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List of Abbreviations 

 

A  leaf photosynthetic rate 

Amax  maximum rate of leaf photosynthesis 

ATP  adenosine triphosphate 

CAM  crassulacean acid metabolism 

CC  canopy (vertical) cover 

CoA  coenzyme A 

CR  constructional respiration 

EC  electrical conductivity 

ET  evapotranspiration 

ET0  reference crop evapotranspiration 

FAS  fatty acid synthase 

FRF  fruit retention force 

GR  glucose requirement for growth or maintenance 
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MPK  monopotassium phosphate 

MR  maintenance respiration 

NADH  nicotinamide-adenine dinucleotide phosphate 

NUE  nitrogen-use efficiency 

PAR  photosynthetically active radiation 
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Q  capacitance 

RDI  reduced deficit irrigation 
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SLM  specific leaf mass 

T  transpiration rate 

TAG  triacylglycerol 

TE  transpiration efficiency 
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VPD  vapor pressure deficit 
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I.  INTRODUCTION 

Olive (Olea europaea L., Oleaceae) has probably been in cultivation longer than any 

other tree species.  It was domesticated around 3000 to 4000 BC in the eastern 

Mediterranean and from there was spread widely in northern Africa, the Iberian 

Peninsula, and the rest of southern Europe by civilizations that successively occupied the 

region. Whereas olive is now renowned for high-quality food oil and for fruit for direct 

consumption, it was originally harvested for oil used as medicine, lamp fuel, and 

lubricant.  During the last 500 years, olive has been taken to the Americas, South Africa, 

Australia, China, and Japan, but remains principally a crop of the Mediterraean Basin 

which accounted for 95% of world mean annual production of 2.5 Mt oil during three 

years to 2002.  Of the five major producers, Spain, with 42% of world production, was 

ahead of Italy, Greece, Turkey, and Tunisia (FAOSTAT 2003). 

All cultivated olive belongs to a single species (O. europaea) along with the wild 

ancestors from which it was selected.  As a result of the general use of vegetative 

propagation and the longevity of individual trees, many olive cultivars are probably 

within several generations of the wild types from which they were selected (Lavee 1990).  

Many trees are hundreds of years old and some may be thousands.  Based on local 

knowledge, Miranovic (1994) reports 1000-year-old olive orchards of ‘Zutica’ on the 

Montenegrin Coast, with one tree over 2000 years.  As a consequence, most traditional 

olive-growing regions depend on only a few of the more than 2000 recognized cultivars 

and clones.  Similarly, small numbers of cultivars dominate production in each of the 

major, intensive areas of Spain, Greece, and Tunisia.  In Spain, for example, of 262 

recognized cultivars, just four, ‘Picual’, ‘Cornicabra’, ‘Hojiblanca’, and ‘Lechin de 

Sevilla’, occupy 68% of the olive area (Barranco and Rallo 2000).  In Italy, however, 

there is no similar dominance of few cultivars.  Rather there is much variation from 

locality to locality. 

In the Mediterranean region, with its characteristic hot, low-rainfall summers, 

olive was developed as the crop of marginal land that was unsuitable for more intensive 

cultivation by reason of soil type, topography, or lack of water for irrigation.  The 

traditional orchards are consequently of widely spaced trees, maintained with small 

canopy cover, and hence water demand, to ensure survival through the driest summers.  

The cultivation of olive is, however, changing.  Large areas of widely spaced olives are 

being irrigated and the trees reshaped for mechanical harvesting.  At the same time, most 

new orchards in the Mediterranean, and almost exclusively elsewhere, are being planted 

at high density, irrigated and fertilized for high yield, and shaped from the outset for 

mechanical harvesting. These changes are occurring rapidly and, in the absence of 

complete knowledge specific to olive, technology is being adapted from other crops, e.g. 

mechanical harvesting from wine grapes and reduced deficit irrigation (RDI) from stone 

and pome fruits (Mitchell and Chalmers 1982; Mitchell et al. 1989). 

Despite its long history of cultivation, scientific understanding of olive is limited 

compared with that of other long-standing crops such as wheat and barley, or even new 

crops such as sunflower (Connor and Hall 1997).  Traditional management of olive was 

established by trial and error without physiological understanding of responses to 

environment and management. A relatively recent treatise on olive (Rojo 1840), for 

example, commenced by acknowledging the major contribution to knowledge by  
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Columela, one of the first agriculturalists from ancient Rome.  Traditional techniques of 

olive production that have persisted for thousands of years may be optimal for local 

cultivars in local areas but they cannot be confidently extended to new locations or new 

forms of cultivation. One key to progress is to understand the physiological basis of those 

responses within a sound scientific framework. 

The recent expansion of scientific research in olive justifies this new 

comprehensive review. New cultural techniques, with greater tree density, more water, 

improved nutrition, and mechanical harvesting, are both the cause and effect of new 

research that is expanding.  This review will consider individual components of 

physiological response, leading to an integrated view of their interactions that determine 

growth, survival, resource-use efficiencies, and productivity under field conditions.  It 

will supplement and update two previously published reviews (Bongi and Palliotti 1994; 

Lavee 1996), and the more restricted reviews of fruit set (Lavee 1986), salt tolerance 

(Gucci and Tattini 1997), water relations (Fernández and Moreno 1999), and flower 

induction and differentiation (Fabbri and Benelli 2000).  It will evaluate the existing 

literature on olive within the established framework of plant and crop physiological 

science (see e.g. Taiz and Zeiger 1991; Loomis and Connor 1992) so that the 

consolidated knowledge can be applied to olive production, in whatever form, in all 

appropriate environments. A consequent important outcome will be the identification of 

areas where knowledge is inadequate and so the review will also contribute to setting 

priorities for future research. 

II.  GROWTH AND DEVELOPMENT 

The size and activity of the foliage canopy determine the carbon gain and growth of olive 

trees.  It is, however, the pattern of appearance of new organs that determines how that 

growth is progressively partitioned to buds, leaves and roots, and in consequence, how 

yield is determined annually and how trees change morphologically in the longer term. 

  Olive is widely reported as a day-neutral plant in which the rate of development 

through its biennial vegetative-reproductive cycle is governed climatologically by 

temperature and sunlight (assimilate supply).  Since the only experimental evidence for 

this day neutrality resides in work with a single cultivar, ‘Rubra’ (Hackett and Hartmann 

1964), this response of olive does merit wider investigation.   The biennial cycle (Rallo 

1998), one in which individual trees bear in alternate years, arises because olive flowers 

on 1-year-old shoots and the induction of buds during summer is affected by the 

presence, at that time, of the current year’s fruit.  The interaction between external 

environment and the internal physiological responses that operate over the extended 

period from induction in summer to flowering in spring is, however, poorly understood. 

