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Abstract: The photon PDF of the proton is needed for precision comparisons of LHC

cross sections with theoretical predictions. In a recent paper, we showed how the photon

PDF could be determined in terms of the electromagnetic proton structure functions F2

and FL measured in electron–proton scattering experiments, and gave an explicit formula

for the PDF including all terms up to next-to-leading order. In this paper we give details

of the derivation. We obtain the photon PDF using the factorisation theorem and applying

it to suitable BSM hard scattering processes. We also obtain the same PDF in a process-

independent manner using the usual definition of PDFs in terms of light-cone Fourier

transforms of products of operators. We show how our method gives an exact representation

for the photon PDF in terms of F2 and FL, valid to all orders in QED and QCD, and

including all non-perturbative corrections. This representation is then used to give an

explicit formula for the photon PDF to one order higher than our previous result. We also

generalise our results to obtain formulæ for the polarised photon PDF, as well as the photon

TMDPDF. Using our formula, we derive the Pγi subset of DGLAP splitting functions to

order ααs and α
2, which agree with known results. We give a detailed explanation of the

approach that we follow to determine a photon PDF and its uncertainty within the above

framework.
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1 Introduction

Hard scattering processes involving hadrons can be computed in terms of parton distri-

bution functions (PDFs) fa/T (x, µ
2), the probability to find a parton a with momentum

fraction x in a hadron target T . These distributions depend logarithmically on a renor-

malisation/factorisation scale µ due to radiative corrections. In pp scattering at CERN’s

Large Hadron Collider (LHC), the most important PDFs needed are those of quarks and

gluons in a proton target. The photon PDF is small compared to that of quarks and

gluons, since it is suppressed by a power of the electromagnetic coupling α. However,

knowledge of the photon PDF is becoming more important as the measurements become

increasingly precise: the uncertainty on the photon PDF is becoming a limiting factor in

our ability to predict certain key reactions at the LHC. Some notable examples are the

production of the Higgs boson through W/Z fusion [1], or in association with an outgoing

weak boson [2]. ForW±H production it is the largest source of uncertainty [3]. The photon

distribution is also relevant for the production of lepton-pairs [4–8], top-quarks [9], pairs of

weak bosons [10–16] and generally enters into electroweak corrections for almost any LHC

process.

Previous results on the photon PDF include MRST2004qed [17], NNPDF23 qed [18]

and CT14qed inc [19] (all available within LHAPDF [20]) and the HKR16 set [21]. These

results either have large uncertainties, or rely upon phenomenologically inspired models for

the contribution to the photon PDF from the low-Q2 region. A more detailed discussion of

previous results is given in Ref. [22]. There, we presented a formula for the photon PDF of

the proton fγ(x, µ
2) as an integral over proton structure functions F2(x,Q

2) and FL(x,Q
2),

including all terms of order O(α) and with errors of order O(α2L), O(ααs), where L is the

logarithm of µ divided by some typical hadronic scale.1 It was used to obtain the photon

PDF with . 3% uncertainty over a wide range of x values, 10−5 ≤ x ≤ 0.5. This reduces

the uncertainty by about a factor of forty over previous photon PDF determinations such

as MRST2004qed [17] and NNPDF23 qed [18], which rely on fits to LHC data and/or

1The photon PDF fγ(x, µ
2) is of order αL. The result in Ref. [22] included terms of order α2L2(αsL)

n

and α(αsL)
n, but not of order α2L. By assuming L ≈ 1/αs, and considering that α2

s ≈ α, we see that the

first subleading terms to include are of order α (i.e. one power of L less than the leading term) and of order

α2L2.
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modelling. The main idea in our derivation is that a photon initiated process can be

computed two different ways: in terms of a photon PDF, using the factorisation theorem,

or in terms of the deep inelastic scattering (DIS) hadronic tensor. Equating the two

expressions leads to our result.2 All information needed to extract fγ is thus contained in

ep scattering data. This point of view is implicit also in Refs. [24, 25].

In this paper, we give additional details on the derivation of the photon PDF formula.

We report the explicit calculations performed for the two different hard probes that we

consider: heavy lepton production by a flavour violating magnetic moment interaction,

and scalar production via γγ collisions. We also give an independent derivation of the

formula by defining the photon PDF as the light-cone Fourier transform of the two-point

function of electromagnetic field-strength tensors. Our derivation gives a representation

for the photon PDF which is exact, i.e. valid to all orders in the strong and electromagnetic

interactions. We use this exact representation to obtain expressions for the photon PDF

including all terms of order ααs and α
2, one order higher in αs(µ) or α(µ) than our original

result [22].

In the present work we have slightly revised the photon PDF calculation and error

estimate compared with Ref. [22], also taking into account the new results presented here

(see Sec. 9.2). For this reason, we refer to the photon PDF computed using the method

in this paper as LUXqed17, and that computed using the previous procedure as LUXqed.

The ratio of the two is shown in Fig. 14. As one can see the ensuing changes are very

minor, and confirm the error estimate given in Ref. [22].

Our formula for the photon PDF can be differentiated w.r.t. µ to give the Pγi subset

of the DGLAP splitting functions. The result in Ref. [22] was used to obtain the two-loop

order ααs splitting kernels, which agree with a recent computation [26]. Here, we present

this calculation in detail, including also the computation of the splitting kernels of order

α2, which agree with Ref. [27].

We also give some natural extensions of our results. We obtain the photon transverse

momentum dependent PDF (TMDPDF), and by considering spin-dependent scattering, we

obtain the polarised photon PDF f∆γ(x, µ
2) in terms of the polarised structure functions

g1,2(x,Q
2).

The outline of the paper is as follows. Section 2 introduces our notation and reviews

some known results on QED corrections to the hadronic tensors, which are important for

obtaining our all-orders formula. Sec. 3 gives the derivation of the photon PDF using

heavy-lepton production via a magnetic moment interaction. Section 4 derives the order

ααs and α
2 splitting functions from our photon PDF formula. The extension of our results

to polarised PDFs is given in Sec. 5. Section 6 gives the derivation of the photon PDF

for the polarised and unpolarised cases in terms of PDF operators. The result in this

section is exact, and is also used to obtain the photon TMDPDF. Section 7 uses the exact

result in Sec. 6 to obtain the PDF to order α, ααs and α2
s relative to the leading order

term. In Sec. 8 we discuss the experimental data inputs used for our numerical evaluation

2 The crucial observation that we used in Ref. [22] was inspired in part by Drees and Zeppenfeld’s study

of supersymmetric particle production at ep colliders [23].
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of the photon PDF. In Sec. 9 we give our procedure for estimating errors from missing

higher-order corrections. In Sec. 10 we give all details about the practical implementation

of the photon PDF formula and how the photon is matched to other partons. Some results

on the photon PDF are given in Sec. 11. We present our conclusions in Sec. 12. Useful

technical results are given in the Appendices. Appendix A gives technical details on QED

corrections, App. B discusses the kinematics for our exact representation, App. C derives

the photon PDF using scalar production in γγ collisions, App. D presents the parton model

NLO calculation for the parton level process ql → qL, App. E and F discuss the low-energy

behaviour for F2/L and R, App. G summarises the DIS coefficient and splitting functions

and App. H discusses issues in PDF4LHC15 at low scales.

2 Definitions and notation

To aid the reader, it is useful to introduce some elements of our notation. We will use

dimensional regularisation in D = 4 − 2ǫ dimensions. According to the MS prescription,

the dimensional regularisation scale µ is replaced by µ→ (Sµ), with

S2 =
eγE

4π
. (2.1)

Subtracting only 1/ǫ poles then gives the renormalised result in the MS scheme.

The notation i ∈ {q, l, g, γ}, means a sum over quarks and antiquarks, leptons and

antileptons, photons, and gluons. Similarly for i ∈ {q}, i ∈ {q, g}, i ∈ {q, l, γ}, etc. Colour
multiplicities, when needed, will be denoted by ni and written explicitly, ni = 1 for leptons

and ni = 3 for quarks.

The perturbative expansion of an object O, such as a partonic cross section σ̂ or a

splitting kernel P will be written as

O =
∑

r,s

[
αs(µ

2)

2π

]r [
α(µ2)

2π

]s
O(r,s) . (2.2)

One of the results of this paper is a representation for the photon PDF which is exact,

including all radiative and non-perturbative QED and QCD corrections. This requires a

careful treatment of electromagnetic radiative corrections.3 A brief summary of known

results on electromagnetic radiative corrections and the renormalisation of the electromag-

netic current is given in App. A. We will use the results in the appendix to motivate the

definitions in this section.

We define the physical coupling eph in terms of the vacuum polarisation function

Π(q2, µ2),

e2ph(q
2) =

e2(µ2)

1−Π(q2, µ2)
, (2.3)

3We do not consider electroweak corrections in this paper. These introduce a number of complexities

and will be studied elsewhere.
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which depends on q2, but is independent of µ2 (see Eq. (A.14)). αph(0) = e2ph(0)/4π is the

usual fine structure constant ≃ 1/137.036 measured in atomic physics. Eq. (2.3) is used in

the spacelike region q2 < 0, where Π(q2, µ2) is real.

The proton hadronic tensor, which enters the cross section formula for deep-inelastic

scattering, is defined as

Wµν(p, q, s) =
1

4π

∫
d4z eiq·z〈p, s| [jµ(z), jν(0)] |p, s〉 , (2.4)

where p is the incoming proton momentum, q is the photon momentum (transferred to

the proton) and s denotes the proton spin. Wµν is the discontinuity of the time-ordered

product

Tµν(p, q, s) = i

∫
d4z eiq·z〈p, s|T {jµ(z), jν(0)} |p, s〉 . (2.5)

The discontinuity for q0 > 0 gives the proton hadronic tensor, corresponding to the

jµ(z)jν(0) term in Eq. (2.4). The discontinuity for q0 < 0 is related by crossing to the

anti-proton hadronic tensor and corresponds to the second term of the commutator, which

will not be needed here.

The conventional decomposition ofWµν into structure functions, after requiring Lorentz

invariance, time reversal, parity, and current conservation is

Wµν(p, q, s) = F1

(
−gµν +

qµqν
q2

)
+

F2

p · q

(
pµ −

p · q qµ
q2

)(
pν −

p · q qν
q2

)

+
ig1
p · q ǫµνλσq

λsσ +
ig2

(p · q)2 ǫµνλσq
λ (p · q sσ − s · q pσ) . (2.6)

The proton spin four-vector s is normalised so that p · s = 0, s · s = −m2
p, where mp is the

proton mass. The structure functions F1, F2, g1 and g2 are functions of

xbj =
Q2

2p · q (2.7)

and Q2. We also introduce the longitudinal structure function

FL(xbj, Q
2) ≡

(
1 +

4x2bjm
2
p

Q2

)
F2(xbj, Q

2)− 2xbjF1(xbj, Q
2), (2.8)

and write our results using F2 and FL instead of F2 and F1.

The usual textbook analysis of deep inelastic scattering is at lowest order in the elec-

tromagnetic coupling. In this paper, we are also interested in higher-order electromagnetic

corrections, so we should be careful about the definition of Wµν . We define the hadronic

tensor in Eq. (2.4) to be given by one-photon-irreducible graphs in the current channels,

and including all electromagnetic corrections to the hadronic matrix element. With this

definition, Wµν is µ-independent (see App. A), so the structure functions in the decompo-

sition Eq. (2.6) are also µ-independent, and depend only on xbj and Q2.4 The structure

4If one had instead used the MS current in Eq. (2.4), the structure functions would depend on µ as well

as xbj and Q2.
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(a) (b)

(c) (d) (e)

Figure 1. Graphs contributing to the OPE coefficients, where ⊗ is the electromagnetic current,

the wavy lines are photons, and the spiral lines are gluons; (a) is the lowest order graph, (b) is an

O(α) electromagnetic correction to the quark coefficient, (c) is an O(α) contribution to the photon

coefficient, (d) is an O(αα2
s) correction to the quark coefficient, and (e) is an O(α) contribution to

the quark coefficient, but is one-photon-reducible, and with our prescription does not contribute to

the coefficient functions C2/L

.

functions and Wµν defined in terms of one-photon irreducible graphs will be denoted by

the label 1γI in App. A. In the main text of this paper, we drop this label for simplicity

since we are always referring to the one-photon irreducible hadronic tensor.

The structure functions F2/L can be computed using the QCD improved parton model

formula if Q2 is large,

F2/L(x,Q
2) =

∑

i∈{q,l,g,γ}

∫

zy,x
C2/L,i(z,Q

2, µ) fi(y, µ
2) , (2.9)

where we have introduced the notation
∫

z1···zn,x
=

∫ 1

0
dz1 · · · dzn δ(z1 · · · zn − x) , (2.10)

as the convolution of short distance coefficient functions C2/L,i(x,Q
2, µ) and PDFs fi(x, µ

2),

and the notation ∈ {q, l, g, γ} is defined at the beginning of Sec. 2. A few sample graphs

for C2/L,i(x,Q
2, µ) are shown in Fig. 1 (a-d). The graph in Fig. 1(e) with our prescription

does not contribute to the coefficient functions C2/L,i, as it is one-photon reducible.

3 Photon distribution via a photon-probing process

In this section we will assume that we have at our disposal a BSM (beyond standard model)

photon probe that couples to SM particles only through photon exchange. We neglect weak
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p p

l(k) l(k)

q q

X

L(k′)

Figure 2. The process l + p→ L+X to leading order in 1/Λ, but including QED corrections to

all orders. The blob in the photon propagators represent the full vacuum polarisation correction.

The lower hadronic blob also includes QED corrections.

interactions, and thus do not worry about making this interaction SU(2)×U(1) invariant.

The BSM photon probe combined with factorisation will allow us to determine the photon

PDF, which must be independent of the probe we have chosen. We verify this by performing

the same computation with a different probe in App. C.

The BSM process we consider here involves two neutral spin-1/2 leptons, an incoming

lepton l and an outgoing lepton L with masses zero andM ≫ mp, and momenta k and k′ =

k − q, respectively, with a transition (i.e. flavour violating) magnetic moment interaction

L = c
e(µ)

Λ
Lσµν l Fµν + h.c. . (3.1)

where σµν = i
2 [γ

µ, γν ]. We formally assume the limit Λ → ∞, i.e. we work to lowest order

in 1/Λ. The QED Ward identity Eq. (A.3) implies that c is independent of µ to all orders

in α. With the interaction Eq. (3.1), the interaction vertex is (not including the overall i)

c e(µ)

Λ
u(k − q)

[
/ǫ, /q
]
u(k) . (3.2)

We define the spin-averaged leptonic tensor for the l(k) → L(k′) transition as

Lµν(q, k) =
1

2

c2

Λ2
Tr[/k σµαqα

(
/k
′
+M

)
σνβqβ ] . (3.3)

Evaluating the traces gives

Lµν(q, k) =
4c2

Λ2

[(
M2 +Q2

) (
qµqν −M2gµν

)
+ 4Q2kµkν − 2(M2 +Q2) (kµqν + kνqµ)

]
,

(3.4)

which satisfies the conditions qµL
µν = qνL

µν = 0.

We now show how to express a photon initiated process in terms of hadron structure

functions. The cross section for the process l + p → L +X, depicted in Fig. 2, including

– 6 –



all QED corrections, is

σlp =
1

4p · k

∫
d4q

(2π)4
e4ph(q

2)

q4
(4π)Wµν(q, p) Lµν(q, k) 2πδ((k − q)2 −M2)θ(k0 − q0)

× θ((p+ q)2 −m2
p) θ(p

0 + q0) . (3.5)

This expression is exact. The vertices on the lepton line in the figure give the leptonic

tensor Lµν of Eq. (3.4), and on the lower line give the hadronic tensor 4πWµν , defined

in Eq. (2.4). There are vacuum polarisation corrections, represented as dashed blobs, to

each photon propagator connecting the lepton and hadron sides of the graph, which give

a factor of 1/[1−Π(q2, µ)]2. In addition, there can be arbitrary QED corrections included

in the hadron part of the diagram (except for the one-particle reducible ones) which are

included in our definition of Wµν . QED corrections on the leptonic line are suppressed by

powers of Λ, and disappear in our limit, as do corrections associated with the exchange of

more than one photon.

Eq. (2.3) has been used to convert the powers of e4(µ) together with the factor 1/[1−
Π(q2, µ)]2 into e4ph(q

2). The δ and θ functions for the second line in Eq. (3.5) ensure that L

is on-shell, and has positive energy. The θ functions on the third line of the same equation

ensure that X has positive energy, and m2
X ≥ m2

p, since the proton is the lightest baryon.

The phase space is given by

∫
d4q

(2π)4
2πδ((k − q)2 −M2)θ(k0 − q0)θ((p+ q)2 −m2

p)θ(p
0 + q0)

=
1

16π2M2

∫ 1−
2xmp

M

x
dz

∫ Q2
↑

Q2
↓

Q2dQ2

∫ π

−π

dφ

2π
. (3.6)

Here z and x are defined as

x =
M2

2p · k , z =
x

xbj

, (3.7)

where xbj = Q2/(2p · q) is the usual Bjorken variable. The limits on the Q2 integration are

given by

Q2
↑ = M2

(
1− z

z

) 1− 2x2m2
p

(1−z)M2 +

√
1− 4x2m2

p

(1−z)2M2

2
(
1 +

x2m2
p

zM2

) ,

Q2
↓ =

x2m2
p

1− z

2

1− 2x2m2
p

(1−z)M2 +

√
1− 4x2m2

p

(1−z)2M2

. (3.8)

Expanding the limits in m2
p/M

2 gives

Q2
↑ → Q2

max =
M2(1− z)

z
, Q2

↓ → Q2
min =

m2
px

2

1− z
. (3.9)

Details of the phase space and kinematics computation are given in App. B.
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A straightforward calculation, combining the definition of the hadronic and leptonic

tensors Eqs. (2.6) and (3.4), yields

LµνWµν =
4M4c2

zxΛ2

[(
−z2 − z2Q2

2M2
+
z2Q4

2M4

)
FL(x/z,Q

2)

+

(
2− 2z + z2 +

2x2m2
p

Q2
+
z2Q2

M2
− 2zQ2

M2
−

2x2Q2m2
p

M4

)
F2(x/z,Q

2)

]
, (3.10)

that, together with Eq. (3.5) and the phase space Eq. (3.6), gives

σlp =
σ0

2πα(µ)

∫ 1−
2xmp

M

x

dz

z

∫ Q2
↑

Q2
↓

dQ2

Q2
α2
ph(−Q2)

[(
−z2 − z2Q2

2M2
+
z2Q4

2M4

)
FL(x/z,Q

2)

+

(
2− 2z + z2 +

2x2m2
p

Q2
+
z2Q2

M2
− 2zQ2

M2
−

2x2Q2m2
p

M4

)
F2(x/z,Q

2)

]
, (3.11)

where

σ0 ≡
4πc2e2(µ)

Λ2
. (3.12)

The final cross section depends on x, which is fixed by the external kinematic variables M

(the mass of L), and 2p · k = s−m2
p, where

√
s is the centre-of-mass energy.

We stress again that Eq. (3.11) is exact as long as Λ suppressed terms are neglected,

αph is exact, and F2/L are defined from the full one-particle irreducible hadronic tensor

including QED corrections.

We now turn to the calculation of the cross section using the QCD improved parton

model formula

σlp(p) =
∑

j∈{q,l,g,γ}

∫
dy σ̂lj(yp) fj(y, µ

2) , (3.13)

where fj are the PDFs of the proton. The PDFs are in the MS scheme if the partonic hard

scattering cross sections σ̂ are computed in the MS scheme. Power corrections of the form

m2
p/M

2 or m2
p/(2p · k) are neglected. Expanding this formula in the coupling constants

yields

σlp(p) =

∫
dy σ̂

(0,0)
lγ (yp) fγ(y, µ

2) +
α(µ2)

2π

∑

j∈{q,l}

∫
dy σ̂

(0,1)
lj (yp) fj(y, µ

2) + · · · (3.14)

The diagrams corresponding to σ̂
(0,0)
lγ and σ̂

(0,1)
lj are shown in Fig. 3. The first diagram is

the lowest order term, involving directly the proton photon-density. The second diagram

is the next-to-leading correction of relative order α, involving the proton charged-fermions

densities. The contribution corresponding to the rightmost graph yields zero in the MS

scheme since we consider massless fermions, since at this order in collinear factorisation the

photon is implicitly on shell and so the vacuum polarisation is evaluated at zero virtuality.

Thus the index j in the sum is restricted in practice to the charged fermions only.
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Figure 3. Leading and next-to-leading graphs for the process l + γ → L in the QCD improved

parton model.

At this point a comment is in order. We can systematically compute the cross section

assuming that α and αs are of the same size, and that the parton densities themselves are

formally all of the same order. We dub this counting of the order “democratic”, and adopt

it here in what follows, since it is more transparent. In the democratic order-counting, the

index i appearing in Eq. (3.14) should also run over leptons. Furthermore, neglected terms

are of second order in both α and αs, i.e. of order α
2 and ααs (the α

2
s term being absent),

relative to the Born term.

