of this review is to give the reader an updated overview 

of the relevance of PI3K/Akt/mTOR signaling activation in 

AML patients and to focus on small molecules which will 

possibly have an impact on the therapeutic arsenal we have 

against this disease. 

The PI3K/Akt/mTOR pathway

PI3K

The family of PI3K enzymes is characterized by the 

ability to phosphorylate the 3’-OH group in inositol lipids 

and comprises three different classes, I, II, and III. Class 

I PI3K preferred substrate is phosphatidylinositol 4,5 

bisphosphate [PtdIns (4,5)P2] which is phosphorylated to 

phosphatidylinositol 3,4,5 trisphosphate [PtdIns (3,4,5)P3] 

[14, 15]. PtdIns (3,4,5)P3 recruits to the plasma membrane 

pleckstrin homology (PH) domain-containing proteins, 

which include phosphoinositide-dependent protein kinase 

1 (PDK1) and Akt. Class I PI3K is divided further into A 

[activated by receptor tyrosine kinases (RTKs), Ras, and 

G-protein coupled receptors (GPCRs)] and B (activated by 

GPCRs) subtype (Figure 1). Class IA PI3Ks are heterodi-

meric enzymes composed of a regulatory (p85α, p85β, 
p55α, p55γ, p50α) and of catalytic (p110α, p110β, p110δ) 
subunits. Class IB PI3K comprises a p101 regulatory and a 

p110γ catalytic subunit [16]. Both p110α and p110β PI3K 
play fundamental roles during development, so that their 

homozygous knockout is embryonic-lethal [17]. In con-

trast, p110γ and p110δ PI3Ks are mostly related to the 
immune system functions, so that their knock-down leads 

to defective immune responses [18]. Class II PI3Ks, which 

comprise the PI3K-C2α, -C2β, and -C2γ isoforms, prefer-
entially phosphorylate phosphatidylinositol to yield phos-

phatidylinositol 3 phosphate. Although class II PI3Ks are 

widely expressed in mammalian organs and tissues, their 

relevance in cell signaling and cancer biology is not clear 

at the moment [19].

Vacuolar protein sorting 34 (vps34) is the only class III 

PI3K and exists as a heterodimer bound to the vps15 regu-

latory subunit (previously referred to as p150 in mammals). 

Vps34 has been implicated in nutrient signaling, endocyto-

sis, and autophagy [20].

Activating mutations in the gene coding for p110α 
(PIK3CA) have been found in many human cancer types, 

including tumors of the colon, brain, ovary, breast, liver, 

and stomach, and could at least partially explain pathway 

up-regulation in these neoplasms [21]. Nevertheless, in 

tumor models (brain, prostate, breast) driven by PTEN 

(phosphatase and tensin homolog deleted on chromosome 

10) deficiency, knock-out of p110β, but not p110α, was 
required to inhibit Akt activation [17]. Wild-type p110α is 
not oncogenetic when overexpressed, whereas wild-type 

p110β, p110γ, and p110δ PI3Ks are oncogenetic when 
ectopically expressed in chicken fibroblasts [22]. Neverthe-

less, their contribution to oncogenesis is only beginning to 

emerge [23].

Akt

Akt, a 57-kDa serine/threonine protein kinase, is the cel-

lular homolog of the v-akt oncogene. The Akt family com-

prises three highly conserved isoforms: Akt1/α, Akt2/β, and 
Akt3/γ, which display a high degree of sequence homology 
[14]. However, functional differences exist between Akt 

isoforms, as Akt2 is involved in insulin-mediated glucose 

uptake [24] and in cell motility/invasion/metastatic poten-

tial of cancer cells [25].

Akt contains an NH
2
-terminal PH domain, that interacts 

with PtdIns (3,4,5)P3. Once Akt is recruited at the plasma 

membrane, its activation loop is phosphorylated on Thr308 

by PDK1 while the mTOR complex 2 (mTORC2) phos-

phorylates Ser473 in the Akt COOH-terminus (Figure 1). 

Full Akt activation requires both the phosphorylation steps. 

Active Akt migrates to both the cytosol and the nucleus. 

Nuclear Akt may fulfil important anti-apoptotic roles [26]. 
Nevertheless, the relative contribution of Akt signaling at 

the plasma membrane, the cytosol, and the nucleus remains 

to be elucidated. However, it is intriguing that the protein 

promyelocytic leukemia (PML) is involved in the dephos-

phorylation of nuclear Akt as PML specifically recruits the 
Akt phosphatase, protein phosphatase 2A (PP2A), as well 

as phosphorylated Akt into PML nuclear bodies [27]. These 

bodies, however, are disrupted by the fusion protein, PML-

RARα, which is the hallmark of APL [5, 28]. This could be 
one of the reasons for Akt activation which is detected in 

APL [29]. Thus, this finding highlights the growing impor-
tance of Akt compartmentalization in human cancer patho-

genesis and treatment.

