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a b s t r a c t

A fundamental problem in the study of complex networks is to provide quantitative mea-
sures of correlation and information flow between different parts of a system. To this end,
several notions of communicability have been introduced and applied to a wide variety
of real-world networks in recent years. Several such communicability functions are re-
viewed in this paper. It is emphasized that communication and correlation in networks
can take place through manymore routes than the shortest paths, a fact that may not have
been sufficiently appreciated in previously proposed correlation measures. In contrast to
these, the communicability measures reviewed in this paper are defined by taking into
account all possible routes between two nodes, assigning smaller weights to longer ones.
This point of view naturally leads to the definition of communicability in terms of matrix
functions, such as the exponential, resolvent, and hyperbolic functions, in which the ma-
trix argument is either the adjacency matrix or the graph Laplacian associated with the
network.

Considerable insight on communicability can be gained by modeling a network as a
system of oscillators and deriving physical interpretations, both classical and quantum-
mechanical, of various communicability functions. Applications of communicability
measures to the analysis of complex systems are illustrated on a variety of biological,
physical and social networks. The last part of the paper is devoted to a review of the
notion of locality in complex networks and to computational aspects that by exploiting
sparsity can greatly reduce the computational efforts for the calculation of communicability
functions for large networks.

© 2012 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Overview: interaction and correlation

In social-system studies it is frequently found that agents belonging to the same group tend to behave similarly [1].
Social scientists use the term ‘interaction’ to explain this empirical regularity and use terms such as ‘‘social norms’’, ‘‘peer
influences’’, ‘‘neighborhood effects’’, ‘‘conformity’’, ‘‘imitation’’, ‘‘contagion’’, ‘‘epidemics’’, ‘‘bandwagons’’ or ‘‘herd behavior’’
to refer to them [1–3]. In physics, one is oftenwarned (but not as oftenheard) that interaction and correlation are twodifferent
concepts. Consider a solid, for example. Each atom in a solid interactswith neighboring atomsmostly, andperhapswith next-
and second-next neighboring ones at most. However, if we hit one end of a solid bar, the effect of the action propagates to
the other end, which is amanifestation of the fact that an atom on the one end of solid is correlatedwith an atom on the other
end. Correlation is indeed the driving force of most phase transitions of many-body systems. When a substance undergoes
successive phase transitions from gas to liquid on to solid, the interaction range of each atom does not change much but
the correlation range grows singularly and becomes macroscopic eventually when the body is solidified. It is not difficult
then to realize that the term ‘interaction’ widely used in social sciences actually refers mostly to the ‘social correlation’ that
is produced by the networked characteristic of social systems (for a review on the statistical physics of social dynamics
see: [4]). One illustrative example of macroscopic (global) correlation is the cell-phone adoption during the 1990s; it was a
‘‘contagion’’ effect that induced many to buy phones simply because their friends and colleagues were buying them, which
then propagated in a correlated way across Europe [5] and the world.

The atomic/social metaphor has been widely used in both social and physical sciences. Some of the pioneers of statistical
physics, like Maxwell and Boltzmann, were inspired by the works of social scientists Buckle and Quetelet; see [6]. More
recently, the metaphor of a ‘social atom’ and the tools of statistical mechanics were used to explain the structure and
dynamics of social and economic systems [7], giving rise to the fields of socio- and econophysics [8,9]. This analogy functions
very well when the properties studied depend mainly on the networked structural properties of the system analyzed. A
good example is a linear chain in which the ith node is connected to the (i+ 1)th one. It has been proven that a purely one-
dimensional system never becomes a solid [10,11]. It is roughly explained as follows. In one dimension, correlation could
grow only along the chain. A disturbance at only one point of the chain, destroying correlation locally, results in the global
destruction of the correlation between the atoms on both ends. However, social networks are much more complex than a
linear chain and the analogywith a three-dimensional atomic system ismore illuminating. In the three-dimensional system,
we know very well that the global correlation can overcome the local disturbance, such as the removal of one atom, to be
a solid at low temperatures. This is because there are many more paths along which the correlation can grow than in one
dimension. In other words, there is a topologically more complex networked structure in these systems and the complexity
of the structure promotes the growth of correlation throughout the systems.

It is clear that not only atomic and social systems display network-like structures. Complex networks are also ubiquitous
in many biological, ecological, technological, informational, and infrastructural systems [12–20]. A complex network is a
representation of a complex system in which the nodes vi ∈ V , i = 1 . . . , n of a graph G = (V , E) represent the entities of
the systems and the interactions between pairs of entities are accounted for by the links {vi, vj} ∈ E of the graph. (In graph
theory, a node is also called a vertex and a link an edge.) Consequently, global correlation effects are also observed in a variety
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of complex networks. For instance, it is well documented that the extinction of one species in an ecological system produces
a ‘‘cascade’’ of effects that propagate well beyond the nearest neighbors of the extinguished species [21,22]. In a biological
cell where protein–protein interactions formbiomolecular networks, it is well documented that ‘perturbing’ one protein can
trigger a cascade of effects that change or modify the synthesis and folding of several other proteins not necessarily directly
interacting with the targeted one [23]. For infrastructural network scenarios, the cascade of local failures in power grids
that have produced mass blackouts such as the one in eleven USA states and two Canadian provinces on 14th August 2003
affecting 50million people, or those in London, UK, Sweden, Denmark, and Italy, are palpable examples of correlation effects
in complex networks [24]. Finally, the propagation of crisis effects in a world-wide networked economy [25,26] alerts us
about the importance of the study of correlation in complex networks as a tool of great relevance to understand the structure
and functioning of many complex systems in nature and society. It is then essential to understand what topology indeed
promotes the growth of correlation and what disturbs it in such systems.

Unfortunately, the term ‘correlation’ is frequently used in other sciences under different meanings than the one in
physics. For instance, the term ‘‘correlated effects’’ is used in social sciences to refer to ‘‘interactions’’ in which ‘‘agents
in the same group tend to behave similarly because they have similar individual characteristics or face similar institutional
environments’’ [1]. In other contexts it mainly refers to the linear interdependence of two ormore variables in the statistical
sense as measured by a correlation coefficient. Subsequently, in the context of complex networks we have proposed the
use of the term ‘‘communicability’’ to refer to the situations in which a perturbation on one node of the network is ‘felt’
by the rest of the nodes with different intensities. The concept of network communicability was introduced by Estrada and
Hatano [27]. The intuition behind this concept is that in many real-world situations the communication between a pair of
nodes in a network does not take place only through the optimal shortest-path routes connecting both nodes, but through
all possible routes connecting both nodes, the number of which can be enormous in the complex topology of the systems.
The information can also go back and forth before arriving at the end node of a given route. The network communicability
quantifies such correlation effects in the communication between nodes in complex networks. The most important point
that wewould like to stress in the present paper is that the number of routes along which the correlation can grow is crucial
in the analyses of the structures of complex networks.

There have been other proposals of indices for the communication through complex networks. These indices are mainly
used to quantify the self-communicability of a given node in the form of a centrality measure. The most characteristic of
these indices are the closeness [28] and betweenness centrality [28] and some of their modifications like the information
centrality [29], and betweeness accounting not only for shortest paths [30–32]. In some way the eigenvector centrality
introduced by Bonacich [33,34], which is the principal eigenvector of the adjacencymatrix of the network, can be considered
as a self-communicability function. In this context, we can consider the number Nk(i) of walks of length k starting at node i

(see further for proper definition) of a non-bipartite connected network. If sk(i) = Nk(i) ·

n

j=1 Nk(j)
−1

, for k → ∞, the

vector [sk(1), sk(2), . . . , sk(n)]T tends towards the eigenvector centrality [35]. This means that the eigenvector centrality of
node i represents the ratio of the number of walks of length k that departs from i to the total number of walks of length k in
a non-bipartite connected network when the length of these walks is sufficiently large.

In the present review, we will analyze four other kinds of communicability indices. It is important to note that it is not a
matter of deciding which index is the ‘correct’ one to indicate the communication. There is indeed no standard that we can
refer to in judging the ‘correctness’ of an index. It is a matter of which index is more appropriate to a specific problem than
others. In judging the appropriateness, we will have to resort to our intuition and experience. Typically, we would make
predictions from various indices and compare them with the result of analyzing actual datasets or sometimes even with a
plausible guess. In the present review, we therefore show various specific examples where one index is more appropriate
than others.

1.2. Correlation function

Correlation effects can be quantified by the correlation function. The definition of the correlation function depends on
the problem under study, but the general idea is to measure how a tiny disturbance at one point of the system propagates
to another point of the system; hence the aliases, the propagator and the Green’s function. For a general reference on this
topic the interested reader is referred to [36]. In quantum mechanics, the system with the Hamiltonian H evolves in time
according to the time-evolution operator

U(t) = exp



− i

h̄
Ht



. (1)

(For some readers, the form

G(E) = (E − H)−1, (2)

may be more familiar. Indeed, Eq. (2) is simply the one-sided Fourier transform of Eq. (1) [37].) Then, the typical definition
of the propagator may be given as

C(r, t) = ⟨vac|arU(t)aĎ0|vac⟩, (3)
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where |vac⟩ denotes the vacuum state and a
Ď

0 denotes the particle creation operator at the origin 0, whereas ar denotes the
particle annihilation operator at the distance r from the origin. Eq. (3) describes how the impact of creating a particle at the
point 0 propagates over the distance r and affects the point r after the time t . Obviously, the correlation is strong if there
are many paths on which the effect can propagate.

In equilibrium statistical physics, the thermal disturbance is important. Instead of the real-time dynamics in Eq. (3), we
then often consider the thermal correlation function, or the thermal Green’s function, which may be given in the form

C(r, β) = ⟨vac|arρ (β) aĎ0|vac⟩, (4)

where

ρ(β) = Z−1 exp(−βH), (5)

is the density operator of the Gibbs equilibrium distribution, where Z = tr[exp(−βH)] is the partition function. We will
take full advantage of the thermal Green’s function (4) throughout the paper. It describes the propagation of disturbance
through the system in a thermal bath at the inverse temperature β = 1/kT , where k here is the Boltzmann constant. The
thermal Green’s function (4) is indeed the analytic continuation of the Green’s function (3) onto the imaginary time axis
it/h̄ = β .

1.3. Plan of the article

We will define the communicability in Section 2, presenting several definitions. Section 3 elaborates the analogy
between the communicability of complex networks and the correlation of physical systems. We will show that classical
and quantum statistical calculations with the adjacency-based and Laplacian-based models result in four different versions
of the communicability. Then in Section 4 we compare the four versions in two specific examples. Section 5 presents a
variety of usages of the communicability in analyses of various complex networks, namely analyses at the microscopic
level, the mesoscopic level, the macroscopic level, and the multi-scale level. We also present an interesting application
of the communicability with a negative temperature to the analysis of bipartite networks. We discuss the locality of the
communicability in Section 6, showing instances of exponential decay and slow decay of the communicability, or the
correlation function. We finally review recent advances in computing the communicability of large networks. It is a difficult
task to compute the communicability as an exponentiated operator. Taking advantage of the sparsity of the adjacencymatrix
can greatly improve the computational efficiency. The final section is devoted to conclusions.