For phenomenological applications, however, we will take into account the fact that

α is smaller than αs, using as a guideline the relation α ≈ α2
s. We dub this counting

“phenomenological”. According to it, the photon density of the proton is of order αL with

respect to a quark density, L being a log of µ2 over some typical hadronic scale. We can

assume L ≈ 1/αs. In this framework the contributions corresponding to the first and second

diagram in Fig. 3.14 are respectively of order α2L, α2, while the last graph is formally of

order α3L ≈ α2αs (but is zero in the MS scheme). The next-to-leading correction is of

relative order 1/L ∼ αs, rather than of order α (as in the democratic counting), with

respect to the Born term. In the middle diagram of Fig. 3 light leptons can be excluded,

since their PDF is of order L2α2, and their contribution is of order α4L2.5

The cross section for the process σ(l + q → L+ q), illustrated in the middle graph of

Fig. 3, is easily computed with standard methods. Details of the calculation are given in

App. D. We get

σ̂
(0,0)
lγ (yp) = σ0M

2δ(ŝ−M2) ,

(3.15)

σ̂
(0,1)
li (yp) = e2i σ0

α(µ2)

2π

[
−2 + 3z + zpγq(z)

(
log

M2

µ2
+ log

(1− z)2

z

)]
, (3.16)

where σ0 is given in Eq. (3.12), ŝ = ys, z =M2/ŝ = x/y and

pγq(z) ≡
1 + (1− z)2

z
. (3.17)

5Unless one considers the photon content of partially stripped ions [28].
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This yields

σlp(p) = σ0

{
xfγ/p(x, µ

2) +
α(µ)

2π

∫ 1

x

dz

z

[
zpγq(z)

(
log

M2(1− z)2

zµ2

)
+ 3z − 2

]
×

∑

i∈{q,l}

e2i
x

z
fi

(x
z
, µ2
)
+O(ααs, α

2)

}
, (3.18)

where the index i runs over fermions and antifermions (both quarks and leptons, although

the lepton contribution is beyond our accuracy).

We now go back to our exact expression Eq. (3.11). Neglecting power suppressed

mp/M terms in the integration limits, it can be written as

σlp(p) =
σ0

2πα(µ)

∫ 1

x

dz

z

∫ Q2
max

Q2
min

dQ2

Q2
α2
ph(−Q2)

[
− z2 FL(x/z,Q

2) +

(
zpγq(z) +

2x2m2
p

Q2

)
F2(x/z,Q

2)

]

+
σ0

2πα(µ)

∫ 1

x

dz

z

∫ Q2
max

Q2
min

dQ2

Q2
α2
ph(−Q2)

[(
−z

2Q2

2M2
+
z2Q4

2M4

)
FL(x/z,Q

2)

+

(
z2Q2

M2
− 2zQ2

M2
−

2x2Q2m2
p

M4

)
F2(x/z,Q

2)

]
, (3.19)

where we have separated the part of the integral which is sensitive to the full accessible

range of Q2 values, including low Q2, in the first two lines, from the part that is dominated

by high Q2 in the last two lines. We now simplify this expression in order to match the

accuracy of the corresponding parton model formula Eq. (3.18).

Notice that the FL term in the third line can be dropped, since FL is of order αs or

α, and would yield to a contribution beyond our accuracy. This same argument cannot

be applied to the second line of Eq. (3.19), since in this case a logarithmic integral in Q2

compensates for the extra power of the strong coupling. In the last line, within the same

accuracy, we can replace F2(x/z,Q
2) and α2

ph(−Q2) with F2(x/z, µ
2) and α2(µ) where µ is

a scale of order M . Performing the Q2 integral and dropping terms suppressed by m2
p/M

2,

we obtain

σlp(p) = σ0

{
1

2πα(µ)

∫ 1

x

dz

z

∫ Q2
max

Q2
min

dQ2

Q2
α2
ph(−Q2)

[
− z2 FL(x/z,Q

2)

+

(
zpγq(z)+

2x2m2
p

Q2

)
F2(x/z,Q

2)

]
+
α(µ)

2π

∫ 1

x

dz

z
(z−2)(1−z)F2(x/z, µ

2)+O(ααs, α
2)

}
.

(3.20)
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We now define a “physical” photon PDF

xfPFγ (x, µ2) ≡ 1

2πα(µ)

∫ 1

x

dz

z

∫ µ2

1−z

Q2
min

dQ2

Q2
α2
ph(−Q2)

×
[
− z2 FL(x/z,Q

2) +

(
zpγq(z) +

2x2m2
p

Q2

)
F2(x/z,Q

2)

]
. (3.21)

The reason for the upper limit on the integration will become clear later. The terminology

“physical” is associated with the fact that when we consider the transverse-momentum

dependent photon PDF in Sec. 6.3, the latter’s integral up to k2⊥ ≤ µ2 will coincide with

Eq. (3.21). As we will see below, Eq. (3.21) includes the αL contribution to the photon

PDF, but not the total α piece.

Combining Eq. (3.21) with Eq. (3.20), we obtain

σlp(p) = σ0

{
xfPFγ (x, µ2) +

1

2πα(µ)

∫ 1

x

dz

z

∫ Q2
max

µ2/(1−z)

dQ2

Q2
α2
ph(−Q2)

[
− z2 FL(x/z,Q

2)

+

(
zpγq(z)+

2x2m2
p

Q2

)
F2(x/z,Q

2)

]
+
α(µ)

2π

∫ 1

x

dz

z
(z−2)(1−z)F2(x/z, µ

2)+O(ααs, α
2)

}
.

(3.22)

Since the remaining Q2 integral is now dominated by large Q2 values, we can evaluate it

with the same approximations used earlier, and get

σlp(p) = σ0

{
xfPFγ (x, µ2) +

α(µ)

2π

∫ 1

x

dz

z

[
(z − 2)(1− z) + zpγq(z) log

(
M2(1− z)2

µ2z

)]
F2(x/z, µ

2) +O(ααs, α
2)

}
. (3.23)

Now consider the parton model formula for the same cross section, Eq. (3.18). Using

the lowest order expression in αs(µ), α(µ)

F2(xbj, µ
2) =

∑

i

e2i xbj fi(xbj, µ
2) , (3.24)

and comparing Eq. (3.23) with Eq. (3.18), we get

xfγ(x, µ
2) = xfPFγ (x, µ) +

α(µ)

2π

∫ 1

x

dz

z

(
−z2

)
F2(x/z, µ

2) +O(ααs, α
2) . (3.25)

The l.h.s. is the desired result, the photon PDF in the MS scheme. The r.h.s. expresses

it as an integral over lepton-proton scattering structure functions. The first term is given

in Eq. (3.21), and we refer to the second term as the “MS-conversion term”. The upper

integration limit in Eq. (3.21) was chosen to be µ2/(1− z) so that the logarithms cancelled
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between Eq. (3.23) and Eq. (3.18). Writing the first term explicitly gives

xfγ(x, µ
2) =

1

2πα(µ)

∫ 1

x

dz

z

{∫ µ2

1−z

Q2
min

dQ2

Q2
α2
ph(−Q2)

[
− z2 FL(x/z,Q

2)

+

(
zpγq(z) +

2x2m2
p

Q2

)
F2(x/z,Q

2)

]
− α2(µ) z2F2(x/z, µ

2)

}
+O(ααs, α

2) . (3.26)

Formula Eq. (3.26) is independent of the particular probe process that we have chosen. In

App. C we verify this by carrying out the same derivation using as a probe the production

of a scalar particle via photon-photon fusion and using PDF operators in Sec.6. A more

direct method of obtaining Eq. (3.26) is illustrated in Sec. 6, and will be used in Sec. 7 to

extend its accuracy to higher orders.

Examining Eq. (3.26) according to our “phenomenological” counting, the dominant

terms under the Q2 integration are of order αL, and the MS-conversion term is of order

α. For the contribution of terms under the Q2 integration, we should be careful to include

terms of relative order αL in both αph and F2. These, together with the L coming from

the logarithmic integration, yield corrections of order α2L2 ≈ αα2
sL

2 ≈ α. Thus αph(−Q2)

can be replaced with α(Q2), since they differ by terms of relative higher order in α without

powers of L enhancement. We plan to extract F2/L at low and moderate Q2 directly from

data, while for high Q2 we will compute it using available PDF parametrisations. Thus

the discussion of its accuracy is more delicate, and we postpone it to Sec. 8.

4 Connection with splitting functions

From our formula for fγ , Eq. (3.26), we can derive formulæ for the splitting functions of

the photon. To this end we will adopt the “democratic” counting, taking Eq. (3.26) at

full leading order accuracy in α and αs, and treating the two couplings as if they were of

the same order. Neglected terms are therefore of order α2 and ααs, while α
2
s is obviously

absent.

In order to simplify our notation we will use the following conventions. When we write

the PDFs or the MS couplings without a scale argument, we imply that the scale is µ2.

Furthermore we will adopt the normalisation convention

µ2
d

dµ2
fa(x) =

∑

b

∫

zy,x
Pab(z)fb(y) , (4.1)

and the convolution is defined in Eq. (2.10).

The DIS coefficient functions have the expansion

C2/L,i =
∑

r,s

(αs
2π

)r ( α
2π

)s
C

(r,s)
2/L,i . (4.2)

where

F2/L(x) =
∑

i∈{q,l,g,γ}

x

∫

yz,x
C2/L,i(z)fi(y) . (4.3)
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We also define

αph(−Q2) = α(µ2)
∑

r,s

(αs
2π

)r ( α
2π

)s
c
(r,s)
ph (Q2, µ2) , (4.4)

with

c
(0,0)
ph (Q2, µ2) = 1 ,

c
(1,0)
ph (Q2, µ2) = 0 ,

c
(0,1)
ph (Q2, µ2) =


1

2

∑

i∈{q}

e2i



(
−10

9
+

2

3
log

Q2

µ2

)
. (4.5)

The factor of 1/2 inside the parenthesis is due to the fact that we sum over all charged

fermions and antifermions. In the following we will also use the notation

c
(0,1)
ph ≡ c

(0,1)
ph (µ2, µ2) . (4.6)

The RG equation for the QED coupling is

µ2
dα

dµ2
= −1

2
α
∑

r,s

(αs
2π

)r ( α
2π

)s
b
(r,s)
qed . (4.7)

We have

b
(0,1)
qed = −4

3


1

2

∑

i∈{q,l}

nie
2
i


 , b

(0,2)
qed = −2


1

2

∑

i∈{q,l}

nie
4
i


 , b

(1,1)
qed = −2CF


1

2

∑

i∈{q}

e2i


 ,

(4.8)

where ni is 3 for quarks and 1 for leptons. Furthermore we define

pqq(x) ≡ CF

(
1 + x2

1− x

)

+

, pqedqq (x) ≡
(
1 + x2

1− x

)

+

,

pqg(x) ≡ TF
(
x2 + (1− x)2

)
, pqγ(x) ≡ x2 + (1− x)2 . (4.9)

We now begin by re-writing Eq. (3.26) with a suitable change in the upper limit of integra-

tion and dropping power-suppressed terms, in order to ease the derivation of the evolution

equation:

xfγ(x, µ
2) =

1

2πα(µ2)

∫

zy,x

{∫ µ2

Q2
min

dQ2

Q2
α2
ph(−Q2)

[
−z2FL(y,Q2) +

(
zpγq(z) +

2x2m2
p

Q2

)
F2(y,Q

2)

]

+

∫ µ2

1−z

µ2

dQ2

Q2
α2
ph(−Q2)zpγq(z)F2(y,Q

2)− α2(µ2)z2F2(y, µ
2)

}
+O(ααs, α

2)

=
1

2πα(µ2)

∫

zy,x

{∫ µ2

Q2
min

dQ2

Q2
α2
ph(−Q2)

[
−z2FL(y,Q2) +

(
zpγq(z) +

2x2m2
p

Q2

)
F2(y,Q

2)

]

−α2(µ2)[z2 + log(1− z)zpγq(z)]F2(y, µ
2)

}
+O(ααs, α

2) . (4.10)
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To find the evolution equation, we compute

x

α

d (αfγ(x))

d logµ2
=

∫

zy,x

{
α2
ph(−µ2)
2πα

[−z2FL(y) + zpγq(z)F2(y)]

−(z2 + log(1− z)zpγq(z))

[
1

π

dα

d logµ2
F2(y) +

α

2π

dF2(y)

d logµ2

]}
+O(αα2

s, α
2αs, α

3) ,

where we have neglected terms suppressed by powers of m2
p/µ

2 and, for ease of notation,

we have omitted the µ-dependence in the coupling and parton densities. In the first line

we must use for αph(−µ2) and F2/L expressions that are accurate at order αs and α:

αph(−µ2) = α
(
1 +

α

2π
c
(0,1)
ph

)
, (4.11)

FL(y) = y

∫

vw,y

{
αs
2π

∑

i∈{q}

C
(1,0)
L,i (v)fi(w) +

α

2π

∑

i∈{q,l}

C
(0,1)
L,i (v)fi(w)

+
αs
2π
C

(1,0)
L,g (v)fg(w) +

α

2π
C

(0,1)
L,γ (v)fγ(w)

}
, (4.12)

F2(y) = y

∫

vw,y

{
∑

i∈{q,l}

e2i fi(w)δ(1− v) +
αs
2π

∑

i∈{q}

C
(1,0)
2,i (v)fi(w)

+
α

2π

∑

i∈{q,l}

C
(0,1)
2,i (v)fi(w) +

αs
2π
C

(1,0)
2,g (v)fg(w) +

α

2π
C

(0,1)
2,γ (v)fγ(w)

}
,(4.13)

where the coefficient functions are given in App. G. In the second line, the derivatives of

F2 and α are only needed to leading order. We have

dF2(y)

d logµ2
= y

∫

vw,y

{∑

i∈{q}

e2i
αs
2π

[pqq(v)fi(w) + pqg(v)fg(w)]

+
∑

i∈{q,l}

e4i
α

2π
[pqedqq (v)fi(w) + nipqγ(v)fγ(w)]

}
, (4.14)

dα

d logµ2
= −1

2
b
(0,1)
qed α

α

2π
. (4.15)
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Inserting these expressions we get

dfγ(x)

d logµ2
= −1

2

[
−b(0,1)qed

α

2π
− b

(1,1)
qed

ααs
(2π)2

− b
(0,2)
qed

( α
2π

)2]
fγ(x) +

+

∫

zvw,x

α

2π

{
−z
[
αs
2π

∑

i∈{q}

C
(1,0)
L,i (v)fi(w) +

α

2π

∑

i∈{q,l}

C
(0,1)
L,i (v)fi(w) +

αs
2π
C

(1,0)
L,g (v)fg(w)

+
α

2π
C

(0,1)
L,γ (v)fγ(w)

]
+ pγq(z)

[(
1 + 2

α

2π
c
(0,1)
ph

) ∑

i∈{q,l}

e2i fi(w)δ(1− v)

+
αs
2π

∑

i∈{q}

C
(1,0)
2,i (v)fi(w) +

α

2π

∑

i∈{q,l}

C
(0,1)
2,i (v)fi(w) +

αs
2π
C

(1,0)
2,g (v)fg(w)

+
α

2π
C

(0,1)
2,γ (v)fγ(w)

]
− (z + log(1− z)pγq(z))×

[
− α

2π
b
(0,1)
qed

∑

i∈{q,l}

e2i fi(w)δ(1− v)

+
αs
2π

∑

i∈{q}

e2i (pqq(v)fi(w) + pqg(v)fg(w))

+
α

2π

∑

i∈{q,l}

e4i (p
qed
qq (v)fi(w) + nipqγ(v)fγ(w))

)]}
+ O

(
αsα

2, α2
sα, α

3
)
. (4.16)

We can now read off from Eq. (4.16) the splitting function coefficients,

P (0,1)
γγ (z) =

1

2
b
(0,1)
qed δ(1− z) , (4.17)

P
(0,1)
γi (z) = e2i pγq(z) , (4.18)

P (1,1)
γγ (z) =

1

2
b
(1,1)
qed δ(1− z) , (4.19)

P (0,2)
γγ (z) =

1

2
b
(0,2)
qed δ(1− z) +

∫

wy,z

[
−wC(0,1)

L,γ (y) + pγq(w)C
(0,1)
2,γ (y)

−
(
w + log(1− w)pγq(w)

)∑

i

nie
4
i pqγ(y)

]
, (4.20)

P (1,1)
γq (z) =

∫

wy,z

[
pγq(w)C

(1,0)
2,q (y)− (w + log(1− w)pγq(w))e

2
qpqq(y)− wC

(1,0)
L,q (y)

]
, (4.21)

P
(0,2)
γi (z) = e2i pγq(z)2c

(0,1)
ph + (z + log(1− z) pγq(z))e

2
i b

(0,1)
qed

+

∫

wy,z

[
pγq(w)C

(0,1)
2,i (y)− (w + log(1− w)pγq(w))e

4
i p

qed
qq (y)− wC

(0,1)
L,i (y)

]
, i ∈ {q, l}

(4.22)

P (1,1)
γg (z) =

∫

wy,z

[
pγq(w)C

(1,0)
2,g (y)− (w + log(1− w)pγq(w))

∑

i∈{q}

e2i pqg(y)− wC
(1,0)
L,g (y)

]
.

(4.23)

The order α kernels P (0,1) agree with the known expressions given in Ref. [29]. Notice that

P
(0,1)
γγ has the correct sign, because our photon PDF Eq. (3.26) is proportional to 1/α(µ),

not α(µ). The order αs and α coefficient functions for F2/L are summarised in App. G.
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Evaluating the convolutions for Eqs. (4.21) and (4.23), we get full agreement with the

recent calculation in Ref. [26], Eqs. (35, 36) and (30). Similarly, evaluating the integrals

of the second order QED splitting functions, Eqs. (4.20) and (4.22), we find full agreement

with formulae (3.9) and (3.21) of Ref. [27]. It is remarkable that our expression for the

photon PDF gives the DGLAP evolution kernel to one higher order in the couplings than

was present in the input coefficient functions. Specifically we obtained the (two-loop) order

ααs and α
2 Pγi splitting kernels using coefficient functions at (one-loop) order αs and α.

5 Spin dependent case

There is an extensive experimental and theoretical effort to understand the polarised gluon

distribution in the proton, and ∆g, the gluon contribution to the proton spin [30–33]. ∆γ

is the photon analogue of ∆g. Since photons and gluons both couple to quarks via a γµ

interaction, ∆γ could shed some light on ∆g.

The results of Sec. 3 can be readily generalised to the spin-dependent case, to obtain

the polarised photon PDF of a proton of helicity H, the difference between the probabilities

to find photons with spin parallel and anti-parallel to the proton spin in a longitudinally

polarised proton target.

The derivation here of the polarised photon PDF follows that for the unpolarised

PDF, using the polarisation asymmetry in the cross sections instead of the spin-averaged

cross sections. We start with the same interaction Lagrangian as before, Eq. (5.1). The

difference between the cross sections for right-handed and left-handed leptons to scatter off

a longitudinally polarised proton with helicity H to order ασ0 is, using Eq. (2.6) for Wµν ,

1

2
(σlRpH − σlLpH ) =

1

2πα(µ2)
σ0

∫
dz

z

∫ Q2
max

Q2
min

dQ2

Q2
α2
ph(−Q2)

{
H

(
4− 2z −

4m2
px

2

Q2
−

4m2
px

2Q2

M4
−

8m2
px

2

M2
− 2zQ2

M2

)
xg1(x/z,Q

2)

−H

(
8m2

px
2

zM2
+

8m2
px

2

zQ2

)
xg2(x/z,Q

2)

}
. (5.1)

To obtain the photon polarised parton density f∆γ , we use the factorisation formula

σlhpH (p) =
∑

is

∫
dx σ̂lhis(xp)fis/pH (x, µ

2) , (5.2)

for the scattering of a lepton l with helicity h off a target p with helicity H. The sum on

is is over all partons and their helicities. We use the notation f∆q = fqR/pR − fqL/pR for

the polarised parton distributions. Note that fqR/pR = fqL/pL and σlRpR = σlLpL , etc. by

parity invariance. Since f∆γ is of order α, we need the photon hard-scattering cross section

to lowest order,

1

2
[σ̂lRγR − σ̂lLγR ] = σ0M

2δ(s−M2) , (5.3)
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where σ0 is given in Eq. (3.12). Observe that the total (spin averaged) cross section is

given by

1

2
[σ̂lRγR + σ̂lLγR ] = σ0M

2δ(s−M2) , (5.4)

and this implies, together with Eq. (5.3), that σ̂lLγR = 0. This result is easily understood.

We can look at the cross section in the centre-of-mass frame where we collide a right moving

left-handed lepton onto a left moving right-handed photon, forming a heavy lepton at rest.

By angular momentum conservation, the heavy lepton must have Jz = 3/2 along the

collision axis, which is not possible for a spin-1/2 particle. This simple argument confirms

the correctness of the sign in Eq. (5.3).

The polarisation asymmetry to order ασ0 is

1

2
[σlRqR − σlLqR ] =

α(µ)σ0
2π

{
x(2− x)

[
−1

ǫ
+ ln

M2(1− x)2

xµ2

]
− 3x(1− x)

}
, (5.5)

where the 1/ǫ term is an infrared divergence, and we have used the ’t Hooft-Veltman scheme

for γ5. Combining with Eqs. (5.2) and (5.3) and performing the MS subtraction we get

1

2
[σlRpH − σlLpH ] = σ0H

{
xf∆γ(x, µ

2) +
α(µ)

2π

∫ 1

x

dz

z

[
z(2− z)

(
log

M2(1− z)2

zµ2

)

− 3z(1− z)

]
×
∑

i

e2i
x

z
f∆i

(x
z
, µ2
)
+O(ααs, α

2)

}
. (5.6)

We now have all the ingredients necessary to determine the polarised photon PDF.

We follow the derivation for the unpolarised case given in Sec. 3. Define, as before, the

polarised PDF in a “physical factorisation” scheme

fPF∆γ (x, µ
2) =

1

2πα(µ2)

∫
dz

z

∫ µ2

1−z

Q2
min

dQ2

Q2
α2
ph(−Q2)

{(
4− 2z −

4m2
px

2

Q2

)
g1(x/z,Q

2)−
(
8m2

px
2

zQ2

)
g2(x/z,Q

2)

}
, (5.7)

by dropping the 1/M2 suppressed terms in Eq. (5.1).

