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Abstract

We examine the physical mechanisms governing the formation of snow crystals, treating this

problem as a case study of the dynamics of crystal growth from the vapour phase. Particular

attention is given to the basic theoretical underpinnings of the subject, especially the interplay

of particle diffusion, heat diffusion and surface attachment kinetics during crystal growth, as

well as growth instabilities that have important effects on snow crystal development.

The first part of this review focuses on understanding the dramatic variations seen in snow

crystal morphology as a function of temperature, a mystery that has remained largely unsolved

since its discovery 75 years ago. To this end we examine the growth of simple hexagonal ice

prisms in considerable detail, comparing crystal growth theory with laboratory measurements

of growth rates under a broad range of conditions. This turns out to be a surprisingly rich

problem, which ultimately originates from the unusual molecular structure of the ice surface

and its sensitive dependence on temperature. With new clues from precision measurements of

attachment kinetics, we are now just beginning to understand these structural changes at the

ice surface and how they affect the crystal growth process. We also touch upon the mostly

unexplored topic of how dilute chemical impurities can greatly alter the growth of snow crystals.

The second part of this review examines pattern formation in snow crystals, with special

emphasis on the growth of snow crystal dendrites. Again we treat this as a case study of

the more general problem of dendritic growth during diffusion-limited solidification. Since

snow crystals grow from the vapour, we can apply dendrite theory in the simplified slow-

growth limit where attachment kinetics dominates over capillarity in selecting the tip velocity.

Although faceting is quite pronounced in these structures, many aspects of the formation of

snow crystal dendrites are fairly well described using a theoretical treatment that does not

explicitly incorporate faceting. We also describe electrically modified ice dendrite growth,

which produces some novel needle-like structures.
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1. Introduction

Snow crystals, also called snowflakes, are single crystals of ice that grow from water vapour.

They form in copious numbers in the atmosphere and are well known for their elaborate,

symmetrical patterns. The physics of snow crystal formation is a specific example of the

more general problem of how crystals grow and develop, creating complex structures on many

length scales in the process. Because crystallization is a basic phase transition and crystals

make up the foundation of several major industries, much effort has been expended toward

developing a detailed understanding of the physics of crystal nucleation and growth. There is

also a considerable literature on pattern formation during solidification. Beyond the intrinsic

scientific merit of these problems, the burgeoning commercial interest in the self-assembly of

nano-scale devices has reinvigorated our desire to understand just how solidification produces

ordered, and sometimes complex, structures from disordered precursors.

Structure formation during crystal growth is a rich many-body problem, for which there

are few overarching theories and perhaps even fewer uncomplicated experimental systems. In

part this reflects the fact that many factors contribute to crystal growth, including both large-

scale phenomena (e.g. particle and heat transport) and microscopic dynamics (e.g. surface

diffusion and chemistry). Different crystals grown under different conditions exhibit a broad

range of morphologies, growth rates and other characteristics, reflecting the variety of physical

mechanisms that influence crystal growth. The inherent complexity of the physics has resulted

in a rather large gap between the basic tenants of crystal growth theory and the phenomenology

of growing practical crystals.

1.1. Ice as a case study

In many ways, the formation of ice crystals from the vapour phase is an excellent case

study of crystal growth dynamics and pattern formation during solidification. Although

it appears to be a relatively simple monomolecular physical system, the growth of snow

crystals exhibits a surprisingly rich behaviour as a function of temperature, supersaturation

and other external parameters. As we will see below, a great deal of this behaviour remains

unexplained, even at a qualitative level. Thus there is much to be learned, and ample potential

that a better understanding of ice will contribute to our overall understanding of crystal growth

and solidification. Taking the next step beyond the monomolecular system, ice crystal growth

from water vapour is known to be quite sensitive to chemical influences at the growing surface,

so again ice is an excellent case study for the more general, and exceptionally diverse, problem

of chemically mediated crystal growth.

While the physics of snow crystal formation is an excellent crystal growth problem,

it also touches on several environmental and meteorological issues, simply because ice

crystals often play major roles in atmospheric phenomena. For example, ice crystals are

important in cloud electrification and lightning, via charging mechanisms that involve collisions

between ice particles. These mechanisms depend on details of the ice surface structure

that are still not well understood [1–3]. Also, chemical processes in the upper atmosphere

frequently require the surfaces of ice crystals to boost their reaction rates [4, 5]. Most

meteorological phenomena involving ice particles, like the growth of snow crystals, are

influenced to some degree by the structure and dynamics of the ice surface. Thus we

expect they will share some common physics at a fundamental level. A better picture of

the dynamics of the ice crystal surface during growth may also shed light on some of the

many remaining mysteries surrounding the dynamics of the different solid and liquid states of

water [6].
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1.2. Natural snow crystals

Since snow crystals fall from the sky in symmetrical, patterned forms, they have been the source

of considerable curiosity and scientific study for centuries (for detailed historical accounts

see [7–11]). Johannes Kepler was apparently the first person to look at snow crystals with a

scientific eye, writing a short treatise devoted to the subject in 1611, in which he describes the

possible origins of snow crystal symmetry [12]. René Descartes penned an account of many dif-

ferent forms of natural snow crystals in 1637 as part of his famous treatise on weather phenom-

ena, Les Météores (see [7]). These early investigations were followed by numerous accounts

that described, in words and with sketches, the great variety of snow crystal morphologies

found in natural snowfalls [9,10,13,14]. With the development of photography in the late 19th

century, Wilson Bentley catalogued several thousand snow crystal images in 1931 that he had

acquired over several decades [15]. Bentley’s images popularized the snow crystal as a winter

icon and were largely responsible for the widespread notion that no two snowflakes are alike.

Some examples of natural snow crystals are shown in figure 1. These are particularly

well-formed and symmetrical specimens, chosen for their photographic appeal and as prime

examples of several of the more common and/or interesting snow crystal forms. Natural snow

crystals have been categorized into morphological types by several different authors [9,17,18],

acquiring names like stellar dendrites, spatial dendrites, sectored plates, hollow columns, bullet

rosettes, capped columns and others [19]. Most natural snow crystals are smaller and less

pristine than those shown in figure 1, and are generally more blocky in appearance, usually

without the high degree of symmetry present in well-formed specimens. Polycrystalline forms

are also exceedingly common. For an unbiased sample the reader is invited to go outside with

a magnifying glass or microscope during a light snowfall. Colder snowfalls usually provide

more symmetrical and faceted crystals, but even warmer conditions often bring some examples

like those shown in figure 1.

1.3. The morphology diagram

The variety of snow crystal forms seen in Bentley’s photographs prompted physicist Ukichiro

Nakaya to perform the first in-depth laboratory study of snow crystal growth in the 1930s [9].

Nakaya not only categorized natural snow crystals under different meteorological conditions,

he was also the first to grow synthetic snow crystals in the laboratory in a controlled

environment. Nakaya observed the different growth morphologies that appeared at different

temperatures and supersaturations and combined these observations into what is called a snow

crystal morphology diagram, shown in figure 2. This diagram refers to snow crystals growing

in air at a pressure near 1 atm, so applies to natural snow crystals. Nakaya’s results have been

confirmed and supplanted by several subsequent investigations [10, 17, 20], and the data have

recently been extended to temperatures as low as T = −70˚C [21].

These observations reveal a surprisingly complex dependence of crystal morphology on

temperature and supersaturation. Just below freezing, at temperatures near T = −2˚C, the

growth is plate-like, with thick plates at lower supersaturations, thinner plates at intermediate

supersaturations, and plate-like dendritic structures at high supersaturations. For temperatures

near T = −5˚C, the growth is columnar, with stout columns at the lower supersaturations, more

slender, often hollow columns at intermediate supersaturations, and clusters of thin, needle-like

crystals at higher supersaturations. Colder still, near T = −15˚C, the growth again becomes

plate-like, and again one sees increasing structure with increasing supersaturation. The thin,

plate-like crystals shown in figures 1(a)–(c) all grew at temperatures near T = −15˚C. Finally,

at the lowest temperatures the growth becomes a mixture of thick plates at low supersaturations
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Figure 1. Examples of several different morphological types of snow crystals found in natural

snowfalls in temperate climates. (a) A relatively simple plate-like crystal, 1.4 mm from tip to

tip, showing fairly complex markings. Plates with smooth, featureless facets are less common

in nature, except at low temperatures (T � −20˚C) and low humidities. (b) A more elaborate

plate-like crystal, 2.1 mm from tip to tip, with an unusually high degree of complex symmetry.

(c) A multi-branched stellar dendrite crystal, 3.0 mm from tip to tip. These typically form at higher

humidities and only when the temperature is near T = −15˚C. (d) A simple hexagonal columnar

crystal, 0.45 mm in length. Some internal hollowing resulted when the initially hollow ends of

the column grew over. (e) Needle-like crystals, the largest being 1.1 mm in length. Note one

needle grew as a slender hollow column before the ends branched. These crystals only grow near

T = −5˚C. ( f ) A capped column crystal, 0.6 mm in length. This crystal began growing as a stout

hollow column, and then plate-like stellar crystals grew on the two ends of the column. Photos by

the author [16].
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Figure 2. The snow crystal morphology diagram, showing different types of snow crystals that

grow in air at atmospheric pressure, as a function of temperature and water vapour supersaturation

relative to ice. The water saturation line gives the supersaturation of supercooled water, as might

be found within a dense cloud. Note the morphology switches from plates (T ≈ −2˚C) to columns

(T ≈ −5˚C) to plates (T ≈ −15˚C) to predominantly columns (T < −30˚C) as temperature is

decreased. Temperature mainly determines whether snow crystals will grow into plates or columns,

while higher supersaturations produce more complex structures. This figure was adapted from a

diagram by Furakawa.

and columns at higher supersaturations. Growth of heavy water (D2O) crystals from the

vapour phase produces similar morphologies as a function of temperature, except shifted by

approximately four degrees, in keeping with the isotopic shift in the freezing point between

D2O and H2O [22].

Note that the morphology diagram in figure 2 is not necessarily indicative of all natural

snow crystals, which are often dominated by polycrystalline forms, but rather it reflects the

growth of ice single-crystals [21]. For natural crystals it is also important to note that ice

growth is enhanced when air flows over a growing surface, a phenomenon called the ventilation

effect [23, 24].

The variation in snow crystal morphology as a function of temperature is both dramatic and

easily demonstrated. Figure 3 shows some representative laboratory-produced snow crystals,

grown in free-fall in an air-filled cold chamber at temperatures of T = −2˚C, −5˚C and −15˚C

and at intermediate supersaturations. Quantitative data of a similar nature, giving average

crystal dimensions as a function of temperature and growth time, have been presented by several

authors [10,25–27]. The crystals in figure 3 clearly follow the morphology diagram, growing

predominantly as plates at T = −2˚C, columns at T = −5˚C and plates again at −15˚C.

One can also see a substantial variability in crystal size and shape for the crystals in

figure 3, even though they were grown under fairly similar conditions. This reflects the fact

that snow crystal growth is quite sensitive to small changes in temperature, supersaturation and

other factors. This sensitivity is one of the hallmarks of snow crystal growth, and, as we will

see later, this has made it difficult to make crystal growth measurements that are sufficiently

accurate and reproducible that one can definitely discern the different growth mechanisms under
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Figure 3. Examples of laboratory-made snow crystals grown at temperatures T = −2˚C (left),

T = −5˚C (middle), and T = −15˚C (right) and supersaturations near water saturation [19].

Vertical scale bars are 100 µm long. These crystals were produced in a cold chamber filled with

supersaturated air and photographed after they had fallen onto an observation window at the bottom

of the chamber. Note the dramatic morphological changes from plates at −2˚C to columns at −5˚C

to plates again at −15˚C. Photos by the author [19].

different conditions. As we will see below, explaining the physics behind the snow crystal

morphology diagram, even at a qualitative level, continues to be a surprisingly elusive goal.