2. Communicability in networks

2.1. Combinatorial definition

In this section we introduce the concept of communicability in networks by using a graph-theoretic (combinatorial)
approach. In general, we will refer to simple graphs G = (V , E) in which there are no self-loops or multiple-links. When
directionality or weights of the links are considered it will be explicitly stated; otherwise, we will refer to undirected
and unweighted graphs. The concept of network communicability briefly described in the Introduction of this work
immediately invokes the concept of walks in networks. A walk of length k is a sequence of (not necessarily distinct) nodes
v0, v1, . . . , vk−1, vk such that for each i = 1, 2, . . . , k there is a link from vi−1 to vi [35]. Using the concept of walk we define
the communicability between two nodes as follows. The communicability between the nodes p and q in a network is the
weighted sum of all walks starting at node p and ending at node q, in which the weighting scheme gives more weight to the
shortest walks than to the longer ones.

Mathematically, the communicability function can be expressed as follows [27]:

Gpq =
∞


k=0

ck(A
k)pq, (6)

where A is the adjacencymatrix, which has unity in the (p, q)-entry if the nodes p and q are linked to each other and has zero
otherwise. In Eq. (6), we have used the fact that the (p, q)-entry of the kth power of the adjacency matrix, (Ak)pq, gives the
number ofwalks of length k starting at the node p and ending at the node q [38]. The termsGpp =

∞
k=0 ck(A

k)pp represent the
self-communicability of a node and they provide a centrality measure known as the node subgraph centrality [39]. Centrality
measures were originally introduced in social sciences [28,40] and are now widely used in the whole field of complex
network analysis [18]. The coefficients ck need to fulfill the following requirements: (i) making the series (1) convergent,
(ii) giving less weight to longerwalks, and (iii) giving real positive values for the communicability. Then, assuming a factorial
penalization we obtain the following communicability function:

GEA
pq =

∞


k=0

(Ak)pq

k! = (eA)pq, (7)
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where eA is a matrix function that can be defined using the following Taylor series [41]:

eA = I + A + A2

2! + A3

3! + · · · + Ak

k! + · · · . (8)

Note that the inclusion of the identity matrix in the expansion (8) does not affect the subgraph centrality or the
communicability between pairs of nodes since in the first case it only adds a constant to every value of the centrality
measures and in the second case the off-diagonal entries are unchanged. Using the spectral decomposition of the adjacency
matrix, the communicability function can be expressed as:

GEA
pq =

n


j=1

φj,A(p)φj,A(q)e
λj,A , (9)

where λ1,A ≥ λ2,A ≥ · · · ≥ λn,A are the eigenvalues of the adjacency matrix in a non-increasing order and φj,A(p) is the pth
entry of the jth eigenvector which is associated with the eigenvalue λj,A of the adjacency matrix.

It is straightforward to realize that the shortest paths connecting any pair of nodes always make the largest contribution

to the communicability function. That is, if P (l)rs is the number of shortest paths between the nodes r and s having length l

and W
(k)
rs is the number of walks of length k > l connecting the same nodes, the communicability function is given by

GEA
rs = P

(l)
rs

l! +


k>l

W
(k)
rs

k! , (10)

which indicates that GEA
pq accounts for all channels of communication between two nodes, givingmoreweight to the shortest

path connecting them. Therefore, the name of ‘communicability’ has been proposed to designate this function.
We can generalize the concept of communicability in three different ways. First, the analogy of the communicability

with the thermal Green’s function in statistical physics motivates us to introduce the temperature T , or its inverse β as a
weighting parameter:

GEA
pq =

∞


k=0

(βkAk)pq

k! = (eβA)pq, (11)

where

eβA = I + βA + (βA)2

2! + (βA)3

3! + · · · + (βA)k

k! + · · · . (12)

The ‘physical meaning’ of this parameter β will be evident in the next sections of this paper.
An interesting way of utilizing the parameter β is to consider the negative temperature. The communicability function

of a network can be separated into the contributions coming from walks of even and odd lengths. For instance, for the case
of GEA

pq we can write

GEA
pq =

n


j=1

φj,A(p)φj,A(q) cosh(λj,A)+
n


j=1

φj,A(p)φj,A(q) sinh(λj,A)

= GEA
pq(even)+ GEA

pq(odd). (13)

We can separate these two contributions as

GEA
pq(even) = 1

2
[GEA

pq(β)+ GEA
pq(−β)],

GEA
pq(odd) = 1

2
[GEA

pq(β)− GEA
pq(−β)].

For a network having link weightswij ∈ R
+, the communicability function is obtained by using the weighted adjacency

matrix W = (wij)n×n as

GEA
pq =

∞


k=0

(W k)pq

k! = (eW )pq. (14)

In this case it has been proposed to normalize the weighted adjacency matrix in order to avoid the excessive influence of
links with higher weights in the network [42]. The normalization used so far transforms the weighted adjacency matrix as:
W̃ = K−1/2WK−1/2, where K is a diagonal matrix of weighted degrees.

The third useful generalization of the communicability function is obtained by considering other penalization coefficients
ck in the expression (6), which can give rise to different matrix functions. For instance, let 0 < α < 1/λ1 and let us take
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ck = α−k in Eq. (6) [43]. Then, we obtain the following communicability function:

GRA
pq =

∞


k=0

ck(W
k)pq =

∞


k=0

αk(W k)pq = (I − αW )−1, (15)

where we have replaced the adjacency matrix in (6) by its weighted version. The index GRA
pq was introduced as early as 1953

by Katz [44] as a centrality measure for the nodes in social networks.
Another extension of the communicability function makes use of a strategy to increase or decrease the contribution of

longer walks to the communicability between two nodes. For instance, indices zooming-in around a node give rise to the
so-called ψt(A) matrix functions [45]. In a similar way we can zoom out around a node by penalizing less the long walks
from one node to another [45].

The sum of the subgraph centralities for all nodes in the network represents a global index for the network [39,46], which
is nowadays known as the Estrada index of a network [47–49]:

EE(G) = tr(eA) =
n


j=1

eλj,A . (16)

2.2. Some combinatorial formulae

Most of the combinatorial analysis of communicability in networks has been devoted to the so-called Estrada index, for
which several bounds and analytic expressions have been proposed. The interested reader is referred to the recent reviews
of Deng et al. [48] and Gutman et al. [49]. Here we reproduce some expressions that can be useful for understanding these
indices when analyzing complex networks. The Estrada index of a path or linear chain having n nodes is given by [50]

EE(Pn) =
n


r=1

e2 cos(2rπ/(n+1)). (17)

Intuitively, the communicability between the two nodes at the end of a linear path should tend to zero as the length of the
path tends to infinity. We can write the expression for Grs for the path Pn [27]:

GEA
rs (Pn) = 1

n + 1

n


j=1



cos



jπ(r − s)

n + 1



− cos



jπ(r + s)

n + 1



e
2 cos



jπ
n+1



. (18)

Then it is straightforward to realize by simple substitution in (18) that GEA
rs (Pn) → 0 for the nodes at the end of a linear path

as n → ∞.
The Estrada index of a complete graph of n nodes Kn, i.e., one having n(n − 1)/2 links, is given by:

EE(Kn) = en−1 + (n − 1)e−1, (19)

and the communicability between any pair of nodes in the complete network Kn is given by [27]

GEA
rs (Kn) = en+1

n
+ e−1

n


j=2

φj(r)φj(s) = en+1

n
− 1

ne
= 1

ne
(en − 1). (20)

This means that GEA
rs → ∞ as n → ∞, which perfectly agrees with our intuition of what the communicability should mean

in a network. For an Erdös–Rényi random graph with n nodes and probability p, Gn,p Shang [51] has found that the Estrada
index is given by:

EE(Gn,p) = [1 + o(1)]enp, (21)

almost surely, as n → ∞.
In a regular graph with n nodes of degree d = q + 1, the mean Estrada index EEmean(G, β) = EE(G, β)/n was found by

Ejov et al. [52] to be

EEmean(G, β) = q + 1

2π

 2
√
q

−2
√
q

eβs



4q − s2

(q + 1)2 − s2
ds + 1

n



γ

∞


k=1

l(γ )

2kl(γ )/2
Ikl(γ )(2

√
qβ), (22)

where γ runs over all (oriented) primitive geodesics in the network, l(γ ) is the length of γ , and Im(z) is the Bessel function
of the first kind

Im(z) =
∞


r=0

(z/2)n+2r

r!(n + r)! . (23)

These authors [52] have observed a pattern of self-similarity named by them as filars when the average of the Estrada
index is plotted against the variance of the same index. As displayed [52] for cubic graphs, the mean–variance plot form
thread-like clusters with similar slopes and distances between consecutive clusters. It was shown that the graphs belonging
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to each cluster have the same number of triangles, and these numbers strictly increase from the left-most cluster to the
right-most, starting from zero. Consequently, the mean–variance plot for regular graphs constitutes a way of characterizing
the structure of these kinds of graph. Ejov et al. [53] have demonstrated that this self-similar pattern is also observed for the
mean–variance plot of the resolvent-like version of the Estrada index, which is derived from Eq. (12).

3. Physical analogies

3.1. Oscillator networks

In the Introduction, we emphasized the analogy between the concept of correlation in physical systems and the
communicability in network sciences. Here we explore the analogy more precisely, relating abstract complex networks
with a physical oscillator model. In the present section, we consider every node as a ball of mass m and every link as a
spring with the spring constant mω2 connecting two balls. We consider that the ball-spring network is submerged into a
thermal bath at the temperature T . Then the balls in the complex network oscillate under thermal disturbances. How do
the thermal disturbances propagate through the network? This physical analogy indeed gives the communicability of the
complex network. For the sake of simplicity, we assume that there is no damping and no external forces are applied to the
system. The coordinates chosen to describe a configuration of the system are xi, i = 1, 2, . . . , n, each of which indicates the
fluctuation of the ball i from its equilibrium point xi = 0. Similar models have been previously used by Kim et al. [54], who
introduced the term netons to refer to phonons in a complex network in order to differentiate the underlying topological
structure of these systems, which is not the usual periodic lattice.

3.2. Network Hamiltonians

Let us start with a Hamiltonian of the oscillator network of the form

HA =


i



p2i

2m
+ (K − ki)

mω2x2i

2



+ mω2

2



i,j
(i<j)

Aij(xi − xj)
2, (24)

where ki is the degree of the node i (the number of links that are connected to the node i) and K is a constant satisfying
K ≥ maxi ki. The second term of the right-hand side is the potential energy of the springs connecting the balls, because
xi − xj is the extension or the contraction of the spring connecting the nodes i and j. The first term in the first set of square
parentheses is the kinetic energy of the ball i, whereas the second term in the first set of square parentheses is a counter
term that offsets the movement of the network as a whole by tying the network to the ground. We add this term because
we are only interested in small oscillations around the equilibrium; this will be explained below again.

The Hamiltonian (24) is expanded as follows:

HA =


i



p2i

2m
+ (K − ki)

mω2x2i

2



+ mω2

2









i,j
(i<j)

(Aijx
2
i )+



i,j
(i<j)

(Aijx
2
j )− 2



i,j
(i<j)

(Aijxixj)






. (25)

We can rewrite the first and second terms in the second set of square parentheses as


i,j
(i≠j)

Aijx
2
i =



i

kix
2
i , (26)

while the third term can be rewritten as

−


i,j
(i≠j)

Aijxixj = −


i,j

xiAijxj. (27)

Therefore, the final form of Eq. (25) is given by

HA =


i



p2i

2m
+ Kmω2

2
x2i



− mω2

2



i,j

xiAijxj. (28)

Note that the term (26) cancels the ki-dependent part of the counter term in Eq. (24).
Let us next consider the Hamiltonian of the oscillator network in the form

HL =


i

p2i

2m
+ mω2

2
Aij(xi − xj)

2 (29)
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instead of the Hamiltonian HA in Eq. (24). Because the Hamiltonian HL lacks the springs that tie the whole network to the
ground (the second term in the first set of parentheses in the right-hand side of Eq. (24)), this network can undesirablymove
as a whole. We will deal with this motion shortly.