As in Sec. 3, the integral in Eq. (5.1) can be written as the integral for the terms

included in Eq. (5.7), divided into the range Q2
min → µ2/(1 − z) and µ2/(1 − z) → Q2

max,

plus the integral over the remaining terms. The remaining integrals only get contributions

from Q2 of order M2, since µ ∼ M , and so contain no large logarithms. Since Q2 is large

over the integration region, we can replace g1(x/z,Q
2) by g1(x/z, µ

2) and α2
ph(−Q2) by

α(µ2) up to corrections of order αs(µ
2) and α(µ2). The integral is now trivial, and gives

1

2
[σlRpH − σlLpH ] = Hσ0xf

PF
∆γ (x, µ

2) +
α(µ2)

2π
Hσ0

∫
dz

z

{

+ 2(2− z) log
M2(1− z)2

µ2z
− 2(1− z)

}
xg1(x/z, µ

2) . (5.8)
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The g1 structure function is

g1(x,Q
2) =

1

2

∑

q

e2q

∫

yz,x

{
C∆q(y)∆q(z,Q

2) + C∆g(y)⊗∆g(z,Q2)
}
, (5.9)

where C∆q = δ(1− z) to lowest order in αs. Comparing Eqs. (5.6, 5.8) we get

f∆γ(x, µ
2) =

1

2πα(µ2)

∫
dz

z

{∫ µ2

1−z

Q2
min

dQ2

Q2
α2
ph(−Q2)

[(
4− 2z −

4m2
px

2

Q2

)
g1(x/z,Q

2)−
(
8m2

px
2

zQ2

)
g2(x/z,Q

2)
]

+ α2(µ2)
[(

2(2− z) log
M2(1− z)2

µ2z
− 2(1− z)

)

−
(
2(2− z) log

M2(1− z)2

µ2z
− 6(1− z)

)]
g1(x/z,Q

2)

}

=
1

2πα(µ2)

∫
dz

z

{∫ µ2

1−z

Q2
min

dQ2

Q2
α2
ph(−Q2)

[(
4− 2z −

4m2
px

2

Q2

)
g1(x/z,Q

2)−
(
8m2

px
2

zQ2

)
g2(x/z,Q

2)
]

+ α2(µ2)
[
4(1− z)

]
g1(x/z,Q

2)

}
, (5.10)

for the polarised photon PDF. Note that the log terms cancel. Taking the first moment of

our result, Eq. (5.10) gives ∆γ, the photon contribution to the proton spin.

As in the unpolarised case, we have checked that the process γγ → S gives the same

result. Furthermore, we can easily derive from these expressions a number of polarised

splitting functions involving the photon. The expressions are similar to those in Eqs. (4.17–

4.23), but we don’t give them here.

6 Alternative derivation using PDF operators

6.1 Collinear photon PDF

We have derived the photon PDF by using factorisation applied to two different processes,

l + p → L +X and γ + p → S +X in Secs. 3, 5 and App. C, and shown that we get an

MS PDF that is process independent. PDFs can also be defined as the matrix element of

a PDF operator, which is a light-cone Fourier transform of a two-point function [34], and

does not depend on using a probe process. This has the advantage that it yields much

simpler calculations. In this section, we derive the photon PDF using PDF operators. We

will exploit the simplicity of this method when going to higher orders in the next section.

The operator PDF definition is manifestly process independent, and directly gives the

MS PDF. The photon PDF operator can be obtained by analogy with the gluon PDF
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(a) (b)

Figure 4. Matrix elements of the PDF operator in a proton state. The graphs include arbitrary

radiative corrections to the hadron tensor, represented schematically by the single photon loop

correction.

operator in Ref. [34] by replacing the gluon field-strength tensor Gµν by the photon field-

strength Fµν , and dropping the Wilson line, since Fµν is gauge invariant:

fγ(x, µ
2) = − 1

4πxp+

∫ ∞

−∞
dwe−ixwp

+ 〈p|Fnλ(wn)Fnλ(0) + Fnλ(0)Fnλ(wn)|p〉c . (6.1)

We have introduced a light-like vector n, and we have defined p+ = p·n. We use the notation

Fnλ ≡ nσF
σλ, etc. in this section. The subscript c is a reminder that only the connected

matrix element contributes. The operators are at the same x+ and x⊥ coordinates, and

Fourier transformed along the x− direction. The µ dependence arises because the matrix

element has divergences, and is renormalised in the MS scheme (so that the PDF is in the

MS scheme). All other results in this section are also renormalised in the MS scheme and,

as in Eq. (6.1), we do not explicitly show the counterterms.

The polarised photon PDF can be obtained in the same way from the polarised gluon

PDF [35, 36],

f∆γ(x, µ
2) =

i

4πxp+

∫ ∞

−∞
dw e−ixwp

+ 〈p|Fnλ(wn)F̃nλ(0)− Fnλ(0)F̃nλ(wn)|p〉c , (6.2)

F̃αβ = 1
2ǫαβλσF

λσ, with ǫ0123 = +1, and we conventionally assume that the proton has

positive helicity. The ǫ-tensor is defined to live in the four physical dimensions, according

to the ’t Hooft-Veltman scheme.

The PDFs can be computed from Eqs. (6.1, 6.2). The leading order graphs are shown

in Fig. 4. The key observation is that the lower part of the diagram, the interaction of the

photon with the proton target, is precisely the definition of the hadronic tensor Wµν(p, q),

because the photon interacts with the proton through the electromagnetic current jµ that

appears in Eq. (2.6).6 Note that Eq. (6.1) involves the ordinary product of operators, not

6It is this factorisation property which allows us to compute the photon PDF. There are expressions

analogous to Eqs. (6.1,6.2) with Fµν replaced by Gµν which give the gluon PDF. Since the gluon is a colour

adjoint, there is also a colour Wilson line between the two field strength tensors in the operator product.

The gluon analogue of graphs Fig. 4 cannot be written in terms of experimentally measured proton structure

functions, since the gluon does not couple to the proton via gauge invariant colour singlet operators. In

addition, there are graphs with gluon exchange between the Wilson line and the proton.
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the time-ordered product. The matrix element in Eq. (6.1) can be evaluated by comparing

with the expression for Wµν in Eq. (2.4), which corresponds to taking the discontinuity of

the time-ordered product, Tµν in Eq. (2.5), i.e. evaluating the cut graphs in Fig. 4. The

diagrams give

fγ(x, µ
2) = −e

2(µ2) (Sµ)2ǫ
xp+

∫
dDq

(2π)D
[
2πδ(q+ + xp+) + 2πδ(q+ − xp+)

]
×

[
(n · q)gλµ − qλgnµ

] [
(n · q)gλν − qλgnν

] 1

(q2 [1−ΠD(q2, µ2)])
2×

[
W (D)
µν (p, q) +W (D)

νµ (p,−q)
]
, (6.3a)

f∆γ(x, µ
2) =

ie2(µ2) (Sµ)2ǫ
xp+

∫
dDq

(2π)D
[
2πδ(q+ + xp+)− 2πδ(q+ − xp+)

]
×

[
(n · q)gλµ − qλgnµ

] [
ǫnλαβq

αgβν
] 1

(q2 [1−ΠD(q2, µ2)])
2×

[
W (D)
µν (p, q) +W (D)

νµ (p,−q)
]
, (6.3b)

where S is defined in Eq. (2.1), and ΠD(q
2, µ2) is the MS subtracted polarisation function

computed in D dimensions (i.e. the D = 4 limit is not yet taken).

The two δ-functions arise from the two operator orderings in Eqs. (6.1,6.2), the next

factor in each equation is the Feynman rule for the field-strength tensors, and the last factor

is from the photon propagators and the proton matrix element, which, by definition is the

one-photon irreducible hadron tensor W
(D)
µν . The two contributions are from the direct

and crossed graphs. The formula Eq. (6.3) is exact, and has no QCD or QED corrections,

provided that all QED corrections on the hadronic side are included in the definition of the

structure functions. We stress that also the hadronic tensor appearing in Eq. (6.3) is MS

subtracted, but is evaluated in D dimensions. The limit D → 4 can only be taken after

the overall MS counterterm is added to Eq. (6.3).

The vacuum polarisation factors can be written in terms of αph using Eq. (2.3). The

twoW
(D)
µν terms can be combined by letting q → −q. The hadronic tensorW (D)

µν is non-zero

for 0 ≤ −q2/(2p · q) ≤ 1, so only the q+ < 0 piece contributes, and we find

fγ(x, µ
2) = − 2 (Sµ)−2ǫ

e2(µ2)xp+

∫
dDq

(2π)D
[
2πδ(q+ + xp+)

] e4ph,D(q2)
(q2)2

[
(n · q)2W (D)λ

λ + q2W (D)
nn

]
,

(6.4a)

f∆γ(x, µ
2) =

2i (Sµ)−2ǫ

e2(µ2)xp+

∫
dDq

(2π)D
[
2πδ(q+ + xp+)

] e4ph,D(q2)
(q2)2

(n · q)ǫnµqνW (D)
µν (p, q) . (6.4b)

Here W
(D)
nn =W

(D)
µν nµnν and ǫnµqν = ǫαµβνn

αqβ . The physical coupling constant eph,D, in

analogy to Eq. (2.3), is defined as

e2ph,D(q
2) =

e2(µ2) (µS)2ǫ
1−ΠD(q2, µ2)

, αD(q
2) =

α(µ2) (µS)2ǫ
1−ΠD(q2, µ2)

. (6.5)
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The D dimensional ǫ tensor vanishes if its indices are outside 4 dimensions. The contrac-

tions with Wµν in D = 4− 2ǫ dimensions are

(n · q)2W (D)λ
λ + q2W (D)

nn = (n · q)2
[

1

xbj

FL,D +

(
− 1

xbj

− 2(n · p)
(n · q) − 2(n · p)2xbj

(n · q)2 −
2m2

pxbj

Q2

)
F2,D

+ 2ǫF1,D

]
, (6.6a)

ǫnµqνW
(D)
µν (p, q) =

4ixbj g1,D
Q2

[
Q2

4(n · s) + (n · q)(q · s)
]

− 4ixbj g2,D
Q2

[
2xbj(n · p)(q · s)Q

2
4

Q2
−Q2

4(n · s)
]
, (6.6b)

where xbj = Q2/(2p · q) and the structure functions (F2/1/L,D and g1/2,D) are evaluated at

xbj, Q
2 in D dimensions with standard MS subtraction (i.e., as in the case of the physical

electromagnetic coupling, the limit D = 4 is not yet taken). The second expression depends

on Q2
4 involving only the component of Q in D = 4 dimensions. We have

Q2
4 = Q2 −Q2

−2ǫ (6.7)

where Q2
−2ǫ is the fractional dimension part of Q. Let q+ = −xp+ and z = x/xbj then,

for a right-handed proton moving along the z axis, n = (1, 0, 0,−1), p = (E, 0, 0, p),

s = (p, 0, 0, E),

n · s = n · p , (q · s) = (q · p)−m2
p

n · q
n · p , (6.8)

and Eq. (6.6) becomes

(n · q)2W (D)λ
λ + q2W (D)

nn = −(p+)2
x

z

[
−z2FL,D +

(
z2 − 2z + 2 +

2m2
px

2

Q2

)
F2,D − 2ǫzxF1,D

]
,

(6.9a)

(n · q)ǫnµqνW (D)
µν (p, q) = −(p+)2

x

z
(4ix)

[(
1− z

2
−
m2
px

2

Q2
− Q2

−2ǫ

Q2

)
g1,D

−
2m2

px
2

Q2z

(
1− Q2

−2ǫ

Q2

)
g2,D

]
, (6.9b)

where the structure functions are evaluated at x/z,Q2.

The q integral can be performed by switching to light-cone coordinates,

∫
dDq

(2π)D
=

1

(4π)D/2−1

1

Γ(D/2− 1)

1

2

∫ ∞

−∞

dq+

2π

∫ ∞

−∞

dq−

2π

∫ ∞

−q+q−

(
Q2 + q+q−

)D/2−2
dQ2 .

(6.10)

We also have

xbj =
x

z
=

Q2

2p · q =
Q2

p+q− − xm2
p

=⇒ q− =
1

p+

( z
x
Q2 + xm2

p

)
, (6.11)
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which is used to replace the integration variable q− by z. The q+ integral is evaluated

using the δ-function, leaving the integrals over z and Q2. Q2
−2ǫ is in the ⊥ direction, and

all ⊥ directions are equivalent, so we can make the replacement

Q2
−2ǫ →

D − 4

D − 2
Q2

⊥ =
D − 4

D − 2

(
Q2 + q+q−

)
(6.12)

in evaluating the integrals.

The kinematically allowed region in the z,Q2 plane is

x ≤ z Q2 ≥ −q+q− =⇒ Q2 ≥
m2
px

2

1− z
. (6.13)

The first inequality follows because Wµν vanishes for w ≥ 1, and the second from Q2
⊥ ≥ 0.

The resulting integrals are

fγ(x, µ
2) =

8π

xα(µ2) (Sµ)2ǫ
1

(4π)D/2
1

Γ(D/2− 1)
×

∫ 1

x

dz

z

∫ ∞

m2
px

2

1−z

dQ2

Q2
α2
ph,D(q

2)
(
Q2(1− z)− x2m2

p

)D/2−2×

{
−z2FL,D(x/z,Q2) +

[
2− 2z + z2 +

2m2
px

2

Q2

]
F2,D(x/z,Q

2)− 2ǫzxF1,D(x/z,Q
2)

}
,

(6.14a)

f∆γ(x, µ
2) =

8π

α(µ2) (Sµ)2ǫ
1

(4π)D/2
1

Γ(D/2− 1)
×

∫ 1

x

dz

z

∫ ∞

m2
px

2

1−z

dQ2

Q2
α2
ph,D(q

2)
(
Q2(1− z)− x2m2

p

)D/2−2×

{(
4− 2z −

4m2
px

2

Q2
− 4

D − 4

D − 2

Q2(1− z)− x2m2
p

Q2

)
g1,D(x/z,Q

2)

−
8m2

px
2

Q2z

(
1− D − 4

D − 2

Q2(1− z)− x2m2
p

Q2

)
g2,D(x/z,Q

2)

}
, (6.14b)

with αph,D(q
2) = e2ph,D(q

2)/(4π). This expression for the PDF is exact, and includes QED

radiative corrections if the structure functions are the one-photon-irreducible ones.

We split the Q2 integral into m2
px

2/(1− z) → µ2/(1− z) and µ2/(1− z) → ∞,

fγ(x, µ
2) = fPFγ (x, µ2) + f conγ (x, µ2) , (6.15a)

f∆γ(x, µ
2) = fPF∆γ (x, µ

2) + f con∆γ (x, µ
2) . (6.15b)
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The first part is finite, and gives (by definition of fPFγ,∆γ)

fPFγ (x, µ2) =
1

2πα(µ2)x

∫ 1

x

dz

z

∫ µ2

1−z

m2
px

2

1−z

dQ2

Q2
α2
ph(q

2)

{
−z2FL(x/z,Q2) +

[
2− 2z + z2 +

2m2
px

2

Q2

]
F2(x/z,Q

2)

}
, (6.16a)

fPF∆γ (x, µ
2) =

1

2πα(µ2)

∫ 1

x

dz

z

∫ µ2

1−z

m2
px

2

1−z

dQ2

Q2
α2
ph(q

2)

{(
4− 2z −

4m2
px

2

Q2

)
g1(x/z,Q

2)−
8m2

px
2

Q2z
g2(x/z,Q

2)

}
, (6.16b)

which is the result obtained previously for what was referred to as the “physical factorisa-

tion” PDF, Eqs. (3.21) and (5.7). We automatically get the correct integrand for the PDF,

without dropping any terms, as had to be done for the BSM probes in Sec. 3.

The “MS -conversion” term is the remaining integral over µ2/(1 − z) → ∞ plus the

counterterms. Since Q2 & µ2, we can set m2
p → 0, up to neglected power corrections, and

use Eq. (2.8) to replace 2xF1 by F2 − FL,

f conγ (x, µ2) =
8π (Sµ)−2ǫ

xα(µ2)

1

(4π)D/2
1

Γ(D/2− 1)

∫ 1

x

dz

z
(1− z)D/2−2

∫ ∞

µ2

1−z

dQ2

Q2

(
Q2
)D/2−2

α2
ph,D(q

2)

{
−z2(1− ǫ)FL,D(x/z,Q

2)

+
[
2− 2z + z2 − ǫz2

]
F2,D(x/z,Q

2)

}
, (6.17a)

f con∆γ (x, µ
2) =

8π (Sµ)−2ǫ

α(µ2)

1

(4π)D/2
1

Γ(D/2− 1)

∫ 1

x

dz

z
(1− z)D/2−2

∫ ∞

µ2

1−z

dQ2

Q2

(
Q2
)D/2−2

α2
ph,D(q

2)

{(
4− 2z + 4

ǫ

1− ǫ
(1− z)

)
g1,D(x/z,Q

2)

}
. (6.17b)

Eq. (6.17) is still exact. The integral is over large values of Q, so the q dependence of

αph,D, F2/L,D and g1/2,D can be computed in perturbation theory. The integral does not

involve any large logarithms, since it only involves the scale µ.7

Introducing the dimensionless variable s,

s =
Q2(1− z)

µ2
, (6.18)

7In fact, the integral can instead generate a further 1/ǫ pole, but not logarithms.
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the integrals become

f conγ (x, µ2) =
(Sµ)−2ǫ

2πxα(µ2)µ2ǫ
eǫγE

Γ(1− ǫ)

∫ 1

x

dz

z

∫ ∞

1

ds

s1+ǫ
α2
ph,D(−µ2s/(1− z))×

{
−z2(1− ǫ)FL,D(x/z, µ

2s/(1− z)) +
[
2− 2z + z2 − ǫz2

]
F2,D(x/z, µ

2s/(1− z))

}
,

(6.19a)

f con∆γ (x, µ
2) =

(Sµ)−2ǫ

2πα(µ2)µ2ǫ
eǫγE

Γ(1− ǫ)

∫ 1

x

dz

z

∫ ∞

1

ds

s1+ǫ
α2
ph,D(−µ2s/(1− z))×

{(
4− 2z + 4

ǫ

1− ǫ
(1− z)

)
g1,D(x/z, µ

2s/(1− z))

}
. (6.19b)

The factor of (1 − z)D/2−2 has cancelled, which is why µ2/(1 − z) was chosen as the

intermediate Q2 value to split the integrals.

For the remainder of this section, we restrict to lowest order in α and αs. At this

order, the structure functions do not depend on Q2, and can be evaluated at µ2 without

incurring any large logarithms, and αph,D(q
2) ≈ α(µ2)(µS)2ǫ from Eq. (6.5). Since FL is

order αs, it can be dropped. Evaluating the s integral, and expanding in ǫ gives

f conγ (x, µ2) =
α(µ2)

2πx

∫ 1

x

dz

z

{
1

ǫ

[
2− 2z + z2

]
F2(x/z, µ

2)

}
− z2F2(x/z, µ

2)

}
, (6.20a)

f con∆γ (x, µ
2) =

α(µ2)

2π

∫ 1

x

dz

z

{
1

ǫ
(4− 2z) g1(x/z, µ

2) + 4(1− z)g1(x/z, µ
2)

}
. (6.20b)

The 1/ǫ term is absorbed by the MS counterterm, and one obtains in the MS scheme

fMScon
γ (x, µ2) =

α(µ2)

2πx

∫ 1

x

dz

z
(−z2)F2(x/z, µ

2) +O(α2, ααs) , (6.21a)

fMScon
∆γ (x, µ2) =

α(µ2)

2π

∫ 1

x

dz

z
4(1− z)g1(x/z, µ

2) +O(α2, ααs) . (6.21b)

The PDFs in the MS scheme are thus

fγ(x, µ
2) = fPFγ (x, µ2) + fMScon

γ (x, µ2) +O(α2, ααs) , (6.22a)

f∆γ(x, µ
2) = fPF∆γ (x, µ

2) + fMScon
∆γ (x, µ2) +O(α2, ααs) , (6.22b)

with fPFγ/∆γ(x, µ
2) defined in Eq. (6.16). The results agree with our previous results using

the lγ → L and γγ → S processes.

The derivation in this section shows the PDFs are process independent, since it does

not use any physical process. It also shows how to systematically extend the result to higher

orders. The PF term Eq. (6.16) is exact, and the only corrections are to the MS-conversion

terms Eq. (6.19), which does not contain any large logarithms. The result Eq. (6.22) can be

extended to higher orders using the perturbation expansion for αph,D and for the structure

functions in D dimensions. The result to one higher order is given in Sec. 7. Unlike the

method of the earlier sections, we do not have to compute any hard scattering cross sections

to higher order when using PDF operators.
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6.2 Derivation using an abstract probe

Using the operator definition of the photon PDF avoids the complication of having to

compute a specific probe process. On the other hand, the freedom of choosing an appro-

priate probe process can be exploited to achieve a similar simplicity. In particular we may

consider the following photon probe tensor

Lµν(q, p, n) =
[
−(q+)2gµν + q+(qµnν + qνnµ)− nµnνq2

]

× δ(q+ + xp+)θ(−q2)θ(µ2 − |q2
⊥|), (6.23)

to be contracted with the hadronic tensor in Eq. (3.5). This probe does not refer to any

specific BSM process, and indeed it is difficult to imagine a physical process that would give

rise to this tensor. However, this does not matter as long as the tensor has the appropriate

transversality properties, which implies that the “cross section” can be computed both in

terms of the proton electromagnetic structure functions and in terms of the parton model

formula.

The calculation in terms of structure functions yields

σSF =
1

2p0

∫
d4q

(2π)4
e4ph(q

2)

e2(µ2)

1

q4
4πWµν(q, p)Lµν(q, p, n)

= −2π

p0

∫
d4q

(2π)4
δ(q+ + xp+)θ(µ2 − |q2

⊥|)
e4ph(q

2)

e2(µ2)

1

q4

[
(n · q)2W λ

λ + q2Wnn

]
.(6.24)

The 1/(2p0) is from the incident proton flux, since the proton state is normalised to 2p0.