1.4. Complexity and symmetry

The sensitivity of snow crystal growth to temperature and humidity allows a straightforward

explanation for the combination of complexity and symmetry seen in many specimens like those

shown in figure 1. Consider the formation of a single snow crystal in the atmosphere. The

story begins inside a cloud, which typically consists of a large number of liquid water droplets

nucleated on minute dust particles. Nucleation into liquid droplets, even at temperatures below

0˚C, is an example of Ostwald’s step rule [28]. Pure water droplets of microscopic dimensions

can be supercooled to temperatures as low as T ≈ −40˚C before freezing via homogeneous

nucleation. Assuming a relatively static cloud, the water droplets in the cloud will supersaturate

the enclosed air to values (relative to ice) as high as the water saturation level shown in figure 1.

If the cloud temperature drops, at around T = −10˚C the droplets will begin to freeze,

nucleated by their contained dust particles. Since some ice nucleators are better than others,

the droplets will not all freeze simultaneously. A frozen droplet will quickly accumulate water

vapour from the air, which stays supersaturated by virtue of the remaining unfrozen water

droplets. As the nascent snow crystal grows, faceting will often create a simple hexagonal

prism morphology. Diffusion limits the growth as the crystal becomes larger, and eventually

this causes branches to form. Because ice growth is so sensitive to the local environment, it

frequently happens that an abrupt motion of some kind will cause all six corners of a simple

plate-like crystal to sprout arms at the same time.
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As the crystal travels through the cloud, it experiences different temperatures and

humidities along the way, and thus the growth behaviour changes as a function of time. But

of course all six arms experience the same changing conditions as they grow. The result is

a rather complex growth pattern for each arm of the crystal, with all six arms developing

roughly the same pattern. Under ideal conditions—for which the growth must be unperturbed

by collisions with other ice or water particles—a snow crystal can grow into a rather elaborate,

six-fold symmetric shape, like those shown in figure 1. As this scenario is replayed countless

times, the bulk of the liquid water in a cloud is transformed into the solid state.

1.5. The physics of snow crystals

Many aspects of snow crystal growth are well understood at a quantitative level. For example,

we know the crystal structure of ice, the interactions between water molecules, the ice phase

diagram, and much of phase transitions in general. Other pieces of the snow crystal puzzle,

like diffusion-limited growth and the equilibrium structure of the ice surface, are fairly well

understood, at least in a qualitative sense. And then there are some rather basic aspects of this

phenomenon, like the snow crystal morphology diagram, that are not yet understood even at a

qualitative level.

This review will focus on two features of snow crystal growth—(1) the formation of

simple, faceted prism crystals as a function of temperature and supersaturation, which we

will use to examine the physics underlying the morphology diagram, and (2) the transition

to, and growth of, dendritic structures. In particular, we will examine the underlying physical

processes behind these phenomena, in quantitative terms as much as possible. We will call

upon what is known about the detailed physics of kinetics-limited crystal growth, pattern

formation in diffusion-limited solidification, and other areas, but only inasmuch as they apply

to ice crystal growth.

We will not concern ourselves with the meteorological side of snow crystals to any great

degree, nor will we cover the problem of ice nucleation in detail. The solidification of ice from

liquid water is a related problem, with its own literature (e.g. see [29] and references therein).

Here again we will only call upon this literature inasmuch as it is directly relevant to growth

from the vapour phase.

A number of previous authors have reviewed the subject of snow crystal growth from

a variety of perspectives [7–10, 30, 31]. Nakaya’s classic text [9] is still a fascinating

introduction to the phenomenology of snow crystals, which includes many details on the crystal

morphologies of both natural and synthetic varieties. The review by Kobayashi and Kuroda is

also an excellent introduction to the physics of snow crystals, although it has become somewhat

dated. A nonmathematical version of snowflake science, complete with a large collection of

snowflake photographs, is given in [19].

2. Prism growth from vapour—theory

Ice Ih, the normal form of ice, has a hexagonal crystal structure, so the basic ice crystal growth

form is the hexagonal prism shown in figure 4. Cubic ice, ice Ic, has nearly the same binding

energy as Ice Ih, and there is evidence that the cubic form plays a role in the nucleation of snow

crystals, especially twinned and polycrystalline forms [10, 32]. This role is relatively minor,

however, so we will mostly ignore cubic ice in this review. The other solid phases of ice all

appear at high pressures and/or low temperatures [33], so these too are beyond the scope of

this review.
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Figure 4. Left: Two views of the crystal structure of ice Ih, showing a lattice of ‘puckered’ hexagons.

Here balls represent oxygen atoms and bars represent hydrogen atoms. Middle: A schematic picture

of a simple ice prism, defining the principal crystal axes and facet planes. Right: A mosaic image

of some typical small ice prisms grown in the lab, showing different aspect ratios. The scale bar is

100 µm long.

Snow crystals often grow as simple hexagonal prisms, like many of those seen in figures 3

and 4, especially when the crystals are 10–100 µm in size. The overall morphology can be

either plate-like or columnar, depending on the relative growth rates of the basal and prism

facets. Figure 3 demonstrates that even simple hexagonal prism crystals clearly exhibit the

temperature dependence seen in the morphology diagram. Therefore, the first step towards

understanding snow crystal formation will be to understand the growth dynamics of simple

ice prisms.

2.1. Basic terminology

For an ice crystal growing from water vapour, we can write the growth velocity normal to the

surface in terms of the Hertz–Knudsen formula [34]

vn = α
csat

csolid

√

kT

2πm
σsurf

= αvkinσsurf , (1)

where the latter defines the velocity vkin. In this expression kT is Boltzmann’s constant times

temperature, m is the mass of a water molecule, csolid = ρice/m is the number density for ice,

σsurf = (csurf −csat)/csat is the supersaturation just above the growing surface, csurf is the water

vapour number density at the surface, and csat(T ) is the equilibrium number density above a

flat ice surface. The parameter α is known as the condensation coefficient, and it embodies

the surface physics that governs how water molecules are incorporated into the ice lattice,

collectively known as the attachment kinetics. The attachment kinetics can be nontrivial, so

in general α will depend on T , σsurf , the surface structure and geometry, surface chemistry,

etc. If molecules striking the surface are instantly incorporated into it, then α = 1; otherwise

we must have α � 1. The appearance of crystal facets indicates that the growth is limited

by attachment kinetics, so we must have α < 1 on faceted surfaces. For a molecularly rough

surface, or for a liquid surface, we expect α ≈ 1 [35].

One should note that the parameterization in terms of α assumes that the attachment

kinetics can be described as an intrinsically local process, which may not always be a valid

assumption. For the ideal case of an infinite, defect-free surface this parameterization must

be valid, since in this limit it is little more than a mathematical definition. Nonlocal effects,

however, such as transport between facets, could make the parameterization invalid in some

circumstances. For example, surface diffusion is lumped into α, which effectively implies that
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the diffusion distance of adsorbed molecules on the ice surface (before they are incorporated

into the lattice) is much smaller than a characteristic crystal size. On a thin, plate-like snow

crystal, however, it is not impossible that surface diffusion carries adsorbed water molecules

from the basal facets to the prism facets, thereby enhancing growth of the prism facets, to the

point that equation (1) would yield αprism > 1. If this happens, then the parameterization in

terms of α is invalid and surface diffusion must be specifically included in the overall problem if

one is to understand the growth dynamics. The Schwoebel–Ehrlich effect provides a potential

barrier that inhibits surface diffusion around corners [34,36], and there is experimental evidence

that supports α < 1 for snow crystal growth (see below). Therefore the assumption of purely

local attachment kinetics, parameterized by the condensation coefficient, will pervade our

subsequent discussion.

We note at this point that the equilibrium crystal shape—that which minimizes the total

surface energy—plays only a minor role when considering the growth of snow crystals. To

see why this is, consider the evolution of an isolated crystal spheroid and assume α ≈ 1. The

equilibrium vapour pressure at each point on the surface will depend on surface curvature owing

to the Gibbs–Thomson effect [34], so c(R) = csat(1 + 2δ/R), where δ = γ /csolidkT ≈ 1 nm,

γ is the ice surface energy, and R is the local radius of curvature of the surface. The timescale

for a spheroid to revert to a sphere is then roughly τequil ≈ R2/vkinδ ≈ 200 · [R/(10 µm)]2

seconds near the melting point. We see that this time is quite long for all but the smallest crystals.

Under most snow crystal growth conditions the timescale for reaching the equilibrium shape

is much longer than the timescale for growth. Thus the surface energy term usually plays a

negligible role in determining the aspect ratios of simple prisms.

To my knowledge the equilibrium shapes of isolated ice crystals have never been

definitively observed. As a result, �γ = γbasal − γprism has not been measured, although

one expects on theoretical grounds that �γ/γ � 0.01 [10]. Thus the equilibrium shape would

be nearly spherical with only slight faceting [37]. Faceted areas generally become larger

during growth and smaller during sublimation. Thus even small crystals growing sufficiently

fast become essentially completely faceted, like those shown in figure 4 [37, 38].

Note that ice crystal growth from the vapour is almost always in a regime where

σsurf ≪ csat. This is in contrast to thin-film deposition, where often csat is so small as to

be negligible. Thus vkin can be thought of as a ‘refresh rate’ for the surface—the rate at which

the surface is simultaneously evaporating and regrowing. The velocity vn represents the net

growth that occurs. Since vn ≪ vkin, an ice facet cannot be thought of as a static crystal

plane, like something that might be slowly imaged by a scanning probe microscope. Rather

the surface is a very dynamical place, where molecules in the solid phase are being very rapidly

exchanged with those from the surrounding vapour.

2.2. Diffusion-limited growth

Snow crystal growth dynamics is typically dominated by attachment kinetics in combination

with two transport effects: particle diffusion, which carries water molecules to the growing

crystal, and heat diffusion, which removes latent heat generated by solidification. The

interplay of these three processes is ultimately responsible for the vast diversity of snow crystal

morphologies, so the task at hand is to understand how they each affect crystal growth. The

transport effects—particle and heat diffusion—are well understood at a fundamental level, so

in principle we can compute how they limit crystal growth. In practice, of course, this may be

difficult owing to the complex geometry of the solidification front.

Attachment kinetics, by contrast, is very much not yet understood in detail, and numerous

experiments on ice crystal growth have been aimed at exploring the molecular dynamics that
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occurs at a growing ice surface. For these experiments it is necessary to disentangle the different

mechanisms limiting crystal growth, to model particle and heat diffusion at a sufficient level

that the attachment kinetics can be extracted with confidence. Thus before going further we

must understand particle and heat diffusion as they apply to ice crystal growth.

Particle transport is described by the diffusion equation

∂c

∂t
= D∇2c, (2)

where c(x) is the water molecule number density surrounding the crystal and D is the diffusion

constant. The timescale for diffusion to adjust the vapour concentration in the vicinity of a

crystal is τdiffusion ≈ R2/D, where R is a characteristic crystal size. This is to be compared with

the growth time, τgrowth ≈ 2R/vn, where vn is the growth velocity of the solidification front

normal to the surface. The ratio of these two timescales is the Peclet number, p = Rvn/2D.

For typical growth rates of snow crystals we find p � 10−5, which means that diffusion

adjusts the particle density around the crystal much faster than the crystal shape changes. In

this case the diffusion equation reduces to Laplace’s equation, ∇2c = 0, which must be solved

with the appropriate boundary conditions. Using this slow-growth limit simplifies the problem

considerably in comparison to much of the literature on diffusion-limited solidification.

The continuity equation at the interface gives

vn =
D

csolid

(n̂ · �∇c)surf =
csatD

csolid

(n̂ · �∇σ)surf , (3)

where σ(x) = [c(x) − csat]/csat and we are assuming the isothermal case to begin, so csat is

independent of spatial position.

Before attempting to solve the diffusion equation for complex crystal geometries, it is

instructive to first consider the growth of a fictitious ‘faceted’ spherical crystal, where the

equations reduce to one dimension and can be solved analytically. In this approximation we

treat the growing spherical surface as if it had the same attachment kinetics as a flat faceted

surface, with some arbitrary α that is constant around the sphere. This one-dimensional

treatment contains much of the physics found with simple prism geometries, but of course it

is much easier to solve and to visualize. We consider this problem in three limiting cases of

increasing difficulty.