The expansion of the Hamiltonian (29) as in Eqs. (25)–(28) now gives

HL =


i



p2i

2m
+ mω2

2
kix

2
i



− mω2

2



i,j

xiAijxj

=


i

p2i

2m
+ mω2

2



i,j

xiLijxj, (30)

where Lij denotes an element of the network Laplacian L. The network Laplacian is given by L = D−A, where D is a diagonal
matrix with Dii = ki, and is often used in analyzing diffusion phenomena on complex networks. That is why we referred to
Eq. (30) as HL.

3.3. Network of quantum oscillators

We start by considering the quantum-mechanical counterpart of the HamiltonianHA in Eq. (24). In this case themomenta
pj and the coordinates xi are not independent variables but they are operators that satisfy the commutation relation,

[xi, pj] = ih̄δij. (31)

We use the boson creation and annihilation operators defined by

a
Ď

i = 1√
2h̄



xi
√
mΩ − i√

mΩ
pi



, (32)

ai = 1√
2h̄



xi
√
mΩ + i√

mΩ
pi



, (33)

or

xi =


h̄

2mΩ
(a

Ď

i + ai), (34)

pi =


h̄

2mΩ
(a

Ď

i − ai), (35)

whereΩ =
√
K/mω. The commutation relation (31) yields



ai, a
Ď

j



= δij. (36)

With the use of these operators, we can recast the Hamiltonian (24), or equivalently Eq. (28), into the form

HA =


i

h̄Ω



a
Ď

i ai +
1

2



− h̄ω2

4Ω



i,j

(a
Ď

i + ai)Aij(a
Ď

j + aj). (37)

Since A is symmetric, we can diagonalize it by means of an orthogonal matrix O as in

Λ = O(KI − A)OT , (38)

where Λ is the diagonal matrix with the eigenvalues λµ of (KI − A) on the diagonal. This generates a new set of boson
creation and annihilation operators as

bµ =


i

Oµiai =


i

ai(O
T )iµ, (39)

bĎµ =


i

Oµia
Ď

i =


i

a
Ď

i (O
T )iµ, (40)

or

ai =


µ

(OT )iµbµ =


µ

bµOµi, (41)

a
Ď

i =


µ

(OT )iµb
Ď
µ =



µ

bĎµOµi. (42)
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Applying the transformations (39)–(42) to the Hamiltonian (37), we can decouple it as

HA =


µ

Hµ, (43)

with

Hµ ≡ h̄Ω



bĎµbµ + 1

2



+ h̄ω2

4Ω
(λµ − K)(bĎµ + bµ)

2

= h̄Ω



bĎµbµ + 1

2



+ h̄ω2

4Ω
(λµ − K)[(bĎµ)2 + (bµ)

2 + bĎµbµ + bµb
Ď
µ]

= h̄Ω



1 + ω2

2Ω2
(λµ − K)



bĎµbµ + 1

2



+ h̄ω2

4Ω
(λµ − K)[(bĎµ)2 + (bµ)

2]. (44)

In order to go further, we now introduce an approximation inwhich eachmode of oscillation does not get excited beyond
the first excited state. In other words, we restrict ourselves to the space spanned by the ground state (the vacuum) |vac⟩
and the first excited states bĎµ|vac⟩. Then the second term in the last line of the Hamiltonian (44) does not contribute and
we thereby have

Hµ = h̄Ω



1 + ω2

2Ω2



λµ − K




bĎµbµ + 1

2



(45)

within this approximation. This approximation is justifiedwhen the energy level spacing h̄Ω ismuch greater than the energy
scale of external disturbances, (specifically the temperature fluctuation kBT = 1/β , in assuming the physical metaphor
that the complex network is submerged into a thermal bath at the temperature T ), as well as than the energy of the
network springs h̄ω, i.e. βh̄Ω ≫ 1 andΩ ≫ ω. This happens when the mass of each oscillator is small, when the springs to
the ground,mΩ2, are strong, andwhen the network springsmω2 are weak. Then an oscillation of tiny amplitude propagates
over the network.We are going towork in this limit hereafter. The thermal bath represents here an ‘external situation’which
affects all the links in the network at the same time, e.g., economic crisis, social agitation, extreme physiological conditions,
etc. After equilibration, all links in the network are weighted by the parameter β = (kBT )

−1. The parameter β is known
as the inverse temperature and kB is the Boltzmann constant. This is exactly the same parameter as the one that we have
introduced in the previous section as a weight for every link in the network.

We are now in a position to compute the partition function as well as the thermal Green’s function quantum-
mechanically. As stated above,we consider only the ground state and one excitation from it. Thereforewehave the quantum-
mechanical partition function in the form

ZA = ⟨vac|e−βHA |vac⟩
=


µ

⟨vac|e−βHµ |vac⟩

=


µ

exp



−βh̄Ω
2



1 + ω2

2Ω2
(λµ − K)



. (46)

The diagonal thermal Green’s function is given in the framework of quantum mechanics by

GA
pp(β) = 1

Z
⟨vac|ape−βHAaĎp|vac⟩, (47)

which indicates howmuch an excitation at the node p propagates throughout the network before coming back to the same
node and being annihilated. The transformations (39)–(42) let us compute the quantity (47) as

GA
pp(β) = 1

ZA



µ,ν

(OT )pµ⟨vac|bµe−βHAbĎν |vac⟩Oνp

= 1

ZA



µ



(OT )pµ⟨vac|bµe−βHµbĎµ|vac⟩Oµp


ν(≠µ)
⟨vac|e−βHν |vac⟩



=


µ

(OT )pµ
⟨vac|bµe−βHµbĎµ|vac⟩

⟨vac|e−βHµ |vac⟩ Oµp

=


µ

(OT )pµ exp



−βh̄Ω


1 + ω2

2Ω2
(λµ − K)



Oµp

= e−βh̄Ω


exp



βh̄ω2

2Ω
A



pp

, (48)
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where we have used Eq. (38) in the last line. Similarly, we can compute the off-diagonal thermal Green’s function as

GA
pq(β) = e−βh̄Ω



exp



βh̄ω2

2Ω
A



pq

. (49)

Then, if we compare Eq. (49) with Eq. (7) we see that

GEA
pq = eβh̄ΩGA

pq(β)

with the identification βh̄ω2 = 2Ω . Note that the constant K affects only the proportionality constant through Ω =√
K/mω in the expression (49). This means that when the temperature tends to infinity, β → 0, there is absolutely no

communicability between any pair of nodes. That is, GEA
pq(β → 0) = (e0)pq = Ipq = 0. An analogous situation to consider is

that there is no way for the information to go from one node to another when all links in the network have been suppressed.
If we consider the case when the temperature tends to zero, β → ∞, then there is an infinite communicability between
every pair of nodes, i.e., GA

pq(β → ∞) = (e∞)pq = ∞.
The same quantum-mechanical calculation by using the Hamiltonian HL in Eq. (29) (instead of the Hamiltonian HA in

Eq. (24)) gives

GL
pq(β) ≃



exp



−βh̄ω
2

2Ω
L



pq

≃ 1 + O2pO2q exp



−βh̄ω
2

2Ω
µ2



, (50)

whereµ2 is the second eigenvalue of the Laplacianmatrix. This gives the communicability function GEL
pq(β)+1 upon setting

βh̄ω2 = 2Ω . Obviously, the term +1 added to the communicability function in the previous line does not have any effect
for the practical use of this network measure. The reason why the second eigenvalue emerges in Eq. (50) is because the
Laplacian matrix of a connected network has a zero eigenvalue as its first eigenvalue. This zero eigenvalue represents the
mode where all nodes move in the same direction. Because the network represented by HL is not tied to the ground, nothing
prevents themovement of the network as awhole. Sincewe are only interested in small oscillations around the equilibrium,
we remove the mode of the zero eigenvalue from the above consideration and hence have the second eigenvalue in Eq. (50)
as the first non-trivial eigenvalue.

In closing we have that:

The communicability functions GEA
pq and GEL

pq of a network correspond to the thermal Green’s function of a network of
quantum harmonic oscillators.

3.4. Network of classical oscillators

Let us now consider the classical-mechanical version of the Hamiltonian HA in Eq. (24). In classical mechanics, the
momenta pi and the coordinates xi are independent variables. In statistical mechanics of classical systems, the integration
of the factor



exp



−β


p2i

2m



(51)

over the momenta {pi} reduces to a constant term, not affecting the integration over {xi}. We will therefore leave out the
kinetic energy for the moment and consider the Hamiltonian of the form

HA = Kmω2

2



i

x2i − mω2

2



i,j

xiAijxj

= mω2

2
xT (KI − A)x, (52)

where x = (x1, x2, . . . , xn)
T and I is the n × n identity matrix.

Let us calculate the partition function Z and the thermal Green’s function Gpq in the framework of classical statistical
mechanics. The partition function is given by

Z =


e−βHA



i

dxi =


dx exp



−βmω
2

2
xT (KI − A)x



, (53)

where the integral is n-fold. We can carry out this n-fold integration by diagonalizing the matrix A. Now, we can use the
same diagonalization as in Eq. (38). By taking a sufficiently large value of the constant K , we can make all eigenvalues λµ
positive. By defining a new set of variables yµ as y = Ox and x = OTy, we can transform the Hamiltonian (52) in the form

HA = mω2

2
yTΛy = mω2

0

2



µ

y2µ + mω2

2



µ

λµy
2
µ. (54)
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On the other hand, the integration measure of the n-fold integration in Eq. (53) is transformed as


i dxi =


µ dyµ, because
the Jacobian of the orthogonal matrix O is unity. Therefore, the multi-fold integration in the partition function (53) is
decoupled to give

Z =


µ



exp



−βmω
2

2
λµy

2
µ



dyµ



(55)

=


µ



2π

βmω2λµ
. (56)

We can rewrite this in terms of the original matrix A in the form

Z =


2π

βm
ω2

n/2 1√
det(KI − A)

. (57)

Since we have made all the eigenvalues of (KI − A) positive, its determinant is positive.
The centrality index may be given in the framework of classical mechanics by

Gpp(β) = ⟨x2p⟩ = 1

Z



x2pe
−βHA



i

dxi. (58)

The same transformation as in Eqs. (54)–(58) yields

Gpp(β) = 1

Z







σ

(OT )pσ yσ

2

e−βHA



µ

dyµ. (59)

In the integrand, odd functions with respect to yµ vanish. Therefore, only the terms of y2σ survive after integration in the
expansion of the square parentheses in the integrand. This gives

Gpp(β) = 1

Z







σ



Oσpyσ
2



exp



−βmω
2

2



ν

λνy
2
ν





µ

dyµ

= 1

Z



σ

O2
σp



y2σ exp



−βmω
2

2
λσ y

2
σ



dyσ



µ(≠σ)



exp



−βmω
2

2
λµy

2
µ



dyµ



. (60)

Comparing this expression with Eq. (55), we have

Gpp(β) =


σ

O2
σp





y2σ e
−βmω2λσ y

2
σ /2dyσ



e−βmω2λσ y
2
σ /2dyσ



=


σ

O2
σp



2π

[βmω2λσ ]3



2π
βmω2λσ

=


α

O2
σp

βmω2λσ

= 1

βmω2
[(KI − A)−1]pp

= 1

βmKω2
[(I − A/K)−1]pp. (61)

Likewise, the communicability measure may be given by the thermal Green’s function in the framework of classical
mechanics as

Gpq(β) = ⟨xpxq⟩ = 1

Z



xpxqe
−βHA



i

dxi, (62)

which results in

Gpq(β) = 1

βKmω2



(I − A/K)−1


pq
. (63)

This represents a correlation between the node displacements in a network due to small thermal oscillations [55,56].
Comparing the last expression with Eq. (15), we arrive at

GRA
pq = βmKω2Gpq(β)

with the identification α = 1/K .
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Fig. 1. (a) Diagrammatic representation of the social network of friendship ties in the office of an overseas branch of a large international organization
according to Thurman [57]. Members of the coalition are drawn in gray, and targets in black. (b) Values of the relative communicability (see text) for every
member of the social network represented in (a). The values of the average communicabilities are as follows: squares ⟨GEL

p ⟩, circles ⟨GEA
p ⟩, diamonds ⟨GRA

p ⟩,
triangles 1/⟨GD

p ⟩. Note that ⟨GD
p ⟩ increases as the other indices decrease, for which we have plotted 1/⟨GD

p ⟩ instead.