The parton model calculation yields instead

σPM = σ
(0)
PM + σ

(HO)
PM ,

σ
(0)
PM =

∫
dy

1

2yp0
fγ(y, µ

2)[(yp+)2]δ(−yp+ + xp+) =
p+

2p0
xfγ(x, µ

2) ,

σ
(HO)
PM = −2π

p0

∫
dDq

(2π)D
δ(q+ + xp+)θ(µ2 − |q2

⊥|)

×
(Sµ)−2ǫ e4ph,D(q

2)

e2(µ2)

1

q4

[
(n · q)2W (D)λ

λ + q2W (D)
nn

]
+ c.t. . (6.25)

In the σ
(0)
PM term, the partonic cross section was evaluated by setting q = −py in Eq. (6.23),

contracting it with a −gµν , dividing by the number of photon polarisations inD dimensions,

and dividing by the incident parton flux 2yp0. The σ
(HO)
PM term must be computed in

D dimensions, for incoming massless particles. This leads to the presence of collinear

singularities, that are removed according to the usual factorisation procedure. In order to

write the HO term in the form of Eq. (6.25) we have exploited the fact that all higher-order

corrections must begin with a dressed photon attached to the Lµν tensor on one side, and

to the Wµν tensor on the other side. Again we must assume that the renormalisation and

factorisation procedure has been carried out for the Wµν tensor and the dressed photon,

but their expressions must remain in D dimension until we perform the MS subtraction of
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the divergence arising from the q integration. Our final result is

fγ(x, µ
2) =

2p0

xp+

(
σSF − σ

(HO)
PM

)
. (6.26)

We now notice that the σSF term corresponds exactly to fPFγ , while the σ
(HO)
PM term is

directly related to f conγ . The first correspondence follows from the fact that the θ(µ2−|q2
⊥|)

condition is equivalent to θ(µ2 −Q2(1− z)). In fact, using Eq. (6.11), we find

|q2
⊥| = −q2 + q+q− = Q2 + (−xp+) 1

p+
z

x
Q2 = (1− z)Q2 , (6.27)

up to corrections of order m2
p/µ

2. The second correspondence is slightly more subtle, since

in f conγ the q integration is restricted by |q⊥|2 > µ2, while in σ
(HO)
PM it is restricted by

|q⊥|2 < µ2. On the other hand, the unrestricted integration evaluated in the parton model

limit (i.e. neglecting all masses) is zero in perturbation theory, since it leads to scaleless

integrals which vanish in dimensional regularisation. Thus

f conγ = − 2p0

xp+
σ
(HO)
PM , (6.28)

demonstrating the equivalence of the two procedures.

6.3 The photon TMDPDF

The analysis of the previous section can readily be generalised to obtain the photon trans-

verse momentum dependent PDF (TMDPDF) fγ(x,k⊥, µ
2). The TMDPDF (see Ref. [37]

for a review on TMDPDFs) is given by Eq. (6.1), with the two field-strength tensors sep-

arated by x⊥ and Fourier transforming in x⊥,

fγ(x,k⊥, µ
2) = − 1

4πxp+

∫
dD−2x⊥

∫ ∞

−∞
dwe−ixwp

+×

e−ix⊥·k⊥ 〈p|Fnλ(wn+ x⊥)F
n
λ(0) + Fnλ(x⊥)F

n
λ(wn)|p〉c . (6.29)

In momentum space, it is given by Eq. (6.3) with an insertion of (2π)D−2δ(D−2)(k⊥−q⊥).

The derivation proceeds as in the previous section. The q integral is written as

∫
dDq

(2π)D
=

1

2

∫ ∞

−∞

dq+

2π

∫ ∞

−∞

dq−

2π

∫
dD−2q⊥

(2π)D−2
(6.30)

and the q⊥ and q+ integrals are done using the δ-functions, leaving only the q− integral.

In terms of the variable z = x/w one has

q− =
k2
⊥z + x2m2

p

p+x(1− z)
, (6.31)

so that the q− integral can be replaced by one over z. Defining

Q2 ≡
k2
⊥ + x2m2

p

1− z
, (6.32)
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this leads to

fγ(x,k⊥, µ
2) =

2

α(µ2)x

∫ 1

x

dz

z

α2
ph(q

2)

k2
⊥ + x2m2

p
{
−z2FL(x/z,Q2) +

[
2− 2z + z2 +

2m2
px

2

Q2

]
F2(x/z,Q2)

}
,

f∆γ(x,k⊥, µ
2) =

2

α(µ2)

∫ 1

x

dz

z

α2
ph(q

2)

k2
⊥ + x2m2

p
{(

4− 2z −
4m2

px
2

Q2

)
g1(x/z,Q2)−

8m2
px

2

Q2z
g2(x/z,Q2)

}
. (6.33)

Eq. (6.33) is an exact expression for the TMDPDF if one-photon-irreducible structure

functions are used.

The TMDPDF is connected with our physical factorisation component of the collinear

PDF through the following simple relation:

fPFγ (x, µ2) =

∫
d2k⊥

(2π)2
fγ(x,k⊥, µ

2)Θ(µ2 − k2
⊥) . (6.34)

7 The Photon PDF to higher order

In the previous sections, we obtained the photon PDFs fγ and f∆γ up to corrections of

order α(µ)αs(µ) and α
2(µ), as given in Eqs. (3.26) and (5.10). In Sec. 6, we wrote an exact

formula for the photon PDFs, Eq. (6.14), and we expressed it as the sum of two terms:

fPFγ,∆γ in Eq. (6.16) and f conγ,∆γ in Eq. (6.19). The physical PDF fPFγ,∆γ is a finite integral

that can be evaluated explicitly using measured DIS structure functions, while f conγ,∆γ is an

infinite integral, that needs to be renormalised in the MS scheme to obtain the MS PDF.

The renormalised fMScon
γ,∆γ was computed in perturbation theory in Eq. (6.21) to order α(µ)

to reproduce the earlier results in Eq. (3.26) and Eq. (5.10). In principle, one can extend

the computation of fMScon
γ,∆γ to arbitrarily high orders in perturbation theory. In this section,

we do this to order α(µ)αs(µ) and α2(µ), and adopt our “democratic counting” for the

order in perturbation theory. For the sake of simplicity, we will limit ourselves to the

unpolarised case.

We start with the expression Eq. (6.19a) for f conγ (x, µ2), which we can write in compact

form as

f conγ (χ, µ2) =
α(µ)

2π

eǫγE

Γ(1− ǫ)

∫

xyz,χ

∫ ∞

1

ds

s1+ǫ

[
1

1−Π(−µ2s/(1− z), µ)

]2

{ ∑

I∈{2,L}

∑

a∈{q,l,g,γ}

[pI(z) + ǫrI(z)]× FI,a(x, µ
2s/(1− z)), µ2, ǫ) fa(y, µ

2)

}
. (7.1)

In the sum, I is over 2, L, while a is over all partons. The functions pI and rI are

p2(z) = pγq(z), pL(z) = −z, (7.2)

r2(z) = −z, rL(z) = z . (7.3)
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We stress that the expression [pI + ǫrI ] is exact, i.e. it has no higher order corrections in

ǫ. The coefficient functions F are defined in such a way that

F2,D(x,Q
2)

x
=

∫

zy,x

∑

a∈{q,l,g,γ}}

F2,a(z,Q
2, µ2, ǫ)fa(y, µ

2),

FL,D(x,Q
2)

x
=

∫

zy,x

∑

a∈{q,l,g,γ}

FL,a(z,Q
2, µ2, ǫ)fa(y, µ

2), (7.4)

consistently with the notation of Ref. [38]. They are perturbatively calculable, since µ is a

hard scale.

We now focus upon the O(ααs) term. We only need a ∈ {q, g}. As usual we define

series expansions for F2/L,a and f conγ ,

F2/L,a =

∞∑

i,j=0

(αs
2π

)i ( α
2π

)j
F

(i,j)
2/L,a , (7.5)

f conγ =

∞∑

i,j=0

(αs
2π

)i ( α
2π

)j
f (i,j)γ . (7.6)

At lowest order the only non-vanishing coefficient function is

F
(0,0)
2,q (x) = C

(0,0
2,i (x), C

(0,0
2,i (x) ≡ e2i δ(1− x) for i ∈ {q, l} . (7.7)

For the computation of the O(αsα) corrections we need the coefficient functions to order

αs, including terms of order ǫ,

F
(1,0)
I,a (x,Q2, µ2, ǫ) =

(
µ2

Q2

)ǫ (
− 1

ǫ
B

(1,0)
I,a (x) + C

(1,0)
I,a (x)− ǫa

(1,0)
I,a (x)

)
+

[
1

ǫ
B

(1,0)
I,a (x)

]

c.t.

,

(7.8)

where

B
(1,0)
2,a =

{
pqqe

2
a for a ∈ {q}

pqg
∑

i∈{q} e
2
i for a = g

, B
(1,0)
L,a = 0 . (7.9)

The “c.t.” suffix on the square bracket is there to remind us that the enclosed expression

is an MS counterterm. The CI,a and aI,a coefficients (taken from Ref. [38]) are given in

App. G.

We can substitute the coefficient functions in Eq. (7.1) and evaluate the integral. Note

that

µ2

Q2
→ 1− z

s
, (7.10)

so that the ds integration yields a 1/(2ǫ) for all terms of Eq. (7.8) with the exception of

the terms in square brackets (the counterterms), where it yields a 1/ǫ. The leading term
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is order α(µ)/(2π):

f (0,1)γ (χ, µ2) =

∫

xyz,χ

∑

I∈{2,L}

∑

a∈{q,l}

{(
1

ǫ
pI(z) + rI(z)

)
C

(0,0)
I,a (x)

+

[
−1

ǫ
pI(z)C

(0,0)
I,a (x)

]

c.t.

}
fa(y, µ

2) . (7.11)

Explicitly, the finite part is

f (0,1)γ (x, µ2) =
∑

a∈{q,l}

e2a

∫ 1

x

dz

z
(−z) fa(x/z, µ2) , (7.12)

and gives the result obtained earlier in Eq. (6.21a) when F2 there is replaced by its leading

order approximation. The infinite pieces are cancelled by the counterterms.

The α(µ)αs(µ)/(2π)
2 piece is

f (1,1)γ (χ, µ) =
∑

I∈{2,L}

∑

a∈{q,g}

∫

xyz,χ

{
1

2ǫ2
pI(z)B

(1,0)
I,a (x)

+
1

2ǫ

[
(rI(z)− pI(z) log(1− z))B

(1,0)
I,a (x) + pi(z)C

(1,0)
I,a (x)

]

−
[
1

2
rI(z) log(1− z) + pI(z)

(
1

4
log(1− z) +

π

24

)]
B

(1,0)
I,a (x)

− 1

2
pI(z) log(1− z)C

(1,0)
I,a (x) + pI(z)

1

2
a
(1,0)
I,a (x)− 1

2
rI(z)C

(1,0)
I,a (x)

}
fa(y, µ

2) .

(7.13)

The infinite terms of Eq. (7.13) are cancelled by the MS counterterms for the photon PDF.

The finite part of Eq. (7.13) gives instead the MS-conversion factor at order ααs. In explicit

form, we get:

f (1,1)γ (χ, µ2) =
∑

a∈{q,g}

∫

xyz,χ

{
1

4

[
2z log(1− z)− pγq(z)

(
log2(1− z) +

π2

6

)]
B

(1,0)
2,a (x)

+
1

2
[pγq(z) log(1− z)− z]C

(1,0)
2,a (x)− 1

2
z [log(1− z)− 1]C

(1,0)
L,a (x)

− 1

2
pγq(z)a

(1,0)
2,a (x) +

1

2
za

(1,0)
L,a (x)

}
fa(y, µ

2) . (7.14)

Differentiating the finite parts of the photon PDF at order ααs gives the αα2
s splitting

functions, following the procedure in Sec. 4. The expression is lengthy, involving triple

convolutions, and is not given explicitly here.

The α2 corrections are given by the same equations, with the QCD corrections to the

splitting functions and to the coefficient functions replaced by the QED ones. The only

new feature in the QED correction is the vacuum polarisation contribution from αph,

ΠD(q
2, µ) =

α(µ2)

4π
b
(0,1)
qed

[
6Γ2(2− ǫ)Γ(ǫ)eǫγE

Γ(4− 2ǫ)

(
µ2

−q2
)ǫ

−
[
1

ǫ

]

c.t.

]
, (7.15)
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which gives an additional contribution

f (0,2),vacγ (χ, µ2) =
∑

a∈{q,l}

∫

xyz,χ
b
(0,1)
qed

{
−p2(z)

2ǫ2
+

1

6ǫ
(p2(z)(5 + 3 log(1− z))− 3r2(z))

+ p2(z)

(
1

4
log2(1− z) +

14

9
+

5

6
log(1− z)

)

+ r2(z)

(
1

2
log(1− z) +

5

6

)}
C

(0,0)
2,a (x)fa(y, µ

2) . (7.16)

The final result for the f
(0,2)
γ , reinstating the sum over all flavours, and remembering that

also leptons contribute in the democratic counting, is

f (0,2)γ (χ, µ) =
∑

a∈{q,l,γ}

∫

xyz,χ

{
1

4

[
2z log(1− z)− pγq(z)

(
log2(1− z) +

π2

6

)]
B

(0,1)
2,a (x)

+
1

2
[pγq(z) log(1− z)− z]C

(0,1)
2,a (x)− 1

2
z [log(1− z)− 1]C

(0,1)
L,a (x)

− 1

2
pγa(z)a

(0,1)
2,a (x) +

1

2
za

(0,1)
L,a (x)

}
fa(y, µ

2)

+
∑

a∈{q,l}

b
(0,1)
qed e

2
a

∫

yz,χ

[
1

4
pγq(z) log

2(1− z) +
5

6
pγq(z) log(1− z)

+
14

9
pγq(z)−

1

2
z log(1− z)− 5

6
z

]
fa(y, µ

2) , (7.17)

where

B
(0,1)
2,a =

{
pqedqq e4a for a ∈ {q, l}
pqγ
∑

i∈{q,l} nie
4
i for a = γ.

(7.18)

In summary, the final result for the photon PDF is

fγ(x, µ
2) = fPFγ (x, µ2) + f conγ (x, µ2) , (7.19a)

= fPFγ (x, µ2) +
∑

r≥0,s≥1

(αs
2π

)r ( α
2π

)s
f (r,s)γ (x, µ2) . (7.19b)

The fPFγ contribution was given in Eq. (6.16a), while the f
(0,1)
γ , f

(1,1)
γ and f

(0,2)
γ terms are

given in Eqs. (7.12, 7.14, 7.17). For s ≥ 2, the r.h.s. contains the photon PDF fγ , and

Eq. (7.19) can be solved iteratively for fγ . The QCD correction can be included by sim-

ply adding the f
(r,s)
γ term to the final result. Including QED corrections is more difficult.

The formalism presented here uses the one-photon-irreducible structure functions. To in-

clude QED corrections in a systematic way without double-counting requires experimental

knowledge of the elastic form factors and DIS structure functions in the one-particle ir-

reducible definition. This requires removing two-photon-exchange (TPE) contributions to

the scattering cross sections. However, electromagnetic corrections only on the hadronic

side should not be removed. This makes the analysis simpler than the usual one presented

in the literature, in which QED corrections on the hadronic side are also removed (see,

– 30 –



e.g. [39]). Furthermore, αph(Q
2) should also be evaluated including corrections of order α2

(in our NLO result it was enough to include corrections of order α2L). This requires the

knowledge of the hadronic vacuum polarisation, that, on the other hand, is extracted from

e+e− data (see the review on electroweak physics in Ref. [40]).

In analogy with our analysis in Sec. 4, the f
(1,1)
γ and f

(0,2)
γ coefficients, together with the

two-loop QCD and QED coefficient functions could be used to obtain the P
(r,s)
γi splitting

functions for r + s = 3 and s ≥ 1. We note that the complementary P
(2,1)
qγ and P

(2,1)
gγ

splitting functions have been given in Ref. [41].

8 Inputs for the unpolarised photon distribution

To evaluate the photon parton density we require information on the F2 and FL structure

functions over the full x,Q2 kinematic range. Our evaluation will be up to the accuracy

outlined in section 3, i.e. using L ∼ lnµ2/m2
p, we include terms αL(αsL)

n at lowest order

and α(αsL)
n, α2L2(αsL)

n corrections at higher order. As we proceed we will highlight

issues that arise if one wishes to go to higher accuracy.

The F2 and FL structure functions are most commonly determined from electron–

proton scattering data. A first comment concerns the treatment of electromagnetic correc-

tions to the structure functions. We use the prescription described in Sec. 2, whereby all

electromagnetic corrections to the interaction of a proton with a single photon are included,

with the exception of the photon vacuum polarisation contributions. The treatments of

electromagnetic corrections to data differ in their details according to the kinematic re-

gion considered. However two features emerge: the experimental analyses always correct

for electromagnetic radiation from the incoming electron and they always take out the

photon vacuum polarisation contributions. These are the two elements that are required

for consistency with our accuracy. A more detailed discussion of QED corrections to DIS

measurements is given in section 9 of Ref. [42].

We separate the data inputs according to the kinematic region and the corresponding

final state in ep scattering. The main kinematic variables for the separation will be Q2 and

W 2 where

W 2 = m2
p +

1− xbj

xbj

Q2 , (8.1)

is the squared invariant mass of the outgoing system associated with the hadronic side of

the collision.

8.1 Elastic contribution

In our definition, the elastic contribution corresponds to the region of W < mp + mπ0 .

In particular it includes configurations where one or more photons are radiated from the

proton.8 Experimental data on elastic scattering is usually corrected for radiation from the

8For the determination of the structure functions we find it useful to think of a process in which there can

be at most one exchanged photon between the probe and the proton, as in the process of Sec. 3. In actual

electron-proton scattering experiments there can be two or more exchanged photons, either real of virtual.

These corrections are beyond our accuracy and cannot be classified in terms of the usual electromagnetic

structure functions, since they correspond to a more complex tensor structure.
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proton, since the measurements are performed with the goal of extracting the electric and

magnetic Sachs form factors of the proton, GE and GM respectively. The correspondence

between the form factors and the structure functions (see e.g. Eqs.(19) and (20) of Ref. [43])

is given by

F el
2 (xbj, Q

2) =
[GE(Q

2)]2 + [GM (Q2)]2τ

1 + τ
δ(1− xbj) , (8.2a)

F el
L (xbj, Q

2) =
[GE(Q

2)]2

τ
δ(1− xbj) , (8.2b)

where τ = Q2/(4m2
p). The approximation of F2 and FL as δ-functions neglects precisely the

photon radiation from the proton. However, most of the radiation is soft and so cancels in

inclusive quantities and all that changes when going beyond the δ-function approximation

is a relative O (α) correction (free of any logarithms) to the photon distribution, which is

beyond our accuracy. Collinear logarithms are absent since the proton form factors fall off

rapidly with Q2.

Substituting Eq. (8.2) into Eq. (3.26), one obtains

xf elγ (x, µ
2) =

1

2πα(µ2)

∫ ∞

x2m2
p

1−x

dQ2

Q2
α2
ph(−Q2)

{(
1−

x2m2
p

Q2(1− x)

)
2(1− x)G2

E(Q
2)

1 + τ

+

(
2− 2x+ x2 +

2x2m2
p

Q2

)
G2
M (Q2)τ

1 + τ

}
, (8.3)

for the elastic component of the photon distribution.

Note that we have set the upper limit of the integration to infinity, rather than make

it µ2-dependent as in Eq. (3.26). For large µ2 values, because of the 1/Q4 scaling of the

form factors (see below), the resulting difference is a higher-twist effect. Using an infinite

upper limit ensures the absence of higher-twist contamination. For the same reason, the

last term in Eq. (3.26) (the MS-conversion) does not appear in Eq. (8.3).

A widely used approximation for the GE,M form factors is the dipole form,

Gdip
E (Q2) =

1

(1 +Q2/m2
dip)

2
, Gdip

M (Q2) = µpGE(Q
2) , (8.4)

where m2
dip = 0.71 GeV2 and µp ≃ 2.793 is the anomalous magnetic moment of the proton.

For Q2 = 0 this form yields the exact results GE(0) = 1 and GM (0) = µp, while elsewhere

it is an approximation.

The dipole form is of interest in part because it provides insight into the asymptotic

behaviours of the elastic component of the photon distribution. At small x, to leading

order in α, one finds

xf elγ (x, µ
2) =

2α

π

(
ln

1

x
+O (1)

)
, (8.5)

dominated by the electric component. This behaviour is correct even beyond the dipole

model. At large x, the magnetic component dominates and one finds,

xf el,dipγ (x, µ2) =
α2
(
m2

p

1−x

)

8πα(µ2)

µ2pm
8
dip

m8
p

(1− x)4 +O
(
(1− x)5

)
, (8.6)
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Figure 5. The electric and magnetic elastic components of the photon distribution, with the dipole

form factor approximation, placing a cut on the allowed Q2 integration range, to help illustrate

which Q2 values contribute. The result is normalised so as to divide out the leading ln 1/x and

(1− x)4 behaviours at small and large-x respectively.

including running coupling effects. The scaling as (1−x)4 holds insofar as the true high-Q2

behaviour of the magnetic form factor remains GM (Q2) ∼ 1/Q4.

The scaling behaviours are illustrated in Fig. 5, which shows the electric and magnetic

elastic contributions to the photon distribution, normalised to the asymptotic small and

large-x trends, and obtained with the dipole approximation to the form factors. The

red curves show the elastic contribution with an upper Q2 cutoff of 0.2 − 1.0GeV2, in

steps of 0.2GeV2, and the blue curve shows the total contribution with no Q2 cutoff.