So far, over 100 Akt substrates have been identified 
[30]. Of these, about 40 which mediate the pleiotropic 

Akt functions have been characterized, including Bad, 

caspase-9, murine double minute 2 (MDM2), IĸB kinase 
(IKK) α, proline-rich Akt substrate 40-kDa (PRAS40) 40, 
the FOXO family of Forkhead transcription factors, apop-

tosis signal-regulated kinase 1 [ASK1, a negative regula-

tor of pro-apoptotic c-Jun N-terminal kinase (JNK)], Raf, 

p27Kip1, p21Cip1, glycogen synthase kinase 3β (GSK3β. Each 
of these substrates has a key role in the regulation of cell 

survival and proliferation, either directly or through an 

intermediary [16, 31]. A rare, oncogenetic, activating muta-
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tion (E17K) in the PH domain of Akt1 has been detected 

in some types of solid cancers (breast, colon, ovary). This 

mutation resulted in Akt constitutive binding to the plasma 

membrane and was leukemogenic in mice [32]. 

mTOR

mTOR is an atypical 289-kDa serine/threonine kinase, 

originally identified in the yeast Saccharomyces Cerevi-

siae, that belongs to the PI3K-related kinase family and 

displays a COOH-terminal catalytic domain with a high 

sequence homology to PI3K (Figure 2). This similar-

ity could explain the cross-inhibition of mTOR by drugs 

which target PI3K (see below) [33]. mTOR signaling is 

conserved in eukaryotes from plants and yeasts to mam-

mals. mTOR exists as two complexes, referred to as mTOR 

complex 1 (mTORC1) and mTORC2. mTORC1 is com-

prised of mTOR/Raptor/mLST8/PRAS40/FKBP38/Deptor 

and is sensitive to rapamycin and its derivatives (rapalogs). 

mTORC2 is composed of mTOR/Rictor/mLST8/SIN1/

Protor/Deptor and is generally described as being insensi-

tive to rapamycin/rapalogs, although long-term treatment 

of about 20% of cancer cell lines with rapamycin/rapa-

logs leads to dissociation of mTORC2 [34, 35]. mTORC1 

signaling integrates environmental clues (growth factors, 

hormones, nutrients, stressors) and information from the 

cell metabolic status. Thus, mTORC1 controls anabolic 

processes for promoting protein synthesis and cell growth 

[36]. mTORC1 regulates translation in response to nutri-

ents/growth factors by phosphorylating components of 

the protein synthesis machinery, including p70S6 kinase 

(p70S6K) and eukaryotic initiation factor 4E-binding pro-

tein 1 (4E-BP1). p70S6K phosphorylates the 40S ribosomal 

protein, S6, leading to active translation of mRNAs, while 

4E-BP1 phosphorylation by mTORC1 on several amino 

acidic residues (Ser37; Thr46; Ser65; Thr70) results in the 

release of the eukaryotic initiation factor 4E (eIF4E). eIF4E 

is a key component for translation of 5’ capped mRNAs, 

which include transcripts encoding growth promoting mol-

ecules, such as c-Myc, cyclin D1, cyclin-dependent kinase 

2, retinoblastoma protein, p27Kip1, vascular endothelial 

growth factor (VEGF), and signal activator and trans-

ducer of transcription 3 (STAT3) [34, 37]. Furthermore, 

mTORC1 negatively regulates autophagy, a non-apoptotic 

form of cell death, which is attracting much attention, as it 

could affect sensitivity of tumors (including leukemias) to 

various forms of therapy [38].

Akt-mediated regulation of mTORC1 activity involves 

several mechanisms. Akt inhibits TSC2 (Tuberous Scle-

rosis 2 or hamartin) function through direct phosphoryla-

tion. TSC2 is a GTPase-activating protein (GAP) which 

associates with TSC1 (Tuberous Sclerosis 1 or tuberin) 

for inactivating the small G protein Rheb (Ras homolog 

enriched in brain). TSC2 phosphorylation by Akt represses 

GAP activity of the TSC1/TSC2 complex, allowing Rheb 

to accumulate in a GTP-bound state. The mechanism by 

which Rheb-GTP activates mTORC1 has not been fully 

elucidated yet, although Rheb requires to be farnesylated 

for activating mTORC1 [39]. Thus, it could be inhibited by 

farnesyl-trasferase inhibitors (FTIs). Akt also phosphory-

lates PRAS40, an inhibitor of the interactions between 

mTORC1 and its substrates, and by doing so, prevents 

PRAS40 ability to suppress mTORC1 signaling [40]. 

Moreover, PRAS40 is a substrate of mTORC1 itself, and it 

has been demonstrated that mTORC1-mediated phosphor-

ylation of PRAS40 facilitates the removal of its inhibition 

on mTORC1 [41].