2.2.1. Case I—finite kinetics (α � 1) without heating. In the absence of heating we can

assume a constant temperature, independent of position, and a straightforward solution of the

diffusion equation yields the growth velocity [39]

vn =
ααdiff

α + αdiff

vkinσ∞

=
α

α + αdiff

csatDσ∞

csolidR
, (4)

where

αdiff =
csatD

csolidvkinR
=

D

R

√

2πm

kT
, (5)

vkin was defined in equation (1), σ∞ is the supersaturation far from the growing crystal, and

R is the sphere radius.

In the limit αdiff ≪ α the growth velocity becomes vn = csatDσ∞/csolidR, which describes

purely diffusion-limited growth in which attachment kinetics can be neglected. In the opposite
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limit we have vn = αvkinσ∞, which is valid for purely kinetics-limited growth unhindered by

particle transport. For the specific case of ice growing at T = −15˚C in air we have

αdiff(−15˚C) ≈ 0.15

(

1 µm

R

) (

D

Dair

)

, (6)

where Dair ≈ 2 × 10−5 m2 s−1 is the diffusion constant for water vapour in air at a pressure

of 1 atm.

By writing the growth velocity in this form it becomes apparent that one cannot easily use

measurements of the growth velocity vn to determine α if αdiff � α. In this case the growth

is mostly diffusion limited, and an examination of equation (4) reveals that small errors in the

determination of vn can result in large errors in the derived α. To measure α using crystal

growth measurements we must either use very small crystals or reduce the background gas

pressure (since typically D ∼ P −1, where P is the background pressure).

2.2.2. Case II—diffusion-limited growth (αdiff ≪ α) with heating. In this case we must solve

the double diffusion problem, considering both particle diffusion to the growing crystal and

thermal diffusion to remove latent heat generated at the interface. The spherical case can again

be solved exactly in the slow-growth limit [39], yielding

vn =
D

R

csat

csolid

σ∞

1 + χ0

, (7)

where we use the convention that csat = csat(T∞). In this expression we have defined

χ0 =
ηDλρice

κ

csat

csolid

, (8)

where λ = 2.8×106 J kg−1 is the latent heat for the vapour/solid transition, ρice = 917 kg m−3

is the solid density, κ is the thermal conductivity of the solvent gas (κ ≈ 0.025 W m−1 K−1 for

air), and η = d log(csat)/dT . Typical values for these parameters are

T (˚C) csat/csolid vkin (µm s−1) η χ0

−40 0.13 × 10−6 17 0.11 0.03

−30 0.37 × 10−6 49 0.10 0.08

−20 0.96 × 10−6 131 0.092 0.18

−15 1.51 × 10−6 208 0.088 0.27

−10 2.33 × 10−6 324 0.085 0.41

−5 3.54 × 10−6 496 0.082 0.59

−2 4.51 × 10−6 635 0.080 0.74

−1 4.88 × 10−6 689 0.079 0.79

where χ0 was evaluated in air at a pressure of 1 atm. We see that the main effect of heating

on diffusion-limited growth is to scale the growth by a factor of (1 + χ0)
−1. In near-vacuum

conditions the diffusion constant is large, so that χ0 ≫ 1 and the growth velocity becomes

limited mainly by heating. In this limit we have

vn ≈
κ

λρη

σ∞

R

≈ (110 µm s−1)

(

1 µm

R

)

σ∞, (9)

where the latter is evaluated at T = −15˚C.
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2.2.3. Case III—finite kinetics, with heating. For the most general case, with finite kinetics

in addition to heating, the analysis is similar to the above and the final result is [39]

vn ≈
α

α(1 + χ0) + αdiff

csatDσ∞

csolidR
. (10)

This can be rewritten as

vn ≈
α∗

α∗ + αdiff

csatDσ ∗
∞

csolidR
, (11)

where α∗ = α(1 + χ0) and σ ∗
∞ = σ∞/(1 + χ0), and we note the similarity to the solution in

Case I. Again the main effect of heating is to scale the growth by the factor (1 + χ0)
−1.

If the diffusion constant is large, this becomes

vn ≈
ααcond

α + αcond

vkinσ∞, (12)

where

αcond =
κ

ηRλρvkin

≈ 0.5

(

1 µm

R

)

, (13)

where the latter expression is again evaluated at T = −15˚C. We note here that κ is roughly

independent of background pressure down to fairly low pressures.

2.2.4. Substrate simulation. We can also use the spherical solution to examine growth on

a substrate if we assume a hemispherical crystal with the flat surface held at the substrate

temperature Tsubstrate [39]. This gives

v ≈
α

α(1 + χ ′
0) + αdiff

csatDσ0

csolidR
, (14)

where

χ ′
0 =

2ηDλρ

Gκice

csat

csolid

(15)

and G ≈ 1 is a geometrical factor. In the case of fast diffusion this becomes

v =
αα′

cond

α + α′
cond

vkinσ0 (16)

with

α′
cond =

Gκice

2ηRλρvkin

. (17)

At T = −15˚C this becomes

α′
cond ≈ 25G

(

1 µm

R

)

. (18)

Since κice/κair ≈ 100, the presence of a substrate reduces the temperature increase of the

growing crystal by a factor of ∼100 when compared to free growth in air.
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2.2.5. Relation to experiments. The analytic results obtained above for a growing sphere are

useful for gauging the relative importance of diffusion and attachment kinetics, and are

especially useful when designing or interpreting experiments aimed at measuring α from

the growth of simple prisms. For example, if one wants to measure α for crystals growing

in a background gas, then it is necessary to achieve a condition where α < αdiff . Diffusion

modelling will not help much if this inequality is not met, because small systematic errors in

the measured vn will invariably amplify into large errors in the inferred α. Similarly, crystal

growth on a substrate must be done under conditions where α < α′
cond, since otherwise thermal

diffusion will distort the results. As we will see below, these are not trivial considerations and

many ice growth experiments have produced unreliable data because of systematic effects of

this nature. Modern ice growth experiments are just beginning to address and eliminate these

systematic errors, and are thus just beginning to produce data of sufficient accuracy to shed

light on the microphysics that underlies the snow crystal morphology diagram.

2.3. Diffusion modelling of prism growth

For real ice crystals, which are almost certainly nonspherical, one must employ more

sophisticated techniques to model diffusion-limited growth. For the case of simple hexagonal

prisms, for which vn is constant across a facet, a numerical solution of the diffusion equation

is quite tractable using commercial codes. While it is possible to solve the three-dimensional

Laplace equation around a hexagonal prism [40], there is much to be gained by looking first

at a two-dimensional cylindrical approximation, which is much simpler to solve and easier to

visualize. In this approximation the hexagonal prism is replaced by a solid cylinder, where the

six prism facets are approximated as one fictitious curved ‘facet’ that is capped by two circular

basal facets. This approximation is more than adequate for comparing with experiments

measuring the growth of snow crystal prisms, in part because the growth data to date have not

been very precise.

For many cases of simple prism growth, the double problem of heat and particle diffusion

reduces to primarily a particle diffusion problem only, as seen in the discussion of equation (11).

The thermal conductivity of ice is high enough, and the heating rate from solidification is low

enough, that heating tends to raise the crystal temperature uniformly. This affects the growth

by effectively changing csat, which can be modelled as simply a change in σ∞, even when the

crystal geometry is nontrivial. A reasonable estimate of the crystal temperature rise can often

be obtained from a spherical analysis, with the total rate of mass increase as input. This rough

estimation of heating may not be sufficient for all circumstances, especially crystal growth

at low background pressures [41]. But in many practical circumstances the double diffusion

problem reduces in essence to particle diffusion only.

For the particle diffusion problem one must solve Laplace’s equation in the space

surrounding the crystal, and there are several ways to specify the boundary conditions at

the crystal surface. The first choice is to specify the surface supersaturation σsurf over the

entire crystal. If α ≈ 1 and vn ≪ vkin, then equation (1) suggests that σsurf ≈ 0 is a reasonable

approximation for the surface condition. For most ice prisms, however, α ≪ 1 on the facets

and σsurf ≈ 0 is not a good approximation. In such cases one does not know σsurf on the

surface, so a different choice of boundary conditions is necessary.

The second possibility is to specify α ∼ σ−1∇nσ over the entire crystal surface. This is

often impractical for crystal prisms because α varies considerably over a facet surface, as we

shall see. The third choice for boundary conditions is to specify the growth velocity vn ∼ ∇nσ

at the surface. This choice is especially useful for comparing with experiments on prism growth,

since vn is a measured quantity. Furthermore, as long as the crystal growth morphology remains
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that of a simple hexagonal prism, then we must have that vn = constant over an entire facet.

Thus specifying vn is often the most practical choice of boundary conditions at the ice surface.

The boundary condition far from the crystal is nearly always to specify σ∞.

Commercial diffusion codes are typically adapted for heat diffusion, but they can be used

for solving the particle diffusion problem as well. In this application one uses the temperature

field T (x) as a surrogate for the supersaturation σ(x), and one can easily work out the proper

conversion factors for the specific code. In a heat diffusion code the above choices for boundary

conditions are called normal boundary conditions, convective boundary conditions and heat

flux boundary conditions, respectively, and again working out the proper conversion factors is

a straightforward exercise.

We examine the full problem of modelling diffusion-limited growth in more detail below,

including pattern formation, but make a few passing comments here. First, Green’s function

methods can be used to convert a two-dimensional cylindrical problem to one-dimensional,

which then allows simpler numerical solution [42, 43]. These techniques can be useful for

generating code tailored to a specific modelling problem, for which commercial codes may

not be practical. Second, it is possible in principle to model the growth of an ice crystal as a

function of time by front-tracking methods: computing vn around the crystal, advancing the

interface for a small time-step, recalculating vn, etc [44]. This turns out to be an exceedingly

tricky task in practice, even for simple faceted crystals, because the attachment kinetics are

such a strong function of surface orientation relative to the crystal axes. The movement of

small steps on the surface is especially problematic in this regard, and to date the results have

not been very satisfying. Third, these simple diffusion calculations do not include ventilation

effects, which describe the enhanced growth of snow crystals in the presence of a moving

airstream [23]. Such effects are typically negligible for small prisms with sizes less than

100 µm, but may be important when the structures are larger.

2.4. Facet growth with diffusion

Having examined the basic tools for two-dimensional diffusion modelling, it is instructive to

consider some simple cases of prism growth, especially with different aspect ratios. Figure 5

shows some characteristic calculations obtained using a commercial diffusion code [45] for

growing ice prisms. Here we used velocity boundary conditions because the prism morphology

does not change appreciably during growth and vn is constant over a facet, as mentioned above.

One immediately sees in figure 5 that σsurf varies considerably over the ice surface, and that

there are three distinct cases of prism growth.

The first case is for roughly isometric crystals, where the growth rates of the basal and

prism facets are comparable. The solution of the diffusion equation immediately implies that

σsurf is a maximum at the edges of the facets, as seen in figure 5. Since vn is constant over

a facet, equation (1) requires that ασsurf must be constant as well, meaning α is largest at the

centres of the facets. This in turn implies the facets cannot be completely flat at the molecular

level, and are instead concave to some degree. The concave structure of each facet is such

that the step density, and thus α, is highest at the facet centre. Steps are then likely generated

from two-dimensional nucleation at the facet edges, and the steps propagate inward as the

crystal grows. For larger crystals, diffusion brings about larger variations in σsurf across a

facet. Eventually this leads to the branching instability described below.

The second case is that of thin plate crystals, which is the second example shown in figure 5.