The dominance of the elastic component is clear at small x and the magnetic component

takes over for x & 0.2. For phenomenologically interesting x values, x . 0.5, most of the

contribution comes from the region of Q2 < 1 GeV2.

For accurate results, the dipole approximation, Eq. (8.4), is not sufficient. The most re-

cent extensive experimental study of the form factors comes from the A1 collaboration [39].

The A1 data itself is limited to Q2 . 1 GeV2, however the work includes fits to global

data up to Q2 ∼ 10 GeV2. The electric and magnetic form factor fits are shown in Fig. 6,

normalised to the dipole form. The A1 paper includes two classes of fits, one for just un-

polarised data, and one that also includes polarised data.9 Both fits show clear deviations

from the dipole form. The fit with polarised data is the recommended default because it

provides additional constraints on two-photon-exchange (TPE) contributions and we take

it as our default. Given the delicacy of the treatment of the TPE contribution, we use

the central value of the unpolarised fit as an error estimate that comes in addition (in

quadrature) to the quoted uncertainty on the global polarised fit. Note that the fits extend

only up to Q2 = 10 GeV2 and beyond this point we use the dipole shape, normalised

9In each case we use the fit labelled “SplinesWithVariableKnots” as distributed with the arXiv version

of the paper [39].
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Figure 6. Elastic form factors (ratio to standard dipole form) for the electric (left) and magnetic

(right) as fitted by the A1 collaboration [39] with and without polarised data. Note the change in

scale at Q2 = 1 GeV2 along the x axis.
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Figure 7. Elastic contribution to fγ(x,Q
2) using various fits for the form factors, normalised to

the result obtained with the A1 world fit including polarised data. The ratio for the the A1 world

fit freezes above x = 0.9 because the A1 fits extends only up Q2 = 10 GeV2 and beyond that scale

we simply extrapolate the results for GE/M (Q2) using the standard-dipole shape, normalised to

GE/M (10 GeV2).

to the fitted GE/M (Q2) at Q2 = 10 GeV2. We treat the fit uncertainties on the elastic

and magnetic components as 100% correlated, which is the most conservative assumption,

because they both enter with the same sign in Eq. (8.3).

The impact of the A1 fits on the elastic contribution, relative to the dipole form, is

shown in Fig. 7. The deviation from the dipole form is manifest, with an impact of up to

10% for x . 0.5. In this x-range, the difference between the results using fits with and

without polarised data is smaller than the intrinsic uncertainty bands for the individual

fits. Note that since the data constrains the form factors for Q2 . 10 GeV2, the elastic

contribution is effectively known only for x . 0.9, cf. the form of the lower limit in Eq. (8.3).
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We have also computed the elastic contribution using a preliminary unpublished fit to

the elastic form factors by Lee, Arrington and Hill.10 There is some change in the elastic

contribution to fγ , which is negligible for small x, and becomes comparable to our overall

total error (for the elastic plus inelastic components) for x & 0.5.

8.2 Low-Q2 region

In addition to the elastic component, we need the inelastic part. This corresponds to the

region of W > mp + mπ0 . We split the inelastic part into several sub-regions. At low

Q2, the structure functions cannot be computed from parton distribution functions and we

must rely on direct measurements and theoretical model-independent constraints.

Results for low-Q2 scattering tend to be given either as a differential scattering cross

section or in terms of some subset of F2, FL, RL/T , σT and σL, only two of which are inde-

pendent. They are related through the following equations (using the same normalisation

convention adopted by the HERMES collaboration in Ref. [45]),

FL(x,Q
2) = F2(x,Q

2)

(
1 +

4m2
px

2

Q2

)
RL/T (x,Q

2)

1 +RL/T (x,Q2)
, (8.7a)

F2(x,Q
2) =

1

4π2α

Q2(1− x)

1 +
4x2m2

p

Q2

(
σT (x,Q

2) + σL(x,Q
2)
)
, (8.7b)

RL/T (x,Q
2) = σL(x,Q

2)/σT (x,Q
2) . (8.7c)

As discussed in App. E, F2 and FL vanish respectively as Q2 and Q4 in the limit of small

Q2 and fixed W 2. In this limit, as one can see from Eq. (8.1), x goes to zero in proportion

to Q2. The quantity σT (x,Q
2) becomes a function W 2 only and it follows from Eq. (8.7)

that σL(x,Q
2) must vanish as Q2, leading to

F2(x,Q
2) =⇒

Q2→0

Q2

4π2α
σT (W

2) , (8.8)

where σT (W
2) is the photoproduction cross section. As a result, in Eq. (3.26), Q2 scales

much below the proton mass will not give a substantial contribution.

There is wealth of data covering the low Q2 region, including also photoproduction

data through the constraint Eq. (8.8). Rather than using these data directly, we will

rely on existing fits of those data. Fits generally focus upon either the resonance region,

W 2 . 3 GeV2 or the continuum region, W 2 & 4 GeV2. Fig. 8 (left) shows data from the

CLAS experiment [46], compared to two global fits to resonance region data. The figure

(which includes only a small subset of the available data) illustrates the coverage in Q2

and the quality of the available data. The data is shown as a function of W 2 in order to

clearly show the resonance peaks starting with the ∆ resonance and beyond. The CLAS

fit is intended for use only for Q2 > 0.5 GeV2, while the Christy-Bosted [47] fit is intended

for use down to Q2 = 0 and explicitly includes photoproduction data. Comparing the
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Figure 8. Left: illustration of a subset of the CLAS data [46] in the resonance region, compared

to two fits, one from the CLAS paper and the other from Christy and Bosted (CB) [47]. The CLAS

dataset covers the range 0.225 ≤ Q2/GeV2 ≤ 4.725 in steps of 0.05, with a quality comparable to

that shown in the plot across the whole Q2 range. The errors on the data correspond to the sum

in quadrature of statistical and systematic components. The CLAS data is only a small part of

the data that is available in the resonance region and used for the fits (see also Fig. 6 of Ref. [46]).

Right: illustration of the GD11-P fit from the HERMES collaboration [45] and corresponding data

in the continuum region (plot reproduced with kind permission of the HERMES collaboration).

CLAS and Christy-Bosted fits at Q2 values below the quoted validity range of the CLAS

fit shows, however, that they are relatively similar.

For the continuum region, the HERMES collaboration has provided a fit, GD11-P [45],

using a wide range of data and the ALLM [48] functional form. Fig. 8 (right), taken from

Ref. [45], illustrates the good quality of the fit. Careful inspection of the figure reveals that

at each Q2 value the fit consists of three lines, whose separation represents the uncertainty.

Electron-proton scattering cross sections give information on both F2 and FL, with the

former often dominating the cross section. As a result the knowledge of RL/T in Eq. (8.7a)

is often much poorer than the knowledge of F2. Some of the F2 fits (CLAS, GD11-P) rely

on earlier independent fits for RL/T , notably the R1998 [49] fit and that of Ref. [43]. Instead

the Christy-Bosted article carried out an independent fit for RL/T . Fig. 9 (left) shows the

R1998 and Christy-Bosted fits for RL/T , compared to a subsequent extraction of RL/T by

the E94-110 collaboration [50]. The moderate degree of agreement between data and fits

10We thank G. Lee and R. Hill for providing us with fit files for the form factors (see Ref. [44] for a

discussion of their approach).
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Figure 9. Left: the R1998 and Christy-Bosted fits for RL/T as a function of W 2, compared

to data from the E94-110 experiment at JLAB [50]. The data corresponds to version 2 of the

arXiv submission of the E94-110 article, which postdates the Christy-Bosted fit. Also shown is the

uncertainty band that we adopt for the R1998 fit. Right: the Q2 dependence for the R1998 fit at

various W 2 values, including our extension to low Q2, Eq. (8.9).

will motivate us to assign a generous ±50% uncertainty to RL/T in the low-Q2 region.

As a default we will adopt the R1998 fit for Q2 > Q2
b with Q2

b = 0.34 GeV2. The fit is,

however, not intended for use at low values of Q2, and so for Q2 < Q2
b we will use the form

R1998,low-Q2(W 2, Q2) = R1998(W
2, Q2

b)
3u− u3

2
, u ≡ Q2

Q2
b

, (8.9)

that is continuous and reasonably smooth at Q2
b and vanishes as Q2 for Q2 → 0. This is

shown in Fig. 9 (right).

No single low-Q2 fit for F2 is simultaneously adequate in the resonance and continuum

regions. Accordingly we will combine F2 resonance (F res
2 ) and continuum (F cont

2 ) fits using

two transition scales W 2
lo = 3 GeV2 and W 2

hi = 4 GeV2

F2(x,Q
2) =





F res
2 W 2 < W 2

lo ,

(1− ρ(W 2))F res
2 + ρ(W 2)F cont

2 W 2
lo < W 2 < W 2

hi ,

F cont
2 W 2 > W 2

hi ,

(8.10)

where W 2 is evaluated as in Eq. (8.1) and ρ(W 2) is

ρ(W 2) = 2ω2 − ω4 , ω =
W 2 −W 2

lo

W 2
hi −W 2

lo

. (8.11)

This ensures a continuous and smooth transition between the low- and high-W 2 regions.

We will consider two combinations of low and high-W 2 fits for F2: our main one will

be CLAS with GD11-P, using R1998 for both (including the modification Eq. (8.9)). As a
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Figure 10. The sum of σT +σL, cf. Eq. (8.7b), shown as a function ofW 2 (lower axis) and x (upper

axis) for various Q2 values. Our default prescription corresponds to the curve labelled “GD11-P

+ CLAS”, which transitions smoothly between the GD11-P and CLAS fits in the region of W 2

between 3 and 4 GeV2.

cross-check of uncertainties we will have a subsidiary combination, composed of Christy-

Bosted and GD11-P for F2, and Christy-Bosted RL/T at low W 2 and R1998 at high-W 2,

with the two RL/T fits combined in a manner identical to Eq. (8.10).

Our main combination is shown in Fig. 10, compared to the individual CLAS, Christy-

Bosted and GD11-P results. The need for a combination of more than one fit is evident

from the fact that the GD11-P fit misses the resonance structures below 4 GeV2, while

the resonance fits miss the rise at large-W 2. For all Q2 values shown, the transition region

between 3 and 4 GeV2 is reasonably covered. Note also the reduced significance of the

resonance peaks at high-Q2, though the Christy-Bosted fit appears to show artefacts in

this regard near W 2 = 3 GeV2. For this reason, when we use the Christy-Bosted fit in the

region of Q2 > Q2
0,CB = 8 GeV2 we will modify its large-Q2 behaviour as follows

FCB,mod
2 (W 2, Q2) = FCB

2 (W 2, Q2
mod)×

(
Q2

1,CB

Q2
1,CB +∆Q2

)
, (8.12a)

Q2
mod = Q2

0,CB +
∆Q2

1 + ∆Q2

Q2
1,CB−Q

2
0,CB

, (8.12b)

∆Q2 = Q2 −Q2
0,CB . (8.12c)
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Figure 11. Value of the structure functions F2 (left) and FL (right) divided by Q2 as a function of

xbj and Q
2, using our CLAS+GD11-P prescription. They are divided by Q2 to reflect the structure

of the integrand for fγ(x, µ
2), Eq. (3.26). The latter receives contributions only from the region

from xbj > x. For a full understanding of the contribution of different regions of xbj and Q2 to

the integral, one must also take into account the z = x/xbj-dependent factors that multiply the

structure functions and the exact limits in xbj and Q
2.

with Q2
1,CB = 30 GeV2. The Christy–Bosted curves shown in Fig. 10 do not include this

modification.

To close our discussion of the low-Q2 region, we show in Fig. 11 F2 (left) and FL
(right) divided by Q2, as a function of xbj and Q2. This gives an indication of the size

of the contribution of different xbj and Q2 values in Eq. (3.26). The main features to

note are the importance of the resonance region and the relevance of Q2 values down to

zero over nearly the whole xbj range. One also sees that FL brings a substantially smaller

contribution than F2, and tends to vanish for small Q2, as dictated by our use of Eq. (8.9).

The figure focuses on the region Q2 < 0.6 GeV2. For larger values of Q2, the usual scaling

behaviour of F2 sets in, with, to first approximation, a uniform contribution in lnQ2.

8.3 High-Q2 continuum

For sufficiently large Q2 and W 2 one can calculate F2 and FL from parton distribution

functions (PDFs) using the known perturbative expansion of the DIS coefficient functions.

This is more reliable than using a fit to available data (e.g. GD11-P also includes some

high-Q2 data), because the extension to arbitrarily large Q2 is provided by DGLAP evo-

lution rather than the extrapolation provided by some a priori arbitrary parametrisation.

Furthermore, in recent years there has been extensive progress in the extraction of PDFs

from DIS and collider data, including detailed and well-tested uncertainty estimates.

Our prescription for evaluating F2 and FL is as follows. Our choice of PDF and

associated uncertainties will be PDF4LHC15 nnlo 100 [51]. This is based on a combination

of the CT14nnlo [52], MMHT2014nnlo [53] and NNPDF30 nnlo as 0118 [54] global PDF

fits. We will use NNLO coefficient functions [38, 55–57], implemented in HOPPET [58–60].

All quark flavours will be treated as massless and we will correspondingly use a zero-mass
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Figure 12. Values of the structure functions F2 and FL as a function of xbj and Q2, using a

PDF4LHC15 nnlo 100-based NNLO ZM-VFNS prescription for Q2 > 9 GeV and W 2 > 4 GeV2,

and the CLAS+GD11-P combination elsewhere.

variable flavour-number scheme (ZM-VFNS). The heavy flavour contribution to F2 and FL
is of order αs and by taking the massless approximation for a quark of mass mq we mistreat

that order αs contribution in a region of Q2 ∼ m2
q . Examining Eq. (3.26), one sees that

this will translate to an inaccuracy in fγ of order ααs, i.e. beyond the order that we aim

to reproduce in our analysis with data.

Determinations of structure functions from PDFs are potentially subject to corrections

from higher-twist effects. Recent studies of DIS data [61, 62] suggest that higher-twist ef-

fects could be substantial for FL, at least at small values of xbj. In line with the observations

of this study, we will account for such a possibility when evaluating our uncertainties, using

a multiplicative correction

Fwith HT
L (xbj, Q

2) =

(
1 +

5.5 GeV2

Q2

)
FNNLO
L (xbj, Q

2) , (8.13)

taking the larger of the two normalisations in Refs. [61, 62].

Our default domain for using a PDF-based evaluation of the structure functions will

be Q2 > Q2
PDF = 9 GeV2 and W 2 > 4 GeV2. In the rest of the kinematic plane we will use

the resonance and low Q2 continuum fits. The breakup of the xbj−Q2 plane is summarised

in Fig. 12, analogous to Fig. 11, but showing a larger range of Q2. The Q2 scale is now

logarithmic and we no longer divide F2 and FL by Q2. The colour-coding once again

provides a visualisation of the density of the integrand in Eq. (3.26). At large xbj one sees

the gradual reduction with increasing Q2 of the structure functions. A consequence of this

is that the resonance part of the low-Q2 region plays an especially important role in the

determination of the large-x photon distribution. At moderate xbj, the structure functions

are largely independent of xbj, i.e. they display Bjorken scaling, while at small xbj the

structure functions increase rapidly with Q2, a consequence mainly of double logarithms

of xbj and Q
2 in the scaling violations.

Careful inspection of Fig. 12 reveals that F2 and FL are not perfectly continuous at

the transition scale of Q2
trans = 9 GeV2, i.e. the results of the GD11-P fit and PDF-based
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structure function evaluations do not quite match up. This is most visible if one inspects

the band of yellow colour in the plot for F2, around xbj = 2 · 10−5. To probe the impact

of this discontinuity in our fγ determinations we will introduce, as one of our uncertainty

sources, a variation of the Q2 threshold for switching between the low-Q2 GD11-P fit and

the high-Q2 PDF-based determination. The alternative Q2 threshold that we will use is

Q2
trans = 5 GeV2.

9 Uncertainty from missing higher orders

The integral in our photon PDF was broken up into two pieces, an all-Q2 part which gave

the “physical” PDF, and a high-Q2 which gave the MS-conversion piece, cf. Eqs. (6.16a,

7.19). In this section, we examine the uncertainty in the final photon PDF result depend

on the precise way in which the PDF integral is split up, i.e. on the upper limit of the Q2

integral in Eq. (6.16a).

9.1 Dependence on physical factorisation separation scale

To probe the impact of the choice of separation between the physical PDF and the MS-

conversion, we use the following alternative definition of the physical and MS-conversion

terms

fPFγ (x, µ2, [M ]) =
1

2πα(µ2)x

∫ 1

x

dz

z

∫ M2(z)

m2
px

2

1−z

dQ2

Q2
α2
ph(q

2)

{
−z2FL(x/z,Q2) +

[
2− 2z + z2 +

2m2
px

2

Q2

]
F2(x/z,Q

2)

}
, (9.1)

f conγ (x, µ2, [M ]) =
8π

xα(µ2) (Sµ)2ǫ
1

(4π)D/2
1

Γ(D/2− 1)

∫ 1

x

dz

z
(1− z)D/2−2

∫ ∞

M2(z)

dQ2

Q2

(
Q2
)D/2−2

α2
ph,D(q

2)

{
− z2(1− ǫ)FL,D(x/z,Q

2)

+
[
2− 2z + z2 − ǫz2

]
F2,D(x/z,Q

2)

}
, (9.2)

where [M ] denotes the functional dependence on M(z). We easily find that

f conγ (x, µ2, [M ]) = f conγ (x, µ2) +
1

xα(µ2)

1

2π

∫ 1

x

dz

z

∫ µ2

(1−z)

M2(z)

dQ2

Q2
×

α2
ph(q

2)

{
−z2FL(x/z,Q2) +

[
2− 2z + z2

]
F2(x/z,Q

2)

}

= f conγ (x, µ2) +
1

xα(µ2)

1

2π

∫

zv,x

∫ µ2

(1−z)

M2(z)

dQ2

Q2
×

α2
ph(q

2)

{
zpγq(z)F2(v,Q

2)− z2FL(v,Q
2)

}
. (9.3)
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In the following we will consider two alternative choices for M(z):

M2(z) =
µ2M
1− z

,
1

2
≤ µM

µ
≤ 2 , (9.4a)

and

M2(z) = µ2M ,
1

2
≤ µM

µ
≤ 2 . (9.4b)

The variation of the answer as a function of µM will provide us with an estimate of un-

certainties from missing higher-order (QCD) contributions. This is similar in spirit, but

different in its details, from standard scale variation.

M(z) is a large scale, where we can use QCD expressions for the structure functions

in terms of parton distributions. We have

F2(v,Q
2)

v
=

∑

a∈{q,g}

∫

yw,v
F2,a(y,Q

2, µ2)fa(w, µ
2),

FL(v,Q
2)

v
=

∑

a∈{q,g}

∫

yw,v
FL,a(y,Q

2, µ2)fa(w, µ
2), (9.5)

where, up to NLO QCD accuracy for the coefficient functions,

F2,a∈{q}(y,Q
2, µ2) = C(0,0)(y) +

αs(µ
2)

2π

(
ln
Q2

µ2
B

(1,0)
2,a (y) + C

(1,0)
2,a (y)

)
,

F2,g(y,Q
2, µ2) =

αs(µ
2)

2π

(
ln
Q2

µ2
B

(1,0)
2,g (y) + C

(1,0)
2,g (y)

)
,

FL,a∈{q}(y,Q
2, µ2) =

αs(µ
2)

2π
C

(1,0)
L,a (y) ,

FL,g(y,Q
2, µ2) =

αs(µ
2)

2π
C

(1,0)
L,g (y) , (9.6)

where B
(1,0)
2,a and B

(1,0)
2,g are defined in Eq. (G.3). We find the following [M ] dependent

additions to the f
(0,1)
γ and f

(1,1)
γ MS-conversion terms:

f (0,1)γ (x, µ2, [M ]) = f (0,1)γ (x, µ2) +
∑

a∈{q}

∫

wz,x
log

µ2

(1− z)M2(z)
pγq(z)fa(w, µ

2) , (9.7)

f (1,1)γ (x, µ2, [M ]) = f (1,1)γ (x, µ2) +

∫

ywz,x

{

log
µ2

(1− z)M2(z)

∑

a∈{q,g}

[
pγq(z)C

(1,0)
2,a (y)fa(w, µ

2)− z C
(1,0)
L,a (y)fa(w, µ

2)
]

+
1

2

(
log2

1

1− z
− log2

M2(z)

µ2

)
pγq(z)

∑

a∈{q,g}

B
(1,0)
2,a (y)fa(w, µ

2)

}
. (9.8)

We omit explicit analytic results for the convolutions, insofar as these are trivial to perform

numerically with the HOPPET [58] package.
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Figure 13. Scale dependence of the photon PDF at LO (top only), NLO and NNLO (bottom only).

The left and right plots show results withM2(z), the upper scale in the physical factorisation PDF,

respectively as in Eq. (9.4a) and Eq. (9.4b). All result are normalised to the NLO answer with our

default choice, M2(z) = µ2/(1 − z). Lines correspond to a central scale choice µ2
M = µ2. Further

details, including the specification of the FSF-NLO curves, are given in the text.

9.2 Numerical impact of the separation scale

Fig. 13 shows the numerical consequences of the above results. Most of the details of our

numerical implementation will be discussed below in Sec. 10, and here we concentrate just

on the scale dependence. The figure shows results with both M2(z) choices in Eq. (9.4).

LO corresponds to Eq. (7.19), with no MS-conversion term, i.e. fPFγ of Eq. (9.1). NLO

corresponds to Eq. (7.19), where f conγ (x, µ2) includes just the f
(0,1)
γ (x, µ2) term, Eqs. (7.12)

and (9.7), in its series expansion, Eq. (7.6). The NNLO result additionally includes the

f
(1,1)
γ (x, µ2) term, Eqs. (7.14) and (9.8). Higher-order QED corrections are not included.

