

2739-0298

The PHYSIOLOGY *and* BIOCHEMISTRY *of* PROKARYOTES

David White Indiana University

New York Oxford OXFORD UNIVERSITY PRESS 1995

CONTENTS

ч^а ч

Symbols Conversion factors, equations, and units of energy Definitions		xv xvii xix
Chapter	1. Structure and function	3
-	Phylogeny	3
	Cell structure	7
1.3	Summary	29
Chapter	2. Growth	34
2.1	Measurement of growth	34
2.2	Growth physiology	36
2.3	Growth kinetics	43
2.4	Steady-state growth and continuous growth	44
2.5	Summary	46
Chapter	Chapter 3. Membrane bioenergetics: The proton potential	
3.1	The chemiosmotic theory	49
3.2	Proton electrochemical energy	50
3.3	1 1 1	55
2.4	acidophiles, and alkaliphiles	55 55
	Ionophores Measurement of the Δp	53 57
3.3 3.6	•	59
	Exergonic reactions that generate a Δp	63
3.8		67
3.9	Halorhodopsin, a light-driven chloride pump	76
	The Δp and ATP synthesis in alkaliphiles	76
	Summary	77
Chapter	4. Electron transport	83
	Aerobic and anaerobic respiration	83
4.2	The electron carriers	84
4.3	Organization of the electron carriers in mitochondria	88
4.4	Organization of the electron carriers in bacteria	89
4.5	Coupling sites	90

CONTENTS

s,

4.6	How a proton potential might be created at the coupling sites: Q loops, Q cycles, and proton pumps	93 97		
4.7 4.8	Patterns of electron flow in individual bacterial species Summary			
Charter		109		
5.1	5. Photosynthesis The phototrophic prokaryotes	109		
5.2	The purple photosynthetic bacteria	112		
	The green sulfur bacteria	112		
	Cyanobacteria and chloroplasts	119		
	Efficiency of photosynthesis	110		
5.6	Photosynthetic pigments	120		
5.7	The transfer of energy from the light-harvesting pigments to the reaction	121		
J./	center	128		
5.8	The structure of photosynthetic membranes in bacteria	129		
5.9	Summary	129		
Chapter	6. The regulation of metabolic pathways	133		
6.1	Patterns of regulation of metabolic pathways	133		
	Kinetics of regulatory and nonregulatory enzymes	135		
	Conformational changes in regulatory enzymes	138		
6.4		139		
6.5	Summary	139		
Chapter	7. Bioenergetics in the cytosol	141		
	High-energy molecules and group transfer potential	141		
	The central role of group transfer reactions in biosynthesis	1 46		
	ATP synthesis by substrate-level phosphorylation	148		
7.4	Summary	153		
Chapter	8. Central metabolic pathways	155		
8.1	Glycolysis	157		
8.2	The fate of NADH	161		
8.3	Why write NAD ⁺ instead of NAD, and NADH instead of NADH ₂ ?	162		
8.4	The pentose phosphate pathway	162		
8.5	The Entner-Doudoroff pathway	167		
8.6	The oxidation of pyruvate to acetyl-CoA: The pyruvate dehydrogenase			
	reaction	171		
8.7	The citric acid cycle	173		
8.8	Carboxylations that replenish oxaloacetate: The pyruvate and			
	phosphoenolpyruvate carboxylases	175		
8.9	Modification of the citric acid cycle into a reductive (incomplete) cycle			
	during fermentative growth	176		
	Chemistry of some of the reactions in the citric acid cycle	177		
	The glyoxylate cycle	179		
	Formation of phosphoenolpyruvate	180		
	Summary of the relationships between the pathways	182		
8.14	Summary	182		
Chapter	9. Metabolism of lipids, nucleotides, amino acids, and hydrocarbons	187		
9.1	Lipids	187		
9.2	Nucleotides	194		
9.3	Amino acids	200		
9.4	Aliphatic hydrocarbons	206		
9.5	Summary	208		

₩ .

10.1 10.2	10. Cell wall biosynthesis Peptidoglycan Lipopolysaccharide Summary	212 212 217 221
11.1 11.2 11.3 11.4	11. Inorganic metabolism Assimilation of nitrate and sulfate Dissimilation of nitrate and sulfate Nitrogen fixation Lithotrophy Summary	224 224 226 228 233 242
12.1	12. C_1 metabolism Carbon dioxide fixation systems Growth on C_1 compounds other than CO_2 : The methylotrophs Summary	246 246 263 267
13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 13.10 13.11 13.12	 13. Fermentations Oxygen toxicity Energy conservation by anaerobic bacteria Electron sinks The anaerobic food chain How to balance a fermentation Propionate fermentation using the acrylate pathway Propionate fermentation using the succinate-propionate pathway Acetate fermentation (acetogenesis) Lactate fermentation Mixed acid and butanediol fermentations Butyrate fermentation Ruminococcus albus Summary 	272 273 274 274 274 276 277 279 281 281 281 284 286 290 291
14.1 14.2	14. Homeostasis Maintaining a ΔpH Osmotic potential Summary	294 294 297 302
15.1 15.2 15.3 15.4 15.5 15.6 Chapter 16.1	 15. Solute transport Reconstitution into proteoliposomes Kinetics of solute uptake Energy-dependent transport How to determine the source of energy for transport A summary of bacterial transport systems Summary 16. Protein export and secretion The Sec system The translocation of membrane-bound proteins 	306 306 307 308 319 320 321 325 325 329
16.3 16.4	Extracellular protein secretion Summary	330 332
17.1 17.2 17.3		335 336 339 344 345

CONTENTS

4

.

17.5	Nitrogen assimilation: The Ntr regulon	352
17.6	The PHO regulon	356
17.7	Regulation of porin synthesis	358
17.8	Regulation of the kdpABC operon	358
17 .9	Summary	360
Index		365