Moreover, Ras/Raf/mitogen-activated protein kinase 

kinase (MEK)/extracellular signal-regulated kinase (ERK) 

1/2 signaling positively regulates mTORC1 activity, as 

both ERK 1/2 and p90 ribosomal S6 kinase (p90RSK) phos-

Fig. 2.  A schematic presentation of mTOR structure. Some of the proteins interacting with mTOR domains are highlighted. 

The FRB domain is where the FKBP12 and rapamycin complex binds which is within the region that binds FKBP38. 
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phorylate TSC2, thus suppressing its inhibitory function 

on Rheb [42] (Figure 1). mTORC1 signal transduction is 

inhibited by the master metabolic regulator, energy-sensing 

AMP-dependent protein kinase (AMPK), given that AMPK 

phosphorylates and activates TSC2 [43]. 

The mechanisms for mTORC2 regulation have only 

begun to be revealed. However, mTORC2 activation 

requires PI3K and the TSC1/TSC2 complex, but is inde-

pendent of Rheb and is largely insensitive to either nutrients 

or energy conditions [44]. mTORC2 phosphorylates Akt on 

Ser473 which enhances subsequent Akt phosphorylation 

on Thr308 by PDK1 [45]. Moreover, mTORC2 plays a role 

in cytoskeleton organization by controlling actin polymer-

ization [46] and phosphorylates protein kinase C (PKC) α 
[44]. Another down-stream target of mTORC2 is serum- 

and glucocorticoid-induced protein kinase 1 (SGK1) [47]. 

The oncogenetic role of mTORC2 has been recently high-

lighted by an investigation that documented the importance 

of mTORC2 in the development and progression of pros-

tate cancers induced in mice by PTEN loss [48].

Akt and mTORC1/2 are linked to each other via posi-

tive and negative regulatory feedback circuits, which 

restrain their simultaneous hyperactivation through mech-

anisms which involve p70S6K and PI3K. Assuming that 

an equilibrium exists between mTORC1 and mTORC2, 

when mTORC1 is formed, it antagonizes the formation of 

mTORC2 and reduces Akt activity. Indeed, once mTORC1 

is activated through Akt, the former elicits a negative feed-

back loop for inhibiting Akt activity [34]. This negative 

regulation of Akt activity by mTORC1 is a consequence 

of p70S6K-mediated phosphorylation of insulin receptor 

substrate (IRS) 1 adapter protein, downstream of insu-

lin receptor and/or Insulin-like Growth Factor-1 Recep-

tor (IGF-1R) [49, 50]. Indeed, IRS-1 phosphorylation on 

Ser307 and Ser636/639 by p70S6K targets the adapter 

protein to proteasomal degradation [51]. Therefore, at least 

in principle, inhibition of mTORC1 activity by rapamy-

cin/rapalogs could result in hyperactivation of both Akt 

and its downstream targets. Such a phenomenon has been 

documented to occur both in vitro and in vivo [52, 53]. 

mTORC1 is capable of downregulating also IRS2 expres-

sion by enhancing its proteosomal degradation [54]. Con-

sistently, mTORC1 inhibition by the rapalog, RAD001, 

increased IRS2 expression and Akt phosphorylation levels 

in AML cells [55]. Recent work has also highlighted a 

p70S6K-mediated phosphorylation of Rictor on Thr1135. 

This phosphorylation event exerted a negative regulatory 

effect on the mTORC2-dependent phosphorylation of Akt 

in vivo [56]. Thus, both mTORC1 and mTORC2 control 

Akt activation. 

Nevertheless, the extent to which disruption of negative 

feedbacks mechanism actually limits the therapeutic effects 

of mTOR inhibitors in cancer patients in vivo remains to be 

determined [57].

Negative regulation of PI3K/Akt/mTOR signaling

A tight counter-regulation by phosphatases has emerged 

as a crucial process to control PI3K/Akt/mTOR-dependent 

signaling. PTEN is a dual specificity lipid/protein phospha-

tase that preferentially removes the 3’-phosphate mainly 

from PtdIns (3,4,5)P3 but is also active on phosphatidylino-

sitol 3,4 bisphosphate [PtdIns (3,4)P2], thereby antago-

nizing network signaling [58, 59]. PTEN silencing or 

inactivating mutations have been detected in a wide variety 

of human neoplasias (including prostatic and endometrium 

carcinomas, glioblastomas, melanoma, and T-cell acute 

lymphoblastic leukemia [60]) and this results in Akt/mTOR 

up-regulation. SHIP-1 and SHIP-2 (for Src homology 

domain-containing inositol phosphatase) are phosphatases 

capable of removing the 5-phosphate from PtdIns (3,4,5)P3 

to yield PtdIns (3,4)P2 [61]. An important role for SHIP-1 

in normal hematopoiesis has been recently described [62, 

63]. PP2A, which is now considered to be an oncosuppres-

sor, down-regulates Akt activity, through dephosphoryla-

tion of Thr308 [64]. Thr308 and Ser473 residues of Akt are 

also targeted by the two isoforms (1 and 2) of PH domain 

leucine-rich repeat protein phosphatase (PHLPP) [65].

