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The Physical Principles of the Quantum Theory.
By G. Temere, Ph.D., D.Sc., Imperial College of Science and Technology.
(Communicated by 8. Chapman, F.R.8.—Received June 25, 1932.)

The object of this paper is to reformulate the principles of the quantum
theory as a sequence of propositions which shall be either summary statements
of standard experimental procedure or hypotheses concerning the results of

N experiment and having an immediate physical interpretation. It is shown that
A the standard process in micro-physics is a generalised spectral analysis, whose
aproperties are simply expressible in symbolic form by means of projective or
Z “idempotent ” operators (Einzeloperatoren). Tt appears that only two
& hypotheses need be made and that these relate to the existence and properties
§ of transition probabilities. From these fundamental principles, which have a
?aﬂdirect physical significance, it is possible to deduce the subsidiary principles
%bwhich form the accepted basis of the mathematical analysis of the quantum
& theory and which deal with the representation of quantum states and physical

li

5 quantities by vectors and linear operators respectively.
In this paper the emphasis is laid on the experimental process determining

ietypu

.2 a state of a system and on the associated operators rather than on the state
itself or the vector representing it in the system space. Projective operators,
which represent actual processes of measurement, and unitary operators,
which represent actual transformations of systems of measurement, are given
priority over the (statistical) operators which represent physical variables.
This method of representation makes the physical meaning of the theory
fundamental, instead of leaving it to be extracted from a purely mathematical

system of non-commutative algebra or differential equations.

§ 1. The General Principles of the Quantum Theory.

The first step in the rational analysis of the principles of the quantum theory
is the distinction between the ‘ general principles,” which are valid for any
physical system, and the *special principles,” which are characteristic of
particular physical systems. The present paper is concerned only with the
general principles. The special principles will be considered in a subsequent
communication.

The fundamental concepts, in terms of which the general principles are
formulated, are the concepts of a system, of the states of a system, of the tran-
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sitions of a system from one state to another, and of the probability of these
transitions. The general principles themselves relate exclusively to the
mathematical representation of these physical concepts. They assert that a
system is represented by a certain Hilbertian space ), the states of the system
by rays or unit vectors, «, 3, ..., in the system space #, and the transitions of
the system by unitary transformations, U, V, ..., in #. The probability of
a transition between two states is taken to be equal to | (, B) |2 the squared
modulus of the scalar product of the two rays a, B representing the states.

In this scheme a physical quantity or a dynamical variable is a derivative
concept. It is associated with a group of unitary transformations, {U (s)},
depending upon one parameter s, and it is represented by the infinitesimal

operator of this group,
P = lim 2 U(s)/s,

S0
more precisely, by the operator (k/2wi) P where 4 is subsequently identified with
Planck’s constant. The effective or average value of a physical quantity
represented by an operator X in a state represented by a unit vector « is taken
to be equal to (Xa, @), the scalar product of Xa by .

The two modes of exposition of the quantum theory, represented by the
books of Dirac and Weyl, emphasise respectively the representation of states
by vectors and the representation of quantities by operators. When the
exposition is restricted to that part of the quantum theory which depends
exclusively upon the general principles, Weyl’s method is inevitable and it is
this method—the representation of operators by algebras, groups and matrices
~—which is mainly employed here.

Both modes of exposition are purely deductive systems in which only the
zemote conclusions can be physically interpreted and experimentally proved.
The principles themselves, as is clear, from the summary above, have no
immediate physical significance ; the object of this investigation is to analyse
them into simple assumptions free from this defect. Until this problem is
solved the quantum theory will present the anomaly of a physical theory
incapable of giving a physical interpretation of its own principles.

§ 2. Selective Operators.

The general interpretation of the quantum theory given by Bohr, Heisen-
berg and Dirac has stressed the uncertain and unpredictable character of
experimental observations. It is clearly as impossible to base the quantum
theory on these negative qualities alone as to ground the theory of relativity
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solely on the negative results of the Michelson-Morley experiment. On the
other hand, a precise analysis of the positive characteristics of micro-physical
measurement does furnish an entirely adequate physical basis for the quantum
theory. It is argued here that the main experimental process of microscopic
physics is a generalised form of spectral analysis. The essence of this type of
process can be expressed quite simply in a symbolic form (§ 3), from which
the accepted * general principles ™ of the quantum theory can be rigorously
deduced with the aid of two auxiliary assumptions which are wholly physical
in content. .