Sanz-Cortés et al. (2002)  developed a numerical scale for the vegetative and floral 

phenological stages (PS) that is consistent with scales used widely in other tree crops.  

This standardized scale should facilitate description of developmental patterns and 

research directed to understand controls of phenological development in olive. 

 

A.  Vegetative Growth 

The production of nodes, the expansion of leaves, and the thickening of stems can occur 

at any time during the year depending upon temperature, water supply, and solar 
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radiation.  Vegetative growth is, however, commonly constrained by low temperature in 

winter, and in rain-fed systems, by water supply during summer.  While, irrigated 

orchards may maintain shoot growth and leaf expansion from spring through autumn, 

rain-fed orchards typically display two flushes of vegetative growth, in spring and 

autumn, respectively. 

Moriana et al. (2003) made detailed records of trunk growth over an annual cycle 

and showed that fruit load effected trunk growth patterns of mature trees.  Growth in an 

irrigated tree, following harvest of a heavy fruit load (and thus very small load in the 

current year), was very slow in spring and increased more or less linearly, exhibiting 

maximum growth rates at the end of summer and in early autumn. In contrast, a tree with 

a heavy crop grew faster during spring but slowed markedly in summer and autumn. 

Trunks of mature trees under severe water deficits did not grow at all and even shrunk 

during the driest periods. 

Little is known of the dynamics of root growth of olive trees in the field. 

Although olive root systems can be extensive and deep, measurements of root length 

density (RLD, cm cm
-3

) suggest that values usually range between 0.1 and 1.0 cm cm
-3

 

(E. Fereres, unpublished), less than in herbaceous crops and some deciduous orchards 

(Fereres and Goldhamer 1990).  The seasonal distribution of root growth has been studied 

by Fernández et al. (1991) for ‘Manzanillo’ (southern Spain) and Palese et al. (2000) for 

‘Coratina’ (southern Italy).  Both studies used mini-rhizotrons to compare rain-fed with 

irrigated orchards planted at 6 × 6 m.  Irrigation in the Spanish study was by drip and in 

Italy by a single micro-jet per tree spanning 1 m
2
.  Observations from mini-rhizotrons are 

considered to overestimate actual RLD but they can provide reliable estimates of 

comparative activity and, given that caution, the overall conclusions of the two studies 

are similar.  Under localized irrigation, RLD increased in the wetted zones and while 

roots in rain-fed orchards extended widely, those in drip- and micro-spray-irrigated 

orchards tended to be concentrated within the wetted volume.  Maximum RLD occurred 

in winter-spring in rain-fed systems but in summer in irrigated systems. The studies have 

thus provided evidence of the plasticity of olive root systems to adjust to the localized 

wetting patterns, now common in many new plantings under micro-irrigation. The 

evergreen nature of the olive, and the usual wetting of the whole profile in winter in 

Mediterranean climates, usually ensures that roots proliferate within the potential root 

zone, regardless of the irrigation method. 

Root morphology is also affected by water supply. Lo Gullo et al. (1998) 

observed that that roots responded to drought stress by forming a multi-layered and more 

suberized endodermis, while Fernández et al. (1994) reported that the transition to 

secondary growth occurs closer to the apex for roots that extend into dry rather than wet 

soil. 

B.  Floral Induction, Initiation, and Differentiation 

Flowering in olive occurs on buds formed in the leaf axils on shoots produced in the 

previous year.  The sequence of development passes through induction, when changes in 

gene expression commit the future development of buds to floral structures, to initiation, 

when the floral structures are evident by microscopic examination, and finally to 

differentiation as the buds grow to form mature flowers. 
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Floral induction occurs in mid-summer (7 to 8 weeks after full bloom) around the 

time of pit hardening (endocarp sclerification) of the current season’s fruit, i.e. stage 

PS75 (Sanz-Cortés et al. 2002).  Floral induction is apparently influenced by compounds 

released by the developing fruit and seed that are translocated to the buds (Stutte and 

Martin 1986; Rallo and Martin 1991; Fernández-Escobar et al. 1992; Lavee 1996; Fabbri 

and Benelli 2000).  Induction cannot be observed visually but associated changes have 

been detected by histochemical techniques.  Thus, Pinney and Polito (1990) and Navarro 

et al. (1990), both working with ‘Manzanillo’, recorded changes in the ribulose nucleic 

acid content of buds in autumn that are linked to morphological changes that precede 

floral initiation.  

The recognition of induction as a separate phase that is established before winter 

is important to understanding the complexities of flowering in olive.  Vernalization 

(exposure to cool temperatures, <7ºC) controls the second phase of the reproductive 

process, i.e. the initiation of induced buds, sometimes described as their “release from 

dormancy” ( Rallo and Martin 1991; Fabbri and Benelli 2000).  After bud burst in Spring 

the entire tree enters a period of growth with a dominant response to increasing 

temperature.  This changed response to temperature explains why early analyses of 

thermal response of flowering in olive emphasized the importance of alternating 

temperatures and the conflicting requirements between low temperatures required for 

vernalization and warm temperatures required for growth and subsequent flowering 

(Denney and McEachern 1983). 

Although some morphological signs may be evident earlier, floral initiation can 

be unequivocally recognized soon after bud burst (PS53) about two months prior to 

flowering (PS60) in late Spring (Rapoport 1998; de la Rosa et al. 2000).  Some buds are 

initiated and some of those differentiate to produce inflorescences.  It is unknown if this 

results from incomplete induction or if the process is reversible.  In addition to internal 

controls, environmental conditions following bud burst are important determinants of 

floral morphology, including number of flowers per inflorescence and the proportion of 

staminate flowers (Rallo et al. 1981; Rapoport and Rallo 1991b). 

The inhibition of floral induction by fruit and seed growth also contributes to 

alternate bearing that is characteristic of olive.  Years of intense fruiting (“on”) tend to be 

followed by years of restricted flowering (“off” years).  This pattern of biennial flowering 

and yield, common in fruit trees, is well expressed in olive (Rallo 1998). 