Here the growth is such that σsurf is largest at the centres of the basal facets, so α is smallest

there. Thus the basal facets are convex at the molecular scale, and basal steps are generated

at the facet centres and propagate outward. Note this result follows simply from a solution of
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Figure 5. Left two panels: diffusion calculations around two growing ice prisms, to demonstrate

concave and convex growth. The first (leftmost) panel shows the cross-section of a growing thick

plate with diameter/thickness ratio D/T = 2. The calculation assumed axial symmetry, so the

top and bottom surfaces are the basal facets, and the left edge represents the prism facet. Velocity

boundary conditions were used, with vprism/vbasal = 2. The contours show lines of constant

supersaturation in the air around the crystal. Here we see σsurf is highest at the corners of the

crystal, indicating that the faces are all concave and that α is highest at the centres of both facets. In

this case, growth steps originate at the edges of the facets and propagate inward. The second panel

shows a similar calculation with D/T = 20 and vprism/vbasal = 40. This time σsurf is highest at

the centres of the basal facets, indicating that these facets are convex. Thus growth steps originate

at the centre of a basal surface and propagate toward the edges. This behaviour must be present

for the growth of thin snow crystal plates in air at T = −15˚C (rightmost panel above; scale bar

50 µm) [27].

the diffusion equation in the space surrounding the crystal, with the facet growth velocities as

inputs. The dividing line between the convex and concave cases for plate-like prism crystals

occurs at diameter/thickness ratios of roughly D/T ≈ 10, depending on assumptions about the

crystal geometry. Both these cases are commonly seen in the growth of natural and synthetic

snow crystals.

The third case, not shown in figure 5, is that of thin columnar growth with D/T ≪ 1. In

this case the prism facets will become convex, which again follows directly from a solution

of the diffusion equation. It appears this case does not readily occur in natural snow crystals

because branching tends to happen before convex prism facets develop. However, the tips of

c-axis electric needle crystals (see below) probably do exhibit convex prism surfaces.

2.5. Attachment kinetics

The above treatments of particle and heat diffusion are typically sufficient for analysing the

growth of hexagonal ice prisms to an adequate precision, since the prism geometry is relatively

simple. What remains is to examine the condensation coefficient α in detail. Much has been

written about the molecular dynamics behind attachment kinetics, and here we only briefly

mention the basics that likely apply to snow crystal growth.

The simplest case is that of a molecularly rough crystal surface, which has the highest

possible density of kink sites [34]. On such a surface the admolecules are indistinguishable

from surface molecules, which often means α ≈ 1. There is little hard experimental evidence

to support the notion that α ≈ 1 on a rough ice surface, but much effort has gone into measuring

α for liquid water surfaces. Many early experiments suggested α < 1 for water, but subsequent

work showed that evaporative cooling was highly significant in those experiments, making the
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early results unreliable. There is a rough consensus now that α ≈ 1 for a liquid water surface,

although this is not universally accepted [46]. We will usually assume α ≈ 1 for a molecularly

rough ice surface.

2.5.1. Nucleation-limited growth. The next simplest case to consider is that of a molecularly

flat facet surface, or terrace [34]. Steps and kinks are not present on a perfectly flat surface, and

in the absence of suitable attachment sites admolecules tend to evaporate off before becoming

incorporated into the surface. Growth then only occurs at an appreciable rate when the

admolecule density is sufficiently high that two-dimensional islands can nucleate on the surface.

Once an island forms, it grows because its edges provide steps and kinks for incorporating new

admolecules. The resulting growth rate vn depends on the nucleation rate as well as the island

growth rate. If the former is very low, then each island grows out completely before the next

forms, resulting in layer-by-layer growth. This regime appears to be of little relevance for

snow crystal growth.

For higher nucleation rates, there may be many growing islands on a surface at once, and

islands growing on top of other islands. This situation has been analyzed in numerous ‘birth-

and-spread’ models [35,47], giving results that depend in detail on numerous assumptions made

in the models. Birth-and-spread models typically yield growth rates that are parametrized [34]

α(T , σsurf) ≈ A(T , σsurf) exp

(

−
σcrit

σsurf

)

, (19)

where σcrit is called the critical supersaturation, given by

σcrit =
πβ2�2

3(kT )2
, (20)

where β is the edge free energy for a growth island that is one molecular layer thick and �2 is

the area taken by a molecule on the surface. A is a complicated parameter that derives mainly

from the mean step velocity, which in turn depends on the mean surface diffusion distance, the

admolecule residence time, and other factors. In general, A depends weakly on supersaturation,

and for comparison with current experiments we can approximate A(T , σsurf) ≈ A(T ). As we

will see below, experiments show that the formation of faceted ice prisms is often dominated

by nucleation-limited growth.

2.5.2. Growth mediated by dislocations and other step sources. Anything that provides a

source of molecular steps can influence the growth of a faceted surface. Examples include

impurities that reside on the surface, the intersection of a facet surface with a foreign object, or

crystal imperfections. Screw dislocations are an especially important source, since these can

provide a continuous train of steps that propagate across the surface [34]. When σsurf ≪ σcrit,

island nucleation is rare and the resulting growth is typically dominated by the influence of

dislocations and other step sources. For the case of screw dislocations, the resulting growth

rates go as vn ∼ σ 2
surf , or equivalently α ∼ σsurf . This mechanism is often important in the

growth of ice prisms at low supersaturations.

2.6. Surface structure and crystal growth

Attachment kinetics ultimately derives from the molecular dynamics present at a crystal

surface, and the dynamics is intimately coupled to the molecular structure of the surface.

In the case of ice, numerous studies have found that the surface structure is both complex

and quite temperature dependent near the melting point. It is further generally accepted that
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changes in surface structure must somehow be responsible for the dramatic changes in snow

crystal growth with temperature. One thing that makes snow crystal physics so intriguing is

that we do not yet understand the ice surface structure very well, nor its impact on growth, and

thus we still cannot explain the snow crystal morphology diagram.

Crystalline surfaces frequently do not have the same molecular structure as in the bulk

crystal. Instead, various forms of surface reconstruction take place to lower the surface energy.

Near the bulk melting point an ice surface is a rather dynamic place, as evidenced by a high

vapour pressure (and large vkin). Thus scanning probe microscopy cannot image the surface

structure directly and we must rely on more indirect surface probes to gather information. In

many ways, measurements of ice crystal growth rates are an excellent surface probe, because

α is so sensitive to surface structure. To use this probe, however, we must understand the

complete problem—how the ice surface changes with temperature and other parameters, and

how these changes are reflected in the attachment kinetics.

2.6.1. Surface roughening. For a crystal at finite temperature, there are two contributions

to the surface free energy, F = E − T S. The first is the binding energy, which favours a

smooth surface with the least number of dangling bonds, and the second is the surface entropy,

which favours a rougher surface with the greatest number of possible configurations. At low

temperatures the binding energy wins and the equilibrium structure is close to a flat, faceted

surface. Near the melting point, however, it becomes favourable for the surface to contain a

greater number of molecular edges and kinks [34]. Depending on the details of the molecular

structure of the crystal, there may exist a roughening temperature TR, above which the surface

becomes completely rough.

Much has been written about the roughening transition, in part because of its mathematical

simplicity [34,48,49], and also because surface roughening is observed in many real crystals.

Without measuring the surface structure directly (which is difficult for a high vapour pressure

material like ice), there are two indirect observations that are likely indicators of surface

roughening: (1) above TR the attachment kinetics are described by α ≈ 1, and (2) the growth

form is nonfaceted even at low supersaturations. The evidence for surface roughening in ice

will be discussed in the experimental section below.

Sometimes a faceted surface will exhibit a relatively sharp transition from α < 1 to α ≈ 1

as σ is increased, even if it is not above its equilibrium roughening temperature. This may be an

indication of kinetic roughening, in which surface roughening is induced by rapid growth [50].

Kinetic roughening is not a well-defined thermodynamic phase transition, and it occurs when

island formation on the surface is relatively easy. As with static surface roughening, kinetic

roughening precludes the formation of crystal facets. This phenomenon has not been studied

much in ice crystal growth, but it may be important for the formation of ice dendrites, which

occurs at high supersaturations.

2.6.2. Surface melting. In a sense, surface melting is a more developed form of surface

roughening. The molecules near the free surface of a solid are not as tightly bound as

molecules in the bulk, and for many materials a thin, quasi-liquid layer forms on the solid

surface at temperatures slightly below the bulk melting point Tm. The width of the melted

layer diverges as the temperature approaches Tm, thus making it impossible to superheat the

solid phase above the bulk melting point. This phenomenon is called surface melting, and

there is ample evidence that ice exhibits surface melting at temperature above roughly −15˚C

(for a summary of data pertaining to ice, see [33, 51]; for a general review of surface melting,

see [52]).
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One can estimate the temperature-dependent thickness of the quasi-liquid layer in a

physically intuitive way using the Lindemann criterion, which states that a solid will melt

if the thermal fluctuations of the intermolecular distance become larger than approximately

10–15% of the average distance [53]. This century-old empirical melting criterion works

reasonably well for a wide range of bulk materials [54], and it has been directly verified both

experimentally [55] and in molecular dynamics simulations [56]. If we assume a simple model

in which a molecule is held in a harmonic potential, then intermolecular fluctuations have an

amplitude of approximately

x =

(

kT

κ

)1/2

,

where κ is an effective spring constant. Near the solid surface the molecular binding is weaker

than in the bulk, so we write

κ(d) = κ0 − f (d)�κ,

where d is the distance from the surface, �κ is a constant, and f (d) is a function with f (0) = 1

and f (∞) = 0. The potential is weaker at the surface, so �κ > 0. However, the potential

comes mainly from nearest-neighbour interactions, so we expect �κ ≪ κ0.

The Lindemann criterion states that the bulk will melt when x reaches some value

x0 = (kTm/κ0)
1/2. Extending this, we expect the onset of surface melting will occur down to

a depth d at which

x(d) =

(

kT

κ0 − f (d)�κ

)1/2

= x0.

Expanding for small �κ/κ0 and for small t = (Tm − T )/Tm, where Tm is the bulk melting

temperature, this reduces to simply

t =
f (d)�κ

κ0

.

It is customary in the case of ice to assume f (d) = exp(−d/λ), where λ is a scaling length for

the intermolecular interactions, and with this the thickness of the quasi-liquid layer becomes

d(T ) = λ log

(

�κ

tκ0

)

,

which is valid for small t .

It is instructive to compare this derivation with the more customary one based on surface

energies [52, 57, 58]. For the latter we assume the surface structure divides into a bulk solid

covered with a well-defined quasi-liquid layer of thickness d. We write the surface energy as

γ (d) = γSL + γLV + f (d)(γSV − γSL − γLV)

= γSL + γLV + f (d)�γ,

where f (d) is as above, γSL is the energy of a solid–liquid interface, γLV is the energy of a

liquid–vapour interface, and γSV is the energy of a fictitious ‘dry’ solid–vapour interface, for

which there is no surface melting. The quantity γSV is in fact unmeasurable in the presence of

surface melting, since then one cannot make a stable solid–vapour interface. If surface melting

occurs, then γSV must be greater than γSL + γLV, so �γ is positive.

The free energy per unit area of such a surface, as a function of layer thickness, is given by

F(d) = qmρtd + γ (d),
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where qm is the latent heat of solidification per unit mass, ρ is the water density, and again

t = (Tm − T )/Tm. The first term in this expression reflects the free energy cost of melting the

quasi-liquid layer below Tm.

Minimizing the free energy as a function of d yields

f ′ = −
qmρt

�γ

and for f (d) = exp(−d/λ) we obtain

d(T ) = λ log

(

�γ

qmρtλ

)

.

Although the two derivations are quite different, and use different input parameters, both

give the same functional form for d(T ). Both are mainly useful at a qualitative level, since

the input parameters �κ , �γ , λ and f (d) cannot yet be calculated or directly measured at an

interesting level.

Many materials, although not all, exhibit surface melting to some degree near the melting

point. The first speculations on the subject were made by Faraday in connection with some

peculiar properties of ice, and many experiments have observed the effects of surface melting

in ice [33]. The measurements generally indicate that d(T ) follows the logarithmic relation

described above. There is, however, great disparity between the different measurements,

probably because most experiments do not measure d(T ) absolutely. Rather they measure

some quantity proportional to d(T ), with a poorly known proportionality constant (see [59,60]

and references therein for a review of recent measurements). Molecular dynamics simulations

are making progress toward understanding the surface structure of ice, including surface

melting [61–63], although reliable quantitative results are elusive. There also exists the

possibility of kinetic surface melting, in an analogous sense to kinetic roughening, but to

my knowledge this possibility has not been explored to any substantial degree.