Any physical experiment is an interaction between the system observed
and the apparatus of observation. The action of the system on the apparatus
&0in producing an observable record has its counterpart in the reaction of the
;Eapparatus on the system in producing an unobserved change of state. Hence
<:only two types of experiment can yield unambiguous results—that type in
?C’D which the action of the system on the apparatus is completely determined by
& the initial state of the system and that in which it is determined by the final
Zstate of the system. The characters of the system which can be inferred in
@ these two cases are distinguished by Eddingtonf as * retrospective ” and
= ** contemporaneous ” respectively. In an historical study of individual systems
only the second type of experiment is efficacious.

In this special type of experiment the inference regarding the character of
= the observed system is valid precisely because the experiment tmpresses this
?character upon the system. Hence, if the same system is immediately sub-
E- jected again to the same process, it will suffer no further change. If the
g experimental process is represented by the operator P this property of the
g process is symbolised by the equation
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PP . P=E

When the system is subjected to some other process, represented by the
operator Q, the character impressed by Q may be incompatible with the
A character impressed by P, in which case the process Q will cause a transition of
the system from one state to another. Symbolically, the compatibility or

incompatibility of the characters impressed by P and Q is represented by the
equations
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PQ=QP or PQ=QP
respectively.

1  The Decline of Determinism,” Presidential Address to the Mathematical Association,
January 4, 1932.
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Furthiermore, two characters may be exclusive in the sense that no system
possessing either character can receive the impress of the other character,
i.e., the process yields a null result. In symbols, exclusiveness implies that

PQ =0=QP,
where O is the null operator.

The preceding concepts have analogies in genetic biology. Here the process
which impresses a character is selective generation or breeding. The propaga-
tion of a * pure line ” which ** breeds true ” is analogous to the reproduction -
of the same character by repeated similar processes. In a pure line the deter-
mining character may be dominant or recessive, but these two kinds of
characters are mutually exclusive, 7.e., recessive offspring cannot be bred from
dominant parents in the pure line and wvice versa. The incompatibility of
“ mixed line ” is illustrated by the
generation of pure recessives from hybrid dominants.

dominant and recessive characters in the

In view of this analogy it is convenient to describe a process and its repre-
sentative operator as “selective ” if P?=P. (This avoids the awkward
adjective “ idempotent,” introduced by Sylvester, and the untranslateable
term “ Einzeloperator 7 due to J. v. Neumann.) The state of a system is
specified by the set of selective processes which produce no change in the
system. These processes correspond to the totality of (compatible) characters
possessed by the system in some state, and they completely describe the
observable properties of that state.

§ 3. Spectral Sets of Operators.

The principles of the preceding section are of wide application. They are
recognised in biology, and appear to be applicable to the psychology of con-
ditioned reflexes. In physics, however, these general principles require
specialisation in view of the quantitative nature of physical characters, More-
over, the theory has to be framed to include physical quantities which may vary
either continuously or discretely. Hence the typical physical character is
taken to be either that some variable £ (such as a positional co-ordinate) has
a numerical value not exceeding some prescribed number z, or that it has &
value greater than z. The corresponding selective operators are written S,
or 8,". We have to consider the properties of the sets of selective operators
{8}, {8.} where = has all possible values.

These properties can only be known by abstraction from the concrete
selective processes actually employed in micro-physics. Now the type of




Physical Principles of the Quantum Theory. 483

process which is of primary importance in this domain is exemplified in Stern
and Gerlach’s analysis of metallic vapours by an inhomogeneous magnetic
field, in the analysis of positive rays by Aston’s mass-spectrograph, and in the
magnetic analysis of B-rays. All these methods present analogies with the
* gpectral analysis of radiation. Their essential characteristic is the resolution
of an inhomogeneous aggregate into (relatively) homogeneous parts.
In our symbolism the process of separation of a partial relatively homogeneous
aggregate in which » < £<Cy can be represented only by the operator

8.8, =8,8,"

ust 2022

Of course, such an aggregate may contain no members, in which case the
operator S.'S, is equivalent to the null operator O and we say that the region
o < &<y is absent from the * spectrum ™ of the variable for the particular
gaggregate subjected to analysis. The spectrum itself is then defined negatively
Sis the set of values not excluded as * absent.”