The same calculation using the Hamiltonian (29) gives

GD
pq(β) = 1

βmω2



L+
pq

(64)

where L+ is the Moore–Penrose generalized inverse of the Laplacian. This is due to the fact that the Laplacian matrix of a
connected network has a nondegenerate zero eigenvalue. Based on similar considerations to those described below Eq. (50),
we remove the mode of the zero eigenvalue from the above consideration and hence have (64).

Then, we conclude that:

The communicability functions GRA
pq and GD

pq of a network correspond to the thermal Green’s function of a network of
classical harmonic oscillators.

4. Comparing communicability functions

In the previous sections we have defined four communicability functions, two based on networks of quantum harmonic
oscillators GEA

pq and GEL
pq, and two on networks of classical harmonic oscillators GRA

pq and GD
pq. As was emphasized in Section 1.3,

there is no systematic way of selecting one communicability function for a particular problem; the use of one or another of
these functions relies on the particular problem under study. Consequently, we give here a couple of examples to illustrate
the use of these communicability functions in different scenarios.

4.1. Study of a social conflict

The first example consists of a small social network studied by Thurman [57] as a result of 16 months of observation of
office politics. The officewas an overseas branch of a large international organization and consisted of 15members. Thurman
studied an informal network of friendship ties among themembers,whichwas not a part of the official structure of the office.
During Thurman’s study a conflict arose in the office as two members, identified as Emma and Minna, were the targets of a
leveling coalition formed by 6members of the staff, identified as Ann, Amy, Katy, Pete, Tina, and Lisa. The attacking coalition
is formed by some of the best connected members of the office. However, Emma, who is one of the targets of the attacks
has as many connections as Pete and Ann, who are in the coalition. On the other hand, Minna has the same number of ties
as Andy and Bill, who are not the objective of the coalition.

Let us consider the average communicability for a given node defined as



Gp



= 1

n − 1

n


q≠p

Gpq.

In Fig. 1(a) we illustrate the social network of the overseas office in which the targets of the coalition are drawn in black
and the members of the coalition in gray. In Fig. 1(b) we plot the values of the normalized average communicability for
every individual in the office for the four different kinds of communicability previously defined. The quantum and classical
communicabilities are in general linearly related to each other. For instance, the Pearson correlation coefficient between
⟨GEA

p ⟩ and ⟨GRA
p ⟩ is 0.97. In this example we have not systematically varied the value of the empirical parameter α in

GRA
pq = [(I − αA)−1]pq, which is a necessary but time consuming part of the use of resolvent-like communicability. Here

we have used α = 0.1, which fulfills the condition α < 1/λ1.
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Fig. 2. Average communicability between members of the office according to GEA
pq (a) and to GD

pq (b). The members of the office are numbered as: 1: Ann,
2: Amy, 3: Katy, 4: Pete, 5: Tina, 6: Lisa, 7: Minna, 8: Emma, 9: President, 10: Bill, 11: Andy, 12: Mary, 13: Rose, 14: Mike, 15: Peg.

The main difference between the four communicability measures is that ⟨GEA
p ⟩ (β ≡ 1) is the only one that ranks the

six members of the coalition as the ones having the largest average communicability among all members of the office
(Fig. 1(b)). The highest communicability is observed between Pete and Lisa, Pete and Ann as well as Ann and Lisa. Pete
has been recognized by Thurman as the center of the social circle in the office, which also involves Lisa, Katy and Amy.
Pete was coming to the office from the central office and was known to have dated both Katy and Amy. He was also the
one who arranged for Ann to be assigned to this office. Emma, who is one of the targets of the attacks, occupies the position
immediately below the coalition anddisplays a good communicabilitywith the President. Itwas known that Emmaplayed an
important role in the office as she was promoted to the administrative manager, where she has direct control of the drivers,
the bookkeeping section, the secretarial pool and a variety of other services. Then, it is plausible that the members of the
coalition see Emma as a threat,making her the target of their attacks. On the other hand, her relatively large communicability
with all members of the organization makes her less vulnerable to the attacks of the coalition (see Fig. 2(a)). At the end of
the day she was able to resist the attacks and consolidate her position in the office; as Thurman has put the case [57], ‘‘she
could mobilize a defense against a leveling coalition through a counter-attack’’.

The situation of Minnawas quite different. She is placed by the average communicability index ⟨GEA
p ⟩ at the bottom of the

ranking together with Peg and Mike. She was new at the office as she came from another field office. Despite that she had
over 20 years of experience, Pete and the President had been warned of Minna’s ‘‘over enthusiasm’’, which might interrupt
the smooth working of the office. Her lack of communicability makes her a very vulnerable target of the attacks. She was
very affected by this situation as [57] ‘‘she could not use her reticulum to mobilize effective support in a conflict situation’’.

The analysis of this social conflict is very much complemented by the study of the node displacement correlation GD
pq

among members of the office. Let us consider that the office as a whole has been ‘shaken’ by the conflict that has arisen
there. Everymember of the office will be affected, having some displacements GD

pp from their equilibrium position. Themost
robust members will be less affected and they will display only small displacements in comparison with more vulnerable
ones. The sign of the term GD

pq will tell us whether two members of the office are ‘correlated’ in their displacements or not.

That is, if twomembers of the office have the same sign for GD
pq we can assume that they are responding in a coordinatedway

to the ‘thermal oscillations’ of the network as awhole. Then, we have seen that themembers of the coalition not only display
small values of GD

pp indicating their robust position in the office but also that their displacements are positively correlated
(see Fig. 2(b)).

Emma again has the most robust position in the office according to her very low value of GD
pp, which can explain why she

was so resilient to the attacks. However, the most revealing thing is provided by the values of GD
pq between Emma and the

members of the coalition. As can be seen in Fig. 2(b) Emma is anticorrelated with the members of the attacking coalition
andMinna is anticorrelated with all other members of the office. Emma is positively correlated with the president and with
some of the weakest members (according to their communicability) of the office. These results indicate that it is not only
important to have a robust position in the office but also to be positively coordinated with the important members of the
office to avoid possible attacks of leveling coalitions. The current analysis could provide some support to the arduous labor of
sociologists in their field work, in particular for the quantitative analysis of the effects producing conflicts in social systems.

An important advantage of the consideration of the communicability based on anetwork of quantumharmonic oscillators
is that we can explore the effect of the ‘temperature’ on the process under study. That is, while for the networks of classical
oscillators the communicability changes linearly with the temperature (see Eqs. (63) and (64)), for the network of quantum
oscillators the change of temperature affects non-trivially the structure of the network (see Eqs. (49) and (50)). Then, if
we study ⟨GEA

p (β)⟩ for the members of the overseas office we can observe some important changes that give important
information about the evolution of the conflict in the office. For instance, as the temperature increases from β = 1 to
β = 0.5 it can be seen that the gap in communicability between Emma and the leveling coalition decreases significantly
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Fig. 3. Relative average communicability for each member of the overseas office studied by Thurman [57] at three different temperatures.

Fig. 4. Relative atomic displacement for the residues in the lipase B from C. antarctica (1tca). Bottom curve: experimental B factors, middle curve: GD
pp , top

curve: GEL
pp . The values of GD

pp and GEL
pp are displaced 0.5 and 1.0 units up in order to provide better visibility.

as can be seen in Fig. 3. As the temperature increases to β = 0.1 Emma becomes one of the best communicated persons in
the office only surpassed by Pete and Ann (see Fig. 3). The increase of temperature here can be understood as the increase
of the tensions in the office and the relative increase of communicability of Emma can explain quantitatively the findings of
Thurman, that during the crisis Emma was able to consolidate her position in the office and even gain more status.

4.2. Study of biomolecular networks

As a second example of the use of communicability functions in complex networks we illustrate the study of atomic
motion in biomolecular systems. In this case there is an experimental measure that accounts for the displacement of atoms
in such molecules due to the thermal oscillations. Such an experimental measure is provided by X-ray experiments as the
so-called B-factor or the temperature factor, which represents the reduction of coherent scattering of X-rays due to the
thermal motion of the atoms. The B-factors are very important for the study of protein structures as a measure of their
dynamical behavior [58]. For instance, regions with large B-factors are usually more flexible and functionally important.
Bahar et al. [59] used the atomic displacements GD

pp to describe thermal fluctuations in proteins.
Here we consider the protein lipase B from Candida antarctica (1tca) [60] represented as a complex network in which

the nodes represent amino acids, centered at their Cβ atoms, with the exception of glycine for which Cα is used. Two nodes
are then connected if the distance rij between both Cβ atoms of the residues i and j is not longer than a certain cutoff value
rC = 7.0 Å. In Fig. 4 we illustrate the values of the experimental B-factors (bottom) and those of the Laplacian-based atomic
displacements obtained from consideration of the protein as a network of classical GD

pp (middle) and of quantum GEL
pp (top)
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Fig. 5. Relative atomic displacement for the residues in the lipase B from C. antarctica (1tca) at three different temperatures. From bottom to top: Exp.,
β = 4, β = 8, β = 10, β = 12. The values of the communicability are displaced up 0.5 units each in order to provide better visibility.

harmonic oscillators [61]. It can be seen that the atomic displacement GD
pp shows better correlation with the experimental

values of the B-factor than GEL
pp. However, in both cases, GD

pp and GEL
pp, the region around the amino acid number 250 appears

like the most flexible one, in contrast with the experimental results that show the region around the residue 220 as the one
having the largest atomic displacements. Also the atomic displacements of the amino acids 70 and 124 appear exaggeratedly
large (see Fig. 4). In fact, both communicability indices are linearly related with a Pearson correlation coefficient equal
to 0.95.

As we have seen in the analysis of the social network in the previous section, the use of communicabilities based on
networks of quantum harmonic oscillators gives the advantage of exploring the effects of the temperature on the processes
under study. In Fig. 5 we plot the values of GEL

pp(β) for the residues in the protein 1tca at four different temperatures. As we
can see, as soon as the temperature decreases the region around the amino acids 70, 124 and 250 start to lose their flexibility
in comparison with that of the residue 220. At the same time the linear correlation coefficient between the experimental
B-factors and the communicability increases from 0.66 for β = 1 to 0.75 for β = 8, which is even better than the value 0.71
obtained by using GD

pp. For β > 8, the relation between the experimental and the calculated values of B-factors becomes
non-linear.