Surface melting has a profound effect on the surface structure of ice, and attachment

kinetics undoubtedly depends on surface structure. Thus we expect that surface melting must

play an important role in the growth of snow crystals. Two additional facts support this:

(1) surface melting is known to depend strongly on temperature over just the range where

snow crystal growth shows a great deal of variation with temperature, and (2) different facets

of the same solid sometimes exhibit the effects of surface melting differently. Thus it may well

be that much of the temperature variation seen in the morphology diagram is a manifestation

of surface melting in ice.

Unfortunately, at present we do not know, even qualitatively, how surface melting in

general affects the attachment kinetics governing crystal growth [64]. The Lacmann–Stranski–

Kuroda model [57, 65] (for a summary, see [10] and references therein) is perhaps the most

ambitious attempt to model crystal growth in the presence of surface melting, aimed specifically

at understanding the snow crystal morphology diagram. The model is quite speculative,

however, and we will see below that its main results do not agree with measurements of

ice growth.

2.7. Chemically enhanced growth

The reader should come away from the above discussion with an indication that the surface

structure of pure ice, even in equilibrium, is quite complex near the melting point and remains

only poorly understood. This makes it especially difficult to understand the crystal growth

of ice, since crystal growth is a dynamical phenomenon that likely depends strongly on the

details of surface structure. As a result, our basic picture of ice crystal growth remains murky,
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and we do not yet have even a qualitative understanding of the underlying physics behind the

snow crystal morphology diagram.

The whole story becomes vastly richer, however, when we consider how surface chemistry

can affect the crystal growth process. There is much evidence that dilute chemical vapours in

air can dramatically change the growth of ice crystals from water vapour [22,30]. A wide range

of chemical impurities, such as vapours from many alcohols, acids, hydrocarbons, etc, even at

low concentrations, affect both ice crystal morphologies and growth rates. This is one example

of surfactant-mediated crystal growth, a topic that is being studied with increasing interest by

the semiconductor community [66, 67]. In the case of ice, very little has been quantified on

this subject, and one can only speculate about how chemical catalysis affects the attachment

kinetics behind ice crystal growth. To a large degree, the influence of surface chemistry on

snow crystal growth remains a wide-open problem.

3. Prism growth from vapour—observations

Crystal growth theory is not sophisticated enough that one can calculate the formation of

most real crystals from first principles, since the surface dynamics involved in growth can

be quite complex. In general, there exists a large gap between crystal growth theory and

the phenomenology of growing real crystals. This is especially true with a material like ice,

for which even the equilibrium surface structure is not well known. Experiments, therefore,

are very much needed to establish a self-consistent phenomenological picture of the growth

process, which can then be used to guide further theoretical development.

In the case of ice, the simplest experiments are those involving the growth of hexagonal

prisms, for which structural considerations are the least complex. If we assume the growth

of an ice surface can be parameterized by the condensation coefficient α, then a clear

goal of experiments is to determine α(T , σsurf) over as large a range of temperatures and

supersaturations as possible. A substantial number of experiments have measured the growth

of simple ice prisms with this goal in mind.

3.1. Experimental techniques

The first step in growing ice crystals is to produce a supersaturated environment, which can

be done via several methods. One popular technique is to grow crystals on a substrate at

some temperature T1 while providing water vapour from a nearby ice reservoir at a higher

temperature T2. This method works especially well under near-vacuum conditions, and the

supersaturation can be easily adjusted by changing T2. One can also produce an isothermal

supersaturated environment by providing a reservoir filled with a liquid salt solution, and then

the supersaturation is varied by changing the salt concentration [68].

Another popular approach for providing an isothermal supersaturated environment is via

a fog of supercooled liquid water droplets. Once such an artificial cloud has settled down, the

supersaturation will be roughly equal to the water saturation value, σwater = (cwater −cice)/cice.

One could then vary σ by using a fog of salty water droplets, but to my knowledge this

approach has never been used. Clouds are most useful when experiments are done in air or

other background gases at pressures near one atmosphere, although they have been used at

higher pressures as well [69].

Vertical diffusion chambers [8,21,30,70,71] are able to produce environments in which the

supersaturation is quite high, easily up to σ ≈ 1 or higher. The vertical temperature gradients

in these chambers are also useful when investigating growth at different temperatures. Here

again, diffusion chambers are mostly used in air or other background gases at pressures near
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one atmosphere, since the water vapour fluxes at significantly lower pressures would be quite

large.

Once a supersaturated environment has been made, it is then necessary to nucleate some

ice crystals. Ice will readily nucleate on most substrates, but only if the supersaturation is above

some critical value that depends on the substrate composition [72]. In some circumstances it

is useful to introduce a brief pulse of water vapour to nucleate crystals on a substrate. The

nucleated crystals then quickly consume the excess water vapour in the pulse, leaving small

crystals to grow at lower supersaturations [73].

Some additional popular methods to nucleate ice crystals are: (1) introducing a small

quantity of silver iodide smoke, since the smoke particles serve as good nucleation sites,

(2) rapidly expanding a small quantity of saturated gas to bring about homogeneous nucleation

[74], and (3) dropping a particle of dry ice into a growth chamber, which again induces

homogeneous nucleation in the cold wake of the particle. These techniques are often used to

produce free-falling crystals in an air-filled cold chamber.

Ice will grow epitaxially on the mineral covellite (CuS) [75], on silver iodide crystals

[71,72,75], and on mica [76], to name a few. In some instances the nucleation on silver iodide

is optically deactivated [77]. For all these minerals, ice crystals grow with a basal plane in

contact with the substrate, and interference effects can be employed to determine the crystal

thickness [78]. To my knowledge, the controlled epitaxial growth of ice crystals with other

crystal orientations has not been realized.

Some new experimental developments include the observation of levitated single ice

crystals, both in a moving air column [79] and via electrodynamic levitation [80]. The obvious

advantage of such techniques is that one can monitor the growth of a single, isolated crystal as

a function of time. Determining σ accurately is still a difficult problem with these experiments,

however.

Negative crystals (vapour inclusions) can also be used in ice evaporation studies, which

are related to growth studies. But in experiments with negative crystals it is especially difficult

to accurately determine the subsaturation at the crystal surface, which hinders quantitative

experiments [81, 82].

3.1.1. Systematic errors in ice crystal growth measurements. At least one thing has become

abundantly clear over several decades of ice crystal growth experiments—there are a great many

troublesome systematic effects that can influence ice crystal growth and thwart one’s attempts

to make quantitative measurements under well-controlled conditions. If the experimenter is

not exceedingly careful, a measurement may be dominated by systematic effects. Thus it is

worthwhile to examine these various problems in detail, so that one can avoid them in future

experiments. The list here is a summary; a more detailed account of systematic problems

present in published experiments can be found in [83].

Vapour diffusion. Unless an ice crystal growth experiment is done under pure water vapour

conditions—that is, in the complete absence of any background gas—one must worry about

vapour diffusion effects. Diffusion reduces σsurf relative to σ∞ and thus limits crystal growth.

Equation (4) above shows that it is nearly impossible to make an accurate measurement of α

when αdiff < α. Of course one can, and should, model the effects of diffusion to determine

σsurf for growing crystals, but this can only be done with limited precision. If αdiff is small, then

even modest systematic errors in a crystal growth measurement will be amplified into large

systematic errors in the determination of α. The very best quantitative ice crystal growth exper-

iments done to date are only absolutely accurate to about a factor of two in the measured growth

velocity, with crystal-to-crystal variations that are again roughly a factor of two. This means one
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cannot make a meaningful measurement of α unless αdiff � α. This is an important point, since

nearly all the early ice growth experiments, particularly those done in air, did not adequately

disentangle diffusion effects from the growth data, and thus produced unreliable results [83].

Neighbouring crystals. Systematic errors from diffusion can be present even when αdiff > α, if

the crystal under observation is surrounded by neighbouring crystals. A notable example is the

case where one is observing the slow growth of a faceted crystal when it is surrounded by fast-

growing, nonfaceted crystals. Nonfaceted ice surfaces can have α ≈ 1, meaning that σ → 0

in their vicinity, which can greatly impede the growth of nearby faceted crystals. The best

way to see this is by considering the scalar field σ(x) in the space around the growing crystals.

Diffusion requires ∇2σ = 0, and the fast-growing nonfaceted crystals may be modelled by

boundary conditions with σ ≈ 0 at the growing surfaces. If the water vapour source is far away,

then the nonfaceted crystals may substantially reduce σ near the crystal under observation.

This is not the case in a pure water vapour environment, but is a concern with surprisingly low

background gas pressures. The solution to this problem is to (1) make sure there are not too

many neighbour crystals, (2) make sure the neighbour crystals are far away from the crystal

under observation, and (3) keep the water vapour source close.

Crystal heating. The simple spherical analysis shows how crystal heating affects growth

measurements. If latent heat is carried away by conduction to the background gas, then

equation (12) shows that heating is important when αcond < α. A substrate is more effective at

removing heat, and in this case equation (16) shows that heating is important when α′
cond < α.

Heating is especially problematic for crystals not in contact with a substrate, and for growth at

low background gas pressures. Again this systematic error is reduced by making measurements

using smaller crystals.

Cloud dynamics. When ice crystals are growing in a cloud of water droplets, it is a mistake to

assume that the supersaturation is automatically equal to the equilibrium value for liquid water

at the cloud temperature. It takes time for a cloud to reach a state of near equilibrium, and how

close one approaches equilibrium depends on the cloud size and dynamics. Large droplets

may be warmer than ambient if they have not had time to equilibrate. Small droplets may be

too cool if evaporative cooling draws heat out faster than interaction with the surroundings can

replace it. In addition, when many crystals are growing in a cloud they all compete for water

vapour, again distorting the supersaturation field. These effects should be carefully modelled

in a given experiment to gain a more accurate estimate of σ inside the cloud. Note that these

problems are much worse for small clouds and when the air pressure is reduced.

Crystal imperfections. There is ample evidence that crystal imperfections in faceted ice

surfaces can serve as a source of molecular steps that promote growth. Screw dislocations

are well known in this role, but other crystal faults may also be relevant. A ready source of

molecular steps will especially promote growth at low supersaturations, when two-dimensional

nucleation is rare. My experience (following [84]) has been that imperfect surfaces often cannot

be visually distinguished from more perfect faceted surfaces; some crystal specimens simply

exhibit anomalously fast growth. The best experimental strategy here is to measure a large

number of crystals.

Substrate interactions. Several papers have described how substrate interactions can affect

the growth of ice crystal facets [73, 85, 86]. It appears that the intersection of an ice facet

with a substrate can be a source of molecular steps, which again increases the growth rate
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when the growth is nucleation-limited [85]. These effects are probably not always important,

and different substrates may behave differently. One thing is clear, however—substrate

interactions can increase ice growth rates by at least factors of 2–5, so this systematic effect

must be considered. The best approach is to restrict one’s measurements to facets that are not

in contact with a substrate [39].

Chemical impurities. Impurities on an ice surface might impede growth by interfering with

surface diffusion, or they might enhance growth by providing nucleation sites. At any

rate, there is certainly ample qualitative evidence that impurities affect ice growth [22, 30].

This is an especially thorny experimental problem, since there is little quantitative data on

how clean a given experiment must be before it can be considered free of chemical effects.

However, crystals grown in normal laboratory air repeatably exhibit morphological changes

with temperature that follow the morphology diagram, so we can conclude that the impurities

in ordinary air do not disrupt the growth of new small crystals by a large factor. My personal

rule-of-thumb is that if you can smell something in the air, it will likely have some effect on

ice crystal growth.

Evaporation/growth cycling. There is some evidence [87] that evaporating and regrowing a

single crystal affects the measured growth rates, probably from the introduction of nucleation

sites as the crystal is processed. The best experimental strategy here is to avoid a lot of

evaporation/growing cycles when taking growth data, and to sample many crystals.

In summary, past experience shows that there are many pitfalls that must be avoided when

measuring ice crystal growth rates. These systematic effects should be examined carefully

when designing new experiments, and they should be examined again when interpreting the

results of published experiments.

