The Physics of Fluids and Plasmas

An Introduction for Astrophysicists

ARNAB RAI CHOUDHURI

Contents

Part I

	Preface			
	Acknowledgements			
In	trodu	ction	1	
1		4	3	
	1.1	Fluids and plasmas in the astrophysical context	3	
	1.2	Characteristics of dynamical theories	5	
	1.3	Different levels of theory	7	
	1.4	Ensembles in phase space. Liouville's theorem	10	
	1.5	Collisionless Boltzmann equation	13	
N	eutra	l fluids	17	
2	Bolt	zmann equation	19	
	2.1	Collisions in a dilute neutral gas	19	
	2.2	The collision integral	22	
	2.3	The Maxwellian distribution	24	
	2.4	Boltzmann's H theorem	26	
	2.5	The conservation equation	28	
	Exe	rcises	30	
3	March towards hydrodynamics			
	3.1	The moment equations	31	
	3.2	An excursion into stellar dynamics. Oort limit	34	
	3.3	Zero-order approximation	37	
	3.4	Transport phenomena	40	
	3.5	Comparison with experiments	44	
	3.6	· ·	46	
	3.7	• •	48	
	Exe	rcises	51	

4	Proj	perties of ideal fluids	53
	4.1	Macroscopic derivation of hydrodynamic equations	53
		4.1.1 The equation of motion	54
		4.1.2 The equation of energy	57
	4.2	The vorticity equation. Incompressible and barotropic	
		fluids	59
	4.3	Hydrodynamic equations in conservative forms	61
	4.4	Hydrostatics. Modelling the solar corona	62
	4.5	Bernoulli's principle for steady flows	65
	4.6	Kelvin's vorticity theorem	67
	4.7	Potential flows. Flow past a cylinder	70
	4.8	Stream function	74
	Exe	rcises	76
5	Visc	cous flows	78
	5.1	Tangential stress in a Newtonian fluid	78
	5.2	Navier–Stokes equation	81
	5.3	Flow through a circular pipe	83
	5.4	Scaling and Reynolds number	85
	5.5	Viscous flow past solid bodies. Boundary layers	86
	5.6	•	90
	5.7	1 5	94
		5.7.1 The basic disk dynamics	96
		5.7.2 Steady disk	99
	Exe	rcises	102
6		dynamics	104
	6.1	Thermodynamic properties of a perfect gas	104
	6.2	Acoustic waves	106
	6.3	N	109
	6.4	1 0	
		characteristics	111
	6.5	The structure of shock waves	114
	6.6	Spherical blast waves. Supernova explosions	116
	6.7	6 6 5	122
	6.8	Spherical accretion and winds	125
		rcises	128
7		ear theory of waves and instabilities	130
	7.1	The philosophy of perturbation analysis	130
	7.2	Convective instability and internal gravity waves	132
	7.3	Rayleigh-Bénard convection	135
	7.4	Perturbations at a two-fluid interface	141
		7.4.1 Surface gravity waves	145
		7.4.2 Rayleigh–Taylor instability	146

			7.4.3 Kelvin–Helmholtz instability	147
		7.5	Jeans instability	148
		7.6	Stellar oscillations. Helioseismology	151
		7.7	A few general comments. Beyond the linear theory	155
		Exer	cises	157
	8	Turb	ulence	158
		8.1	The need for a statistical theory	158
		8.2	Kinematics of homogeneous isotropic turbulence	161
		8.3	Kolmogorov's universal equilibrium theory	164
		8.4	Turbulent diffusion	169
		8.5	The mean equations	172
		8.6	Turbulence in astrophysics	173
		Exer	cises	175
	9	Rota	tion and hydrodynamics	177
		9.1	Introduction	177
		9.2	Hydrodynamics in a rotating frame of reference	179
			9.2.1 The geostrophic approximation	181
			9.2.2 Vorticity in a rotating frame	182
			9.2.3 Taylor–Proudman theorem	183
		9.3	Self-gravitating rotating masses	184
			9.3.1 Maclaurin spheroids	186
			9.3.2 Jacobi ellipsoids	188
		9.4	Rotation in the world of stars	189
		9.5	Rotation in the world of galaxies	192
		Exer	cises	193
Part 2	Pla	ismas	5	195
	10	Plas	ma orbit theory	197
		10.1	Introductory remarks	197
		10.2	The effect of a perpendicular force	201
			10.2.1 Gradient drift	203
			10.2.2 Curvature drift	204
		10.3	Magnetic mirrors	205
		10.4	Formation of the Van Allen belt	208
		10.5	Cosmic rays. Particle acceleration in astrophysics	209
		Exer	cises	214
	11	Dyna	amics of many charged particles	216
		11.1	Basic properties of plasmas	216
		11.2	Debye shielding. The plasma parameter	220
		11.3	51 1	221
		11.4	•	224
		11.5	From the Vlasov equation to the two-fluid model	228