C.  Response of Flowering to Temperature 

Hartmann’s group in California ( Hartmann 1953; Hartmann and Porlingis 1958; Hackett 

and Hartmann 1967; Hartmann and Whisler 1975) studied the role of temperature, 

including chilling in the flowering response of olive.  Based on this work, Denney and 

McEachern (1983) proposed an optimum temperature regime for flowering of 2 to 4ºC 

(minima) and 15.5 to 19ºC (maximum).  Plants grown at a constant temperature of 7ºC 

produced few if any flowers so this fluctuating temperature regime was interpreted as 

providing the optimum balance between the chilling signal (vernalization) that released 

induced buds for further development and the warm conditions that supported the 

associated growth, without high temperature that could reverse the chilling effect 

(devernalization).  It is unknown how widely this model can be applied, or if optimum 
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temperatures or durations vary among cultivars.  It is known, however, that a chilling 

requirement is not absolute because olives flower and produce fruit in various subtropical 

locations where vernalization requirements, as defined above, are not met. 

A temperature-based model for predicting flowering in olive is urgently needed to 

specify individual responses of vernalization and devernalization during the successive 

stages from induction through initiation and differentiation to full bloom.  Hopefully this 

advance would make it possible to evaluate the actual adaptive range of cultivars and 

untangle the internal non-temperature effects on flowering.  Ayerza and Sibbett (2001) 

evaluated the suitability of new sites for olive production in the Chaco Region of 

Argentina by comparing the probabilities of minimum and maximum temperatures in the 

ranges 0.0 to 12.5 and 12.5 to 21.1ºC, respectively, and the probabilities of extreme cold 

(<0ºC) and heat (>37.8ºC) during flowering periods, with those of established sites in 

Argentina, Italy, Mexico, Spain, and USA.  By these criteria, all Italian and Spanish sites 

had at least 150 vernalizing days per year while no existing Argentine site, San Juan (31
o 

34´ S, 598 m), Mendoza (32
0 

50´ S, 704 m), or San Rafael (34
o 

35´, 748 m), exceeded 

110. All proposed new Chaco sites had less than 60 vernalising days and also recorded 

the greatest daily probabilities of heat damage during flowering.  On this basis caution is 

warranted in expanding olive areas in Argentina and comparable environments and 

should be based on evaluations of the potential damage of high temperature at flowering 

rather than on low probability of vernalization.  This is evident because olives flower and 

bear fruit in a number of subtropical regions in the world.  The same study (Ayerza and 

Sibbett 2001) reported that ‘Criollo’ can bear good crops at a coastal site at Ica, Peru (14
o 

05´ S, 398 m) without, according to the above definition, any exposure to vernalising 

temperatures. 

The flowering of ‘Criollo’, without evident vernalization, on the coastal lowlands 

of Peru, is not only a matter of cultivar difference because other cultivars are grown there 

and they also flower.  It is common practice in that region to suspend irrigation during the 

dry winter months.  This is not simply a copy of traditional management practices in 

Spain where winters are cool and rainy; rather the practice has developed because water 

stress promotes flowering once irrigation is resumed in spring (F. Castillo, pers. comm.).  

It seems that water stress at that time plays a role in the flowering of olive similar to that 

of low winter temperatures in the Mediterranean. This proposed similarity may offer an 

important physiological lead to be pursued in untangling the nature of internal controls of 

flowering in olive. 

The beginnings of a multistage model of flowering response can be found in 

Alcalá and Barranco (1992).  Working with flowering dates recorded for a collection of 

170 cultivars at Córdoba, Spain, they established the period during which heat 

accumulation above a threshold temperature best explained the variation in flowering 

times over a ten-year period.  They established that a common mean daily threshold 

temperature of 12.5 ºC was appropriate for all cultivars but that the best fit to 

commencement of the heat accumulation period varied among cultivars from 1 January to 

1 March. 
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D.  Flowering, Pollination, and Fertilization 

Flowers are produced in great numbers in paniculate inflorescences of up to 40 flowers 

each, depending on cultivar and growing conditions.  One report (Tous and Ferguson 

1997), reports up to 500,000 flowers per tree under Calfornian conditions but the number 

clearly depends upon tree size and growing conditions.  The individual branches of 

inflorescences contain from 1 to 4 flowers on short peduncles (Martin 1990; Rapoport 

1998).  Flowers can be bisexual (perfect) or male (staminate), the proportions depending 

upon cultivar, growing conditions, “on” or “off” condition, and position on tree.  In 

individual studies, the percentage of perfect flowers has ranged from 20 to 96 (Rapoport 

and Rallo 1991b; Cuevas et al. 1994; Dimassi et al. 1999; Ferrara et al. 1999; Ghrisi et al. 

1999).  Dimassi et al. (1999) recorded a greater proportion of perfect flowers in the 

middle of inflorescences located in the middle of flowering shoots on the southern 

(sunny) side of trees, the most favorable location for the growth of individual shoots on 

trees in the northern hemisphere.  Perfect flowers contain four ovules, two in each of two 

locules (Rapoport 1998) and are short lived.  Pollen is produced in abundance over ca. 5 

days and individual stigmas remain receptive for ca. 2 days. Flowering in individual trees 

lasts for ca. 10 days and in orchards for ca. 20 to 30 days. 

Pollination is by wind and is hindered by strong winds and rain and may also 

suffer from high temperature or hot winds that desiccate pollen and stigmas.  For 

individual trees, the success of such a haphazard process increases with flower number 

and pollen production.  Subsequent fertilization comprises a number of steps.   It involves 

recognition of pollen by the stigma, and in response, the growth of pollen tubes each 

carrying two gametes downwards within the style towards the ovules in the embryo sac.  

Usually a single pollen tube enters the embryo sac (Rapoport 1998).  This process must 

be complete while the ovule remains receptive and hence pollen vigor is important, 

especially when plant and environmental conditions are suboptimal for ovule fertility and 

pollination. Staminate flowers desiccate first, quickly followed by perfect flowers after 

successful fertilization (Rapoport and Rallo 1991b).  

It has been observed that pollen-tubes grow more vigorously following cross 

pollination between cultivars (Fernández-Escobar et al. 1983; Ghrisi et al. 1999; Cuevas 

et al. 2001). 

E.  Self Compatibility 

Olive is partially self-incompatible so cross pollination increases fruit set and yield.  