3.2. Conclusions from growth measurements

Considerable effort has gone into making quantitative measurements of the growth of simple

ice prisms and/or facet surfaces in order to accurately determine α(T , σsurf) and thus gain a

better understanding of the snow crystal morphology diagram. The measurements have proven

to be surprisingly difficult, however, and a critical examination of the literature reveals that

essentially all the results published to date suffered from systematic errors to some degree

(for a detailed summary of the experiments see [83]). As a result, the different experiments

are not in reasonable agreement with one another, and we must therefore be cautious in what

we conclude from the data. With that in mind, we have attempted here to summarize what

is known, or at least probably known, about the growth of simple ice prisms. Some of these

conclusions reflect the biases of the author and are clearly in need of additional experimental

and/or theoretical study.

The parameterization in terms of a condensation coefficient is a valid one. This is a weak

conclusion, since the existing growth data neither support it strongly nor suggest that it is

invalid. The measurements roughly indicate α < 1 on faceted surfaces and α ≈ 1 on rough

surfaces, at least to the limited accuracy of the most reliable data [27, 39]. Thus it is certainly

useful to assume α(T , σsurf) is a valid parameterization for simple ice facets. However, there

is also evidence (see below) that α depends on the size and geometry of a given facet, and not

just on T and σsurf , which complicates the picture substantially.

Substantial surface diffusion between facets seems unlikely. Here again this is a weak

conclusion, without a great deal of hard experimental evidence one way or the other. Mason
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and collaborators have suggested that surface diffusion between facets is important [88], and

this result has been widely cited. But it appears the data in support of this were substantially

distorted by diffusion effects [83]. On the theoretical side, there is a potential barrier that

inhibits the migration of admolecules between terraces (the Schwoebel–Ehrlich effect [34,36]),

and surface diffusion between facets would require numerous such jumps to traverse a rounded

corner. Without compelling experimental evidence demonstrating surface diffusion between

facets, it seems prudent at this stage to assume the phenomenon is unlikely. Ice is full of

surprises, however, and the data are certainly not such that we can rule this possibility out.

The condensation coefficient is independent of background air pressure. Here again, several

authors have presented data suggesting that background gas does affect α(T , σsurf), but upon

close inspection these data were almost certainly influenced by diffusion effects, and in

my opinion they are not reliable [83]. The molecular interactions between air and ice are

sufficiently weak that it seems unlikely that the presence of air would have a significant

influence on the molecular dynamics of the ice surface. There is also evidence that snow

crystal morphologies are essentially the same in gases of air, nitrogen, helium, hydrogen and

carbon dioxide, even though these gases have much different solubilities in water, reflecting

different strengths of molecular interactions [89]. Here again, we cannot rule out that α changes

to some degree with background gas, and better data are needed. But in my opinion it appears

that α is essentially independent of background gas, at least for relatively inert gases like air.

Facet growth is primarily nucleation-limited over a substantial temperature range. This

conclusion is based largely on recent data [39], which are the most thorough and appear

to be the least affected by systematic errors (however, see [83]). Thus it strictly applies

only in the temperature range −40˚C < T < −10˚C, for the growth of facets that

do not include step sources from crystal faults or impurities. The data over this entire

temperature range are well represented by a condensation coefficient with the functional form

α(T , σsurf) = A(T ) exp(−σcrit/σsurf), which is consistent with nucleation-limited growth.

Preliminary new data [90] suggest that this functional form continues to represent the data

adequately at temperatures up to T = −5˚C.

The formation of six-fold symmetric snow crystal prisms is a direct indication that the

growth rates of the six prism facets on a given crystal are all comparable. This immediately

suggests that the growth of prism facets under typical meteorological conditions is often not

driven by dislocations, since it is unlikely that the dislocation density would be the same on

all six facets of a symmetrical crystal. This supports our conclusion that growth is primarily

nucleation-limited.

In contrast, observations of Antarctic snow crystals reveal a large fraction of asymmetric

prisms [91], suggesting the growth of those crystals is likely driven by dislocations. Antarctic

crystals often grow at low temperatures under conditions where σsurf ≪ σcrit, so again this fits

our overall picture.

The critical supersaturation is roughly the same for prism and basal facets, and is a monotonic

function of temperature over a substantial temperature range. It was speculated for many years

that large differences in σcrit between the basal and prism facets, together with changes in σcrit

with temperature, would be responsible for much of what is seen in the morphology diagram.

Surprisingly, it now appears that σcrit is roughly the same for both the basal and prism facets,

and furthermore changes only monotonically with temperature. This conclusion is again based

largely on the most recent data [39], which are shown in figure 6. Other data sets give conflicting

results, but the recent data suffer the least from systematic errors [83]. Additional confirmation

is certainly desirable, as is an extension of these data to higher temperatures.
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Figure 6. Results from measurements of the growth of simple ice prisms from the vapour

phase. The growth was parameterized in terms of a condensation coefficient with α(T , σsurf ) =
A exp(−σcrit/σsurf ). The plots show σcrit(T ) and A(T ) that were extracted from the data in [39].

Note that the critical supersaturation σcrit is essentially identical for the prism and basal facets,

with a relatively simple, monotonic dependence on temperature. The constant term A, on the other

hand, is different for the two facets with a more complex temperature dependence.

T0 - T (°C)

Figure 7. The edge free energy, β (per unit length) for a growth island that is one molecular layer

thick, as a function of temperature [39]. The scale at right is normalized by β0 = aγ , where a is

the layer height and γ is the surface energy (per unit area) for ice.

A measurement of the critical supersaturation then gives β, the edge free energy for a

growth island, according to equation (20), and this is shown in figure 7. The diminishing

edge free energy with increasing temperature is probably indicative of surface restructuring;

at higher temperatures the lattice structure becomes less rigid, allowing the step edge to be

smoother with a lower edge free energy. This could be confirmed by molecular dynamics

simulations, which appears to be feasible with current technology.

A roughening transition occurs on prism facets near the melting point. This appears to occur

at a temperature of T ≈ −2˚C, and only on the prism facets; the basal facets do not show a

similar transition below the melting point [38]. Snow crystals sometimes grow as plate-like

forms with no prism facets at these warm temperatures, supporting this conclusion. Kinetic

roughening may also be important at these temperatures. Since surface melting is almost
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certainly present this close to the melting point, the roughening transition must be at the quasi-

liquid/solid interface. Observations of ice growth from liquid water also show basal faceting

without prism faceting [92–94], which likely indicates the same basic roughening transition.

Prism growth in air follows the morphology diagram. Measurements of the sizes of prism

crystals grown in air at a pressure near 1 atm clearly follow the morphology diagram [10,25].

The prism sizes follow a power-law behaviour as a function of growth time, as expected

when the growth is primarily diffusion limited [26, 27]. The aspect ratios of such prisms

commonly range from D/T ≈ 40 (diameter/thickness) for thin plates grown at T = −15˚C

to D/T ≈ 1/20 for columnar prisms grown near T = −5˚C.

Ice prisms grow nearly isometrically in near-vacuum at all temperatures. In contrast to the

extreme aspect ratios seen in prisms grown in air, ice prisms grown in near-vacuum conditions

typically have 1/3 < D/T < 3, regardless of temperature. This is a robust result that has

been found in several experiments, provided there are no strong ice/substrate interactions.

As the background pressure is increased the aspect ratios become more extreme, and the

morphological structure becomes more complex [69]. The nature of the transition to more

extreme aspect ratios as pressure is increased is certainly deserving of additional study.

A new type of instability is needed to explain the growth of thin plates and columns. The growth

of nearly isometric crystals in near-vacuum is difficult to reconcile with the observation that

thin plates and needles often grow in air. Diffusion actually tends to discourage the growth

of ice prisms with high aspect ratios, because in such cases the supersaturation is lowest on

the fast-growing surfaces [27]. For the growth of thin plates at T = −15˚C, for example,

we see from figure 5 that αprism/αbasal > vprism/vbasal, and under some circumstances we must

have αprism/αbasal ≈ 100 to produce the types of plates shown in figure 5 [27]. This conclusion

follows rather simply from our discussion of the diffusion equation above. Under near-vacuum

conditions, however, the growth is more nearly isometric, indicating that αprism/αbasal ≪ 100

in that case.

To resolve this puzzle, Libbrecht has suggested that a new type of growth instability is

necessary to reconcile these various observational facts [27]. He suggested that α may change

not only with temperature and supersaturation, but also with the size of the crystal facet, such

that α → 1 when the facet size becomes small, calling this structure-dependent attachment

kinetics. This is a speculative model, without a strong theoretical foundation, so additional

work is needed to understand this aspect of the growth dynamics. However, it does appear that

a simple α(σ, T ) function cannot explain the growth of ice crystals in air and in near-vacuum,

and some form of new instability is necessary to reconcile these data [27]. The true physical

nature of this instability remains a mystery.

3.3. Summary of snow crystal prism growth

One might have thought that understanding the growth of simple snow crystal prisms, the most

basic ice crystal form, would be a relatively simple task. Upon closer inspection, however, the

problem is surprisingly rich, and many aspects remain quite puzzling. Although considerable

effort has been expended in attempts to reveal the physical origins of the morphology diagram,

at present we do not have even a satisfactory qualitative picture of the mechanisms that produce

such dramatic changes in morphology with temperature.

Our understanding of ice prism growth continues to fall short in both theory and

experiment. On the theoretical side, we do not yet have a microscopic model that describes



882 K G Libbrecht

crystal growth from the vapour in the presence of surface melting. There is a general expectation

that surface melting is an important piece of the ice prism puzzle, but a quantitative growth

model remains elusive. The Lacmann–Stranski–Kuroda model [57, 65] (for a summary,

see [10] and references therein) predicts large nonmonotonic changes in σcrit with temperature

and large differences in σcrit between the prism and basal facets, and both predictions are

contradicted by experiment.

In addition to this lack of a basic underlying growth model, there is now evidence that

additional growth instabilities, such as the proposed structure-dependent attachment kinetics,

are necessary to explain some aspects of prism growth, as described above. These new

instabilities are likely quite important in understanding the morphology diagram, but they

also complicate the theoretical picture even further.

On the experimental side, many measurements of α(T , σsurf) have been seriously affected

by systematic errors [83], so we still do not have a good picture of α(T , σsurf) over a broad

range of temperatures and supersaturations. As a result, we have not yet mapped out the ice

attachment kinetics in detail, and thus we are missing this vital input to the growth problem.

This situation is changing, however, as new experiments reduce the systematic effects and

produce more reliable measurements. We are confident that substantial experimental progress

will be made in this area, and that this will lead to new theoretical insights into the basic

microscopic processes governing snow crystal growth.

4. Dendritic growth

The simple hexagonal ice prisms discussed above appear when the crystal growth is not so

strongly limited by particle diffusion—that is, when the supersaturation is low, the crystal size

is small, and/or the background gas pressure is low. As long as at least one of these parameters

is small enough, the growth is dominated by attachment kinetics, resulting in faceted crystals.

When some combination of these parameters is increased sufficiently, then particle diffusion

begins to dominate the crystal growth dynamics and at some point branching occurs. When the

crystal morphology exhibits numerous branches and side-branches, then we say the growth is

dendritic, which literally means ‘tree-like’. Dendritic crystal growth is but one example of the

more general phenomenon of pattern formation in nonequilibrium growing systems [95, 96].

Some examples of ice crystal dendrites grown in air are shown in figure 8. While ice

dendrites can grow at any temperature, they are most prominent near T = −5˚C, where

thin ice needles form, and especially near T = −15˚C, where the six-fold crystal symmetry

produces side-branches that extend at 60˚ angles from their main branches. In both these cases,

the growth of a single ice dendrite is largely two-dimensional, such that most of the large-scale

structure is confined to a flat plane. The overall complexity of the dendritic pattern increases

with increasing supersaturation, as indicated in the morphology diagram (figure 2), as well as

with increasing crystal size and with increasing background gas density [69]. As is typical for

dendrites, the growth often exhibits some self-similar, fractal characteristics. For ice dendrites

the smallest structures typically occur on scales of about 1–10 µm.

4.1. The transition from faceting to branching

Whenever solidification is limited by diffusion, then the growth of a flat interface is unstable.

This is true whether the growth is limited by particle diffusion that brings material to the

interface or by heat diffusion that removes latent heat generated at the interface. To see the

origin of this instability, consider the case where particle diffusion is the dominant factor and

ignore attachment kinetics. If we start with a flat, growing surface and add a small bump, the
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Figure 8. (a) An ice dendrite growing at T = −5˚C, showing the characteristic ‘fishbone’ structure.