Eb In this paper the term spectral analysis will be applied not only to the type
Eof process illustrated above but will also be given a still wider significance. In
%the processes just cited, the aggregate to be analysed is composed of systems
2which are simullancously passed through the analysing field but it is clear that
_%no essential feature of the method of analysis would be varied if the individual
osystems were separately and successively subjected to the analytical process.
SUnder these circumstances the complete process would consist of a multitude
£of separate experiments upon individual systems. The aggregate of these
Zsystems would then cease to be an actual collection and would become a mental
Efiction similar to a Gibbsian “ ensemble.”

% From consideration of particular examples we can see that the necessary and
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Ssufficient conditions that two sets of complementary selective operators,
%;{s,} and {S,’} should represent a process of spectral analysis are expressed by

éthe following equations :—
A BB, =88,=8, ¥ zgy;
8.8, = 5,8’ } if ey
88, =0=88 -
8, =1 8=10,
8, +8,/ =1,

if a, b are the upper and lower bounds of the variable £ and I is the identical
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operator. Two complementary sets of spectral operators are called * spectral
sets " if they satisfy these conditions.

The mathematical analysis is considerably simplified if the continuous set
of operators {S,} is replaced by the finite spectral set {P,} defined by
P,=8,' S“n+1’ where {z,} is a finite set of values of the variable £, dividing
the complete domain of Z into intervals of equal content, Tpiy — T, (O @
priori probability}) ; and if the character impressed by P, is taken to be that
% has the value #,. The approximation involved in this substitution can be -
indefinitely sharpened by a subsequent passage to the limit in which the upper
bound of the length of the intervals @,., — z, is made to tend to zero. The
properties of the operators P, are easily deduced from those of the set {S }.
They are

I)"2 . I)ﬂ,

PP, =0, mwatn

There is an obvious analogy between the set of operators {P,} and the
geometrical operators which project a vector on to a set of orthogonal axes
in multi-dimensional space, and this analogy is the guide to the subsequent
theory of the representation of these operators. In anticipation of the results
of this theory the operators will be described as “ projective,” and two
projective operators P, Q such that PQ = O = QP, will be described as
*“ orthogonal.”

This analogy also suggests that the transition probability from the state
determined by a projective operator P,, to the state determined by a projective
operator Q, should be the square of the cosine of the angle between the axes
of P, and Q,, i.e., the characteristic§ (Spur) of the matrix representing the
product P, Q,, since these quantities satisfy the obvious requirement that

by Sp (Pan) =1

Futhermore it suggests that the process represented by a numerical operator
2 should be a change in the number of systems in the aggregate affected in the
ratio 32: 1. We shall adopt this last suggestion as a pure convention, obviously

t This term is due to Reisz. v. Neumann's expression ** die Zerlegung der Einheit,"
which is translated by M. H. Stone as “* the canonical resolution of the identity.”

{ Two intervals of a variable have equal a priori probability when they can be trans-
formed into one another by a congruent transformation.

§ The characteristic of a matrix is the numerical sum of the elements in its principal
diagonal.
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not inconsistent with any physical fact, or the agreed properties of selective
operators.
§ 4. Transition Probabilities.

The preceding section outlines the “ descriptive ” theory of spectral analysis,
the axioms of which appear to be an immediate induction from the customary
methods of physical measurement. The ““metrical” theory of spectral
analysis depends upon two additional assumptions regarding the probabilities
of transition from one state to another. These assumptions are as follows :—

(@) There is a definite probability p that a system in the state defined by a
projective operator A (= P,,, say) will pass over into the state defined
by a projective operator B (= Q,, say) as a vesult of the process of
spectral analysis defined by the spectral set, {Q,} to which B belongs.