There is good evidence that cross pollination leads to more vigorous growth of pollen 

tubes (Ghrisi et al. 1999; Cuevas et al. 2001) that can be advantageous in adverse 

environmental conditions when pollen is in short supply or stigma receptivity or ovule 

fertility is low (Fernández-Escobar et al. 1983).  Under those conditions, high pollen-tube 

vigor may improve fruit set and yield.  Recent work with crosses among ‘Picual’, 

‘Hojiblanca’, ‘Manzanilla’, and ‘Arbequina’ revealed that improved fertilization was not, 

however, the only advantage of cross-pollination (Cuevas et al. 2001).  Those 

experiments report increases in both the proportion of fruit retained and the number of 

fruit set. This identifies the existence of additional recognition-acceptance-rejection 

mechanisms operating between embryo and maternal tissue that are clearly important 
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given the considerable experience that greater fruit set need not translate to greater fruit 

retention. 

The benefit of cross-pollination is well recognised in many production zones in 

the form of specific recommendations for pollinizer-receptor pairs and maximum 

distances (e.g. 30 m) between pollinizer trees in orchard design (Griggs et al. 1975; Rallo 

1998; Dimassi et al. 1999; Ferrara et al. 1999).  In other regions, where little attention has 

been previously paid to cross pollination, benefits are now being detected.  An example is 

found in Jaen Province, Andalusia, Spain, where 200,000 ha have been planted to 

‘Picual’ without concern to the provision of pollinizers.  Recent work in that region has 

detected advantages to fruit set and yield by cross pollination among the cultivars 

‘Picual’, ‘Hojiblanca’, and ‘Arbequina’.  This has led to recommendations for associative 

plantings of those cultivars, considered to be especially valuable in years of poor 

flowering (Cuevas et al. 2001).  There is ample evidence, however, that some major 

cultivars have a relatively high self-compatibility that provides adequate pollination 

under most seasonal conditions. Examples include the extensive plantings of ‘Picual’ in 

Andalusia; ‘Chemlali’ in central Tunisia, and ‘Arbequina’ in Catalonia , each grown 

widely without pollinizers (Anon. 2000). The causes and consequences of this behavior 

need to be investigated. Note that detection of the degree of self-compatibility is 

potentially underestimated by the routine method of bagging inflorescences on individual 

trees.  Quite apart from the danger of unsuitable environmental conditions within the 

bags, this technique evaluates within-tree and not within-cultivar compatibility.

The inclusion of pollinizers is easily satisfied in commercial practice because 

there are good reasons to design orchards with more than one cultivar, including, 

diversification of oil quality, spreading harvest requirements, minimizing risk from 

environmental variability, and changing market preferences.  Further work is urgently 

needed, however, because uncertainties remain on the necessity of receptor-pollinizer 

pairs, and their optimum combinations, especially in new olive-producing regions. 

F.  Fruit Set, Filling, and Maturation 

In most cultivars, a single fertilized ovary develops per inflorescence but there are 

exceptions, particularly in cultivars with small fruits such as ‘Arbequina’ and ‘Koroneiki’ 

that usually produce more on most inflorescences.  Most ovaries, fertilized or not, soon 

abort. Fruit set at 2 to 3 weeks after flowering (PS71) may account for 10 to 15% of total 

flowers but it continues to decrease, to 7 to 10%, in the following 4 to 5 weeks (i.e. 6 to 7 

weeks after full bloom, PS75). Thus in ‘Manzanillo de Sevilla’, just 25% of ovaries were 

retained at the end of flowering (marked by petal drop, PS68) (Troncoso et al. 1978), and 

only 5% survived to fruit filling (Rapoport and Rallo 1991a).  Analysis of growth patterns 

of ovaries following fertilization indicates a possible role of substrate competition (Rallo 

and Suarez 1989; Rapoport and Rallo 1991a).  Some ovaries develop parthenocarpically, 

i.e. without fertilization.  Those fruits (zofairones) are smaller and commercially 

unimportant because most abort quickly and few persist until harvest (Rapoport 1998).  

Their formation may, however, be indicative of environmental conditions or 

physiological defects during flower formation, pollination, or fertilization.  The 

characteristic of many olive cultivars to set a single fruit per inflorescence establishes the 

inflorescence as the effective reproductive unit (Rallo and Fernández-Escobar 1985) 
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which is more appropriately, as well as more easily, used than flower number to calculate 

an index of fruit set.   

Despite the usual large losses of flowers and fruits, partial fruit removal (fruit 

thinning) is often used to increase fruit size.  This can be achieved by mechanical 

(beating with sticks) and chemical methods (e.g. naphthaleneacetic acid) during early 

stages of fruit growth (PS71) (Kreuger et al. 2002).  For table cultivars, where fruit size 

determines quality, as many as 70% of fruitlets may be removed in years of heavy fruit 

set.  Fruit thinning is also undertaken in attempts to minimize alternate bearing but it may 

be an ineffective practice because it appears that complete flower removal is required to 

ensure return to bloom (Rallo et al. 1994). 

Growth of the olive fruit (botanically a drupe) lasts for 4 to 5 months (PS71 to 

PS89) and involves cell division, cell expansion, and storage of metabolites, dominantly, 

but not exclusively, in that order.  After a 1 to 2 months of intense cellular division, 

during which 80% of final cell number is formed (Manrique et al. 1999), the three 

component tissues, exocarp, mesocarp, and endocarp, can be identified visually.  The 

first, comprising a layer of epidermal cells rich in chloroplasts, is covered by a thin 

cuticle and contains rudimentary stomata that are lost in the following month (Proietti et 

al. 1999a). The mesocarp tissue is rich in protoplasm and surrounds the endocarp that is 

increasingly sclerified.  Then, about 2 to 3 months after fruit set and about half way 

through the fruit-growth period, the fruit is covered by a waxy layer, mesocarp cells have 

developed vacuoles, and the endocarp has completely sclerified (pit hardening, PS75) and 

ceases enlargement.  Then follows the major period of oil deposition that continues until 

maturity. This sequential pattern of tissue growth determines the response of the major 

fruit characteristics such as size, weight, pulp/pit ratio, and oil content to weather, fruit 

load, and orchard management practices (see also Section VID). 

An issue of considerable commercial importance is the intrinsic seasonal pattern 

of fruit growth. Initial reports indicated that the pattern of olive fruit growth (Lavee 1986, 

1996) followed a double sigmoid, that is characteristic of deciduous stone fruits (Mitchell 

and Chalmers 1982).  However, while periods of suspended fruit growth commonly 

coincide with pit hardening in rain-fed olive orchards subject to summer water shortage, 

fruit growth continues under irrigation. Fruit dry weight increases linearly during the first 

part of fruit growth (Fig. 1) in the absence of water deficits, slowing when oil 

accumulation processes (Section VID) increase the energy content of dry matter 

(Tombesi 1994). 