The tip growth is not along a well-defined crystal axis, but varies depending on supersaturation.

Most of the structure seen here is confined to a flat plane. (b) A ‘fern-like’ ice dendrite growing at

T = −15˚C. Here the tip growth is along the a-axis of the crystal, so each side-branch makes a 60˚

angle from its main branch. Growth of the basal facet is slow at −15˚C, so again this is a planar

structure. In both panels the scale bars are 100 µm long and the insets are 4× magnified views of

the growing tips. While growing, the dendrite tip velocity vtip and the tip radius of curvature Rtip

are approximately constant. These crystals were grown in air at a pressure of 1 atm at σ∞ ≈ 1,

where typical tip velocities are a few micrometres per second and typical tip radii are of order 1 µm

(from [97]).

bump will effectively stick out farther into the supersaturated medium above the surface. Thus

particle diffusion will bring material to the top of the bump at a slightly faster rate than to

the surrounding flat surface. With a greater supply of material, the bump grows larger, which

increases its supply even more. This positive feedback effect is often called the Mullins–

Sekerka instability [34, 98, 99], and it is a ubiquitous feature of diffusion-limited growth.

Much of the structure in snow crystals ultimately derives from this instability.

If we add attachment kinetics at the interface, the picture becomes more complex. We

then find that a simple faceted morphology can grow stably, but only for so long. Consider

the case shown in figure 9, where a faceted plate-like crystal sprouts branches as it grows

larger. If we focus on the growth of the prism facets, then the growth of a flat facet requires

that v(x) ≈ constant, where this is the perpendicular growth velocity as a function of position

along the facet. From kinetics we have v = αvkinσsurf , and a solution of the diffusion equation

reveals that σsurf(x) varies across the facets, being lowest at the facet centres. Thus as long

as the crystal retains its simple prism structure as it grows, α must also vary across the facets,

being highest at the facet centres. Since the surface diffusion lengths are small compared to

the crystal size, this simple analysis reveals that the prism facets cannot be perfectly flat, but

are slightly concave. The curvature adjusts itself so that the step density is higher at the facet

centres, which provides the necessary variation in α(x) across the facet. The curvature is so

slight, however, that the facets remain flat in appearance.

As long as this growth feedback mechanism can continue, the crystal growth remains

faceted in appearance, with the facet curvature increasing steadily as the crystal grows larger.

With time the step density reaches its maximum value at the facet centres, at which point the

surface is essentially rough on a molecular scale. Then α ≈ 1, its maximum value, while σsurf
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Figure 9. A series of photographs of a growing snow crystal, showing the transition from faceted

to branched growth. The initially flat prism facets become hollowed as particle diffusion limits

the growth at the facet centres. This plate-like crystal was grown on the end of an electric needle

(see below), in air at a pressure of 1 atm. The final crystal size is approximately 1 mm. Note that

a small water droplet fell on the lower left tip of the crystal as it grew, nucleating the growth of a

secondary structure. (Photo by the author.)

continues to decline at the facet centres as the crystal continues to grow. Once this condition is

reached, we can no longer have v(x) ≈ constant across the facet, and the crystal then sprouts

branches as shown in figure 9.

Near T = −15˚C the Mullins–Sekerka instability leads to the familiar six-fold-symmetric

branching seen in plate-like stellar crystals. Near T = −5˚C the same instability first produces

hollow columns and then clusters of needle crystals. Note that convex facets do not undergo

this branching instability. Thus the growth at T = −15˚C remains plate-like even at high

supersaturations and for large crystal sizes.

The transition from the growth of simple prism crystals to more complex dendritic

structures is fairly well understood at a qualitative level, and some attempts have been made to

model this transition in detail [43]. To my knowledge, however, little quantitative experimental

work has been done to examine this transition. The picture is particularly complicated in ice,

since faceting continues to play a strong role even in the presence of well-developed branching.

For example, the fully developed dendritic growth at T = −15˚C (see figure 8(b)) still retains

strong faceting on the basal surfaces, yielding a nearly two-dimensional dendritic structure.

Faceting is also frequently seen at the tips of branches, as in figure 9.

4.2. Dendrite theory and snow crystal growth

In spite of the overall complexity of dendritic growth, the tip of a dendrite often grows with a

tip velocity vtip and a tip radius of curvature Rtip that do not change appreciably with time (see

figure 8). This statement is true for many different types of diffusion-limited solidification,

for structures growing from the vapour or the melt phase, regardless of whether the growth is

limited by particle diffusion or heat diffusion [98]. Many of the essential features of dendrite

growth theory have been worked out in considerable detail [100, 101], and this theory can

be fairly easily adapted to ice crystal growth from the vapour phase [97]. The theory is not

complete in that it does not include faceting and other complications, so at present it cannot

quantitatively describe many of the features seen in ice dendrites. Nevertheless, it is a good

starting point that explains many aspects of ice dendrite growth to a reasonable approximation.

Dendrite theory in the case of snow crystal growth begins with the particle diffusion

equation in the limit of small Peclet number, as was described above. In this limit the
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time-dependent diffusion equation is replaced by Laplace’s equation ∇2c = 0, which must then

be solved for the water vapour concentration c(x) with the appropriate boundary conditions.

One can show that particle diffusion typically restricts growth more than heat diffusion for

the case of snow crystal dendrites grown in air [97], so heat diffusion will be ignored in the

following treatment.

The contribution of surface energy to the surface boundary condition can be found by

considering a spherical crystal, which has the surface energy Usurface = 4πR2γ , where R is

the radius of curvature and γ is the surface tension, equal to 0.109 J m−2 for ice. Pulling

a molecule off the surface reduces the sphere’s surface area and thus releases an energy

dUsurface = 2γ /csolidR. Therefore, the equilibrium vapour pressure above a spherical crystal

is approximately

ceq ≈ csat

(

1 +
2δ

R

)

, (21)

where δ = γ /csolidkT ≈ 1 nm and csat is the saturated vapour pressure above a flat interface.

Attachment kinetics also affects the surface boundary condition because a growing surface

is not in equilibrium. From the definition of α we have

vn = αvkin

(csurf − ceq)

ceq

(22)

so to lowest order

csurf ≈ csat

(

1 +
2δ

R
+

vn

αvkin

)

. (23)

This expression is strictly valid only for spherical growth in the case of isotropic surface

tension and attachment kinetics, but we will proceed using this expression nevertheless, with

the understanding that the more general case would be similar in form.

We note at this point that our goal in this section is to describe the essential physics of ice

dendrite growth from the vapour, and not to find a mathematically precise solution to the full

problem. Thus we will make numerous rather crude approximations when dealing with the

dendrite geometry and the surface boundary conditions. This approach is instructive and quite

productive, and it is also an unfortunate necessity because a full dendrite growth theory has

not yet been derived. In particular, the combination of faceting and branching has proven to be

a formidable problem. A much more mathematical treatment of the two-dimensional problem

with attachment kinetics is described in [101], which reveals some of the full complexity

inherent in dendrite growth.

We have found that a simple theoretical treatment of the problem works surprisingly

well at a semi-quantitative level, apparently because both the phenomenon and the theory are

quite robust and insensitive to perturbations. For example, the phenomenon is robust in that

dendrite growth with time-independent vtip and Rtip is a fairly ubiquitous occurrence over a

broad range of physical circumstances. Small changes in attachment kinetics, geometry, etc,

do not seem to alter the underlying physics that describes the growth. The basic results from

dendrite theory also appear to be quite robust, and the theory even shows many similar features

in both two-dimensional and three-dimensional formulations [102]. This latter property is

probably why we can use the simple theory to such good effect when describing the growth of

these flat—and thus strongly faceted—ice structures.

To solve the diffusion equation around a growing ice dendrite, we assume that the crystal

growth proceeds with a typical three-dimensional dendritic morphology, described by an

approximately cylindrically symmetric parabolic dendrite tip moving with constant vtip and

Rtip. Typically we do observe that ice crystal dendrites have rather rounded tip structures, as
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seen in figure 8, suggesting that faceting is not well developed near the tip, where the theory

is being applied. It is well known that such a parabolic form, with constant vtip and Rtip,

is a steady-state solution to the diffusion equation in three-dimensional, called the Ivantsov

solution [34]. In the limit of low Peclet number we are considering here, the Ivantsov solution

can be written as (dropping the subscripts on vtip and Rtip) [34, 103]

v ≈
2D

R log(η∞/R)

csat

csolid

[

σ∞ −
2δ

R
−

v

αvkin

]

, (24)

where σ∞ = (c∞ − csat)/csat and η∞ is the parabolic coordinate of the far-away boundary of

the system, at which point we have c = c∞. The log term in this expression appears because

we are in a regime where the diffusion length is larger than the boundaries of the experimental

apparatus, i.e. ℓ = 2D/v ≫ η∞. It is sufficient in most experimental cases to assume a

constant B ≡ log(η∞/R) ≈ 10 [97]. This is consistent with our expectation that the particular

details of the far-away boundary condition in the problem should not contribute greatly to the

final dendrite solution.

When the growth is mainly diffusion limited we have v ≪ αvkin, and we have found that for

dendrite growth from vapour the capillary perturbation is typically negligible in comparison

to the kinetic perturbation. (The opposite is true for growth from the melt, which is much

more commonly discussed in the literature on diffusion-limited growth [101].) Thus we can

substitute the unperturbed Ivantsov solution in for v on the right-hand side of equation (24),

which then gives to lowest order

v ≈
2D

BR

csat

csolid

[

σ∞ −
R∗

kin

R

]

(25)

=
2D

BR

csat

csolid

[

1 −
Rkin

αR

]

σ∞, (26)

where

R∗
kin =

σ∞

α

2D

B

√

2πm

kT
(27)

=
σ∞

α
Rkin, (28)

which defines the terms Rkin and R∗
kin [97]. For ice growth in air at a pressure of 1 atm we have

Rkin ≈ 30 nm.

Note that the Ivantsov solution, equation (25) in our case, gives only a single relation

between the tip velocity v and radius R, here with small perturbations from the capillary and

kinetic terms (assuming δ ≪ R and v ≪ αvkin). It is generally true for dendrite growth that

the diffusion equation alone only provides a partial solution to the problem. An additional

relation between these variables is required to select the correct v and R.

A principal result from dendrite theory [100,101] is that we can write down a dimensionless

‘solvability’ parameter that in our case becomes

s =
2RkinD

vR2

σ∞

α

csat

csolid

(29)

and the theory further dictates that s will depend only on the intrinsic material properties, in

this case mainly on the detailed properties of the attachment kinetics. Thus s will be essentially

a constant term, with no direct dependence on D, σ∞, or other extrinsic variables.

To my knowledge there is no simple derivation of this seemingly simple result. As has

been noted in the context of solvability theory (e.g. [100]), equation (29) follows from the fact

that attachment kinetics here provides the additional length scale R∗
kin necessary for uniquely
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Ice Needle Growth at T = -5°C
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Figure 10. Left: Measurements of ice needle growth at T = −5˚C as a function of

supersaturation, σ , for normal growth (lower points), electrically enhanced growth (middle points),

and electrochemically enhanced growth (upper points). Right: Photographs of c-axis electric

needles grown at T = −5˚C under the influence of chemical additives. The picture in (a) shows

the electric growth phase. In (b) the field had been removed and the temperature changed to

T = −15˚C, allowing normal growth to take place. Then plate-like crystals grew on the needle

tips. Data and photos from [97].

determining the tip radius. Calculating s for the case of ice is not yet possible, however, since

it would require a full three-dimensional treatment of the dendrite problem including kinetics,

which as yet does not exist. It is sufficient here to simply assume that s is a constant to be

determined from experiment.

Combining the solvability parameter with the Ivantsov solution then gives a tip radius that

is independent of σ∞,

R =
B

αs
Rkin (30)

and a dendrite tip growth velocity

v =
2Dαs

RkinB2

csat

csolid

σ∞, (31)

which depends linearly on σ∞.