Activation of PI3K/Akt/mTOR signals in AML

From 50% to 80% of patients with AML display Akt 

phosphorylated on either Thr308 or Ser473 (or both) [66-

71]. Both the disease-free survival and the overall survival 

were significantly shorter in AML cases where pathway 
up-regulation was documented [70, 72-74]. Poor prognosis 

of AML patients with elevated PI3K/Akt/mTOR signal-

ing could be also related to the fact that this pathway con-

trols the expression of the membrane ATP-binding cassette 

(ABC) transporter, multidrug resistance-associated protein 

1, which extrudes chemotherapeutic drugs from leukemic 

cells and is usually associated with a lower survival rate 

[75, 76].

Nevertheless, a more recent report has highlighted that 

constitutive activation of PI3K/Akt/mTOR signaling could 

be a favourable prognostic factor in de novo cases of AML. 

One hypothesis for the lower relapse rate in patients with 

enhanced PI3K/Akt/mTOR signaling is that it could drive 

immature leukemic cells (LSCs and CFU-L) into S phase, 

thus rendering them more susceptible to polychemotherapy 

[77]. 

Causes of PI3K/Akt/mTOR signaling up-regulation in 

AML may be the result of several factors, including activat-

ing mutations of Fms-like tyrosine kinase 3 (FLT3) receptor 

[71] and c-Kit tyrosine kinase receptor [78], N- or K-Ras 

mutations [79], PI3K p110β and/or δ overexpression [80-
82], low levels of PP2A [70], autocrine/paracrine secretion 

of growth factors such as IGF-1 [82-84] and VEGF [85, 

86]. Overexpression of PDK1 has been reported in 45% 

of a cohort of 66 AML patients, however it was related to 
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PKC hyperphosphorylation, while the relationship (if any) 

with Thr308 Akt up-regulation was not investigated [87]. 

Interactions between leukemic cells and bone marrow stro-

mal cells through CXCR4  (a GPCR which is abundantly 

expressed on leukemic cell surface where it is up-regulated 

by hypoxic conditions [88, 89]) and its physiological ligand, 

CXCL12, produced by stromal cells [89, 90], could result 

in PI3K/Akt/mTOR activation [91]. Furthermore, interac-

tions between β1 integrins on AML cells and stromal fibro-

nectin could lead to pathway activation [92, 93], possibly 

through up-regulation of integrin-linked kinase 1 (ILK1) 

which is involved in Akt phosphorylation on Ser473 in a 

PI3K-dependent manner in AML cells [94]. The ability of 

ILK1 to function as a Ser473 Akt kinase could be related to 

the fact that ILK1 interacted with Rictor and was required 

for Akt phosphorylation by mTORC2 on Ser473 [95]. Pos-

sible causes of pathway activation in AML cells are high-

lighted in Figure 3.

No activating mutations in p110α PI3K [96] or Akt1 
PH domain [70, 97] have been detected so far in AML 

patients. Although PTEN is deleted in many solid cancers 

and T-cell acute lymphoblastic leukemia, PTEN deletion 

is extremely rare in AML [66, 69, 70]. PTEN can be inac-

tivated by post-translational mechanisms, including phos-

phorylation at the COOH-terminal regulatory domain. 

This phosphorylative event stabilizes PTEN molecule but 

makes it less active towards PtdIns (3,4,5)P3, thus resulting 

in Akt up-regulation [98]. PTEN phosphorylation has been 

reported in AML patients where it was significantly associ-
ated with high levels of p-Akt and with shorter overall sur-

vival [99]. However, subsequent studies could not confirm 
these findings [70, 74]. A reassessment of the PTEN role in 
AML could be important, as in mice, hematopoietic stem 

cells without functional PTEN, began multiplying rapidly, 

showed diminished self-renewal capacity, and started to 

move out of the bone marrow, colonizing distant organs, 

and originating a leukemic-like disease [100, 101]. Of note, 

these effects were mostly mediated by mTOR, as rapamy-

cin not only depleted LSCs, but also restored normal hema-

topoietic stem cell function [101].