At fruit maturity, three abscission zones develop, one where the peduncle joins 

the branch, and two more where the pedicel joins the peduncle and fruit, respectively 

(Barranco et al. 2002).  In consequence, the physical force required to remove fruit 

decreases during maturation. The process of abscission is under the control of ethylene 

released by the maturing fruit, and there is considerable variation between cultivars 

(Hartmann et al. 1970; Rallo 1998).  Controlled and synchronized fruit fall benefits fruit 

quality, especially with the advent of mechanical harvesting when the objective is to 

remove all fruit in a single operation without physical damage to the tree.  Various 

treatments are available to decrease retention force, including the application by spray of 

ethylene compounds and monopotassium phosphate (MKP).  The latter appears to 

stimulate release of ethylene compounds (Yamada and Martin 1994).  Fruit retention 

 11



force (FRF) of ‘Arbequina’ and ‘Picual’ decreased within 2 weeks of application of 3% 

MKP (with surfactants) and remained less than the naturally declining FRF (control) for 

up to 10 weeks (Barranco et al. 2002).  Harvest efficiency, the proportion of fruits 

harvested, increased from 45 to 60%, with best results obtained 4 weeks after treatment.  

Treatment did not change the distribution of separation zones; most fruit were released at 

the peduncle and least at the fruit itself. 

G.  Efficiency of Reproductive Strategy 

In years of heavy flowering, a fruit set of 1 to 2% of flowers can be adequate for a good 

commercial yield and as many as 50% of flowers can be removed without effecting final 

fruit number (Lavee et al. 1999).  The energetic and nutrient efficiencies of the massive 

flowering and fruit loss of olive appear small but there is little quantitative information on 

these aspects.  Bouranis et al. (1999) presented biomass and nutrient content of olive 

inflorescences at flowering.  Assuming 2 million inflorescences ha
-1

 (200 trees ha
-1

 with 

an average of 10,000 inflorescences of 70 mg dry weight each), the total dry weight at 

full flowering would amount to 140 kg ha
-1

, containing around 300 g N, 150 g P, 850 g 

K, 500 g Ca, 40 g Mg, 18 g Fe, and around 2 g each of Cu, Zn, and Mn (Table 2).  This 

biomass could be easily produced by normal olive canopies with growth rates that would 

approach 65 kg ha
-1

 day
-1

 in the month up to flowering, without the necessity to draw on 

reserves.  That growth rate was calculated using a daily incoming photosynthetically 

active radiation (PAR) of 8 MJ m
-2

 with 60% intercepted by the canopy and a radiation-

use efficiency (RUE) of 1.35 g MJ
-1

 intercepted PAR measured by Mariscal et al. (2000b) 

on young plantations of ‘Picual’ growing at high density.  The nutrient requirements of 

this growth are not substantial and there is also the possibility of substantial mobilization 

of nutrients into surviving fruitlets during the flower- and fruit-abscission period. 

Overall, we identify three features that minimize energy and nutrient costs of 

reproductive strategy in the olive.  First, the large proportion of male flowers increases 

pollen production at lower cost per flower or pollen grain than for perfect flowers.  

Second, the rapid abortion of flowers following successful fertilization on individual 

inflorescences further reduces wasteful tissue growth.  Third, the rapid abortion of many 

fertilized ovaries occurs before they become significant sinks for assimilate.  On balance 

olive may have an effective strategy when compared to the alternative of producing 

nectar, adopted to secure pollination in many species. 

 

III.  WATER ECONOMY 

The metabolism of all terrestrial plants operates in an aqueous phase, placing them in the 

hostile interface between a transiently wet soil and a relatively dry atmosphere.  In this 

sense, plant growth can be considered as resulting from an interchange of internal water 

for carbon dioxide from the atmosphere required for photosynthesis.  The loss of water 

from plant leaves (transpiration, T) establishes internal flows that eventually draw 

replacement water from the soil via roots.  Rates of water flow into and within the tree 

depend upon gradients of water potential (∂ψ/∂z) and hydraulic conductance to transport, 

with the xylem providing a high-conductance, direct, internal pathway between roots and 

canopy.  The internal water status of plants thus varies dynamically in response to the 

balance between loss and uptake. The important short-term dynamic is diurnal.  
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Evaporative demand increases as the day advances and plant water content falls to a 

minimum around midday provided soil water content is high.  It recovers in the evening 

so that plants may then approach equilibrium with the water potential of the soil (ψs).  As 

the root zone dries, however, leaf water potential (ψl) falls further each day and, despite 

gradual control of water loss by stomatal closure, recovery slows until the soil is re-

wetted by rainfall or irrigation.  After a prolonged dry period ψl is much lower than ψs, 

even by dawn the following day.  If serious internal water deficit persists, metabolism is 

disrupted and plants eventually die from desiccation. 

Growth and survival, therefore, require adaptations to the uptake and conservation 

of internal water status that are appropriate to the environmental patterns of water supply 

and demand.  The special features by which the evergreen olive is able to maintain an 

adequate internal water status during severe summer drought derive from its ability to 

restrict loss of water to the atmosphere and withstand the substantial internal water deficit 

that is required to maximize extraction of water from the soil.  In practice, orchard 

management greatly assists this balance between uptake and loss by adjusting the size of 

the transpiring canopy that intercepts radiation by controlling the ground cover that 

minimizes or prevents non-tree transpiration, and in some situations by full or deficit 

irrigation.  Canopy volume and cover are managed through planting density and pruning 

(Pastor Munoz Cobo and Humanes Guillen 1996; Gucci and Cantini 2000), while ground 

cover is controlled either by tillage or herbicides (Pastor et al. 1998). 

A.  Collection of Water by Root Systems 

Root systems are possibly the least explored area in crop physiology even though their 

roles in the uptake of water and nutrients are central to crop adaptation and management. 

Whereas we have relatively good information on the production, distribution, activity, 

and lifespan of leaves, comparable information is not available for roots. Without 

information on the seasonal and spatial distribution of length, surface area, and activity 

we cannot expect to properly understand the capacity of root systems to absorb water and 

nutrients.  Newly formed roots probably provide the uptake capacity while older roots, 

that survive harsh conditions and predation to undergo secondary thickening, provide the 

framework for exploration, the conduit for transport to foliage via trunk, and anchorage to 

the soil.  There are, however, few data to help us quantify the processes and understand 

their dynamics in olive. 