Experiments with ice dendrites growing in air have found that v is indeed approximately

linearly dependent on σ∞, as expected (while R is too small to be measured optically with

good accuracy). For dendrites at T = −15˚C growing in air at a pressure of 1 atm, we have

found v ≈ 5σ∞ µm s−1, which indicates R ≈ 1.2 µm and αs ≈ 0.25. At −5˚C we have

v ≈ 10σ∞ µm s−1, giving R ≈ 1.5 µm and αs ≈ 0.2. The lack of faceting near fast-growing

dendrite tips further suggests that α ≈ 1. Experimental data are shown above in figure 10.

4.3. Full modelling of dendrite growth

There exists an extensive literature on modelling dendrite growth in numerous different physical

situations to varying levels of approximation, which I will not cover here. Results from analytic

calculations reveal that a stable dendrite tip, with time-independent vtip and Rtip, is only possible

when the capillary and/or kinetic perturbations include some spatial anisotropy. For a purely

isotropic material, available for example in computer simulations, the tip frequently splits as
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the dendritic structure grows. We essentially ignored the anisotropy inherent in α in the above

simple discussion, but α is certainly anisotropic and we expect that the degree of anisotropy is

important for determining the value of the solvability parameter s. Dendrite theory remains an

incomplete theory in that one cannot precisely calculate s even with rather simple (yet realistic)

physical systems.

There is also a large literature describing computer modelling of diffusion-limited growth

and the formation of dendrites, which again I will not cover here. Computer models can

be divided into two broad camps—‘front-tracking’ models, in which one must keep track

of the solidification interface explicitly, and ‘phase-field’ models, in which the solidification

front is numerically smoothed and not explicitly tracked [104–106]. The latter technique is

more popular, partly for its computational simplicity. Unfortunately, quantitative agreement

between full three-dimensional simulations and experiment is not entirely satisfying even for

the simplest and most well-understood experimental systems [104].

Faceting greatly complicates the full modelling of dendritic growth, and to date the

analytic theory describing faceted dendrites is limited [107], as are computer models [108,109].

Experimentally, faceted dendrites have been studied at some level in ice [97, 110] and as well

as in other materials [111]. At a qualitative level our understanding of faceted systems is

fairly good, but a full quantitative theory does not exist even for the simplest faceted dendritic

growth.

In summary, we find that the relatively simple dendrite theory described above provides

a reasonable semi-quantitative description of the growth of the tips of ice dendrites. It

gives reasonable agreement with experiment and shows how the growth scales with various

parameters. Solving the full problem, including faceting, side-branching, and other factors,

remains a formidable task.

4.4. Electrically and chemically modified ice dendrite growth

When an electrical potential is applied to a growing ice dendrite, the diffusion equation becomes

modified by additional forces, especially near the dendrite tip. The resulting electrically

enhanced growth exhibits some interesting behaviour that can be described with an extension

of the theoretical treatment above [97]. The normal diffusion equation is replaced by the

Smoluchowski equation [103, 112], which describes diffusion in the presence of an external

force. We then have

∂c

∂t
= D �∇ · ( �∇c + c �∇�), (32)

where the external force felt by the water molecules is described as the gradient of the effective

potential

� = −
ξ

kT
( �E · �E), (33)

where ξ is the molecular polarizability and the electric field is the gradient of the electrical

potential �E = −�∇ϕ [103]. Again we can assume the slow-growth limit and take ∂c/∂t ≈ 0.

The continuity equation at the interface yields the normal component of the surface growth

rate as

vn =
D

csolid

n̂ · ( �∇c + c �∇�)|surf . (34)

The boundary condition at the crystal surface is now changed by the fact that the applied

potential changes the equilibrium vapour pressure, which we can see most easily in the spherical
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case. Consider a spherical droplet of radius R and charge Q, where we assume the charge is

localized at the droplet surface. The electrostatic self-energy of this charge

Uelectrostatic =
1

2

1

4πε0

Q2

R
(35)

is independent of the dielectric constant of the droplet, since there is zero field below the

surface. If we pull one neutral molecule out of the droplet, then this changes Uelectrostatic by the

amount

dUelectrostatic = −
1

8πε0

Q2

R2

∂R

∂N
(36)

= −
1

32π2ε0

Q2

csolidR4
. (37)

If the molecule has a nonzero polarizability, then pulling the molecule off the droplet releases

the polarization energy

dUpolar = ξE2

= ξ
1

16π2ε2
0

Q2

R4
, (38)

where ξ ≈ 3.4 × 10−39 C2 m N−1 for a water molecule.

These energies contribute to the equilibrium vapour pressure like edU/kT , yielding for the

spherical case (ignoring the surface energy contribution)

csurface ≈ csat

(

1 +
vn

αvkin

−
R2

es

R2
+

R2
pol

R2

)

, (39)

where R2
es = ε0ϕ

2
0/2csolidkT , R2

pol = ξϕ2
0/kT , and ϕ0 = Q/4πε0R is the electrical

potential applied to the droplet. Note the presence of both electrostatic and polarization

terms in this expression, the latter being zero for nonpolar molecules. In the case of ice

Res ≈ 0.2(ϕ0/1000 V) µm and Rpol ≈ 1.0(ϕ0/1000 V) µm.

The modified Ivantsov relation then becomes [97]

v ≈
2D

BR

csat

csolid

[

σ∞ −
R∗

kin

R
+ C

R2
elec

R2

]

(40)

with

R2
elec =

2ε0

csolid

ϕ2
0

B2kT
, (41)

where C = 1 + 2Ŵξcsolidσ∞/ε0 and Ŵ ≈ 0.2 is a dimensionless geometrical constant.

Of course this is only an approximate solution to the Smoluchowski equation, which takes

the form of the normal Ivantsov solution (in the slow-growth limit) modified by several small

additional terms. We expect that a full numerical solution would yield the same basic result,

although probably with additional small geometrical corrections.

In the case of ice Relec ≈ 40(ϕ0/1000 V) nm and 2ξcsolid/ε0 = 23.5, giving C ≈ 1+4.7σ∞

at T = −5˚C. The electrical perturbation can be incorporated into the solvability relation by

defining the modified length Rcomb ≡ R∗
kin − CR2

elec/R and again assuming that this is the

additional length scale necessary for uniquely determining the tip radius. This then yields the

new solvability relation

s ≈
2R∗

kinD

vR2

csat

csolid

(

1 − C
R2

elec

R∗
kinR

)

. (42)
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Combining this with the modified Ivantsov relation then yields a quadratic equation for the tip

radius [97]

R2 − R0R +
CR0

R∗
kin

R2
elec = 0, (43)

where R0 is the tip radius when Relec = 0.

For small values of Relec the solution of this quadratic equation shows that R decreases,

and thus v increases, with increasing applied potential. The quadratic equation has no real

roots when Relec > (R∗
kinR0/4C)1/2, indicating that the above modified dendrite theory cannot

be used for large Relec, or equivalently when ϕ0 is above some threshold potential ϕthresh. The

lack of real roots indicates that above ϕthresh neither surface tension nor attachment kinetics

can stabilize the tip radius, at least not in the usual sense. At this point the tip experiences

runaway growth as R → 0 under the influence of the Mullins–Sekerka instability (here

enhanced by electric forces). The tip velocity thus increases until it is stabilized by some

other mechanism [97].

Electrical effects in the growth of ice crystals from the vapour were first described by

Mason and collaborators [113, 114], and were subsequently quantified as a function of the

applied electrical potential [97, 103, 115–117]. The existence of a threshold potential was

established in these measurements, and the tip velocity as a function of ϕ0 below threshold

was found to be in good semi-quantitative agreement with the above theory. Observations

measuring the dendrite tip velocities as a function of supersaturation σ∞ as well as ϕ0 revealed

a number of features expected from the theory [97]. The observations showed a threshold

potential of ϕ0 ≈ 1000 V, which is roughly independent of σ∞, consistent with the above

theoretical expectations.

Interestingly, trace chemical additives in the air can have a dramatic effect on electric

needle growth, even when the concentration level is too low to produce any perceptible change

in normal crystal growth. In particular, chemical additives can induce the electric needle

growth to be along the ice c-axis, and such needles grow approximately three times faster than

electric needles in clean air, as is shown in figure 10. A number of chemical additives at the

100 ppm level produce these rapidly growing needles, including various alcohols and acids, as

well as chloroform, xylenes, methylene chloride, and even gasoline vapour [97]. Acetic acid

is particularly effective even at concentrations as low as 1 ppm, which produces essentially no

change in the normal crystal growth. It appears likely that the additives are concentrated by

the electric fields and gradients near the needle tip, thereby enhancing the chemical effects.

The observations indicate that growing needles have tip radii of R∗ ≈ 360 nm for clean

air electric needles at T = −5˚C, as determined using the Ivantsov relation, again roughly

independent of σ∞. In the presence of chemical additives the higher electric needle velocities

imply R∗ ≈ 90 nm at ϕ0 = 2000 V, also roughly independent of σ∞. The tip stabilization

method at high applied potentials is still not understood.

5. Outlook

A close look at the formation of an individual snow crystal reveals that this is a remarkably rich

and complex event. Although it involves little more than the organization of water molecules

into a crystalline lattice, many questions about the growth process remain unanswered.

Dendritic structuring and pattern formation—both ubiquitous results of diffusion-limited

growth—are one fascinating part of the snow crystal story. Dendrite theory provides a

satisfactory semi-quantitative picture of this phenomenon, at least for the growth of well-

developed dendrites with near-constant tip radii and tip growth velocities. The theory does
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not include faceting at present, as this has been found to be a formidable problem. Progress

toward a full theory of dendrite growth, including attachment kinetics, has been slow for many

years and is likely to continue so.

However, there are certainly several interesting areas in dendritic snow crystal growth that

remain unexplored. Can one better understand the transition from faceted growth to dendritic

growth in a quantitative way? What happens in different background gases, and at different

pressures? Can one further understand the effects of external stimuli on dendrite growth, such

as electrical and chemical effects? I suspect experiment will lead the way in these areas,

especially quantitative experiments which measure growth under well-controlled conditions.

It seems likely to me that further surprises await the experimenter who ventures to explore

these and other questions about ice dendrite growth.

The growth of plain hexagonal ice prisms remains perhaps the most puzzling aspect

of snow crystal growth, in spite of its apparent simplicity. The snow crystal morphology

diagram, well documented now for 75 years, has still not been explained at even a qualitative

level. Surface melting appears to play an important role, as do unusual growth instabilities,

but major problems remain unsolved. The morphology diagram is continually demonstrated

to us by snow crystals falling from the sky in copious numbers. Surely we can understand

why snow crystal morphology has this unusual dependence on temperature. In my opinion,

this area is ripe for progress on both the experimental and theoretical fronts.

On the experimental side, we still do not possess accurate measurements of ice growth as

a function of temperature and supersaturation for the two principal facets, which would tell us

much about α(T , σsurf) and the growth mechanisms. This situation will likely change soon as

new experiments address the systematic problems that have plagued earlier efforts. Not only do

we need measurements of prisms growing on substrates in near-vacuum, but also measurements

of levitated prisms growing in various background gas pressures. The combination of data will

speak volumes about the different instabilities that appear to dominate snow crystal growth

under different conditions.

On the theoretical side, we need a model of how crystals grow in the presence of surface

melting. This implies a better understanding of crystal growth in the near-equilibrium limit,

when evaporation and growth are simultaneously occurring at rates that far exceed the net

growth rate. We also need to broaden our horizons when it comes to crystal growth instabilities,

including those relating to the growth of thin ice plates and needles. This is an area of

considerable general interest, as it appears that instabilities of many varieties abound in growing

systems.

There is also the vast, unexplored topic concerning the effects of chemical impurities on

ice growth. I suspect many surprises are in store when we begin to understand the chemical

catalysis of crystal growth in general, and of ice growth in particular. Again it is likely that

quantitative experiments will lead the way in exploring this potentially exciting territory.

Snow crystal formation provides a fascinating case study of the physics of crystal

growth, requiring a deep understanding of the nanoscale dynamics of solidification and pattern

formation. By studying snow crystals, one can gain insights into many fundamental aspects

of materials science. There is much that remains to be learned.
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