The high-Q2 contribution to the fPF term is always evaluated including a NNLO PDF

(PDF4LHC15 nnlo 100 [51]), NNLO splitting kernels [63, 64] and massless NNLO QCD

coefficient functions [38, 55–57] as implemented [59, 60] in HOPPET [58].

The upper plot shows the substantial reduction in the scale uncertainty in going from

LO to NLO with both scale choices. There is an especially large uncertainty in the LO

photon PDF for small x. In this region the photon PDF is dominated by the high-Q2

integration due to the DGLAP evolution of the quark distribution. Changing the scale by

a factor of two around our central value of µ = 100GeV causes a 20% shift in ln(µ/Qtrans).

This helps explain the size of the uncertainty in the upper figures. Recall that Qtrans =
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3 GeV is the scale above which we use PDFs and coefficient functions to evaluate the

structure functions, as explained at the end of Sec. 8.3. Previous estimates of the photon

PDF were only accurate to LO, and so had an intrinsic uncertainty comparable to that of

our LO band.11

In the lower left-hand plot, the curve labelled FSF-NLO (“Full Structure Function”)

corresponds to Eq. (3.26), with F2 computed at NNLO in both the physical-factorisation

and the MS-conversion terms. The PRL variant of the FSF-NLO curve corresponds to the

result of Ref. [22], whose implementation had a formally subleading bug in the scale of α

that multiplied the MS-conversion term. The corresponding curves in the lower right-hand

plot are analogous but with M2(z) = µ2 as the upper limit of the physical-factorisation

component.

For our final central result, to be shown in the next section, we will take the NLO

curve with M2(z) = µ2/(1 − z), i.e. using f conγ (x, µ2) that includes just the f
(0,1)
γ (x, µ2)

term, Eq. (7.12). As an estimate of the uncertainty from missing higher-order (MHO)

contributions, we will take the largest deviation of any of the NNLO M2(z) = µ2M/(1− z)

scale choices and symmetrise it with respect to the central NLO result.

This differs from the prescription adopted in Ref. [22], where we used the FSF-NLO

evaluation with M2(z) = µ2/(1 − z). There the MHO uncertainty was estimated from

the difference between FSF-NLO evaluations with M2(z) = µ2/(1 − z) and M2(z) = µ2,

corresponding to the difference between the orange (dot-dashed) curves in the left and right-

hand plots of Fig. 13. The difference between M2(z) = constant and M2(z) ∝ 1/(1 − z)

is a log(1 − z) contribution, which gets large as z → 1. These “endpoint” logarithms

arise because a new scale Q2(1− z), the invariant mass of the final state hadronic system,

enters the problem. While formally, this spurious logarithm is cancelled by a corresponding

one in the MS-conversion term, there is a left-over higher-order log(1− z) with the choice

M2(z) = constant. For our default photon-PDF prediction, we prefer not to add a spurious

endpoint logarithm to f conγ via our choice of M2(z). Figure 14 compares the old and new

versions of our photon PDF.

Note that we have chosen not to use a full NNLO result. While this is in principle

straightforward to achieve, several further practical elements would be needed beyond those

we have implemented so far. The one that is potentially most problematic relates to the fact

that one must take into account QED corrections to the structure functions. This would

call for a detailed assessment of the way in which QED corrections have been removed from

published data.

11One should keep in mind that many current predictions for processes involving an incoming photon are

only available at LO for the photon-induced process. They will therefore have a substantial relative scale

uncertainty. This uncertainty should mostly be cancelled in calculations that include NLO QED corrections

to the photon-induced processes, e.g. Refs. [16, 65].
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Figure 14. Ratio of the photon PDF in this paper (LUXqed17), shown as a blue solid line, to our

previous result [22] (LUXqed) at µ = 100GeV. The solid orange area is the original error band,

and the dashed blue lines indicate the new error band.

10 Evaluation of the photon distribution and prescription for other par-

tons

We evaluate the photon distribution using Eqs. (6.16a, 7.12, 7.19), keeping only the f
(0,1)
γ

term in Eq. (7.19b). The elastic component is given by Eq. (8.3). A number of choices need

to be made in the evaluation, both for the central value of the photon distribution and its

uncertainties. For practical usage one also requires a consistent set of parton distribution

functions for the other flavours. In this section we describe the approach we take and

considerations for future evaluations.

We recall that, as in Sec. 8, our accuracy aim for the photon distribution will be to

control terms up to α(αsL)
n and α2L2(αsL)

n.

10.1 Evaluation scale and evolution

A first choice relates to the question of the µ2 value(s) where the photon distribution is

evaluated and the issue of higher-twist corrections. When µ2 is not very large, the upper

limit of Eq. (6.16a) is in a region where both the inelastic and elastic parts of structure

functions may themselves contain higher-twist corrections.

For the elastic part, in Eq. (8.3) we have deliberately set the upper limit in the Q2

integration to infinity. This is possible because the contribution to the µ2 dependence of

the elastic part comes from the running of the QED coupling in front of Eq. (8.3), which

is not affected by the choice of upper limit in Q2. Leaving the upper limit as µ2/(1 − z)

would instead have resulted in higher twist contributions associated with the 1/Q4 scaling

of the form factors.

In the inelastic part, there is no easy way, at low µ2 scales, of separating leading

and higher twist components. This is because at the corresponding upper limit of the

Q2 integration, the inelastic structure functions mix both leading and higher-twist effects.
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Accordingly we choose to evaluate Eq. (7.19) at a scale µ2eval ≫ m2
p and then determine the

photon distribution at other scales through DGLAP evolution. We take µeval = 100 GeV

so as to ensure that potential residual higher-twist effects, of order m2
p/µ

2
eval, are much

smaller than the precision we will be seeking, which will be roughly at the 1% level.

For the DGLAP evolution we will include the O (α) and O (ααs) splitting kernels [26],

as well as the QCD kernels up to O
(
α3
s

)
[63, 64]. Given the precision that we use in the

evaluation of the photon distribution, and our assumption α2
s ∼ α, this forms a consistent

set of evolution terms.

10.2 Uncertainties

The final uncertainty on our PDF distribution is taken to be the sum in quadrature of many

individual uncertainty sources, because they are uncorrelated. The individual contributions

have already been discussed in Sec. 8, where we explained the input data to our analysis.

The various uncertainties with labels as in Fig. 15 are:

(EFIT) The uncertainty on the elastic contribution that comes from the uncertainty on the

A1 world polarised form factor fits, as shown in Fig. 7. This band is asymmetric

and we symmetrise it using the largest deviation to obtain a (more conservative)

symmetric band.

(EUN) The uncertainty that comes from replacing the A1 world polarised fit (which includes

a two-photon-exchange correction) with just the world unpolarised data (which does

not). This provides a one-sided uncertainty, which we again symmetrise.

(RES) We replace the CLAS resonance-region fit with the Christy-Bosted fit (modified as

in Eq. (8.12a). This replacement gives a one-sided uncertainty, which we once again

symmetrise.

(R) A modification of R1998
L/T by ±50% around its central value, as shown in Fig. 9. Recall

that this R choice is only used in the regions where we take F2 from one of the

GD11-P, CLAS or Christy-Bosted fits. Of the ±50% variations of R, the one with

the larger impact on the photon distribution is identified and the resulting uncertainty

symmetrised.

(M) A modification of the Q2
PDF scale which governs the transition from the GD11-P

structure function fit to a PDF-based evaluation. The default choice of Q2
PDF =

9 GeV2 is reduced to 5 GeV2 and since this is a one-sided uncertainty, the resulting

effect is symmetrised.

(PDF) The input PDF uncertainties for Q2 > Q2
PDF according to the default prescription

for the PDF (PDF4LHC15 nnlo 100).

(T) A twist-4 modification of FL as in Eq. (8.13). This is a one-sided modification that

is then symmetrised.
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Figure 15. Breakdown of uncertainties on the photon distribution. The uncertainties are shown

stacked linearly, while the sum in quadrature, i.e. our final uncertainty, is represented by the thick

black line. See the text for a detailed description of the various contributions.

(HO) An estimate of missing higher-order effects obtained by taking the largest deviation

of any of the NNLO results with the µ2/(1−z) scale choice in Fig. 13 (left) relative to

the NLO result with scale choice µ2/(1−z). The resulting uncertainty is symmetrised.

Note that we do not include the quoted uncertainty from the GD11-P fit. When studying

that uncertainty we found on one hand that its impact was negligible compared to the other

uncertainties, and on the other hand that the resulting uncertainty band did not always

overlap with F2 as calculated from PDFs in regions at small x and high Q2 that lack direct

F2 data. This observation motivated our choice to restrict the use of the GD11-P fit to

Q2 values with sufficient data coverage and to vary the Q2
trans transition scale (and R)

for the uncertainty estimate. We also did not include any uncertainty associated with the

prescription for matching other parton flavours.

The impact of the different sources of uncertainty is shown in Fig. 15, and our final

uncertainty, shown by the black line, is given by adding the contributions in quadrature.12

The overall uncertainty is less than 2% for 10−4 < x < 0.1. For small values of x, the uncer-

tainty is dominated by the uncertainties in the parton distributions of quarks (and gluons),

which enter the high-Q2 part of the photon PDF integral. As x → 1, the uncertainties

are dominated by the low-Q2 part of the photon PDF integral from elastic form factors,

the resonance contribution, and σL. This is a reflection of the fact that non-perturbative

effects (such as higher twist corrections) grow like Λ2
QCD/[Q

2(1−x)] as x→ 1, and that, for

x close to 1, quark PDFs fall off rapidly as Q2 increases, so the low-Q2 region contributes

significantly to fγ as x→ 1.

12There are correlations between high and low Q2 that have not been included in our analysis. For

example, low Q2 values for F2(x,Q
2) are correlated with quark and gluon PDFs at high Q2, via DGLAP

evolution of F2.
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10.3 Matching to other partons

The introduction of a photon component of the proton necessarily implies modifications of

other partons relative to a set that has been determined without QED corrections. QED

corrections to the quarks start at O (αL(αsL)
n), i.e. the same order as the leading photon

contribution. These terms are generated by the order α QED contribution in DGLAP

evolution. If one wishes to know the full set of partons to the same accuracy as the photon,

i.e. O (α(αsL)
n) relative corrections, then it is effectively necessarily to have a reliable

estimate of the QED corrections to the initial conditions for the DGLAP evolution. This

would require that one repeat a global PDF fit with QED corrections, e.g. the order α

corrections to the DIS coefficient functions, and with information about the photon PDF

as an input (e.g. because it affects the momentum sum rule at order α at the starting

scale). Such a fit is beyond the scope of our article, though below we outline a procedure

for how it might be performed.

10.3.1 Our procedure

The prescription that we adopt is as follows. At a scale µ2match, we assume that the quarks

are unchanged relative to a global fit without QED contributions. At this scale we rescale

the gluon by a factor as follows:

f rescaledg (x, µ2match) =

[
1− ωγ(µ

2
match)

ωg(µ2match)

]
× fg(x, µ

2
match) , (10.1)

where ωi(µ
2) is the momentum fraction carried by parton flavour i at scale µ2,

ωi(µ
2) =

∫ 1

0
dx xfi(x, µ

2). (10.2)

As we shall see below, Fig. 20, the photon momentum fraction, ωγ , is a fraction of a

percent. The above procedure ensures that the momentum sum rule, including the photon

contribution, is satisfied. The reason for absorbing the momentum into an adjustment of

the gluon is that the gluon is the parton least directly constrained from DIS data.

The choice of µ2match is somewhat arbitrary. Ideally, it should be close to the Q2 scales

in DIS that provide the greatest constraint on the quark PDFs, given that our procedure

leaves the quark distribution unchanged at scale µ2match. Since we use a PDF fit that

was determined without QED corrections, when we convolute with the QCD coefficient

functions (without QED corrections), we should reproduce the true experimental F2/L at

the scales where the DIS data is most constraining. There is however a practical problem

that we should consider. The PDF4LHC15 nnlo 100 set, which we take as our base PDF

set, is designed for use at large µ2 values. At low µ2 we encountered two issues, discussed

in detail in App. H: one is that it is a merger of sets with different underlying heavy-quark

thresholds, and as a result does not strictly satisfy DGLAP evolution. The second relates to

the way the PDF4LHC15 nnlo 100 underlying PDF sets are encoded in LHAPDF [20] files.

These issues prevent us from starting a DGLAP evolution from scales below about 6 GeV.

Putting together the various considerations, we opted for the choice µmatch = 10 GeV. The
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Figure 16. Ratio of the gluon and u-quark PDF in this paper

(LUXqed17 plus PDF4LHC15 nnlo 100) to the corresponding PDF4LHC15 nnlo 100 [51]

distributions at µ = 100GeV, shown as the solid blue line. The solid orange region is the original

PDF4LHC15 nnlo 100 error band, and the dashed blue lines represent our error band. In the case

of the up-quark distribution, we also show in green the impact of using µmatch = 6 GeV instead of

our default of 10 GeV.

resulting set, LUXqed17 plus PDF4LHC15 nnlo 100, is valid only for scales µ ≥ 10 GeV

(below this scale, LHAPDF interpolates the LUXqed17 partons to zero).

Since we include QED effects in the DGLAP evolution, at scales other than µmatch all

partons acquire QED-induced modifications, of order (αL)n(αsL)
m for the quarks, with

n ≥ 1, m ≥ 0. The changes in the gluon and up-quark PDFs at scale µ = 100 GeV are

illustrated in Fig. 16. In the case of the up-quark PDF, we also show the effect of reducing

µmatch from our default of 10 GeV to 6 GeV, demonstrating that the impact is minimal

compared to the overall uncertainty on the up-quark distribution.

As discussed in Sec. 10.1, it is not advisable to directly use Eqs. (6.16a, 7.12, 7.19)

to evaluate the photon PDF at scales as low as µmatch, because of the presence of higher

twist effects that are difficult to control. On the other hand, if we evaluate the photon

PDF at a scale µeval ≫ µmatch, the O (αL) modifications to the quark distributions from

DGLAP evolution must be taken into account in order to correctly treat contributions of

order (αL)2(αsL)
n (n ≥ 0) in the photon distribution. We do so technically as follows,

keeping in mind that our base PDF4LHC15 nnlo 100 PDF is based on fits that have neither

QED evolution, nor QED corrections in coefficient functions. First we evaluate the photon

distribution at scale µeval ≫ µmatch, using a high-Q2 F2 calculated without QED effects.

We then evolve the photon distribution down to the scale µmatch, using a special variant of

DGLAP evolution in which all QED contributions to Pqi and Pgi are set to zero, for all par-

ton flavours i. With this procedure, the quark and gluon densities remain identical to those

of the original PDF set. These unchanged distributions are then used in the evaluation of

Pγq terms for the photon evolution. We perform the matching at scale µmatch, as described

above, and finally evolve back up in scale using DGLAP evolution including the full set

of QED contributions. We stress that when evolving back up to the µeval scale, all par-

tons will acquire corrections of relative order (αL)n, with n ≥ 1. In particular the photon
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Figure 17. The impact on the photon distribution from leaving out QED effects in the quark

evolution (blue curve), compared to the LUXqed17 plus PDF4LHC15 nnlo 100 uncertainty. The

irregularities in the curve at large x values are an artefact associated with the use of different

underlying x grids between the results with and without QED effects in the quark evolution.

PDF will acquire relative correction of order αL, that are required by our aimed accuracy.

As illustrated in Fig. 17, without the QED effects in the quark evolution (which tend to

reduce the quark distribution), the photon distribution comes out slightly higher. How-

ever, the effect is minimal compared to the overall LUXqed17 plus PDF4LHC15 nnlo 100

uncertainty. Note that an O (1) change in the choice of µmatch corresponds to a NNLO,

O
(
α2L(αsL)

n
)
, effect on the photon distribution.

The smaller effect in the photon density in Fig. 17 relative to that in the quark densities

in Fig. 16 (right) is because the higher-order QED modification of the photon is driven by

the average of the QED modification of the quarks across all scales from µmatch up to µ.

However the quarks are modified mostly at scales close to µ, i.e. the average modification

is suppressed.

A final comment concerns lepton distributions. For consistency with the running of the

QED coupling, photon splitting to leptons should be included, which generates non-zero

lepton distributions. These are of order (αL)2. Their feedback on the photon distribution

is an (αL)3 effect and so beyond our accuracy.13 In practice we set the lepton distributions

to zero at scale µmatch and include the full set of Plγ , Pll and Pγl splitting functions in the

evolution. A more complete approach would determine the lepton distributions directly

from F2 and FL, in a manner analogous to that used for the photon distribution in this

paper. Note that while we include leptons in our DGLAP evolution, their distributions are

not included in the LHAPDF files that we make available.

13Leptons also affect the running of the QED coupling, with an order (αL)2 effect on the photon distri-

bution, which we do include.
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10.3.2 Iterative procedure

The above procedure allows us to obtain NLO QED accuracy for the photon distribution

and LO QED accuracy for the other partons. Recall that LO corresponds to αL and NLO

to an extra suppression of αL or αs, with αsL considered to be of order 1. For compactness,

below we will use δ to refer to any quantity of order of αL or αs. The photon distribution

and QED effects in the quarks both start at order δ.

To go beyond the NLO QED accuracy for the photon, and to achieve better than LO

QED accuracy for the other partons, requires a more sophisticated procedure than that

discussed in the previous section.

One conceivable difficulty in constructing a general approach is that the photon eval-

uation depends on one’s knowledge of the quark distributions, while the extraction of the

quark distributions from data is itself affected by the photon distribution.

This apparent circularity can be circumvented using an iterative procedure that ex-

ploits the smallness of the QED coupling, or equivalently of δ. First one determines a

photon distribution, f
(0)
γ as in Sec. 10.3.1, based on QCD parton distributions obtained

from a PDF fit without QED effects, fno-QED
q . As discussed in the previous subsection, the

resulting photon PDF includes terms up to the order (αL)2(αsL)
n ∼ δ2 and α(αsL)

n ∼ δ2,

i.e. of relative order δ with respect to the leading term. One then carries out a global fit

with QED effects in the evolution and coefficient functions,14 and a photon distribution

f
(0)
γ that is not changed during the fit. This gives a zeroth iteration of the QCD parton

distributions with QED effects, f
(0)
q . Their accuracy depends on the hard processes being

used in the QCD fit:

• For Drell-Yan production, i.e. qq̄ → ℓ+ℓ− and γγ → ℓ+ℓ−, the relative contribution

from the photon distribution starts at order (fγ/fq)
2 ∼ (αL)2 ∼ δ2 (the γγ and

qq̄ Drell-Yan production channels differ only by the sizes of the incoming parton

distributions). Since the photon distribution is known up to relative order δ, the

QED corrections to the quark distribution are known up to order δ3. In general if

the photon distribution is known up to relative order δn, the quark distribution can

be extracted to order δn+2.

• For DIS structure functions, the relative contribution from the photon distribution

starts at order αfγ/fq ∼ α2L ∼ δ3. Since the photon distribution is known up to

relative order δ, the QED corrections to the quark distribution are known up to order

δ4. In general if the photon distribution is known up to relative order δn, the quark

distribution can be extracted to order δn+3.

It is the Drell-Yan process, an important input in all modern global PDF fits, that will

limit the accuracy of the iteration, so we concentrate on that process. We now use the

QCD partons f
(0)
q to determine an improved approximation to the photon distribution,

f
(1)
γ . Since the QCD partons are known to QED accuracy δ3, this new estimate of the

14We assume, for the principle of the demonstration, that the evolution and coefficient functions are

known to all perturbative orders. We also assume that lepton distributions are treated correctly to the

relevant order.
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photon will be accurate to order αL × δ3 ∼ δ4. One can then insert f
(1)
γ into a renewed

determination of the QCD partons to obtain f
(1)
q , which will be accurate to order δ5. In

general, at iteration i, f
(i)
γ will be accurate up to and including order δ2+2i, while f

(i)
q

will be accurate up to and including order δ3+2i. The convergence of this procedure is

therefore fast, and the limiting consideration will be the availability of coefficient and

splitting functions of the required order.15,16

11 Numerical results

In this paper, we have made some small changes to the procedure used to evaluate the

photon PDF compared to our previous paper, as discussed in Sec. 9.2. Figure 14 in that

section showed the difference in the PDF using the two methods. The change is very small,

and well within our errors.

The photon PDF computed using the method of this paper is given in the left-hand

panel of Fig. 18 for µ = 100GeV. It is rescaled by a factor 103x0.4/(1−x)4.5 to facilitate the

simultaneous study of different x regions. The plot includes a breakup into the different

contributions discussed in Sec. 8. There is a sizeable elastic contribution, with an important

magnetic component at large values of x. The resonance and continuum regions are also

quantitatively relevant. The white line represents contributions arising from the Q2 < 1

region of all the structure functions, including the full elastic contribution, and this serves

to illustrate the importance of a proper inclusion of the low Q2 region, given the accuracy

we aim for. The PDF contribution, in the physical factorisation scheme, is from the bottom

of the grey region to the blue dashed curve. The MS-conversion term, Eqs. (7.6, 7.12), is

negative and corresponds to the difference between the blue dashed curve (PF result) and

the top edge of the grey region (final full result in the MS scheme).

The right-hand plot of Fig. 18 illustrates how the components evolve when increasing

the factorisation scale µ. The main change is associated with the logQ2 growth of the

“PDF” contribution and is most important at small x values, a consequence of the fact

that the quarks distributions themselves increase rapidly with Q2 at small x. The elastic,

resonance and (low-Q2) continuum contributions to the photon PDF all depend slowly on

µ via the overall 1/α(µ2) factor in Eq. (6.16a). These components, though formally NLO,

remain a significant fraction of the overall photon PDF, even at this large value of µ.