It is conceivable that several concomitant extrinsic and 

intrinsic causes converge to activate PI3K/Akt/mTOR sig-

naling in AML patients, even if this fundamental issue has 

not been thoroughly investigated. Indeed, in the only pub-

lished study, it was demonstrated that, in a small cohort of 

patients, overexpression of PI3K p110δ [81] could coexist 
with activating FLT3 and Ras mutations. It has also been 

reported that mTORC1 activation was independent of PI3K/

Fig. 3. Constitutive activation of PI3K/Akt signaling in AML cells. In this cartoon, mutated (Mut) C-Kit, FLT3, or Ras, 

and autocrine/paracrine secretion of growth factors (VEGF, IGF-1) impinge upon increased levels of p110β and/or 

p110δ PI3K. This results in high levels of PtdIns (3,4,5)P
3
 synthesized at the plasma membrane from PtdIns (4,5)P

2
. 

PtdIns (3,4,5)P
3
 recruits at the plasma membrane both PDK1 and inactive Akt (Akt off). PDK1 phoshorylates Akt on 

Thr308, whereas phosphorylation on Ser473 is driven by mTORC2. These two phosphorylative events fully activates 

Akt (Akt on). Bone marrow stromal cells secrete CXCL12 and fibronectin. Fibronectin, by interacting with β integrins, 

could activate ILK which, in turn, stimulates mTORC2 activity on Ser473 Akt. CXCL12 binds its receptor CXCR4, 

a GPCR which results in increased PI3K activity. Bone marrow stromal cells could also secrete VEGF and IGF-1. 

Activated Akt migrates to both nucleus and cytosol to phosphorylate its substrates. 
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Akt activity in AML patients [55]. In some AML cases, it 

has been documented that either MEK/ERK 1/2 [102] or 

Lyn signaling [103] could be up-stream of mTORC1. TSC2 

gene expression was found to be down-regulated in AML 

patients, most likely due to promoter hypermethylation. 

However, it is not known if it impinged on mTORC1 acti-

vation [104].

It should be emphasized here that PI3K/Akt/mTOR net-

work up-regulation has been detected not only in the bulk of 

the AML blasts, but also in LSCs transplanted in non-obese 

diabetic/severe combined immunodeficiency (NOD/SCID) 
mice, where it exerted a powerful pro-survival effect. This 

finding suggests that therapeutic targeting of this pathway 
has the potential for eradicating AML [105]. 

Targeting PI3K/Akt/mTOR module in AML

Either used alone or in combination with other drugs, 

PI3K/Akt/mTOR signaling inhibitors have been proven 

useful for down-regulating cell proliferation and inducing 

apoptosis in pre-clinical settings of AML, using cell lines 

or animal models. However, clinical trials of these com-

pounds are limited. We shall now highlight some com-

pounds which have been used for targeting PI3K/Akt/

mTOR signaling in AML cells.

PI3K inhibitors

Wortmannin and LY294002 are the best characterized 

PI3K inhibitors that have been widely used as research 

tools to elucidate the role of PI3K/Akt/mTOR signaling 

in various tumor cells. Both inhibitors are cell-permeable 

and low molecular weight compounds. Wortmannin is a 

natural metabolite produced by Penicillium wortmanni and 

inhibits all class PI3K members with a 50% inhibitory con-

centration (IC
50

) in vitro of 2-5 nM, while inhibiting other 

kinases [mTOR, DNA-dependent protein kinase (DNA-

PK), and ataxia telangiectasia mutated kinase] with higher 

IC50 values [106]. It is interesting that DNA-PK was found 

to phosphorylate Akt on Ser473 under conditions of DNA 

damage [107].

LY294002 is a flavonoid-based synthetic compound and 
inhibits PI3K with an IC

50
 of 1-20 μM. However, LY294002 

blocks not only PI3K activity but also mTOR, DNA-PK, 

Pim kinase, polo-like kinase, and CK2 to the same extent 

as PI3K [106]. Both wortmannin and LY294002 bind to 

the p110 catalytic subunit of PI3K, leading to the blockade 

of ATP bound to the active portion. PI3K inhibition with 

LY294002 is reversible and ATP-competitive while wort-

mannin irreversibly inhibits PI3K in a non-ATP-competi-

tive manner [106]. 

Wortmannin and LY294002 have been used in pre-

clinical models of AML where they displayed powerful 

cytotoxic effects in vitro [66, 79, 108, 109]. Since the insol-

ubility in aqueous solutions and high toxicity of both inhib-

itors precluded their clinical application, efforts to develop 

PI3K inhibitors more suitable for clinical use are currently 

underway [110]. 

Several selective inhibitors of p110 PI3K isoforms are 

now available [111]. IC87114 is a compound that selec-

tively inhibits the p110δ isoform of PI3K. IC87114 down-
regulated p-Akt and p-FOXO3a, reduced proliferation, and 

induced apoptosis in AML primary cells overexpressing 

p110δPI3K. Moreover, it synergized with etoposide [81]. 
In primary APL cells, both IC87114 and TGX-115 (a p110β 
PI3K-selective inhibitor) triggered apoptosis in the pres-

ence or in the absence of the differentiating agent, ATRA 

[29]. 