(b) This probability is completely determined by the operators A and B,
and is the same for the transitions B - A and A - B,

It follows from these assumptions that the two * partial * aggregates which
are separated from any given aggregate by the processes represented by A
and ABA will consist of systems in the same state, i.e., the state determined by
A, and will differ only in the number of systems which they contain. The
convention introduced at the end of the last section allows this result to be
expressed in the form

ABA = A,

where 2 is a numerical operator. Moreover, A is evidently the probability
p and is completely determined by the operator ABA, so that it may be
rewritten in the form
2 = p (ABA).
Hence .
ABA =p(ABA). A and p(ABA)=p(BAB).

The theory of the representation of projective operators is an immediate
corollary to these two assumptions.t If {E,} is a complete set of orthogonal,
projective operators, the matrix operator with character (E;, E,) of any
projective operator P is defined to be

P, = E,PE,

Downloaded from https://royalsocietypublishing.org/ on 09 August 2022

+ A purely mathematical investigation is sufficient to deduce the possible irreducible
representations of a single set of projective operators from the relations P,* — Py, P, P;, = 0.
The two physical assumptions made above are necessary to determine the representation
of two distinct sets of projective operators {E, } and {P,}. They ensurethat these two sets
have the same field of operation, i.c., that their representative matrices act upon the same
set of vectors.
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The two fundamental properties of matrix operators are ;:—

P Pu=EPEEPE, =0, if j#£k;
and

P, P, = E,PE,PE,
= p (PE,P) E,PE,
= (Pn) P

In particular the matrix operators of the operator E, are all null operators
except the one with character (E,, E,) for which

En' nn — En‘

§ 5. The Matriz Representation of Operalors.

The fact that the matrix operators of P and of the set {E,}, together with the
numerical operators, form a field which is elosed with respect to multiplication
implies that these operators can be represented by matrices—in fact the
operators {P;} form the basis of a ** complete matrix ring.”t

All the irreducible representations of the operators {P,} are equivalent to a
representation in which the only non-zero element in the matrix representing
an operator of character (E;, E;) is in the row j and the column k. Also it is
possible to choose the representation so that this element has the form z;*z,
where {z,} is a set of complex numbers and {z,*} their conjugates. It is clear
that

# e, = p (P,

80 that only the moduli of the numbers {2,} are determinate ; their phases can
be prescribed arbitrarily.

Moreover, it can be shown that the representations of the matrix operators
of two distinct projective operators P and Q are simultaneously reducible to
the canonical form defined above. For,

PiQu=0, if j#k
P,Q,.=E,.PEQ.E,

= a matrix operator of character (E;, Ey),

and

hence the result follows at once.
It remains to consider the representation of the projective operators them-
selves.  Although the general concept of the sum of two or more operators

+ Van der Waerden, ** Moderne Algebra ™ (1931).
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‘| cannot yet be defined in physical language (see § 9) there is an obvious sense
" in which a projective operator P is the sum of its matrix operators {P}, i.e.,
if ¢ denotes any aggregate of systems, the aggregate of systems P¢ is the sum
of the aggregates P ¢. This result follows from the fact that the system of
projective operators {E;} is * complete,” i.c., any aggregate is exhaustively
analysed by the corresponding process of spectral analysis. This is the
phymcal significance of the ** double Peirce reduction ™ of P,

e
gk

022

'his relation shows that a projective operator P can be represented by a
2 proj I p ]
ghatrix which is the sum of the matrices representing its matrix operators Py,.
2 Again. if A and B are two projective operators the definition of the sum
< Proj P
Z AE,B as equal to AB can be similarly justified. Hence, if (' = AB,

C;r = E,ABE, = }?;‘.E,.AE, . E;BE,

= E 'L\leU:'

ing.org/ on.