The two examples analyzed so far in this section, the social conflict and atomic displacements in proteins, have shown
that in general communicabilities based on quantum and classical harmonic oscillators are linearly related to each other.
This is repeated in many complex networks not analyzed in this review. As we have seen in these two examples, the non-
trivial variation of the quantum-based communicabilities with the temperature and the necessity of using an empirical
parameter for the classical one gives some advantages to the quantum communicability. However, there are situations, not
analyzed so far in this review, in which the communicabilities based on classical oscillators are the appropriate choice. This
is for instance the study of networks that evolve in time [62]. In this case the use of the classical communicability produces
the right penalization of walks that evolve not only in one snapshot of a network, but also in a sequence of times. In the next
section we will provide more general examples of the application of communicability functions for the analysis of a variety
of processes in complex networks.

5. Communicability and the analysis of networks

We consider here the analysis of a complex network in three different scales: micro-, meso- and macroscopic. What we
understand here as a ‘microscopic ’ analysis of a complex network is the consideration of its local topological properties,
such as those derived from the analysis of close environments around individual nodes and links. An extension of this
environment allows us to analyze a ‘mesoscopic ’ level of organization in which nodes and links group together forming
some kind of clusters characterized by properties which are more or less independent of the properties of individual nodes
and those of the network as a whole. The ‘macroscopic ’ properties of complex networks refer to their global topological
properties. That is, those properties that characterizes the network as a whole. There have been several works analyzing the
role of communicability and self-communicability at these three different scales [32,42,61,63–84]. We present here some
illustrative examples to give a flavor of the relevance of these approaches.
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5.1. Microscopic analysis of networks

An example of the use of communicability for analyzing the microscopic structure of networks is the identification of
essential proteins in protein–protein interaction (PPI) networks. An essential protein is one that when knocked out renders
the cell unviable. After a pioneering work of Jeong et al. [85] a method was designed to identify essential protein in silico

using the topological information provided by the PPI network [86,87]. The method consists of ranking the proteins in the
PPI network according to a given centralitymeasure. Then, it is expected that the top proteins in such ranking are essential to
this organism. The proof-of-concept for this method was provided by the analysis of a small dataset of the yeast PPI network
consisting of 2224 proteins and 6,604 interactions [88]. In this experiment the self-communicability (subgraph centrality)
of a protein emerged as the best predictor for protein essentiality among 6 centrality measures [86]. For instance, for the
selection of the top 100 proteins GEA

pp identifies 54% of the essential proteins, while the degree identifies 43% and the random
selection identifies 25%. More recent results have shown how to improve these percentages and more importantly how
false positives affect the discovery of essential proteins by using centrality measures. Li et al. [74] used three datasets with
different levels of confidence which consist of 2455, 11,000 and 45,000 interactions, respectively. They showed that lower
percentages of essential proteins are identified by any centrality measures when the method is applied to lower confidence
datasets. Then, Li et al. [74] used a strategy consisting of giving aweight to each interaction in the PPI network of yeast, which
represents the probability of this interaction being a true positive. This confidence score for each interaction was assigned
on the basis of two criteria: (1) observing experimental evidences for the interaction; (2) evaluating the function similarity
of the pair of proteins using gene ontology (GO) semantic similarity. Li et al. [74] studied a PPI network of yeast consisting
of 4746 proteins and 15,166 interactions and its high reliability core formed by 2373 proteins and 5283 interactions. In all
the cases analyzed, the weighted subgraph centrality produced the best performance in identifying essential proteins. For
instance, by selecting 10% in the total PPI network the weighted subgraph centrality identifies 53% of the existing essential
proteins versus 44% identified by its non-weighted version. The second highest percentages are observed for the weighted
versions of the information [29] and eigenvector [33,34] centralities which identify 47% of essential proteins. When the
experiment is carried out for the core of high reliability proteins, theweighted subgraph centrality identifies 55% of essential
proteins versus 52% of its unweighted version.

One characteristic of PPI networks is that many proteins are grouped together in functional modules in which most of
the proteins share some functionality (see further). Consequently, a microscopic analysis of the network is not enough for
identifying essential proteins. For instance, if a protein has many links with other proteins which are in different modules,
the knocking out of such protein will make many protein complexes disconnected with a consequent loss of different
functionalities in the cell. This can be interpreted as a plausible cause for essentiality of that protein. Using this reasoning
Ren et al. [79] have modified the subgraph centrality to include the participation of a protein in protein complexes. This
kind of approach can be considered as a combination of micro- and mesoscopic scales for the analysis of a network. They
considered the number of links that a protein i has with other proteins in a complex C , k(i, C). Then, the values of k(i, C) are
summed for all complexes in which the protein i takes place giving the number of links that the protein i has in different
protein complexes,mCi. The so-called harmonic centrality is now defined as:

HCi = 1

2
(GEA

ii /G
EA
max + mCi/mCmax), (65)

where the subscript ‘max’ indicates the maximum value among all nodes of the network. The factor 1
2
in the expression was

determined empirically. Using this approach Ren et al. [79] studied two PPI networks from DIP database [89], one in which
protein complexes are identified by experimental methods (YGS_PC) and another in which they are identified by the CMC
algorithm (YCMC_PC). The first includes 1042 proteins and 209 complexes, while the second is formed by 1538 proteins and
623 complexes. The results obtained by using this approach show that the HCi method reaches an impressive 70% of good
classification for the top 200 ranked proteins.

5.2. Mesoscopic analysis of networks

Protein complexes are examples of a mesoscopic type of organization existing in complex networks. This organization
consists of several clusters of tightly connected nodes forming distinguishable communities which are relatively poorly
connected to each other. The detection of communities in complex networks has become one of the most intensive areas of
interdisciplinary research in this field [90–95]. Estrada and Hatano [27] have proposed to reveal the community structure
of complex networks by using the sign separation of the communicability function:

GEA
pq = φ1,A(p)φ1,A (q) e

λ1,A +


++


2≤j≤n

φj,A(p)φj,A(q)e
λj,A +

−−


2≤j≤n

φj,A(p)φj,A(q)e
λj,A



+


+−


2≤j≤n

φj,A(p)φj,A(q)e
λj,A +

−+


2≤j≤n

φj,A(p)φj,A(q)e
λj,A



, (66)
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a b

c d

Fig. 6. Diagrammatic representation of the Zackary karate club network (a) and its communicability graph (b). (c) Overlapped communities in the network
represented in (a) and (d) the similarity among nodes used to detect hierarchical communities (see text).

where
++ represents the summation over the termswith bothϕj,A(p) andϕj,A(q)positive,

+− represents the summation
over the terms with ϕj,A(p) positive and ϕj,A(q) negative, and so on.

In the vibrational approach in which the communicability is identified as the thermal Green’s function of the network,
the first term corresponds to the ‘translational’ movement of the network with all nodes vibrating in the same direction.
The second term is identified with the coordinated vibrations of a pair of nodes which vibrates in the same direction. The
third term corresponds to the ‘discoordinate’ vibration of the pairs of nodes in which one is moved in one direction and
the other moves in the contrary one. Notice that the third term is negative. Therefore, the communicability function can be
written as: GEA

pq = GEA
pq(tras)+ GEA

pq(coord)− |GEA
pq(disc)|. Then, we say that two nodes p and q are in the same cluster if their

contribution to the communicability coming from GEA
pq(coord) is larger than that coming from |GEA

pq(disc)|. In other words,
two nodes are in the same community if they are more ‘coordinated’ in their vibrations than ‘discoordinated’. Consequently
it is natural to call the second term of (66) the intra-cluster communicability and the third term as the inter-cluster one [27].
Mathematically, the difference between intra- and inter-cluster communicabilities is written as:

∆GEA
pq = GEA

pq − φ1,A(p)φ1,A (q) e
λ1,A

=
intracluster


j>1

φj,A(p)φj,A(q)e
λj,A −











intercluster


j>1

φj,A(p)φj,A(q)e
λj,A











. (67)

A community is then defined based on the communicability as a subset of nodes C ⊂ V in the network G = (V , E) for
which the intracluster communicability is larger than the intercluster one formost of the nodes in C , which are then grouped
according to a given quantitative criterion [27,70,96]. Several approaches have been proposed for identifying communities
on the basis of the communicability function. For instance, the network can be transformed into a communicability graph,
where two nodes are connected if and only if ∆GEA

pq > 0. Then, overlapped communities are identified as the cliques of
this graph [27,70]. In Fig. 7(a) we illustrate the friendship network of a karate club studied by Zachary [97] and its
communicability graph (Fig. 6(b)). The above describedmethod detected five communities (see Fig. 6(c)), three of which are
highly overlapped ones. This may be one of the main drawbacks of this approach, which in general produces a large number
of highly overlapped communities. This situation can be resolved in different ways, such as by considering hierarchical
approaches based on the similarity between the communicability of pairs of nodes [96] (see Fig. 6(d)). However, when
hierarchical methods such as the ones proposed in [96] are used, the nice feature of having overlapped communities is lost.

The divorce between hierarchical and overlapping communities appears to be solved in a recent paper by Ma et al. [76],
who present a newapproach to community detection based on the communicability. The algorithm that they propose allows
one to identify the overlapping and hierarchical community structure in complex networks more precisely than with other
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a

b

c

Fig. 7. Modules of the PPI network of yeast as found by the algorithm according toMa et al. [76]. (a)Most proteins in thesemodules involve transportation;
(b) proteins having two functions: transcription and protein binding; (c) a large module in which proteins have three functions: metabolism, DNA
processing, and cell rescue.
Source: The figure is courtesy of Ma et al. [76].

approaches presented in the literature, such as eigenvector-based methods or the nonnegative matrix factorization (NMF).
The algorithm in [76] uses several tunable factors, including the inverse temperature β in the matrix exponential eβA, an
upper bound for the length of a short cycle, and the threshold for the density of cycles in a community. An appropriate
choice of parameters seems to be crucial for obtaining good results, and it remains an open question how to select ‘‘good’’
parameters automatically.

Another important issue is how to exploit sparsity in the adjacency matrix so as to improve on the generic time
complexity of O(n3) for a network with n nodes (see next section). Ma and Gao [77] have compared several non-traditional
spectral clustering methods for the detection of communities in complex networks. They have determined that the
communicability-based approach achieves the best performance but is the slowest one (see further section on computability
for an analysis).

Using their algorithmMa et al. [76] discovered several protein complexes in the yeast PPI. They identified many of these
modules with functional categories included into MIPS [98] and classified their complexes according to the number of
functions the proteins in them share. For instance, in Fig. 7 we reproduce their results of modules, in which most of the
proteins are involved in one, two and three functions.

5.3. Macroscopic analysis of networks

Moving now on to the macroscopic analysis of complex networks, we find many examples of the use of the communi-
cability, in particular for studying the robustness of complex networks in different contexts. The network robustness is a
measure of the resilience of the network as a whole to the loss of nodes and links. The so-called ‘natural connectivity’ has
been used to study the robustness of several classes of artificial and real-world networks [99,100] using various strategies
for removing links. The natural connectivity corresponds to the logarithm of the average Estrada index for a network:

λ̄ = ln[EE(G)/n]. (68)

It has been concluded that this index ‘‘has strong discrimination inmeasuring the robustness of complex networks and exhibits

the variation of robustness sensitively, even for disconnected networks’’ [99]. The interpretation of this index is straightforward
in the context of statistical mechanics of the vibration of networks. For instance, it was pointed out that the entropy S(G, β),
the total energy H(G, β) and Helmholtz free energy F(G, β) of the network are given by [101]

S(G, β) = −kB



j



pj


βλj − ln EE


, (69)
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H(G, β) = −
n


j=1

λjpj, (70)

F(G, β) = −β−1 ln EE, (71)

where pj = e−βEj/EE is the probability that the network is found in a vibrational state of energy Ej = −λj,A. Here we have
used EE = EE(G, β). Then, the so-called ‘natural connectivity’ of a network [99,100] can be rewritten for β ≡ 1 as

λ̄ = − ln(n)− (− ln[EE(G)]) = F(K̄n)− F(G), (72)

where K̄n stands for the complement of the complete graph, i.e., a graph with n nodes and no link. This means that λ̄ is
the change of free energy of a hypothetical reaction in which all links of a given network are removed. We recall that
∆F = Ffinal − Finitial. In other words it is the free energy gained by a network by having the connectivity pattern that it
actually has.