Conceivably, the use of selective PI3K isoform inhibi-

tors could be associated with less undesirable side effects 

than the use of broad spectrum PI3K inhibitors [111]. For 

example, it is established that insulin control of glucose 

homeostasis is mainly mediated through p110α PI3K [112] 
and, to a much lower extent, by p110β PI3K [113]. 

Akt inhibitors

Perifosine is a zwitterionic, water soluble, synthetic 

alkylphosphocholine with oral bioavailability that inhibits 

Akt phosphorylation through interaction with the Akt PH 

domain, resulting in disruption of its membrane targeting. 

Interestingly, recent evidence has documented that perifos-

ine targets both mTORC1 and mTORC2 activity by down-

regulating the levels of mTOR, raptor, rictor, p70S6K, 

and 4E-BP1, owing to their enhanced degradation [114]. 

Perifosine reduced cell proliferation and induced apoptosis 

accompanied by Akt dephosphorylation in a wide variety 

of neoplasias, including AML [115]. Perifosine synergized 

with etoposide in AML blasts, and reduced the clonogenic 

activity of CD34+ cells from leukemic patients, but not from 

healthy donors [116]. Moreover, perifosine synergized 

with histone deacetylase inhibitors [117] or pro-apoptotic 

TRAIL (TNF-related Apoptosis Inducing Ligand) in AML 

cell lines and primary cells displaying Akt constitutive acti-

vation [118]. However, perifosine also targeted the MER/

ERK 1/2 pro-survival pathway and activated pro-apoptotic 

JNK, [116-120] therefore it could not be considered spe-

cific for the Akt pathway. A phase 1 clinical trial combining 
perifosine and UCN-01 (a staurosporine derivative which 

inhibits PDK1) (NCT00301938) and a phase II clinical 

trial with perifosine alone (NCT00391560) have been per-

formed in patients with refractory/relapsed AML, but the 

results have not yet been disclosed. 

Akt-I-1/2, a synthetic reversible allosteric inhibitor, is 

an Akt1/Akt2 isoform-specific inhibitor that forms a PH 
domain-dependent inactive conformation with Akt1 and 

Akt2 [121]. Akt-I-1/2 inhibited cell proliferation and clo-

nogenic properties, and induced apoptosis in AML cells 

with high-risk cytogenetic changes/abnormalities [70]. 

However, it is at present unknown which Akt isoforms are 

expressed by AML blasts.
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mTOR inhibitors

mTOR inhibitors are by far the most developed class 

of compounds which target the PI3K/Akt/mTOR pathway. 

They include: rapamycin (sirolimus, a macrolide derived 

from the bacterium Streptomyces hygroscopicus, originally 

discovered in a soil sample collected on Easter Island) and 

its derivatives CCI-779 (temsirolimus), RAD001 (evero-

limus), and AP23573 (deforolimus) [122]. Temsirolimus 

was approved by US Food and Drug Administration in 

2007 for the first-line treatment of poor prognosis patients 
with advanced renal cell carcinoma. The overall survival of 

treated patients was increased by nearly 50% (~ 3 months) 

relative to the control group [123]. Some clinical benefits of 
rapamycin/rapalogs have been reported also against endo-

metrial carcinoma and mantle cell lymphoma, however, the 

overall objective response rates in major solid tumors have 

been modest [124].

Rapamycin and rapalogs do not target the catalytic site 

of mTORC1, but rather bind its immunophilin, FK506 

binding protein 12 (FKBP12) (Figure 2). The rapamycin/

FKBP12 complex then binds mTORC1 and inhibits down-

stream signaling events [125]. Thus, rapamycin and rapa-

logs act as allosteric mTORC1 inhibitors. Recent evidence 

has documented that complex formation with FKBP12 is 

not an absolute requirement for repression of mTORC1 

activity by rapamycin/rapalogs, however, in the absence 

of FKBP12, the drugs display a 100 to 1000-fold lower 

potency than in the presence of the immunophilin [126]. 

Available data suggest that rapamycin treatment, over 

long time periods, also targets mTORC2 [127]. Accord-

ingly, both CCI-779 and RAD001 (10-20 nM) inhibited 

Akt phosphorylation on Ser473 in AML cells in vitro and 

in patients in vivo after a 24 h incubation, through suppres-

sion of the mTORC2 assembly [128]. In contrast, it has 

been documented that RAD001 (10 nM for 24 h) increased 

Akt phosphorylation in vitro on Ser473 in AML samples 

displaying constitutive PI3K/Akt activation [55]. Since a 

neutralizing monoclonal antibody to the IGF-1R α-subunit, 
reversed the RAD001-induced increase of Akt phosphory-

lation and RAD001 treatment led to a significant increase 
in IRS2 protein expression, it was concluded that p-Akt up-

regulation could be explained by the existence of an IGF-1/

IGF-1R autocrine loop, as well as by increased expression 

of IRS2. At present, it is not easy to reconcile these contra-

dictory findings. 
Rapamycin had only a modest effect on primary AML 

cell survival in liquid culture, however, it markedly down-

regulated AML blast clonogenicity while sparing normal 

hematopoietic precursors [129]. Accordingly, others have 

reported that rapamycin led to only a slight decrease in 

AML blast survival in short term cultures, whereas in long 

term cultures the effect was more pronounced [105]. These 

results suggested that the target of rapamycin is the prolif-

erating contingent of the leukemic clone, rather than the 

bulk of AML blasts which are predominantly blocked in the 

G0/G1 phase of the cell cycle. 