&herefore the matrix representing AB is the ordinary matrix product of the
—@atnces representing A and B.
&The representation of the operators by matrices implies a simultaneous

li

aepresentn.tlon of the states of a system by vectors in the space #. The
.gctxon of the physical processes denoted by the operators upon the states of
Shc system is then represented by the transformation of the vectors by the
‘gmtmce The state which is determined by the projective operator P, is
_:Ztépresented by the vector ¢, which is invariant under the transformation by
@he matrix representing P,. It is convenient to use the same symbols to
Henote the physical process, the corresponding operator and its representative
gxnatrix; also to use the same symbols for the state and its representative
Srector. With this convention

P0s =0

R =0, 3t w9 n

Downl

With the convention that the states determined by the projective operators
A and B are represented by vectors o and £, of unit length, it follows that the
probability of the transitions « = f or f —ais |(2, §)[%

§ 6. Average Values of Individual Variables.

It is now possible to deduce the result anticipated at the end of § 3, 7.e., that
the probability of the transitions A B or B -+ A equals the characteristic of
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the matrix representing the operator ABA. The diagonal matrix elements of

A are the numbers p (), i.e., the numbers p (E,AE,) which are the prob- ‘

abilities of the transition A —E,. Since the set of operators {E} is complete,
the sum of these numbers is unity, i.e.,

Sp;& — 1.
Now

ABA = p (ABA) . A,
whence

Sp (ABA) = p (ABA) . SpA
=P (ABA)!

—the required result. This expression for the transition probability is exact,
whereas the first expression deduced below for the average value of a variable
is only an approximation, subsequently made exact by a passage to a limit.
‘We can now obtain a simple expression for the average value of a variable %
in the state specified by the projective operator A. An average value can be
defined only in terms of the experimental process by which it is actually
determined. To determine the average value it is necessary to analyse an
aggregate of systems in the specified state by means of the set of operators

P} =1{8., S;,.,0- The probability of the transition AP, is simply

Sp (AP,). Hence the average value of £ is approximately X z,Sp (AP,).
If we introduce the matrix S defined by the equation,

8 =Tl
"

the average value of the variable £ in the state determined by A is concisely
expressible as

E (2) = Sp (AS).}

This approximation to the average value of Z can be sharpened by increasing
the number of operators in the set {P;}. The exact value obtained on pro-
ceeding to the limit is given by the Stieltjes’ integral

jim zdo (z),

£
where

o (x) = Sp (AS,).
The main problem of quantum theory is the determination of average values,

+ B( ) is the symbol used by v. Neumann for the * Erwartungswert.”

{
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and for this problem the variable £ is represented by the operator 8§ = X z,P,,

o
j 2dS,,

-0

or, accurately by

Hence S may be called the statistical operator of £Z. Conversely, any com-
plete set of projective operators {Q,} together with a set of numbers {y,}
determines a statistical operator, T = X #,Q, and thus represents some
variable . %

Finally, we note that the average value of f(Z), where f is any polynomial
ction of £ or the limit of a sequence of such function, is given by

E(f) = S (z,) Sp (AP,)

022

8

)
o
=

Sp (Af (9)),
f(8)= lf (@,) P,.

§ 7. Congruent Transformations and Unitary Operators.

blishing.orgLon 09 Augu
= )
3

8, Further progress in the theory of the representation of operators requires
_‘Eﬂm powerful methods of group theory introduced by Weyl.t The argument is
§hat a group of congruent transformations of a physical quantity £ induces a
‘Sorresponding group of unitary transformations in the system space # and
@hat the infinitesimal operator of this group corresponds to the variable
gynamically conjugate to £. The sum of two operators can then be defined
Sin terms of the product of the finite operators which they generate when
g’egarded as infinitesimal operators.
= Congruent transformations arise from the comparison of different methods
%f determining the physical characteristics of the same system. Hence a
—gcongment transformation of a variable is simply a permutation of the proper
States of this variable, i.c., the states determined by the projective operators
Sbf £ Hence the corresponding transformation U in the system space #,
) o, =+ Us, = ¢,
18 unitary, so that
(Bo Ue) = 1.
The matrix operators and matrix elements of a unitary operator U are
defined as in the case of projective operators. If {E,} is the spectral set of

f *“The Theory of Groups and Quantum Mechanics ” (Eng. trans., 1931), p. 185.
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projective operators taken as the basis, the matrix operator of character
(E,. E,)is
U’k = EJUEk-

From the unitary property of U it follows, by the usual argument, that the

conjugate complex numbers.