A topic which can also be related to the network robustness is the identification of structural changes that produce
significant disturbances in the functioning of the complex systems represented by networks. This is extremely important,
for instance, in the science of complex materials where the challenge is to decipher their inherent structural design
principles as they deform in response to external loads. Tordesillas et al. [80] have pioneered the study of dense granular
materials represented as complex networks. Walker and Tordesillas [83] have used the fact that when a force is applied
to a material, the number of small cycles within the contact network decreases and longer cycles appear. They studied
these transformations in granular materials represented by contact networks, using several network measures, including
the subgraph centrality and a measure of bipartivity based on it. The spectral measure of bipartivity is the ratio of the self-
communicability of a node based only on even closed walks to the total self-communicability of this node [102]:

bS(G) = tr[cosh(A)]/tr[exp(A)] =
n


j=1

cosh(λj,A)/EE(G). (73)

Walker and Tordesillas [83] have found that the average subgraph centrality and the network bipartivity reflect the
changes in the topology of the granular materials produced by the external strain (see Fig. 8(a)). The authors then studied
a weighted version of the self-communicability by considering the magnitude of the normal force component between
two particles as the weight of the corresponding link in the network. They determined that the behavior of the weighted
subgraph centrality follows closely that of the shear stress and that the drops in this quantity coincide with the increase
in the dissipation energy [83]. An example of the evolution of a buckling force chain on a small cluster as followed by the
weighted subgraph centrality is shown in Fig. 8(b). All in all, Walker and Tordesillas showed that the weighted subgraph
centrality ‘‘correlates strongly with nonaffine deformation and dissipation, spatially and temporally, and at both the mesoscopic

and macroscopic level’’ [83].
Another area that has attractedmuch attention in the study of complexnetworks is the study of anatomical and functional

brain networks [103–105]. A weighted communicability measure based on the normalized adjacency matrix was recently
used by Crofts and Higham [42] to study anatomical networks of human brains divided into 48 cortical and 8 subcortical
regions. The networks were built from structural diffusion-weighted imaging data for 9 stroke patients at least six months
following first, left hemisphere, subcortical stroke, and 10 age-matched control subjects. When considering data from
the stroked hemisphere they discriminated stroke patients from controls in an effective way, which is ‘‘expected given
the presence of a lesion and widespread degeneration in this hemisphere.’’ However, in a further work, Crofts et al. [64]
studied 9 chronic stroke patients and 18 age-matched controls for whom brain networks were built by using diffusion MRI
tractography. This time the communicability function was able to differentiate both groups by using information from the
contralesional hemisphere, despite the absence of gross structural pathology in it. They found reduced communicability
in brain regions surrounding the lesions in the affected hemisphere and around remote, but interconnected, homologue
locations in the contralesional hemisphere (see Fig. 9).

5.4. Multiscale analysis of networks

A characteristic feature of complex systems is the difficulty in determining the borderlines of the system. The
communicability function has been used to study the properties of networks known as good expansion, which allows
determining whether a network is homogeneous enough as for ‘expanding’ its properties from a small sampling to the
whole system. In order to explain this concept, let us consider a network in which we select an arbitrary subset of nodes
containing no more than half the total number of nodes. Then, suppose that the number of links between nodes in the
subset is approximately equal to the number of links between nodes in and out the subset. If this situation is repeated for
any subset of the nodes in the network we say that the network is an expander or it has good expansion (GE) properties.
This kind of network does not contain structural bottlenecks; a bottleneck is a link or a node that after removal leaves the
network disconnected. GE networks (GENs) have found many applications in a variety of fields [106].

A method of determining whether a network has GE properties has been designed on the basis of the self-
communicability of a node [107,108]. The spectral scaling method uses the odd subgraph centrality GEA

pp(odd), which
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Fig. 8. (top panel) Average self-communicability (subgraph centrality) based on the exponential of the adjacency matrix for the global contact network
for shear band particles normalized between 0 and 1. The shear stress is shown as a dotted line and the subgraph centrality as a solid one. (bottom panel)
Evolution of a buckling force chain event. Configuration of the force chain and its confining neighbors, contact network and weighted subgraph centrality.
Source: The figure is courtesy of Walker and Tordesillas [83].

Fig. 9. Illustration of stroke lesions in human brains (red) and regionswith reduced communicability. Reduced communicability is represented in blue and
regions with increased communicability are represented in green. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Source: The figure courtesy of Crofts from Crofts et al. [64].

is written in the following way:

GEA
pp(odd) = [EC(p)]2 sinh(λ1)+



j≥2

[φj,A(p)]2 sinh(λj), (74)
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Fig. 10. Expansion properties of large social networks in which the principal eigenvector is plotted versus the self-communicability (subgraph centrality)
in log–log scale and the values of the standard deviation ξ(G) from perfect scaling are shown. The left plot corresponds to the collaboration network of
co-authorship in the field of high-energy physics and the right one to the social network from the Youtube site.
Source: The figure is courtesy of Mallarios and Megalooikonomou [78].

where EC(p) = φ1,A(p) is the pth component of the principal (Perron–Frobenius) eigenvector φ1,A corresponding to the
largest eigenvalue λ1 of the network, which is also known as the eigenvector centrality of the node p. Then, if a network
has GE properties we can assume [EC(p)]2 sinh(λ1) ≫



j≥2[φj,A(p)]2 sinh(λj). That is, if the network has GE properties
the translational movement of the network dominates over all vibrational states, which divides the network into many
different communities as we have previously seen. In the case of a k-regular network it is known that a large spectral
gap, i.e., the difference between the first and second largest eigenvalues of the adjacency matrix (λ1 − λ2), implies good
expansionproperties [109,110]. In that casewe can assume that the spectral gap is large enough so that: [EC(p)]2 sinh(λ1) ≫


j≥2



φj,A(p)
2

sinh(λj). Therefore, in the general case a GEN has odd-subgraph centrality that can be written as

GEA
pp(odd) = [EC(p)]2 sinh(λ1). (75)

This means that the principal eigenvector of the network is directly related to the subgraph centrality in GENs according to
the following spectral power-law scaling relationship:

EC(p) ∝ A[GEA
pp(odd)]η, (76)

where A = [sinh(λ1)]−0.5 and η = 0.5. This expression can be written in a log–log scale as

log[EC(i)] = log A + η log[GEA
pp(odd)]. (77)

Consequently, in a GEN a log–log plot of EC(p) vs. GEA
pp(odd) displays a perfect straight line fit with slope η = 0.5 and

intercept log A. Networks that do not possess GE properties will display large deviations from this perfect fit. This method
has been used to classify complex networks into different universal structural classes [111] and has allowed the generation
of algorithms for constructing networks that reproduce some of these structural classes [112]. The problem of determining
whether a network displays GE properties is of relevance in sampling networks. For instance, GENs are characterized by a
large structural homogeneity across the scales of the network. Then, by sampling a relatively small part of the network we
can make a good estimation of the general properties of the network as a whole.

Furthermore, the investigation of these properties is also important for generating realistic models of networks,
for searching in networks as well as for the analysis of rumor spreading in networks. Recently, Malliaros and
Megalooikonomou [78] have studied several large social networks, three of them corresponding to collaboration networks
and 6 online social networks with up to 1,134,890 nodes and 2,987,624 links. They have found that most of these social
networks have GE properties according to the spectral scalingmethod but the two smallest networks display bad expansion
properties (see Fig. 10). They have argued that these GE properties can be due to the large sizes of these systems, where it
is difficult to find subsets of nodes that can be easily isolated. Another possibility is the fact that most of these networks
are created over online social networking sites, which can facilitate the establishment of ‘social’ relationships between the
agents (see for instance [113]). It is known for instance that online social networks differ in the connectivity patterns from
those of more ‘classical’ collaboration networks [114].

5.5. Communicability at negative absolute temperature

In all the previous examples the parameterβ has been assigned real positive values. That is, we have studied the behavior
of the communicability functions at positive absolute temperatures. However, an interesting situation arises whenwe study
the communicability function at negative absolute temperatures. The reader not accustomed to the concepts of thermal
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Fig. 11. Plot of the energy versus the entropy for a hypothetical system in equilibrium at constant volume.

physics can find the use of negative absolute temperatures strange. Therefore, we provide here a short introduction to this
concept based on the accounts of Ramsey [115] and Baierlain [116]. The thermodynamic definition of the temperature for a
system in equilibrium at a constant volume is given by:

1

T
=


∂S

∂U



V ,N

, (78)

where S andU are the entropy and the internal energy, respectively, and V andN are the volume and the number of particles
in the systems, which remains constant. If we consider a plot of U versus S, the inverse temperature is defined as the slope
of this curve at a given point. Consequently, if we consider a system of n ideal paramagnets with spin (1/2)h̄, there is a
point of the minimum energy (a) which corresponds to the case where all spins are aligned with an external magnetic field.
The point of the maximum energy (c) corresponds to an anti-alignment of all spins with respect to the external field. Both
situations (a) and (c) have the minimal entropy as those systems are completely ordered, i.e., U = 0. However, there is
an intermediate point (b) between (a) and (c) where one spin is up and its neighbors are down, which corresponds to the
situation of the maximum entropy (see Fig. 11).

Therefore, while the derivative at any point between (a) and (b) is positive, indicating that the temperature has positive
values, the slope of the curve between (b) and (c) is negative and so is the temperature. Then, the absolute temperature runs
from cold to hot as: 0 K, . . . ,+300 K, . . . ,+∞ K, . . . ,−∞ K, . . . ,−300 K, . . . ,−0 K, which means that absolute negative
temperatures are hotter than positive ones.