However, rapamycin cytotoxicity in short term cul-

tures could be dramatically increased by co-treatment with 

etoposide. Importantly, etoposide toxicity on CD34+ cells 

from healthy donors was not enhanced by addition of rapa-

mycin. Of note, co-incubation with rapamycin enhanced 

etoposide-mediated decrease in the engraftment of AML 

cells in NOD/SCID mice, suggesting the drugs also tar-

geted putative LCSs [105]. 

The rapalog RAD001 synergized with both ATRA and 

histone acetylase inhibitors in inducing growth arrest and 

differentiation of APL cell lines [130, 131].

A few phase I/II clinical trials with rapamycin and rapa-

logs have been performed in patients with relapsed/refrac-

tory AML. Rapamycin induced a partial response in 4 of 9 

adult patients with de novo or secondary AML, who dis-

played activation of mTORC1 signaling, as documented by 

increased levels of p-p70S6K and p-4E-BP1 [129]. RAD001 

has been evaluated in a phase I clinical trial in patients with 

relapsed/refractory hematologic malignancies, including 

AML [132]. However, no AML patients achieved a com-

plete or even partial response. AP23573 has been tested in 

a phase II study in 22 patients with AML [133]. Only one 

patient displayed an objective hematological improvement, 

consisting of normalization of neutrophils. A significant 
reduction in mTORC1 activity was observed in response 

to the drug, as documented by decreased p-4E-BP1 levels. 

A recent phase I study in which rapamycin was combined 

with MEC (mitoxantrone, etoposide, cytarabine) polyche-

motherapy failed to demonstrate any synergistic effect 

of the combination in relapsed/refractory AML patients, 

even if proof of rapamycin biological activity in vivo was 

detected, consisting in the dephosphorylation of p70S6K 

[134]. Several clinical trials with rapamycin/rapalogs com-

bined with chemotherapeutic agents are now underway in 

AML patients [135].

Moreover, a phase I study has recently documented 

the efficacy, in elderly AML patients, of the combination 
etoposide and tipifarnib (R11577, an FTI). Intriguingly, 

the effect of tipifarnib was not always related to Ras inhi-

bition, but rather to inhibition of Rheb farnesylation and, 

consequently, of mTORC1 signaling, as documented by 

decreased levels of p-p70S6K and of its substrate, p-S6 

[136]. 

Dual PI3K/mTOR inhibitors

The rationale for using dual PI3K/mTOR inhibitors is 

that mTORC1 allosteric inhibitors, such as rapamycin/rap-

alogues, could hyperactivate Akt through p70S6K/PI3K, 

as discussed earlier in this review. Moreover, it is now 

emerging that rapamycin/rapalogs have only modest effi-

cacy on total translation rates, and the effects are cell-type 

specific. In contrast, small molecules designed for inhibit-
ing the catalytic site of mTOR, were much more effective 

in this respect, especially in cancer cells [137-141]. Such 
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a phenomenon has been recently reported to occur also in 

AML cells, where rapamycin was unable to block protein 

synthesis, owing to a failure in inducing 4E-BP1 dephos-

phorylation [142]. Furthermore, in some AML cases, 

mTORC1 activity does not seem to be under the control of 

PI3K/Akt, despite concomitant PI3K/Akt activation [103]. 

Therefore, the use of a single inhibitor which targets both 

PI3K and mTORC1 catalytic sites could present substantial 

advantages over drugs which only target either PI3K/Akt 

or mTORC1. PI-103 is a pyridonylfuranopyrimidine class 

synthetic molecule that represses the activity of both class 

IA and IB PI3Ks, as well as of mTORC1/mTORC2 [143, 

144]. Two papers have documented the efficacy of PI-103 
in pre-clinical settings of AML. It has been reported that 

PI-103, which itself displayed only modest pro-apoptotic 

activity, acted synergistically with Nutlin-3 (an MDM2 

inhibitor) [145, 146], to induce apoptosis in a wild-type 

p53-dependent fashion in AML cell lines and primary cells 

[147]. Another group demonstrated that PI-103 was mainly 

cytostatic for AML cell lines. However, in AML blast cells, 

PI-103 inhibited leukemic proliferation and CFU-L clono-

genicity, induced mitochondrial apoptosis, and synergized 

with etoposide [148]. Of note, PI-103 was not apoptogenic 

in CD34+ cells from healthy donors and had only moder-

ate effects on their clonogenic and proliferative activities. 