Most olive trees are produced vegetatively and do not have root systems 

dominated, at the outset, by a principal axis as occurs in trees grown from seedlings.  

Rather, many adventitious roots are produced from the base of either woody or semi-

woody cuttings.  The lateral spread of these root branches and the depth they achieve 

depend upon tree vigor, soil depth, mechanical resistance, aeration, moisture content, 

fertility, pruning, and perhaps cultivar (Navarro and Parra 1998).  There is folklore that 

olive tree roots extend laterally only to the width of the canopy and this may be true of 

surface roots in orchards that are frequently tilled.  It can be more reasonably concluded, 

however, that the successful tree spacing of traditional orchards are those that explore the 

soil volume completely, at least in the driest times. The success of olive cultivation in 

marginal soils must be attributed, at least in part, to its root system, not only in extent but 

also in its plasticity and capacity to react quickly to changes in soil water content. 

Unfortunately, we can only infer some of these properties indirectly, from shoot behavior. 
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A number of papers refer to aspects of root distribution and performance in olive ( 

Rieger 1995; Moreno et al. 1996; Palese et al. 2000) but there is little systematic 

information about root distributions and dynamics.   In one study, Fernandez et al. (1991) 

made extensive observations by trench excavation and auger sampling to 2 m depth 

within 7 × 7 m orchards of 20 year-old ‘Manzanillo’ (table olive) growing on a deep 

sandy loam soil at Sevilla, Spain. The observations, made in summer, revealed that 

irrigation increased root length density (RLD) but decreased the spread of roots, largely 

confining them to the wetted area. It is probable that roots, developed outside the wetted 

area during the rainy periods in that treatment, either died or were not detected by the 

sampling technique.  In a 12-year-old rain-fed treatment, roots were well distributed to 2 

m depth and to a distance of 2 m from the tree but nowhere with densities exceeding 0.5 

cm cm
-3

.  Except under the canopy, roots were less frequent in the surface than in lower 

layers.  In contrast, drip irrigation to 0.4Epan for 8 y had dramatic effects, with roots 

largely confined to the dripper line and RLD up to 6 cm cm
-3

 in the surface layer adjacent 

to the trees.  Such values are extremely high and suggest either extreme confinement or 

contamination of samples by roots of weeds.  In another plot of finer surface soil texture, 

but where root penetration was restricted to 80 cm depth by an impervious layer, RLD in 

similar locations never exceeded 1 cm cm
-3

 and roots were more evenly distributed in the 

wetted volume. Away from the canopy, there were few roots in the surface along the 

dripper line, or at depth on transects running at right angles to it. Tillage, undertaken 

routinely three times per year to 20 cm, could explain the low surface densities in both 

treatments, but there is no explanation for absence of roots at depth under irrigation. 

Analysis of the two treatments of Fernández et al. (1991) can be extended to 

estimate total root length as an important parameter of the water-collecting capacity of 

root systems.  Here, RLD profiles to 1.5 m and spatial distributions within 4 × 4 m 

centred on the tree reveal mean RLD for roots <0.5 mm diameter of 0.177 and 0.224 cm 

cm
-3 

for rain-fed and irrigated treatments, respectively.  If this soil volume (24 m
3
) 

sampled most of the root system, then the corresponding root lengths were 42.4 and 53.6 

km per tree.  Even allowing for the smaller tree density and estimation of RLD from root 

weight that possibly underestimates the total length of fine roots, these estimates greatly 

exceed those reported for 6-year-old ‘Coratina’ at 6 × 3 m spacing (Dichio et al. 2002). 

There, RLD in irrigated and rain-fed trees of 0.022 and 0.018 cm cm
-3

 within explored 

volumes of 16.8 and 13.4 m
3
, estimate total length per tree at 3.7 and 2.5 km, 

respectively. 

In terms of tree water balance, the importance of root length resides in the 

capacity of the root system to obtain water to support the transpiring leaf area (see 

Section IIID).  In sunflower, Connor and Jones (1985) recorded root lengths of 7.8 and 

5.2 km m
-2

 ground area, corresponding to root length/leaf area ratios of 2.5 and 4.8 km 

m
-2

 leaf area, for rain-fed and irrigated crops, respectively.  If the LAI of the rain-fed 

olive orchard (Fernández et al. 1991) was 0.4, a small but typical value of a good orchard 

subjected to the severe pruning practices in that area, then at 7 × 7 m spacing, the root 

length/leaf area ratio would vary from 2.2 to 2.7 km m
-2

, a comparable value to that of 

sunflower.  The contrast between RLD reported in the two studies, in Spain and Italy 

respectively, is an illustration of the uncertainties, assumptions, and differences found in 

the literature on this subject. 
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In many species, colonization of roots by mychorrizae is known to affect root 

morphology and assist the uptake of water and nutrients, especially under conditions of 

low fertility and water supply.  Arbuscular mycorrhizae have been recorded in olive 

(Hayman et al. 1976) and while there is no information on the impact on tree 

performance in the field, growth advantages have been reported in rooted cuttings.  

Citernesi et al. (1998) recorded more extensive and more branched root systems in 

‘Frantoio’, ‘Moraiolo’, and ‘Leccino’ and greater shoot growth in ‘Frantoio’ and 

‘Moraiolo’ following inoculation by Glomus mosseae. 

B.  Leaf Anatomy and Water Relations 

Olive leaves are well adapted to conditions of water shortage.  They are small (5-6 cm 

long and 1-1.5 cm at widest point), sclerophyllous, and have stomata on the lower 

(abaxial) surface only.  The specific leaf mass (SLM) was in the range 190 to 220 g m
-2

 

for field-grown plants of ‘Picual’ (Mariscal et al. 2000b), although smaller values are 

reported for plants grown under controlled conditions (e.g. 130 g m
-2

 for ‘Frantoio’ and 

‘Leccino’) (Gucci et al. 1997).  Leaf surfaces, especially the abaxial ones, are covered 

with wax sheets and peltate trichomes.  The latter are characteristic scales supported 

above the epidermis on single cells (Fahn 1986).  Olive invests a considerable amount of 

biomass in trichomes, estimated at 2.6% of leaf dry matter for ‘Koroneiki’ 

(Karabourniotis et al. 1992).  These trichomes confer a less green color to the abaxial 

surface of leaves, that is especially noticeable in some cultivars, e.g. the appropriately 

named ‘Hojiblanca.  Mariscal et al. (2000a) measured the reflectivities of adaxial and 

abaxial surfaces of three cultivars.  ‘ Hojiblanca’ (0.063, 0.13), was the most reflective, 

followed by ‘Picual’ (0.06, 0.12), and then ‘Arbequina’ (0.06, 0.10).   High reflectivity, 

combined with small leaf size, assists with dissipation of sensible heat thus minimizing 

differences between leaf and air temperatures, a feature particularly important when 

stomata close under conditions of water shortage. 