When the variable which is the subject of a congruent transformation is the
time, the corresponding unitary operator U transforms the state of a system '
at any given time into its state at some subsequent time and thus determines
the historical development of the system. If the initial state of the system is
a proper state, o, of some projective operator, A;, belonging to a spectral set
{A,}. the final state, 2;, of the system is not necessarily a proper state of any
of these operators. Nevertheless the final state is completely determinate, and
its properties may be specified by subjecting the systems in this state to the
process of spectral analysis represented by the set of operators {A;}. The
double transition, «, = 3, - A,B,, is determined by the operator A, U. Hence
the probability of the transition from a proper state of A, to a proper state of
A, under the influence of U will be zero if

1.e., if

U&j - .AkU.Aj == 0.

Thus the evanescent matrix elements of U with basis {A;} determine what
transitions the operator U cannot produce.

In general, the probability of the transition «; -A.pB; is determined by |
A, and B;—the projective operator specifying the state ;. In the notation .
of §4 this transition probability is p (A,B,A;).

Now the transformation

a; > Us; = B, -

implies the transformation
A, -UA U= B,
Hence
P (A;B;A,) = p (ALUAUTA)
it p (.AkUAj . 1‘.,‘[J_1 Ak)
= p Uy Up ) = |/

where w,; is the only surviving matrix element of Uy,
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§ 8. Conjugate Variables.

The set of congruent transformations of a single variable £ form a group,
and, since there is isomorphic correspondence between these transformations
and the unitary transformations which they induce in the system space, these
latter must also form a group. An individual transformation of this group,
V (s) will be distinguished by a parameter s which is to be chosen (as is always

ible) so that
7 VE)VE) =V (s+t).

o

gt will be shown in this section that the group of unitary operators {V (s)}
presents the variable dynamically conjugate to Z.

2 Let Q be the projective operator determining a state ¢ which is unchanged

:py the group of unitary operators {V (s)}. Then

S

g Q = V71(s) QV (s),

*@r all s.

o Let P;, P, be two projective operators determining states o, o, which are

Eransformed into one another by the unitary operators V (), V-1(¢). Then

TE{ P, = V-1 (1) PV (1)

ence

g Sp(PQ) = SpV () PV (). V1) QV ()
5 =S8p V1) . PQ. V()

> — Sp (P,Q).

Accordingly there is the same probability of transition from the state deter-
Znined by Q to any proper state of the variable £.  Also, since ZSp(PQ) =1,
J

Zhese transition probabilities all have the same value, N7, where N is the

Fumber of projective operators in the complete set {P,}.1

'§ Accordingly if {Q,} is the set of projective operators which are invariant

'ginder the group {V (s)}, then all the transition probabilities P, = Q, are equal.
nder these circumstances we say that the two sets of operators and the

corresponding sets of states, are conjugate.

It follows from standard matrix theory that the totality of projective
operators {Q,} which are invariant under {V(s)} form a complete spectral set,
and that if those operators are taken as a basis, the unitary operator V(s)
is represented by a diagonal matrix, in which the diagonal element v,, has the

T This assumes that the domain of £ is finite, i.c., £ is a cyclic variable. Non-cyclic
variables (if such exist) must be treated as limiting cases.
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form exp (isy;) where y, is a real number. Hence, for matrices, we have the

result,
V(s) = Z exp (isy) - Qu-

To interpret this matricial equation, we note that, in accordance with the
result of § 6 the set of real numbers {y,} and the spectral set {Q,} are associated
with some variable y which is represented by the statistical operator

T =25

whence

V(s) = exp (isT).

Thus the same variable % is represented by the statistical operator Q in the
theory of average values and by the unitary operators {V(s)} in the theory of
congruent transformations.

The concept of two dynamically conjugate variables cannot be bodily
transferred from classical theory to quantum theory, as an exact determination
of the simultaneous values of a co-ordinate and its momentum is experimentally
impossible. But the role of the variable conjugate to £ is played in the quantum
theory by the variable 7 defined indirectly above. This identification of the
nature of 7 is strengthened by the following analogy :—in classical theory a
definite constant value of a momentum implies that it is equally probable that
the value of the co-ordinate lies in any two intervals of equal length. Similarly
in quantum theory, for a system in the state defined by Q; (for which % has
the definite value ;) there is equal probability for all the transitions Q, - P,,

G=1,2..)