The right panel in Fig. 18 also shows the impact of scale variation on the contributions

at µ = 500GeV. The blue dashed curves are for µM = µ/2 and µM = 2µ in Eqs. (9.1,9.4a)

for the PF photon. The total MS photon PDF (the top edge of the grey band) uses our

15As discussed in Sec. 7, starting from order α2 = δ4, the photon distribution is itself a direct input to

its own determination; an iterative type approach also addresses this case.
16The above discussion assumes that PDF fits for the QCD partons are carried out without an imposed

momentum sum rule and are constrained exclusively by data. However, it is quite common for the momen-

tum sum to be imposed. In this case the momentum carried by the photon acts as an effective input to

the fit, since it determines the momentum allowed for the QCD partons. For the f
(0)
q determination, the

highest known QED term in the momentum sum is δ2. Thus, insofar as the overall accuracy of the fit is

limited by the input(s) with worst accuracy, after one iteration the absolute accuracy for both f
(i)
γ and f

(i)
q

would be δ2+i.
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Figure 18. The left panel shows the contributions to the photon PDF at µ = 100 GeV, Eqs. (6.15a,

6.16a, 7.6, 7.12), multiplied by 103x0.4/(1 − x)4.5, with a breakdown into the various components

discussed in the text. The white line is the sum of the inelastic contribution from Q2 ≤ 1 (GeV)
2

in Eq. (6.16a) and the full elastic contribution. The full physical factorisation result of Eq. (6.16a),

which is equivalent to a LO result, is given by the dashed blue line. The right panel shows the same

plot for µ = 500GeV, with the scale µM in Eq. (9.4a) for the LO results set to µ/2 or 2µ. The

total PDF (edge of grey region) is shown for µM = µ. The MS-conversion term (difference between

grey region and dashed blue curve) has a significant impact with scale choices other than µM = µ.

central choice of µM = µ in Eq. (9.4a). The impact of a change of µM on the MS photon

PDF would be barely visible in the plot, because the substantial scale dependence of the

PF result is largely cancelled by that of the MS-conversion term, as was noted earlier in

the discussion of Fig. 13. Previous photon PDFs were at best accurate to leading order,

and hence had much larger scale uncertainties than LUXqed.

Figure 19 shows the γγ luminosity compared with the gg and total qq luminosities for√
s = 13TeV and 100TeV, where the luminosity dLij/d lnm

2 for partons i and j in pp

collisions is defined by

dLij
d lnm2

=
m2

s

∫
dz

z
fi(z,m

2) fj

(
m2

zs
,m2

)
. (11.1)

For the
∑

i qiqi luminosity, we have included a factor of two in the sum, since either

quarks or antiquarks can come from each beam. The γγ luminosity is about three orders

of magnitude smaller than the gg and qq luminosities over a wide range of masses. The

impact of the γγ luminosity is however enhanced in processes with leptons and electroweak

gauge bosons, such as pp→WW , where the γγ process has a t-channel exchange diagram

which is enhanced in some kinematic regions.

Figure 20 shows the photon momentum fraction of the proton as a function of µ.

The momentum fraction is ∼ 0.43% at µ = 100 GeV, and increases by about 0.1% for

each factor of 10 increase in µ. Eventually, neglecting electroweak corrections, the photon

momentum fraction saturates at a value that is independent of α and αs, however this

occurs at trans-Planckian scales.
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Figure 19. Upper panels: partonic luminosities in pp collisions, as a function of the partonic

invariant mass m, at centre-of-mass energies of 13 TeV (left) and 100 TeV (right). The γγ (scaled

by 102), qq̄ and gg luminosities appear from bottom to top. Lower panels: the relative uncertainties

of the luminosities. Our luminosity definition is given in Eq. (11.1).
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Figure 20. Momentum fraction (top) and its relative uncertainty (bottom) carried by the photon,

as a function of the factorisation scale µ.

12 Conclusions

In this paper, we have provided a detailed derivation and explanation of the results in

Ref. [22]. In addition, we have discussed several extensions of the results. We have com-

puted the polarised photon PDFs and the photon TMDPDF using the same method, and

given the corresponding formulæ.

We have given an alternative derivation of the photon PDF directly from the operator
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definition of the photon parton density, and we have used this definition to compute the MS

conversion term in the photon PDF to one higher order in αs and α than our previous result.

Our formalism allows for the computation of the MS conversion term to yet higher orders

using MS DIS coefficient function expansions in D dimensions. On the phenomenological

side, we have used the higher-order αs correction to give a more detailed analysis of the

theoretical error.

We have highlighted what is needed as experimental input for the proton structure

functions in order to make phenomenological use of our new higher-order calculations, in

particular the QED contributions. Specifically, our photon PDF formula requires exper-

imental data on DIS structure functions without removing the QED corrections on the

hadronic side. Two-photon exchange contributions, which couple the hadronic and lep-

tonic sides, must still be removed. We also stress that, rather than the measurement of the

proton form factor for the elastic contribution, it would be useful to have a measurement

of the structure functions also below the hadronic inelastic threshold W 2 = (mp+mπ)
2, in

order to account for final states consisting of a proton accompanied by an arbitrary number

of photons and electron-positron pairs.

The evolution of the photon PDF can also be used to obtain higher order Pγx DGLAP

splitting functions. We verified that the resulting ααs and α2 Pγx unpolarised splitting

functions agree with recent computations [26, 27]. From our results it is also possible to

derive the ααs polarised splitting function, as well as the unpolarised splitting functions

to one higher order. We have not, however, given explicit results for them.

We have given a detailed explanation of the data inputs for our photon PDF, and

the resulting uncertainties. The detailed treatment of the higher-order contributions used

to evaluate the PDF and estimate uncertainties is slightly different from the previous

version [22], as explained in the text, cf. also Fig. 14. To distinguish this new set from our

previous determination, we call it LUXqed17 plus PDF4LHC15 nnlo 100 (or LUXqed17

for brevity), and it is valid for scales µ ≥ 10 GeV.

The few percent precision that we have achieved for the photon PDF is more than

adequate for the computation of photon induced corrections to Standard Model processes

at present. It is possible and natural to adopt this method in the context of global PDF

fits.17

Since we have shown that a proton collider can be viewed as a broad beam photon

collider, and that the broad-beam distribution can be computed with high precision, the

question remains whether such precision can be fully exploited in experimental measure-

ments. The first thing that comes to mind is the possibility to search for totally hadrophobic

BSM particles, whose cross section could be computed with very high precision using the

results presented here. It is tempting to accompany such searches or measurements with a

veto on the event hadronic activity, in view of the large elastic component that we found.

We must point out, however, that even for the elastic component one cannot guarantee the

absence of hadronic activity. While this is certainly the case for lepton-proton collisions,

one should remember that in the proton-proton case the colliding protons are likely to pass

17This is currently being done by the NNPDF collaboration.
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close, or even to cross each other, sometimes giving rise to the production of secondary

hadrons [66]. The precision of the photon PDF input would then be spoiled by a less well

known survival probability factor for the protons.

The discussion in this paper has been for the photon PDF of the proton, but the

method can be applied to derive a photon PDF formula for any hadron. Eqs. (6.16a, 7.19)

for the unpolarised PDF hold without change for any hadron. The corresponding polarised

formulæ hold only for hadrons of spin 1/2. Evaluating the PDF from the formula requires,

of course, experimental data on the hadronic form factors and structure functions. For

the neutron, the high Q2 data is available in terms of quark and gluon PDFs, but low-Q2

data is not as accurate as for the proton. It is also important to keep in mind that at low

Q2, a nuclear target such as a deuteron is not simply the sum of a neutron and proton.

Finally, we remark that the methods developed here can also be extended to derive the

lepton distributions in the proton.

Data files corresponding to the figures in this paper are available through Zenodo [67].

We will provide LHAPDF [20] files for the LUXqed17 plus PDF4LHC15 nnlo 100 and

LUXqed17 plus PDF4LHC15 nnlo 30 sets through LHAPDF.
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A QED corrections

In this Appendix, we summarise some known results on the renormalisation of the electro-

magnetic current [68–70] which will be useful for the subsequent discussion. The formulæ

are given for the case of QED for simplicity, but they are trivially generalised to the case

of QCD with electromagnetic interactions.

The QED Lagrangian, including the gauge-fixing term is

L = ψ̄(0)
(
i/∂ + e0 /A

(0) −m0

)
ψ(0) − 1

4

(
F (0)
µν

)2
− 1

2ξ
(∂ ·A)2

= Zψψ̄
(
i/∂ + e (Sµ)ǫ /A− Zmm

)
ψ − ZA

4
(Fµν)

2 − 1

2ξ
(∂ ·A)2. (A.1)
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Figure 21. Penguin graph which renormalises the electromagnetic current.

Bare quantities are labelled with a subscript 0. The renormalisation constants are defined

through

e0 = Zee (Sµ)ǫ , m0 = Zmm, A(0)
µ = Z

1/2
A Aµ, ψ(0) = Z

1/2
ψ ψ , (A.2)

where S2 = eγE/4π, and the QED Ward identity implies that

ZeZ
1/2
A = 1 . (A.3)

The gauge-fixing parameter ξ is not renormalised, by BRST invariance.

The QED β function is given in terms of the anomalous dimension γA of the photon

field,

µ
de

dµ
= −ǫe+ β(e) = −ǫe+ eγA(e) , µ2

dα

dµ2
= −ǫα+ αγA(α) , (A.4)

where e(µ) is the MS coupling, and

γA(e) = γ0
e2

16π2
+ γ1

(
e2

16π2

)2

+ . . . , γA(α) = γ0
α

4π
+ γ1

( α
4π

)2
+ . . . . (A.5)

The Noether current is

jµN = Zψψγ
µψ = ψ

(0)
γµψ(0) . (A.6)

The usual (incorrect) textbook statement is that the electromagnetic current is a conserved

current, and not renormalised, so that jµN has finite matrix elements. This is false, because

of the well-known penguin graph Fig. 21. As shown in Ref. [68–70], the renormalised

current in the MS scheme is

jµ
MS

= ψ̄(0)γµψ(0) +
1− Z−1

A

e0
∂νF

(0) νµ , (A.7)

which satisfies the renormalisation group equation

µ
d

dµ
jµ
MS

= −2γA jµ
MS

(in physical matrix elements), (A.8)

where the Gupta-Bleuler condition ∂ ·A = 0 has been used for physical matrix elements.

There is a unique local electromagnetic current

jµ = jµ
MS

+
Π(0, µ) ∂νF

νµ

e (Sµ)ǫ , (A.9)
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(a) (b) (c)

Figure 22. (a) Graphs that are one-particle-irreducible in the current channel for insertion of a

current vertex in a Green function or matrix element; the standard non-renormalisation argument

applies only to these. (b) These graphs, one-particle-reducible in the current channel, also contribute

to matrix elements of the current and to its renormalisation. The two subgraphs that are cross

hatched are irreducible in the photon line, while the other subgraph gives the full propagator

corrections to the photon propagator. (c) Counterterm to (b). The filled square corresponds to an

operator proportional to ∂νF
νµ.

which satisfies the usual QED Ward identities, and is not renormalised,

µ
d

dµ
jµ = 0 . (A.10)

Here Π(q2, µ) is the vacuum polarisation,18 defined so that the renormalised photon prop-

agator is
i
(
−gµν + qµqν/q

2
)

q2 [1−Π(q2, µ)]
− iqµqνξ

(q2)2
. (A.11)

In physical matrix elements, the equation of motion for the photon field gives

jµ = [1−Π(0, µ)] jµ
MS

(in physical matrix elements). (A.12)

eph(q
2) is defined in Eq. (2.3). The renormalisation group equation for the inverse

photon propagator

iΓ(2)
µν (q

2, µ) = Pµν q
2
[
1−Π(q2, µ)

]
− 1

ξ
qµqν , Pµν = gµν −

qµqν
q2

, (A.13)

[
µ
∂

∂µ
+ µ

de

dµ

∂

∂e
− 2γA

]
Γ(2)
µν (q

2, µ) = 0 , (A.14)

and Eq. (A.4,A.14) imply that eph(q
2) is independent of µ. eph(q

2 = 0) is the usual electron

charge used in classical physics. eph(q
2) depends on the exact vacuum polarisation function,

and is non-perturbatively related to e(µ) in the presence of strong interactions, unless q2

is at large Euclidean values, where perturbation theory holds.

18The sign convention for Π used here is the opposite of that in Ref. [70].
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We can express an arbitrary Green function or matrix element of jµ in terms of Gµ1γI ,

which is the 1-photon-irreducible part in the current channel. The total Green function is

Gµj = Gµ1γI +
Π(q2, µ)

1−Π(q2, µ)
PµνG

ν
1PI −

Π(0, µ)

1−Π(q2, µ)
PµνG

ν
1PI , (A.15)

from Graphs Fig. 22(a), (b) and (c), respectively, giving

Gµj = Gµ1γI
1−Π(0, µ)

1−Π(q2, µ)
−Gν1γI

qνq
µ

q2
Π(q2, µ)−Π(0, µ)

1−Π(q2, µ)
. (A.16)

In physical matrix elements, the last term vanishes by current conservation, so

Gµj = Gµ1γI
1−Π(0, µ)

1−Π(q2, µ)
(in physical matrix elements). (A.17)

Since jµ is µ-independent, so is Gµj and hence also Gµ1γI . The 1γI graph is the same

whether one uses the current jµN or jµ
MS

or jµ, since the three operators only differ in their

1γI part.

The one-photon-irreducible part is given by matrix elements of the non-local current

jµ(q) = jµ
MS

(q) +
Π(q2, µ) ∂νF

νµ(q)

e (Sµ)ǫ , (A.18)

since it is Eq. (A.15) with Π(0, µ) → Π(q2, µ) in the last term.

We can now relate physical matrix elements of the current jµ defined in Eq. (A.9) and

the MS current to one-photon-irreducible matrix elements,

〈X|jµ|Y 〉 =
[
αph(q

2)

αph(0)

]
〈X|jµ|Y 〉1γI ,

〈X|jµ
MS

|Y 〉 =
[

αph(q
2)

α(µ) (Sµ)2ǫ
]
〈X|jµ|Y 〉1γI , (A.19)

using Eq. (2.3). 〈X|jµ|Y 〉 is independent of µ, as is 〈X|jµ|Y 〉1γI , but not 〈X|jµ
MS

|Y 〉.
Similar expressions hold for matrix elements with multiple insertions of the electromagnetic

current.

In scattering processes with external (i.e. on-shell) photons, the LSZ reduction formula

says that the S-matrix is given by

〈Xγ|S|Y 〉 = R
1/2e (Sµ)ǫ 〈X|jµ|Y 〉1γI , (A.20)

where the wavefunction factor is

R
1/2 =

[
1−Π(0, µ2)

]−1/2
=

eph(0)

e(µ) (Sµ)ǫ , (A.21)

so that

〈Xγ|S|Y 〉 = eph(0) 〈X|jµ|Y 〉1γI , (A.22)
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and external photons couple with strength eph(0). Internal photon lines still have the

coupling e(µ) (Sµ)ǫ.
It is convenient in our discussion of the photon PDF to use one-photon-irreducible

matrix elements, even though it is the matrix element of a non-local current Eq. (A.18).

One can convert expressions to those of the local current Eq. (A.9) using Eq. (A.19).

The proton hadronic tensor is defined in Eq. (2.4). We will define three versions of this

equation, Wµν which uses the current jµ in Eq. (A.9), Wµν

MS
, which uses the MS current

Eq. (A.7), and Wµν
1γI , which uses the non-local current Eq. (A.18), or equivalently, is given

diagrammatically in terms of one-photon irreducible graphs. The relation between these is

Wµν =

[
αph(q

2)

αph(0)

]2
Wµν

1γI ,

Wµν

MS
=

[
αph(q

2)

α(µ) (Sµ)2ǫ
]2
Wµν

1γI . (A.23)

from Eq. (A.19). All three hadronic tensors are renormalised using the MS scheme. The

difference is which current is used in the hadronic matrix element in Eq. (2.4).

One has to be careful about the definition of Wµν and the structure functions in

the presence of electromagnetic corrections. Wµν defined using the µ-independent cur-

rent Eq. (A.9), and including all electromagnetic corrections to the matrix element is

µ-independent, so the structure functions in the decomposition Eq. (2.6) are also µ-

independent, and depend only on xbj and Q2. Note that if one had instead used the

MS current, the structure functions would depend on µ as well as xbj and Q
2.

The one-photon-irreducible F2 structure function is denoted F 1γI
2 , and is related to F2

by

F2(xbj, Q
2) =

[
αph(q

2)

αph(0)

]2
F 1γI
2 (xbj, Q

2) , (A.24)

Similarly, the MS structure function is

FMS
2 (xbj, Q

2, µ) =

[
αph(q

2)

α(µ) (Sµ)2ǫ
]2
F 1γI
2 (xbj, Q

2) , (A.25)

and depends on µ. Similar results hold for the other structure functions.

The structure function F2 (and similarly for the others) can be computed using the

operator product expansion (OPE) as the convolution of short distance coefficient functions

C2,i(x,Q
2, µ) and PDFs fi(x, µ). Graphically, it is easiest to compute C1γI

2,i (x,Q
2, µ), and

then obtain C2,i(x,Q
2, µ) from Eq. (A.24).

B Kinematics

In this section, we summarise the kinematics for the scattering process k + p → k′ + X,

where p is the incoming proton momentum with p2 = m2
p, k is an incoming massless particle

momentum with k2 = 0, and k′ is an outgoing particle momentum with (k′)2 = M2. In
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deep inelastic scattering (DIS), M = 0, but we will need to consider cases where M 6= 0 as

well. The momentum transfer q is defined as q = k − k′, so that the final hadronic state

has invariant mass m2
X = (p+ q)2 ≥ m2

p.

We adopt light-cone coordinates, and introduce two null vectors n and n which define

the collision axis, with n along the k direction, such that

kµ =
1

2
k−nµ, pµ =

1

2
p+nµ +

1

2
p−nµ, qµ =

1

2
q+nµ +

1

2
q−nµ + qµ⊥, (B.1)

and n2 = n̄2 = 0 and n · n̄ = 2. Then p+ = n · p, p− = n · p, etc. We adopt the convention

q2⊥ = −qµ⊥qν⊥gµν > 0 , (B.2)

and use the standard definitions

Q2 =− q2 = −q+q− + q2⊥, xbj =
Q2

2p · q =
Q2

p+q− + p−q+
, y =

p · q
p · k . (B.3)

We also introduce the variable

χ = −q · k
p · k = −q

+

p+
. (B.4)

The d4q integration measure in light-cone coordinates is

d4q =
dq+dq−

2
d2q⊥ =

π

2
dq+dq−dq2⊥

dφ

2π
. (B.5)

Eq. (B.5) uses q+, q− and q2⊥ as the independent variables. In a fixed Lorentz frame, with

p± given, q± and q2⊥ can be used to determine Q2, xbj and χ using Eqs. (B.3) and Eq. (B.4).

We can express q±, q2⊥ as a function of χ, xbj and Q
2 by inverting these equations,

q+ = −p+χ, q− =
Q2

xbjp+
+ χp−, q2⊥ = Q2

(
1− χ

xbj

)
− χ2m2

p. (B.6)

We thus have a one-to-one mapping of the variables q2⊥, q
+, q− into Q2, xbj and χ. How-

ever, the inverse mapping yields a valid kinematic point if and only if q2⊥ is non-negative.

Therefore we must add the constraint

Q2

(
1− χ

xbj

)
− χ2m2

p > 0. (B.7)

The relevant Jacobian is easily computed to be Q2/x2bj, so that the phase space in terms

of the new variables becomes

d4q =
π

2
dχQ2dQ2 dxbj

x2bj

dφ

2π
. (B.8)

In computing the total scattering cross section, the integral over q is restricted by θ

and δ functions (see Eq. (3.5)) which ensure that the final state has positive energy and

the correct invariant mass. The energy theta functions are easily evaluated if we choose n

and n̄ such that p+ = p− = mp, i.e. we work in the proton rest frame.
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Let k = (E, 0, 0, E) and k′ = (E′, 0, p′ sin θ, p′ cos θ) with (k′)2 = M2. Since p0X =

p0 + q0 = mp + E − E′ ≥ mp, we have E ≥ E′.

Q2 = 2E(E′ − p′ cos θ)−M2 ≥ 2E(E′ − p′)−M2 =

[
2E

E′ + p′
− 1

]
M2 . (B.9)

Since 2E ≥ 2E′ ≥ E′ + p′ ≥ 0, the factor in square brackets is positive, and

Q2 ≥ 0 . (B.10)

We have

k0 =
p · k
mp

> 0 =⇒ p · k > 0 . (B.11)

From

q0 =
q+ + q−

2
=

Q2

2xbjmp
, (B.12)

we get

2(k′)0 = 2(k0 − q0) =
2p · k
mp

− Q2

xbjmp
> 0 , (B.13)

and

2(p0 + q0) ≥ 2mp =⇒ Q2

xbj

≥ 0 =⇒ xbj ≥ 0 . (B.14)

The invariant mass inequality m2
X = (p+ q)2 ≥ m2

p gives

Q2 1− xbj

xbj

≥ 0 =⇒ xbj ≤ 1 , (B.15)

and the invariant mass equality (k − q)2 =M2 gives

2(p · k)χ =M2 +Q2 . (B.16)

If instead k′ is integrated over some mass range, then we only haveM2 ≥ 0, and Eq. (B.16)

becomes the inequality

2(p · k)χ ≥ Q2 . (B.17)

From Eq. (B.3),

y =
Q2

2xbj(p · k)
(B.18)

and so Eqs. (B.10,B.11,B.13,B.14) give

0 ≤ y ≤ 1. (B.19)

– 62 –



The q2⊥ ≥ 0 condition Eq. (B.7) gives the inequality

Q2

xbj

(xbj − χ) ≥ 0, (B.20)

and so, from Eq. (B.14),

xbj ≥ χ . (B.21)

In summary the phase space, including the constraints but assuming that k′ is inte-

grated over some mass range, is as follows: the integration measure is given by Eq. (B.8)

and the integration region obeys the following constraints: 0 ≤ xbj ≤ 1, Eq. (B.7) and

Eq. (B.17).