In order to study the communicability function at negative absolute temperatures, let us start bywriting it in the following
form:

GEA
pq(β) =



λj<0

φj(p)φj(q)e
βλj +



λj=0

φj(p)φj(q)e
βλj +



λj>0

φj(p)φj(q)e
βλj . (79)

While the eigenvectors associated with positive eigenvalues make contributions to the partition of the network into
communities or quasi-cliques, the eigenvectors associated with negative ones make contributions to the partition of
the network into quasi-bipartite clusters. Then, for β < 0, the first term of (79) makes the largest contribution to the
communicability, such that [117]:

GEA
pq(β < 0) ≈

n


λj<0

ϕj(p)ϕj(q)e
−|β|λj , (80)

which means that for GEA
pq(β < 0) the network is partitioned into quasi-bipartite clusters. This can be easily seen by

considering

e−|β|A = I − |β|A + (|β|A)2
2! − (|β|A)3

3! + · · · , (81)

which can be expressed in terms of the hyperbolic functions as

e−|β|A = cosh(|β|A)− sinh(|β|A). (82)

As we have previously seen, the term [cosh(|β|A)]pq represents the weighted sum of the number of walks of even length
connecting nodes p and q in the network. Similarly, [sinh(|β|A)]pq represents the weighted sum of the number of walks of
odd length connecting nodes p and q. Then, if we consider a bipartite graph in which p and q are nodes which are in two
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Fig. 12. Bipartition of the PPI network of Archaeoglobus fulgidus obtained by means of the communicability function at a negative absolute temperature.
The nodes in one partition are represented by squares and those in the other as circles. Inter-partition links are represented by solid lines and the only one
intra-partition link is represented as a discontinuous line.

different partitions of the network, it is straightforward to realize that there are no walks of even length starting at p and
ending at q in the graph. Consequently,

GEA
pq(β < 0) = [− sinh(|β|A)]pq < 0. (83)

On the other hand, if p and q are in the same partition of a bipartite network we can see that there is no walk of odd length
connecting them due to the lack of odd cycles in the bipartite graph, which makes

GEA
pq(β < 0) = [cosh(|β|A)]pq > 0. (84)

Thus, it is possible to adapt the methods and algorithms previously described to identify communities in networks in
order to identify network bipartitions. These methods have been used for undirected networks [117] in which bipartitions
have been detected for a variety of real-world systems. For instance, in Fig. 12 we illustrate the twomain partitions detected
by using the communicability function at a negative absolute temperature for the PPI network of the archae bacterium
A. fulgidus. The study of bipartitions in complex directed networks was also accomplished by using a modification of the
communicability function [118].

6. Communicability and localization in complex networks

6.1. Generalities

Locality is an important property of a large class of physical systems. For example, in quantum chemistry and solid-state
physics, the locality (also known as nearsightedness, see [119–121]) can be interpreted as the lack of long-range correlations
between the components of the system, which can be modeled by sites connected by bonds in a more or less regular lattice.
This means that with high probability, a small perturbation at one site of the lattice will only be felt locally (i.e., by sites in
a small neighborhood).

Mathematically, this property manifests itself as fast off-diagonal decay in the density matrix describing the system
at hand; see, e.g., [122]. The locality is present in insulators as well as in metallic systems at sufficiently high electronic
temperatures. One important consequence of the locality is that it enables the development ofO(n) algorithms for electronic
structure computations, i.e., algorithms the asymptotic complexity of which scales linearly in the size of the system [123].
Note that traditional algorithms based on diagonalization of the Hamiltonian, in contrast, scale like n3.

The locality is also of great importance in the area of quantum information theory, where it has been used, for example,
to establish area laws for the entanglement entropy; see, e.g., [124–129] and especially [130] for a comprehensive survey.

Conversely, the absence of locality can be thought of as the presence of long-range correlations throughout the system. In
such a system, a small local perturbationwill be felt globally. In quantumchemistry this happens for conductors, e.g.,metallic
systems at zero or very low electronic temperatures. In these systems, the entries of the density matrix decay very slowly.
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Fig. 13. Illustration of the normalized communicability between pairs of individuals in a network of injecting drug users (IDUs) in Colorado Spring.
Individuals are identified by numbers in the x and y axes and their communicability is given as the values of the z axis.

It should be obvious that the locality (or the lack of it) is also very important in the study of complex networks. In this
section we apply general results on exponential decay in matrix functions [122,131,132] to the study of a type of locality
in complex networks. Specifically, we use the communicability as a way to measure the correlations between nodes in a
network. Thus, fast decay in eβH (see below for details) will be interpreted as a sign of localization, meaning the absence of
strong long-range correlations among the nodes; conversely, slow decay in eβH (or the lack of decay) will be interpreted as
a sign of a strongly connected network, in which even small disturbances propagate easily to the entire network. Here H

may denote either the adjacency matrix or the graph Laplacian of the network.
Just as in the case of electronic structure computations, the locality is not only conceptually important but may also

lead in some cases to greatly reduced computational effort, for instance in computing communicabilities or other network
properties expressible as matrix functions. It is, however, important to realize that such decay properties will be present
only in some networks, but not in others. For instance, in a small-world network we cannot expect most communicabilities
to be negligibly small, generally speaking. On the other hand, other types of networks, such as regular lattices or highway
networks can be expected to exhibit strong locality. The actual rate of decay is affected by properties such as the maximum
degree of a node in the network and the inverse temperature β .

Let us consider for instance the 1997 version of the Internet at Autonomous System (AS) formed by 3015 nodes and
5156 links. Despite this network being sparse, the maximum communicability GEA

pq between a pair of nodes is ∼1013. The
minimum communicability is, however, only 3.1. Then, by normalizing the communicability matrix it is easy to realize
that the minimum communicability is negligibly close to zero, i.e., ∼10−13 and can be excluded from the calculations. The
average normalized communicability in this version of the AS Internet is 4.07 × 10−4; 16.7% of the pairs of nodes have a
communicability smaller than 10−6.

There are networks where the number of negligible entries is more significant than this; in the network of 616 injecting
drug users (IDUs) in Colorado Springs [133], GEA

pq < 10−6 for almost 30% of the pairs of nodes.We remark that there are some
networks in which this situation is not found at all; in the network of 1586 corporate directors of the top 500 US
corporations [134], only 0.4% of the pairs of nodes have communicability below10−6. These cases of ‘locality’ (or lack thereof)
of the communicability in a group of nodes in the network are telling us something about the structure of these networks.
For instance, in the case of the IDU network there is a central core dominating most of the communicability of the network
as can be seen in Fig. 13. These individuals are central in the communication with the rest of the network and could be
important targets of educational or health campaigns.

6.2. Exponential decay in communicability

In the case of a symmetric matrix M with the spectrum contained in I = [−1, 1] and for a matrix function f which is
analytic on a region containing I , it has been proved that the off-diagonal entries of this matrix function are bounded as

|f (M)pq| ≤ Ce−τdpq for all p ≠ q, (85)

where C > 0, τ > 0 and dpq denotes the shortest-path distance between the nodes p and q in the undirected and unweighted
graph associated with M . This result reveals the same information as we have analyzed in Section 2 of this work (see
Eq. (20) for instance) for the special case of the path graph. Basically, as the shortest-path separation between two nodes in
a network increases, their communicability vanishes. Note, however, that the actual decay is not monotonic in general.
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Now, let us consider the adjacencymatrixA of an undirected network and let kmax be themaximumdegree of the network.
Then, we can normalize the adjacency matrix as we have done previously producing Ã = k−1

maxA which has spectrum
contained in the interval I = [−1, 1]. Then, we can obtain decay bounds for the exponential of A by computing bounds

for the matrix function f



Ã



= ekmaxÃ. The bounds are of the form

GEA
pq ≤ Ce−τdpq for all p ≠ q, (86)

where now C and τ depend only on kmax. We will show later that a larger value of kmax results in a larger constant C , and
therefore a slower decay.

A shift and scaling are needed for the Laplacian to have spectrum in the interval I = [−1, 1]. We start by denoting

⌢
L =



2

λmax,L



L − I (87)

the shifted and scaled Laplacian. Observing that

L =


λmax,L

2



⌢
L +



λmax,L

2



I, (88)

we immediately have

e−L = e−λmax,L/2e
−


λ
max,L̂/2



L̂
. (89)

Thus, in order to obtain bounds on GEL
pq we compute bounds for the matrix function f (Ã) = e

−λmax,L
2 Ã, and then multiply the

bounds by the constant factor e
−λmax,L

2 .

Consider now the particular matrix function f (Ã) = etÃ, where t > 0 and Ã has spectrum in I = [−1, 1]. Applying the
bounds (85) and (86) to this function leads to the upper bound

(etÃ)pq ≤ C(t)e−τdpq , p ≠ q, (90)

where [131]

C(t) = 2χetκ1

χ − 1
, τ = 2 lnχ. (91)

Here χ = κ1 + κ2 = κ1 +


κ2
1 − 1, where κ1 > 1 and κ2 > 0 are the semi-axes of an ellipse Ω with foci at the points

−1 and +1. The matrix function f is analytic on the interior of Ω and continuous on it. The bound (90) can be explicitly
evaluated for any given value of κ1 > 1. Note that if t < 0, the factor etκ1 in (91) is replaced by e−tκ1 . Also note that owing to
the presence of the factor etκ1 in (91), the bounds for the entries of eA are larger for a larger value of kmax (just take t = kmax).

If we consider the inverse temperature β we can obtain the following bound for the Laplacian-based communicability
function

GEL
pq ≤ C(β)e−τdpq , p ≠ q, (92)

where

C(β) = 2χ

χ − 1
eβλmax,L(κ1−1)/2, τ = 2 lnχ. (93)

Note that the exponential in (93) increases to infinity as T → 0, and decreases to 1 as T → ∞. In the zero-temperature
limit the bound deteriorates and no decay is observed, which is consistent with the observations above. In the limit T → ∞
the right-hand side in the bound (90) tends to

2χ

χ − 1
e−τdpq , (94)

where τ = 2 lnχ and χ > 1 is arbitrary. Taking χ sufficiently large, the above quantity can be made smaller than any
prescribed ε > 0, showing that in the limit T → ∞ the off-diagonal entries of e−βL are all zero; therefore, our bounds
capture the correct limiting behavior for both T → 0 and T → ∞.

In a similar way we can obtain the bound for the adjacency-based communicability,

GEA
pq ≤ CA(β)e

−τdpq , p ≠ q (95)

with

CA(β) = 2χ

χ − 1
ekmaxκ1β , τ = 2 lnχ. (96)

As one would expect, the bound increases upon increasing kmax and increasing β (or decreasing the temperature). In the
limit T → ∞ we again find GEA

pq → 0.
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7. Computability of communicability functions

7.1. Analytical results

Communicability functions have been incorporated into some computational tools for the analysis of complex networks.
For instance, a Hub Objects Analyzer (Hubba) [135] designed as a web-based service for exploring important nodes in
an interactome network and BrainNetVis [136], a tool for both quantitative and qualitative network measures of brain
interconnectivity, incorporate the subgraph centrality as a standard measure for the analysis of nodes in networks. A more
general computational toolbox, CONTEST [137], contains a series of Matlab utilities for generating and analyzing various
types of networks and incorporates several communicability-based functions for the analysis of complex networks.

When implementing communicability functions for large complex networks a fundamental question that arises is the
efficiency of the algorithm selected for computing the matrix functions. As a consequence it has been stated here and
there that the subgraph centrality and the communicability are difficult to compute for large networks. There have been
approaches as the ones described in the previous section based on the truncation of the eigenvalues of the adjacencymatrix
for whichwe do not know the error of the approximation.We present in this section a critical review of these computational
approaches to give the reader a better understanding of what to do and what not to do when computing communicability
functions in large complex networks.

Several approaches are available for computing the matrix exponential. Use of the power series expansion (8) to find
approximations to eA in general cannot be recommended; see [138,139]. A frequently used approach is based on the
eigendecomposition (9); see, e.g., [140]. This approach requires O(n2) space and O(n3) arithmetic operations for a graph
with n nodes; furthermore, the sparsity in A is not exploited in this approach.

One of the most efficient and accurate available methods is the one based on the Padé approximation combined with the
scaling and squaring method [41,141]. This method, implemented in Matlab by the expm function, is nowadays the most
widely used one. Its complexity is also O(n2) storage and O(n3) arithmetic operations, and the sparsity in A does not appear
to be exploited in available implementations. (The sparsity in A is exploited in codes that compute the action of the matrix
exponential on a vector: v = eAb; however, this problem is somewhat different from the one that we are interested in here.)