The internal structure of the leaf is comprised of two layers of elongated palisade 

cells, one associated with each epidermis, that enclose the mesophyll with 

characteristically thick cell walls (Bongi et al. 1987a), dispersed vascular bundles, and 

lignified strengthening tissues.  The upper and lower palisade layers are usually three and 

one cell deep, respectively (Chartzoulakis et al. 1999; Bosabalidis and Kofidis 2002).  

The compactness of the internal structures explains the large SLM, the low transmissivity 

to PAR (<0.0002) (Mariscal et al. 2000a), and the small area of mesophyll cells exposed 

to air within the leaf, estimated in the range 6 to 15 m
2
 m

-2
 leaf area for ‘Ascolana’ and 

‘Koroneiki’, respectively (Bongi et al. 1987b; Chartzoulakis et al. 1999).  The 

consequence is a small internal conductance to water vapor transport of around 0.4 mmol 

m
-2

 s
-1

 (Chartzoulakis et al. 1999) for ‘Mastoidis’ and ‘Koroneiki’.  Stomata are small 

(length by breadth  = ca. 25 by 20 µm) with apertures ca. 11 by 5 µm and are embedded 

in the abaxial epidermis at densities of 400 to 800 mm
-2

 for ‘Mastoidis’ and ‘Koroneiki’ 

(Bosabalidis and Kofidis 2002). The stomatal characteristics, combined with the waxy 

cuticle and trichomes afford good control over water loss by transpiration.  The 

conductance of the waxy cuticle is negligible so that leaf conductance to water vapor 

transfer from sub-stomatal cavities to the boundary layer (gl) is essentially equal to the 

stomatal conductance (gs).  Many papers cited in this review use gs synonymously with gl. 
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Leaf size and structure vary among cultivars.  Chartzoulakis et al. (1999) and 

Bosabalidis and Kofidis (2002) provide comparisons of leaf anatomy of the two major 

cultivars, ‘Mastoidis’ and ‘Koroneiki’, grown on the island of Crete including their 

responses to water shortage.  Under water stress, leaves were smaller and thinner and 

were composed of more, smaller, and more densely packed cells in each tissue type.  

Trichomes and stomata were more numerous.  The net result was higher reflectivity, less-

conductive cuticles, improved stomatal control, and a smaller cell area exposed for 

evaporation within the mesophyll tissue, i.e. smaller gw (Bongi et al. 1987b).  Bosabalidis 

and Kofidis (2002) also established differences in cultivar response to water shortage. 

While there were no differences between the cultivars in cell wall elasticity or osmotic 

adjustment, greater response in stomata and trichome densities in ‘Koroneiki’ were 

consistent with its perceived greater drought tolerance. 

Cell turgor develops due to inflow of water in response to low osmotic potential 

(ψπ).  When water loss is excessive, cells lose turgor to the detriment of cell expansion in 

growing tissues, structural stability, metabolism, and guard cell movement for stomatal 

control.  Loss of water lowers ψπ and therefore increases ability to absorb water from 

neighboring cells and tissues, and in the case of roots, to withdraw water from the soil.  

Many plants, however, have developed the ability to further decrease ψπ during water 

shortage and maintain turgor, metabolism, and water uptake, by the accumulation of 

osmotically active ions and metabolites.  This is known as osmotic adjustment and in 

olive, the accumulation of mannitol (Flora and Matore 1993; Dichio et al. 2003) plays a 

major role. 

C.  The Olive Tree as a Hydraulic System 

A tree can be represented hydraulically as a conductor-capacitor model in which the 

canopy is connected in series to the root system by the xylem, and each of the three 

components is in turn connected in parallel to internal storage tissues (Fig. 2). On a 

diurnal basis, the active storage tissues are the sapwood, with associated cambium and 

phloem, and the canopy. The flows in the xylem are determined by gradients of water 

potential and hydraulic conductance, while movement to/from the storage tissue is 

explained by storage volume and capacitance (Q), i.e. change in water content per unit 

change in water potential (Q = ∂W/∂ψ). 

Sap flow begins in the morning when the canopy has lost enough water for the 

concomitant decrease in ψl to provide the required hydraulic lift.  At the same time, 

withdrawal from sapwood storage allows transpiration to further exceed uptake by roots 

and thus slow the decline in ψl.  The greater the storage relative to transpiration, the 

longer the delay until flow increases in the roots.  Late in the day, as ψ gradients reverse, 

storage can be replenished when water uptake exceeds transpiration.  As soil water 

content decreases from day to day, the time for recharge of storage is delayed, depending 

on stomatal control, later into the evening or night.  Such diurnal dynamics have been 

measured in many tree species (Wullschleger et al. 1998; Meinzer et al. 2001) and have 

revealed that storage contributes from 10 to 25% of daily transpiration. Schulze et al. 

(1985) working with 20-25 m Larix estimated a contribution of 16.7 kg from the canopy 

but only 1.6 kg from trunk. The contribution of heartwood (old xylem) is less certain and 

is perhaps restricted to periods of extended drought.  
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Leaves at the tops of trees are the most exposed and therefore experience the 

greatest evaporative demand.  They are also connected to the root system by the longest 

pathway and for both reasons are potentially subject to the greatest drop in ψl relative to 

the root (ψr).   The pattern of conduction in a tree, i.e. the hydraulic architecture, is 

therefore an important determinant of the distribution of ψl throughout the canopy. Salleo 

et al. (1985) measured hydraulic conductivity (m
2
 s

-1
 m

-2
 MPa

-1
) of stem segments of 1-

year-old shoots (cultivar not identified) in relation to xylem conducting area, xylem 

vessel area, and the leaf area supported by each segment.  All parameters decreased with 

distance along the shoot and were highly linearly correlated.  Conductivity of xylem 

vessels was an order of magnitude greater than that of xylem area, reflecting the small 

vessel diameter (ca. 10 µm) and large proportion of cell-wall tissue.  Vessel density 

varied from 250 to 400 mm
-2

.  There was also a strong linear correlation between the leaf 

specific hydraulic conductivity (LSC), the rate of water flow per unit leaf area supported 

per unit pressure gradient and xylem area (and also vessel area) presenting an appealing 

view of tree hydraulic architecture with coordinated expansion of leaves and conducting 

capacity of the xylem.  Thompson et al. (1983) had previously shown that LSC was 

related to stem diameter in primary, secondary, and tertiary branches of potted (4-year 

old, 1.5 m tall) plants of ‘Nocellara’ and ‘Coratina’. 