	11.6	Fokker–Planck equation	231		
	11.7 Concluding remarks				
	Exercises				
12	Colli	sionless processes in plasmas	238		
	12.1	Introduction	238		
	12.2	Electromagnetic oscillations in cold plasmas	239		
		12.2.1 Plasma oscillations	241		
		12.2.2 Electromagnetic waves	242		
	12.3	Warm plasma waves	243		
	12.4	Vlasov theory of plasma waves	244		
		12.4.1 Landau damping	247		
		12.4.2 Two-stream instability	248		
	12.5	Electromagnetic wave propagation parallel to			
		magnetic field	249		
		12.5.1 Faraday rotation	253		
		12.5.2 Whistlers	254		
	12.6	Pulsars as probes of the interstellar medium	254		
	Exer	4	256		
13		sional processes and the one-fluid model	258		
		Collisions and diffusion in weakly ionized plasmas	258		
		Diffusion across magnetic fields	260		
		Collisions in a fully ionized plasma	262		
		Towards a one-fluid model	264		
		Transport phenomena in fully ionized plasmas	268		
	13.6	Lorentz transformation of electromagnetic fields. The			
		non-relativistic approximation	270		
	13.7		272		
	Exer		274		
14		e magnetohydrodynamics	276		
	14.1	•	276		
		Some consequences of the induction equation	280		
	14.3	Magnetohydrostatics	285		
		14.3.1 Pressure-balanced plasma column	286		
		14.3.2 Stability of plasma columns	289		
		14.3.3 Force-free fields	290		
	14.4	A note on fusion research	291		
	14.5		294		
	14.6		297		
	14.7		302		
	14.8	•	306		
	14.9		308		
		14.9.1 Magnetic braking during star formation	309		

		14.9.2 Magnetized winds	310
		14.9.3 Jets from accretion disks	312
	14.10	MHD applied to weakly ionized plasmas	314
	Exercises		
15	Theory of magnetic topologies		
	15.1	Introduction	319
	15.2	Magnetic reconnection	321
	15.3	Magnetic helicity. Woltjer's theorems	326
	15.4	Taylor's theory of plasma relaxation	330
	15.5	Parker's theory of coronal heating	334
	Exer	cises	339
16	Dynamo theory		
	16.1	Magnetic fields in the Cosmos	340
	16.2	Origin of astronomical magnetic fields as an MHD	
		problem	343
	16.3	Cowling's theorem	346
	16.4	Parker's turbulent dynamo. Qualitative idea	348
	16.5	Mean field magnetohydrodynamics	350
	16.6	A simple dynamo solution	355
	16.7	Concluding remarks	361
	Exercises		

Epilogue			363
17	-		365
1	17.1	Virial theorem	366
		17.1.1 Application to gravitationally bound systems	369
		17.1.2 Some comments on global methods	372
	17.2	Relativistic hydrodynamics	372
	17.3	Radiation hydrodynamics	377
17.4		A guided tour through the world of astrophysical	
		fluids and plasmas	380
		17.4.1 Stellar convection, rotation and oscillations	380
		17.4.2 Magnetohydrodynamics of the Sun and the	
		solar system	381
		17.4.3 Neutron stars and pulsars	383
		17.4.4 Interstellar medium	383
		17.4.5 Active galactic nuclei	384

17.4.6 Stellar dynamics38417.5 Final goodbye to the reader385

Appendix	A	Useful vector relations	389
Appendix	В	Integrals in kinetic theory	392
Appendix	С	Formulae and equations in cylindrical and spherical coordinates	393
Appendix	D	Values of various quantities	396
Appendix	E	Basic parameters pertaining to plasmas	398
Sugge	stio	ns for further reading	399
References			408
Index			419

¢