It is important to note that in many applications, it is not required to compute all entries in the matrix exponential (or in
other functions ofA or L). In particular, for computing the graph centralities of the nodes in a graph (or the Estrada index) only
the main diagonal of eA is required. However, neither the diagonalization (eigendecomposition) approach, nor the scaling
and squaring method are able to take advantage of this to reduce computational costs. Moreover, for very large networks it
is generally not feasible to compute all the communicabilities; instead, onemay be interested in computing only the average
communicability of each node in the network, or of a subset of nodes. Again, this can be easily done without computing all
the entries in eA, as we show below.

Efficient and accurate methods of bounding and estimating arbitrary entries in a matrix function f (A) have been
developed by Golub, Meurant and collaborators (see [142] and references therein) and were first applied to problems of
network analysis by Benzi and Boito [143] (see also [144]). Here we give a brief description of these methods, referring
the reader to [143] for further details. Consider the eigendecomposition A = QΛQ T and f (A) = Qf (Λ)Q T , where
Q = [ϕ1, . . . , ϕn]. Given the vectors u and v, we have

uT f (A)v = uTQf (Λ)Q Tv = wT f (Λ)z =
n


i=1

f (λi)w(i)z(i), (97)

wherew = Q Tu and z = Q Tv. In particular, for f (A) = eA we obtain

uT eAv =
n


i=1

eλiw(i)z(i). (98)

Choosing u = v = ep (the vector with the pth entry equal to 1 and all the remaining ones equal to 0) we recover the
well-known expression for the subgraph centrality of node p:

EE(p) = eTpe
Aep =

n


i=1

eλi [φi(p)]
2 . (99)

Likewise, choosing u = ep and v = eq we obtain the usual expression for the communicability between node p and node q:

Gpq = eTpe
Aeq =

n


j=1

φj(p)φj(q)e
λj . (100)

Let now 1 denote the column vector with all entries equal to 1. The average communicability for the node p can be
computed as

⟨C(p)⟩ = 1

n − 1
[1T eAep − eTpe

Aep]. (101)

This shows that this quantity can be evaluated once the two bilinear forms 1T eAep and eTpe
Aep have been computed.
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Hence, the problem is reduced to evaluating bilinear expressions of the form uT f (A)v. The key insight is that such bilinear
forms can be thought of as Riemann–Stieltjes integrals with respect to a (signed) spectral measure:

uT f (A)v =
 b

a

f (λ)dµ(λ), µ(λ) =































0, if λ < a = λn,

i


j=1

w(j)z(j), if λi+1 ≤ λ < λi,

n


j=1

w(j)z(j), if b = λ1 ≤ λ.

(102)

This integral can be approximated by means of a Gauss-type quadrature rule:

 b

a

f (λ)dµ(λ) =
r


j=1

cjf (tj)+
s


k=1

vkf (τk)+ R[f ], (103)

where the nodes {tj}rj=1 and the weights {cj}rj=1 are unknown, whereas the nodes {τk}sk=1 are prescribed. We have

• s = 0 for the Gauss rule,
• s = 1, τ1 = a or τ1 = b for the Gauss–Radau rule,
• s = 2, τ1 = a and τ2 = b for the Gauss–Lobatto rule.

For certain matrix functions, including the exponential and the resolvent, these quadrature rules can be used to obtain
lower and upper bounds on the quantities of interest; adding quadrature nodes leads to tighter and tighter bounds,
which converge to the true values. The evaluation of these quadrature rules is reduced to the computation of orthogonal
polynomials via a three-term recurrence, or, equivalently, to the computation of entries and spectral information on a certain
tridiagonal (Jacobi) matrix via the Lanczos algorithm. Here we briefly recall how this can be done for the case of the Gauss
quadrature rule, when we wish to estimate the ith diagonal entry of f (A). It follows from (103) that the quantity of interest
has the form

r

j=1 cjf (tj). The nodes and weights can be efficiently computed using the Golub and Welsch QR algorithm,
see [142]. Alternatively, one can use the following relation (Theorem 3.4 in [142]):

r


j=1

cjf (tj) = eT1 f (Jr)e1, (104)

where

Jr =













ω1 γ1
γ1 ω2 γ2

. . .
. . .

. . .

γr−2 ωr−1 γr−1

γr−1 ωr













(105)

is a tridiagonal matrix whose eigenvalues are the Gauss nodes, whereas the Gauss weights are given by the squares of the
first entries of the normalized eigenvectors of Jr . The entries of Jr are computed using the Lanczos algorithm. The initial
vectors are x−1 = 0 and x0 = ei. The iteration goes as follows:

γjxj = rj = (A − ωjI)xj−1 − γj−1xj−2, j = 1, 2, . . .

ωj = xTj−1Axj−1,

γj =


rj


 =


rTj rj
1/2

.

(106)

In practice, a slightly different implementation due to Paige is preferred for numerical reasons, see [142].
For small r , i.e., for a small number of Lanczos steps, computing the (1, 1) entry of f (Jr) is inexpensive. The main cost in

estimating one entry of f (A)with this approach is associatedwith the sparsematrix-vector products in the Lanczos algorithm
applied to the adjacency matrix A. If only a small, fixed number of iterations is performed for each diagonal element of f (A),
as is usually the case, the computational cost (per node) is atmostO(n) for a sparse graph, resulting in a total cost ofO(n2) for
computing the subgraph centrality of every node in the network. This theoretical worst case applies for instance to small-
world networks; for networks the diameter of which is not small, a careful sparse-matrix-sparse-vector implementation
leads to anO(k̄) complexity per node,where k̄ is the average degree of a node in the network. This translates to an overall cost
of O(n) for computing all the subgraph centralities for a sparse network. The prefactor in the O(n) and O(n2) estimates may
be large, meaning that the quadrature rule-based approachwill be faster than traditionalO(n3)methods only for sufficiently
large n. The break-even point will depend on the particular type of network being considered, but in our experience it can
occur for n as small as a fewhundreds. Of course, the larger n, the greater the savings realizedwith the quadrature rule-based
approach.
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Fig. 14. (Main) Plot of the time in seconds (y-axis) for computing the Estrada index of small world matrices of increasing size. The number of nodes n is
on the x-axis. In blue we show the time for the Matlab ‘expm’ function, in black the time using the eigendecomposition, and in red the time for estimating
the trace using five iterations of the Lanczos algorithm for each node. (Insert) Plot of the time in seconds for computing the Estrada index of small world
matrices of size n = 1000, 5000, 10,000. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Furthermore, since each subgraph centrality can be computed independently of the others, parallelization of the
computation will result in a drastic reduction of computing times, thus enabling the analysis of huge networks onmassively
parallel systems, at least in principle. We are not aware of any other approach to computing subgraph centralities with
similar characteristics.

The case u ≠ v can be handled either by the nonsymmetric Lanczos process [142], or by means of the following
polarization identity:

uT f (A)v = 1

2
[(u + v)T f (A)(u + v)− uT f (A)u − vT f (A)v]. (107)

For the case f (A) = eA, u = ep and v = eq we obtain the following expression for the communicability between nodes p
and q:

Gpq = 1

2
[(ei + ej)

T eA(ei + ej)− EE(p)− EE(q)], (108)

showing that once the subgraph centralities have been computed, only one additional quadratic form must be evaluated in
order to compute Gpq. Hence, the cost of computing the communicability between a pair of nodes is of the same order as
that of computing the subgraph centrality of a node.

For a very large network, computing the communicabilities between all pairs of nodes would likely be too expensive.
In this case computing the average communicabilities may be sufficient, depending on the problem; in other cases it may
be sufficient to compute the communicabilities for a subset of nodes, or only those communicabilities that are not a priori

known to be below a certain threshold (see discussion on decay).
As already mentioned, computing the average communicability for node p requires evaluating the bilinear form 1T eAep.

This can be computed with the nonsymmetric Lanczos process, or alternatively with the symmetric Lanczos process via the
alternative polarization identity

1T eAep = 1

4
[(1 + ep)

T eA(1 + ep)− (1 − ep)
T eA(1 − ep)]. (109)

Hence, the cost of computing the average communicability of a node is of the same order as computing the subgraph
centrality of a node. We note that all the average communicabilities can also be computed in parallel.

7.2. Numerical experiments

Here we present the results of computations on a set of small-world networks generated using the CONTEST
toolbox [137]. The networks are obtained from an underlying regular lattice consisting of a ring, in which each node is
connected to four neighbors (two on each side). A shortcut to a randomly chosen node in the network is added to each node
in turn with probability p = 0.1, with self-links and repeated links removed at the end of the process.

First we consider a set of networks of n nodeswith 1000 ≤ n ≤ 4000, with increments of 200.We compute the subgraph
centralities of all nodes in the networks and then sum them to obtain the Estrada index. The results are shown in Fig. 14. As
expected, the computational times with the eigendecomposition and with the Matlab function expm scale roughly like n3.
Even without a sophisticated implementation, our results show that the quadrature rule-based approach is systematically
faster for networks of size greater than n ≈ 2000. In this graph the time for the quadrature rule-based calculations appear
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to scale roughly linearly with n, rather than with the expected (quadratic) complexity. This is probably due to the fact that
for such relatively small sparse problems, the computational time is dominated by non-floating point operations (including
indexing, memory references, etc.), which scale roughly linearly for the range of problems of sizes considered here. This is
confirmed by the plot in inset of Fig. 14, wherewe present results for n = 1000, 5000, 10,000. This plot indicates a quadratic
growth in computing times for sufficiently large graphs.

8. Conclusions and perspectives

In recent years, the notion of communicability has become increasingly important in the analysis of complex networks.
It plays a prominent role in understanding network properties at the micro-, meso-, andmacroscopic level, as well as across
multiple scales. Measures of the communicability between nodes, or sets of nodes, can be used to construct community
detection algorithms, to quantify graph bipartivity, to analyze the spread or rumors, to identify bottlenecks, to reveal the
dynamics between agents in a social conflict, and so forth. Moreover, centrality measures based on self-communicability
(i.e., subgraph centrality) have proved useful in analyzing the structure of complex networks arising in a variety of fields. A
few of these applications have been reviewed here, aswell as generalizations and improvements by a number of researchers.

Physical models based on oscillator networks can help justifying and understanding the communicability functions of
networks. A variety of models have been analyzed and discussed in this paper, including classical and quantum-mechanical
ones. Calculations with these models can provide useful insights on the notion of communicability in various situations;
for instance, the use of negative absolute temperatures readily admits an elegant interpretation in the context of complex
network analysis.

All the communicability measures reviewed in this paper are expressed in terms of walks between nodes in the
graph representing the network. Counting these walks and assigning weights to them so as to penalize longer walks
naturally leads to matrix power series and hence to analytic functions of graph matrices such as the adjacency or the
Laplacian matrix. A wealth of mathematical and algorithmic knowledge on matrix functions can be utilized to compute
communicability functions efficiently in the case of large and sparse networks. Moreover, existing bounds for the entries of
matrix functions can be directly applied to investigate the locality (or its absence) in the network communicability. Interest
in communicability based on matrix functions has grown very rapidly since the initial proposal [27] and is now an active
area of research worldwide. There are still several open questions that have been mentioned or analyzed in this review.
Others will appear from the systematic use of the communicability functions in the different application fields. All of them
will guarantee the continuity of research in this topic for the next few years.

In closing, the communicability is likely to become an essential ingredient in both the theoretical and the practical
analysis of networks, and exciting developments will surely take place in the years ahead.
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