Here we will also assume that the final state k′ is a particle with mass M . In this case,

the phase space will also include a factor

2πδ((k − q)2 −M2) =
2π

2p · kδ
(
χ− Q2 +M2

2p · k

)
, (B.22)

that will lead to the elimination of the dχ integration. In this case, Eq. (B.7) becomes

xbj ≥
2p · k(M2 +Q2)Q2

4(p · k)2Q2 −m2
p(M

2 +Q2)2
. (B.23)

The minimum allowed value of xbj is

xbj =
M2

2(p · k −Mmp)
. (B.24)

Furthermore, we will introduce a variable that plays the role of the photon momentum

fraction in the partonic interpretation of the process

x =
M2

2p · k . (B.25)

The limits on the Q2 integration at fixed xbj are easily worked out from the last theta

function in Eq. (B.23) to yield

Q2
↑/↓ =

xbj − x− 2xbjx
2m2

p

M2 ±
√
(xbj − x)2 − 4x2bjx

2m2
p

M2

2x
M2

(
1 +

xbjxm2
p

M2

) . (B.26)

The limits obey the relation

Q2
↓ =

xbjxm
2
pM

2

(
1 +

xbjxm2
p

M2

)
Q2

↑

. (B.27)

Eq. (B.26) requires xbj −x to be positive, otherwise Q2
↑ < 0. The positivity of the discrim-

inant requires

xbj − x >
2xbjxmp

M
⇒ xbj >

x

1− 2xmp

M

, (B.28)
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which is equivalent to Eq. (B.24), and the form of Eq. (B.26) guarantees that Q2
↑ > Q2

↓.

Thus, the only constraint on xbj is Eq. (B.28). For future convenience, we also introduce

the variable

z =
x

xbj

(B.29)

and trade xbj for z in the phase space expression.

Our final result, including the factor in Eq. (B.22), becomes

∫
d4q

(2π)4
2πδ((k − q)2 −M2)θ(k0 − q0)θ((p+ q)2 −m2

p)θ(p
0 + q0) =

1

16π2M2

∫ 1−
2xmp

M

x
dz

∫ Q2
↑

Q2
↓

Q2dQ2

∫ π

−π

dφ

2π
, (B.30)

with

Q2
↑ = M2

(
1− z

z

) 1− 2x2m2
p

(1−z)M2 +

√
1− 4x2m2

p

(1−z)2M2

2
(
1 +

x2m2
p

zM2

) ,

Q2
↓ =

x2m2
p

1− z

2

1− 2x2m2
p

(1−z)M2 +

√
1− 4x2m2

p

(1−z)2M2

. (B.31)

Expanding the limits in m2
p/M

2 gives

Q2
↑ → Q2

max =
M2(1− z)

z
, Q2

↓ → Q2
min =

m2
px

2

1− z
. (B.32)

We will use Q2
max, Q

2
min as upper and lower limits when we compute the DIS cross section

neglecting power corrections.

C Photon PDF from γγ → S

In this Appendix we illustrate the universality of our photon PDF result. Consider another

BSM probe, a heavy scalar S with massM that couples to γγ via the interaction Lagrangian

L =
ce2(µ)

Λ
S FµνF

µν . (C.1)

The Lagrangian coefficient c is not renormalised at one loop order, but now there are higher

order corrections since γγ can interact via fermion loops at two-loop order. The interaction

Eq. (C.1) leads to the γ(k1, ǫ1) + γ(k2, ǫ2) → S vertex (neglecting irrelevant phase factors)

−2ce2(µ)

Λ
[(k1 · k2)(ǫ1 · ǫ2)− (k1 · ǫ2)(k2 · ǫ1)] . (C.2)

The spin-averaged γγ → S cross section to lowest order is

σγγ = σ̂(γγ → S) = σ0M
2δ(s−M2) , σ0 =

πc2e4(µ)

2Λ2
. (C.3)
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p p

γ(k) γ(k)

q q

X

S

Figure 23. Graph for the process γ + p→ S +X at lowest order in α.

γ S

q q

Figure 24. Lowest order graph for γ + q → S + q.

The cross section coefficient has again been called σ0, so the formulæ can be easily compared

with the l → L case.

The γ+p→ S+X cross section, from Fig. 23 including the QED vacuum polarisation

bubbles and corrections to the hadronic tensor is

σγp =
σ0

2πα(µ)

∫ 1−
2xmp

M

x

dz

z

∫ Q2
↑

Q2
↓

dQ2

Q2
α2
ph(q

2)

[(
−z2 − 2z2Q2

M2
− z2Q4

M4

)
FL(x/z,Q

2)+

+

(
2− 2z+ z2 +

2x2m2
p

Q2
+

2z2Q2

M2
− 2zQ2

M2
+

4x2m2
p

M2
+
z2Q4

M4
+

2x2Q2m2
p

M4

)
F2(x/z,Q

2)

]
.

(C.4)

We now follow the same procedure as before — (a) define a “physical factorisation PDF”

from the terms not suppressed by M2 (b) break the integral up into three pieces as in

Eq. (3.19) (c) evaluate the two remaining integrals. Even though Eq. (C.4) is different

from Eq. (3.19), the M2 unsuppressed terms are the same as before, and lead to the same

fPFγ as in Eq. (3.21). This gives the analogue of Eq. (3.23)

σγp = σ0xf
PF
γ (x, µ)+

α(µ)

2π
σ0

∫ 1

x

dz

z

[
zpγq(z)

(
log

M2(1− z)2

zµ2

)
−3

2
(1−z)2

]
F2(x/z, µ

2) .

(C.5)

We also need the partonic scattering cross section

σγq = σ0e
2
q

α(µ)

2π

[
xpγq(x)

(
− 1

ǫIR
+ log

M2(1− x)2

xµ2

)
− 1

2
x2 + 3x − 3

2

]
. (C.6)
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From Eq. (C.5) and Eq. (C.6), we obtain the same photon PDF as before, Eq. (3.26). Even

though the non-logarithmic terms in Eqs. (C.5) and Eq. (C.6) are different from those in

Eqs. (3.18) and (3.23), the difference of the two
[
−3

2
(1− x)2

]
−
[
−1

2
x2 + 3x− 3

2

]
= −x2 ,

[
−x2 + 3x− 2

]
− [3x− 2] = −x2 , (C.7)

remains the same, and leads to the same MS-conversion term. This shows explicitly that,

as expected, our derivation leads to a process-independent result for the MS photon PDF.

The structure of radiative corrections for γ + p → S + X is more complicated than for

l + p → L + X, so it is more difficult to extend the γ + p → S + X result to higher

orders. Nevertheless, it must continue to give the same result for the photon PDF, even

at higher orders. An alternate derivation using PDF operators that does not rely on any

BSM process is given in Sec. 6. We have also checked the derivation of the polarised photon

PDF using the γγ → S probe.

D Collinear-factorisation for lq → Lq

In this Appendix we give the derivation of the partonic cross section given in Eq. (3.16).

We start with the lowest order cross section for lq → Lq in D-dimensions (D = 4 − 2ǫ),

given by

σ̂
(0,1,bare)
lq (ŝ) =

1

2ŝ
· 1
4
(µS)2ǫ

∫ π

0
dθ sinD−3θ

23−Dπ1−D/2

Γ(D/2− 1)

|p′|D−3

4
√
ŝ

|M2| , (D.1)

where the matrix element has been summed over spins, but without averaging over initial

spins. The squared matrix-element is given by

|M2| = 256π2α2c2e2q

(
(D − 2)M2

(
M2 +Q2

)
− 4s

(
M2 +Q2

)
+ 4s2

)

Λ2Q2
. (D.2)

The integral over θ gives

σ̂
(0,1,bare)
lq (ŝ) =

ασ0e
2
q

2π

[
−zpγq(z)

ǫ
− 2 + 3z + zpγq(z)

(
ln
M2

µ2
+ ln

(1− z)2

z

)
+O (ǫ)

]
,

(D.3)

where we define z ≡M2/ŝ, σ0 is defined in Eq. (3.12) and pγq(z) is given in Eq. (3.17).

Since the leading-order cross section does not depend upon ǫ, the MS factorisation is

simply achieved by dropping the 1/ǫ terms. We obtain

σ
(coll,q,ǫ−1)
lp (ŝ) = −

ασ0e
2
q

2πǫ

∫
dx′

M2

x′s
pγq

(
M2

x′s

)
fq(x

′, µ2) (D.4)

= −
ασ0e

2
q

2πǫ

∫
dx′ dzM2pγq (z) δ(x

′zs−M2)fq(x
′, µ2) . (D.5)

Now we introduce x = zx′ and we obtain

σ
(coll,q,ǫ−1)
lp (ŝ) = −

ασ0e
2
q

2πǫ

∫
dx

x

dz

z
M2zpγq (z) δ(xs−M2)

x

z
fq(x/z, µ

2) . (D.6)
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Recall that σ
(0)
γe→L+X(ŝ) =M2σ0δ(ŝ−M2) so that we rewrite our answer as

σ
(coll,q,ǫ−1)
lp (ŝ) = − α

2πǫ
e2q

∫
dx

x

dz

z
zpγq (z)

x

z
fq(x/z, µ

2)σ0γe→L+X(xs) , (D.7)

=

∫
dx fγ(x, µ

2)σ0γe→L+X(xs) , (D.8)

where we have defined

xfγ(x, µ
2) ≡ − α

2πǫ

∫
dz

z
zpγq(z)

x

z
fq(x/z, µ

2) . (D.9)

Thus if we remove just the 1/ǫ part, the collinear-subtracted part of σ̂
(1,0,bare)
lq (ŝ) is given

by

σ̂
(0,1)
lq (ŝ) =

ασ0e
2
q

2π

[
−2 + 3z + zpγq(z)

(
ln
M2

µ2
+ ln

(1− z)2

z

)]
. (D.10)

This formula holds both for quarks and leptons, by replacing the index q with i ∈ {q, l},
and agrees with the result reported in Eq. (3.16).

E Low Q2 behaviour of F2 and FL

Wµν is the discontinuity of a forward amplitude in W 2 = (p+ q)2, and should be analytic

in Q2 and W 2 for W 2 away from the thresholds at (mp + nmπ)
2, and for Q2 < (2mπ)

2. In

particular, it should be analytic as Q2 → 0 at fixed W 2 away from thresholds. This implies

that the coefficients of its independent tensor structures should be analytic. Looking at

the tensor structure qµpν in Eq. (2.6) we immediately see that F2 must vanish as Q2.

Considering instead the tensor structure qµqν one finds that F1−F2/(2x) should vanish at

least as Q2 for small Q2. At small Q2 and fixed W 2, x behaves as Q2, so that

FL =

(
1 +

4m2
px

2

Q2

)
F2 − 2xF1 = −2x

(
F1 −

F2

2x

)
+

4m2
px

2

Q2
F2 (E.1)

vanishes at least as Q4 as Q2 → 0.

F Low Q2 behaviour of R = σL/σT

The cross section for γp scattering for transverse and longitudinally polarised photons is

σT,L =
(
ǫ∗µL,T ǫ

ν
L,TWµν

)
Φ , (F.1)

where the proportionality constant Φ depends on the convention used for the incident

photon flux for an off-shell (unphysical) photon with momentum Q2. In terms of structure

functions,

σT = ΦF1 , σL = Φ
FL
2x

,
σL
σT

=
FL
2xF1

. (F.2)
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Pick a frame where p = (mp, 0, 0, 0) and the photon has momentum q = (q0, 0, 0, q3)

with longitudinal polarisation

ǫL =
1

Q
(q3, 0, 0, q0) . (F.3)

We can rewrite this as

ǫL =
1

Q
qµ +

Q

q3 + q0
(1, 0, 0,−1) =

1

Q
qµ +

Q

n · qn
µ , (F.4)

where n = (1, 0, 0,−1) is a null vector. Since qµWµν = qνWµν = 0,

σT = ΦW⊥⊥ , σL = Φ
Q2

(n · q)2Wnn , (F.5)

which shows that σL/σT ∝ Q2 as Q2 → 0 at fixed q0, or fixed q3, or fixed n · q.

G Summary of O(αs) and O(α) coefficient and splitting functions

This section summarises known results for the O(αs) and O(α) coefficient and splitting

functions we need.

We start summarising the splitting functions for QCD processes that we need

P
(1,0)
ii (x) = pqq(x) = CF

(
1 + x2

1− x

)

+

,

P
(1,0)
ig (x) = pqg(x) = TF

(
x2 + (1− x)2

)
, (G.1)

for i ∈ {q}, and for QED

P
(0,1)
ii (x) = e2i p

qed
qq (x) , pqedqq (x) =

(
1 + x2

1− x

)

+

,

P
(0,1)
iγ (x) = nie

2
i pqγ(x) , pqγ(x) = x2 + (1− x)2 , (G.2)

for i ∈ {q, l}. We have also defined

B
(1,0)
2,a (x) =

{
pqq(x) e

2
a for a ∈ {q}

pqg(x)
∑

i∈{q} e
2
i for a = g

, (G.3)

and

B
(0,1)
2,a (x) =

{
pqedqq (x)e4a for a ∈ {q, l}
pqγ(x)

∑
i∈{q,l} nie

4
i for a = γ

. (G.4)
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From Ref. [71], and converting to x space:

C
(1,0)
L,i∈{q} = e2i CF 2x

C
(0,1)
L,i∈{q,l} = e4i 2x

C
(1,0)
2,i∈{q} =

1

2
e2iCF

{
−3

1

(1− x)+
+ 4

[
ln(1− x)

1− x

]

+

− 4
lnx

1− x
+ 4x

− 2(1 + x) ln(1− x) + 2(1 + x) lnx+ 6− (9 + 4ζ2)δ(1− x)

}
,

C
(0,1)
2,i∈{q,l} =

1

2
e4i

{
−3

1

(1− x)+
+ 4

[
ln(1− x)

1− x

]

+

− 4
lnx

1− x
+ 4x

− 2(1 + x) ln(1− x) + 2(1 + x) lnx+ 6− (9 + 4ζ2)δ(1− x)

}
,

C
(1,0)
L,g = 4TR


1

2

∑

i∈{q}

e2i


x(1− x) ,

C
(0,1)
L,γ = 4


1

2

∑

i∈{q,l}

nie
4
i


x(1− x) ,

C
(1,0)
2,g = TR


1

2

∑

i∈{q}

e2i



{[
x2 + (1− x)2

]
ln

1− x

x
+ 8x(1− x)− 1

}
,

C
(0,1)
2,γ =


1

2

∑

i∈{q,l}

nie
4
i



{[
x2 + (1− x)2

]
ln

1− x

x
+ 8x(1− x)− 1

}
. (G.5)

The x-space coefficient functions agree with Ref. [72]. The (0, 1) coefficients can be obtained

from the (1, 0) ones using the replacement rules

(1, 0) −→ (0, 1)

g −→ γ

TR


1

2

∑

i∈{q}

e2i


 −→


1

2

∑

i∈{q,l}

nie
4
i




e2i∈{q}Cf −→ e4i∈{q,l} . (G.6)

Since there was no quark vacuum polarisation contribution to the QCD corrections at order

(1, 0), the QED corrections are one-photon irreducible. This is consistent with our scheme

for the hadronic tensor.
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The order ǫ coefficient functions are [38]

a
(1,0)
2,i∈{q} = e2iCF

[(
ln2(1− z)

1− z

)

+

− 3

2

(
ln(1− z)

1− z

)

+

+

(
7

2
− 3ζ(2)

)(
1

1− z

)

+

− 1

2
(1 + z) log2(1− z)− 1 + z2

1− z
log z log(1− z) +

1

2

1 + z2

1− z
log2 z +

3

2

1

1− z
log z

+ (3 + 2z)

(
log

1− z

z
− 2

)
+

3

2
(1 + z)ζ(2) +

(
9 +

3

4
ζ(2)

)
δ(1− z)

]
, (G.7a)

a
(1,0)
2,g =

1

2
TR


1

2

∑

i∈{q}

e2i



[
(1− 2z + 2z2) log2

1− z

z
− 2(1− 8z + 8z2) log

1− z

z

− 3(1− 2z + 2z2)ζ(2) + 6− 44z + 44z2

]
, (G.7b)

a
(1,0)
L,i∈{q} = e2iCF

[
2z log

1− z

z
− 2z

]
, (G.7c)

a
(1,0)
L,g = TR


1

2

∑

i∈{q}

e2i


 4z(1− z)

[
log

1− z

z
− 3

]
. (G.7d)

We have recomputed Eq. (G.7) and found that the δ(1− z) term in a
(1,0)
2,q has a coefficient

9 + 3ζ(2)/4, rather than 9 + 3ζ(2)/2 given in Ref. [38]. With this modification, the Adler

sum rule ∫ 1

0
dz a

(1,0)
2,q (z) = 0 (G.8)

is now satisfied.

For the polarised case, from Ref. [73]:

C
(1,0)
∆q = C2,q − e2qCF (1 + x) . (G.9)

C∆q is the same as the coefficient function for F3 in ν-scattering. From Ref. [36]

C
(1,0)
∆g = TR


1

2

∑

i∈{q}

e2i



[
(2x− 1) ln

1− x

x
+ 3− 4x

]
. (G.10)

The order ǫ coefficient functions are [74]

a
(1,0)
∆i∈{q} = a

(1,0)
2,i + e2iCF

[
−(1 + z)

(
log

1− z

z
− 2

)]
(G.11a)

a
(1,0)
∆g =

1

2
TR


1

2

∑

i∈{q}

e2i



[
(2z − 1) log2

1− z

z
+ (6− 8z) log

1− z

z
− 3(2z − 1)ζ(2)

− 12 + 6z

]
(G.11b)

The corresponding results for the a
(0,1)
∆i∈{q,g} coefficients are easily obtained from the above

using the replacement rules Eqs. (G.6).
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Figure 25. Left: the up-quark distribution at x = 0.1 as a function of the factorisa-

tion scale µ in the PDF4LHC15 nnlo 100 set and in its three underlying input PDF sets,

CT14nnlo, MMHT2014nnlo68cl and NNPDF30 nnlo as 0118. One sees anomalous behaviour for

µ < 1.295 GeV in PDF4LHC15 nnlo 100 and CT14nnlo, associated with LHAPDF’s extrapolation

of the CT14nnlo below its range of validity. Right: similarly, but for the b-quark distribution (mul-

tiplied by 103). It illustrates the different locations of the b-quark thresholds in the various sets.

It also shows that only two of the sets display the expected discontinuous threshold at the b-quark

mass.

H Issues at low and moderate µ2 in PDF4LHC15

Our base PDF set, PDF4LHC15 nnlo 100 [51], is a combination of three underlying sets,

CT14nnlo [52], MMHT2014nnlo68cl [53] and NNPDF30 nnlo as 0118 [54]. This combina-

tion is intended for LHC applications, which mostly involve high µ2 values (e.g. (10 GeV)2

upwards).

In our work here, we need access to the PDF at low µ2 values in order to then evolve

it upwards with supplemental QED corrections.19 In doing so, we have encountered some

issues, which we document here.

A first point is that the set is quoted, within LHAPDF, as being valid from µ =

1 GeV. However if one uses it at this scale, one encounters unexpected behaviour such as a

momentum sum of 0.94 rather than 1 and inconsistency with other µ values if one evolves

up with an independent DGLAP code. The origin of the problem turns out to be trivial,

namely that one of the input PDFs, CT14nnlo, is valid only from µ = µ0 = 1.295 GeV

(while the other two are valid from 1 GeV). When CT14nnlo is used below its starting

scale, LHAPDF appears to extrapolate it such that fi(x, µ
2) ∼ µ2/µ20 fi(x, µ

2
0) as µ

2 → 0.

This is illustrated in Fig. 25 (left), which shows the up quark PDF versus µ. One sees the

CT14 curve dropping rapidly for µ2 < µ20, whereas the other input PDFs vary much more

19With many standard methods for numerical DGLAP evolution, upwards evolution is stable, while

downwards evolution is often less so. In particular parton distributions from LHAPDF tend to have small

irregularities (typically below a part in 103) that make this especially problematic. One could imagine

developing methods to make the downwards evolution more stable, however we have not investigated them.
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slowly down to µ2 = 1 GeV2. Since the PDF4LHC15 combination effectively averages the

central values of the three sets, it inherits part of the extrapolated CT14 behaviour. This

problem is common to all light flavours. It would be trivial to fix, by increasing the lower

µ2 limit of the PDF set to the largest of the lower limits of the underlying sets.

A second issue concerns flavour thresholds. The three underlying sets do not share

the same thresholds. For example CT14nnlo and MMHT2014nnlo68cl have their b-quark

threshold at 4.75 GeV, while NNPDF30 nnlo as 0118 has its threshold at 4.18 GeV, as can

be seen in Fig. 25 (right). Consequently, no single evolution that starts below the (highest)

b threshold can reproduce the results of the combined set across all µ2 values.20

This suggests that the lowest scale from which one may start the evolution is just above

the highest of the different b thresholds. However yet another issue arises. In Fig. 25 one

sees that the MMHT and NNPDF b-distributions have a discontinuity at the respective b

masses, associated with a second order threshold term in the evolution [75, 76]. The CT14

curve is instead continuous there. For µ > 6 GeV it clearly approaches the MMHT2014

result, which suggests that the underlying evolution contains the correct mass threshold.

It seems likely, therefore, that the issue is related to the way that the CT14nnlo set is

included in LHAPDF.21 This issue seems to be reflected also in the PDF4LHC15 set.

Overall, therefore, we can only use PDF4LHC15 nnlo 100 as a starting point for our

evolution from a scale of about µ = 6 GeV upwards.
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