§ 9. Average Values of the Sum or Difference of Two Variables.

In quantum theory the concept of average values is subject to severe limita-
tions, which are imposed by the very nature of the experiments which have to
be made in order to measure them. Thus, if £ and » are any two variables,
although we can experimentally define the average values of £, of % and of
Z 4~ for any prescribed state, we cannot define the average value of £ unless
the statistical operators 8 and T commute, and even the relation

E(8) + K () = E (& +1)
is not self-evidently true.
To establish this relation for variables which are conjugate to co-ordinates
susceptible of continuous variation it is sufficient to utilise the double repre-
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sentation of such variables as statistical operators and as unitary operators.
The variable £ is represented either by the statistical operator
S=ZzP,,
or by the group of unitary operators
U(2) = exp (128).

It is clear that if the variable conjugate to £ is continuously variable, the
gyoup {U (A)} is also continuous and that its infinitesimal operator is
N

[0U (3)/0N]x = o = iS.

st 20

goNow let.  be represented by
T=2y,Q,

<
gnd by the group '
= V (2) = exp (iaT).

Ahthough it is not immediately evident what statistical operator will represent
t8 sum £ -+ it is clear that the representative group will be {U (7) V ()} for
t.g,is represents the joint effect of V () followed by U (2). Hence we can deduce
t_-(igat- the statistical operator of £ |- 4 is the infinitesimal operator of the group,

5 —i{UM)V (M)}
12,

3 S+ T.

=

aHence, if S and T represent the statistical operators of the variables £ and 0,
Egen S+ T represents £ +4-#. Similarly £ — v is represented by the group
{8(%) .V 2(2)} and by the statistical operator 8 — T, and, in general, the
Sgatistical operator of af - by is aS + bT, where a, b are any two numbers.
£ This result completes the theory of the representation of physical quantities
Ig operators. From this point the “ genmeral” quantum theory can be
@veloped asin Weyl's treatise. The exchange relations for conjugate variables
fglow from their representation by unitary operators and the theory of the
gular momentum and polarisation operators is deducible from the iso-
morphism of the congruence groups and their associated unitary groups in
system space. The problems of * special ” quantum theory, and, in particular,
the theory of the Hamiltonian operator will be discussed in a future paper.

Summary.
An analysis of the general nature of physical measurement shows that
quantum states are defined by certain  selective "’ processes. represented
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by operators which satisfy the condition, P* = P. The general principles of
the representation of quantum states and physical variables by sectors ang
matrices in Hilbertian space can then be deduced from two physical
hypotheses :—
*(a) that (under specified conditions) there is a definite probability for
the transition from the state represented by P to the state represented by Q.
(b) that this probability is the same for the transitions P - Q and QP

The association of congruent transformations with unitary operators leads
to the theory of dynamically conjugate variables, and completes the theory'
of the * effective "’ value of a variable, averaged over all systems in a definite
state.

A Unique Electrode Potential Characteristic of a Metal, and a Theory
Jor the Mechanism of Electrode Potential. |
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(Communicated by T. M. Lowry, F.R.8.—Received June 29, 1932.)

1. General.

Metal electrodes immersed in air free solutions of KCl were found to come to

a definite reproducible potential. From the Nernst expression, this potential
corresponds to a certain concentration in the solution of the ion of the electrode

in the bulk of the solution is much smaller than that deduced from the potential,
even after electrode and solution have been in contact for weeks.

It was felt that a knowledge of the cause of this definite potential was
fundamental to the general investigation of the potentials of metals in solutions
of varying aeration, py, and salt concentration, a subject of great practical
importance which is at present in rather an indefinite and unsatisfactory
condition. '

Work was undertaken with a view to obtaining information about the
potentials of metals immersed in air-free solutions containing few of their own
ions. In most of the experiments cadmium was used as an electrode, but chee
experiments have been made using other metals.

The results disclose a single potential to which a metal tends to come, and.
leads to a theory for the mechanism which produces this, Further work wis
done on solutions which had been aerated.