Since either RAD001 or IC87114 did not induce apoptosis 

in AML primary cells, it was concluded that dual-targeted 

therapy against PI3K/Akt and mTOR with PI-103 may be 

of therapeutic value in AML [148]. 

Nevertheless, it is conceivable that the new frontier in 

mTOR inhibition will be represented by the second gen-

eration, ATP-competitive mTOR inhibitors which bind 

the active site of both mTORC1 and mTORC2 [137-140]. 

These drugs target mTOR signaling functions in a global 

way, so that they are expected to yield a deeper and broader 

antitumor response in the clinic. However, global inhibi-

tion of mTOR is expected to be accompanied by greater 

toxicity to normal cells [149].

CONCLUSIONS

In this review, we have documented that the PI3K/Akt/

mTOR pathway influences proliferation, survival, and drug 
resistance of AML cells. However, there still are many 

unresolved problems regarding the relevance of PI3K/Akt/

mTOR pathway up-regulation and its druggability in AML 

patients. We have a very limited knowledge of the down-

stream targets (genes/proteins) of this pathway in AML 

cells. Therefore, more detailed investigations of these tar-

gets are highly desirable. Indeed, data emerging from gene 

expression and proteome/phosphoproteome analysis could 

pave the way for functional studies which could then pro-

vide valuable information for improving future therapeutic 

strategies. At present, we do not know what is the most 

effective target in the pathway, and whether combinations 

of horizontal or vertical blockade of the signaling cascade 

may be more effective than blocking at a single node [150].

As with all molecularly targeted approaches, pharma-

codynamic markers are necessary to direct therapeutic 

development of PI3K/Akt/mTOR inhibitors. Hence, clini-

cal trials should examine the inhibitor effects on PI3K/Akt/

mTOR targets to establish the best predictor of response 

[151]. However, no predictive markers for AML patients 

with a high probability of responding to PI3K/Akt/mTOR 

inhibition, or biomarkers of dose/efficacy, have been vali-
dated. Quantitative flow cytometry appears particularly 
well suited for this kind of analysis, because it offers obvi-

ous advantages over other techniques (western blot, for 

example), including quickness, a much lower number of 

cells required to perform the assay, and the possibility of 

identifying different subclones in the leukemic population 

by co-immunostaining with multiple antibodies to surface 

antigens. Accordingly, flow cytometry is rapidly becoming 
the choice analytical technique to study PI3K/Akt/mTOR 

pathway activation in AML patients [70, 133, 152, 153]. 

Another promising quantitative technique requiring a lim-

ited number of cells, which has been already applied to the 

study of AML patients samples, is represented by reverse-

phase protein arrays [74].

It is highly unlikely that inhibition of a single signal-

ing pathway will achieve long-lasting remissions or cure in 

AML, especially for refractory/relapsed patients. However, 

combining PI3K/Akt/mTOR inhibitors with conventional 

chemotherapy drugs, differentiation inducers (ATRA and/or 

arsenic trioxide), or innovative (e.g. TRAIL) agents could 

be a very effective therapeutic option for AML patients, as 

indicated by results obtained in pre-clinical settings. 

The spectacular effect of Bcr-Abl tyrosine kinase inhib-

itors, such as imatinib for the treatment of chronic myelog-

enous leukemia (CML) patients in the chronic phase of the 

disease [154], has fed optimism that modulators of signal 

transduction networks might be very effective also in other 

types of cancer. However, clinical trials performed with 

small molecules targeting the PI3K/Akt/mTOR pathway 

have mostly given a disappointing outcome. This fact has 

led to the suggestion that imatinib success in CML may be 

the exception and not the rule, because imatinib is one of 

the few examples of a drug targeting the anomaly which 

constitutes the underlying pathologic event in the forma-

tion of the disorder [155]. Human cancers are known to 

evolve through a multistage process which can extend over 

a period of several years. Therefore, they progressively 

accumulate mutations and epigenetic anomalies in expres-

sion of multiple genes [156]. As a consequence, neoplastic 

disorders are characterized by multiple signaling abnor-

malities and the deregulated pathways are extremely redun-

dant. Furthermore, the hierarchy of anomalies has not been 

established in many tumors. Therefore, it could be very dif-

ficult to find the right target or combinations of target. 
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AML is no exception to this rule. However, the continu-

ous development of molecularly targeted drugs displaying 

higher selectivity, coupled with additional mechanistic 

studies and advances in profiling the signaling networks of 
cancer cells, should make it possible to exploit deregulation 

of the PI3K/Akt/mTOR cascade to achieve more effective 

and less toxic therapies for AML. 
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