Sap flow in olive trees has been measured in the trunks (Fernández et al. 2001; 

Giorio and d'Andria 2002; Giorio and Giorio 2003) and in roots (Fernández et al. 2001) 

using sap-velocity sensors and estimates of the xylem conducting area. This work has 

shown that sap flow is variable at depth within the xylem, around the trunk, and from 

major root to major root. The observation that the root system absorbs water 

preferentially from moist regions is consistent with the theory of water flow in response 

to gradients of water potential, as is also the rapid re-activation of parts of the root system 

following rainfall or irrigation.  Favored connections between individual stems and parts 

of the root system could explain the variations of flow around the trunk.  This has yet to 

be shown in olive, but has been inferred in other species, e.g. Eucalyptus regnans (Legge 

1985) by following flow patterns of dyes injected into roots.  Less clear are the observed 

profiles of water flow in the xylem.  There is a general decrease in flow with depth that is 

consistent with gradual occlusion of vessels as they age, perhaps caused in part by 

embolisms.  The issues of the formation of embolisms by cavitation, their possible 

recovery, and their significance to drought tolerance are discussed in Section VIIA.  The 

suggestion by Fernández et al. (2001) that the small flow recorded in the periphery of 

xylem tissues in water-stressed trees reflects stomatal control of transpiration of active 

leaves, preferentially connected to the youngest xylem vessels, requires further 

evaluation.  Giorio and d’Andria (2002) also reported a similar form of sap-flow profile.  

Observations of night-time sap flow in roots are of interest to the role of capacitance in 

the water relations of trees, but additional associated measurements are required to 

establish the extent and importance of this, and other hydraulic characteristics, of olive. 

One limitation of sap flow sensors in determining actual rates of transpiration is 

uncertainty in the dimensions of the cross-sectional area of the conducting xylem. Sap 

velocity probes are usually placed in one or several radial positions and the cross 

sectional area of the trunk is assumed to be uniform around the circumference. 

Observations on olive trees have shown that the apparent area of the conducting xylem 

varies in thickness across various diameters, casting doubts on the assumption of uniform 
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cross sectional area (E. Fereres, unpublished).  Giorio and d’Andria (2002) installed sap 

flow sensors in a 7-year orchard of ‘Kalamata’ (6 × 3 m).  There were strong linear 

relationships between tree transpiration (T) and reference crop evapotranspiration (ET0) 

in both rain-fed and irrigated orchards.  Irrigation was set at 0.36 ET0 according to the 

product of a crop coefficient and a cover factor, both = 0.6.  Mean T of individual trees at 

ET0 = 5 mm day
-1

 was recorded as 9 and 22 L day
-1

 for rainfed and irrigated, respectively, 

corresponding on an orchard basis to 0.5 and 1.2 mm day
-1

. The T measured in the 

irrigated orchard was smaller than that calculated as 0.36 ET0 (1.8 mm day
-1

). Cohen et 

al. (2001) found that sap flow sensors underestimated tree T by about 50% when 

compared with lysimeter measurements in peach. 

Clearly there is much to be learned about these physiological and anatomical 

aspects of the water-conducting and water-storage characteristics of olive trees.  Work 

done thus far with potted plants and small branches should be extended into the field.  

The daunting task of dealing with old trees can await the development of knowledge and 

techniques on young trees.  They will present an easier target, and one that is more 

aligned with modern production systems.   A good start would be to describe the structure 

of the conducting system - the hydraulic architecture of the tree (Tyree and Ewers 1991). 

What is the volume of the conduction system relative to canopy area? How does LSC 

vary from trunk to final branches? How does the capacitance of the sapwood compare 

with that of the canopy?  How do storage and withdrawal contribute to diurnal and 

seasonal water status of the canopy?  And inevitably, because of the potential disruption 

that it causes, how do these systems respond to pruning? 

D.  Control of Transpiration 

There have been many studies of stomatal response to leaf water status and environment 

in olive (e.g. Abdel-Rahman and El-Sharkawi 1974; Natali et al. 1985; Xiloyannis et al. 

1988; Fernández et al. 1993; Fernández et al. 1997; Giménez et al. 1997; Chartzoulakis et 

al. 1999; Moriana et al. 2002).  They reveal that stomata respond in ways consistent with 

their role in controlling transpiration (T) and maintaining leaf water status.  Leaf 

conductance is small, and decreases as ψl falls and as vapor pressure deficit (VPD) 

increases.  The observations of Moriana et al. (2002) in an 18-year-old orchard of 

‘Picual’ at Córdoba are especially comprehensive.  They reveal the dominant interaction 

of ψl and VPD on gl at midday (Fig. 3).  Maximum conductance of 240 mmol m
-2

 s
-1

 at 

that time was recorded when midday ψl exceeded –1.65 MPa and VPD was small (ca. 1 

kPa).  Conductance fell with decrease in ψl.  The response to VPD persisted in leaves in 

which ψl exceeded –4.0 MPa, but below this value the small gl, in leaves that were 

substantially water stressed was unresponsive to VPD.  On a diurnal basis, gl attained 

maximum levels in the early morning, and then decreased to a minimum during midday 

hours.  In the afternoon, gl followed stable or declining patterns depending on 

environmental conditions.  Response to VPD is considered to operate through peri-

stomatal transpiration and isolation of guard cell water status from the bulk leaf (ψl).  The 

observation that stomatal aperture varied from place to place on olive leaves (Loreto and 

Sharkey 1990) is evidence of independence of guard cells at high ψl.  When ψl declines 

substantially, however, it is increasingly unlikely that guard cells can remain isolated and 

hence independently responsive to VPD. 
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The observed stomatal responses of olive are not, however, fully explained by 

changes in ψl and VPD.  For example, Moriana et al. (2002) found that maximum and 

midday gl varied seasonally, even under well-watered conditions, and were also affected 

by fruit load.  Thus olive stomatal responses to water stress cannot be interpreted using 

simplified physical models of the continuum of water status in trees because it appears 

that endogenous factors modulate responses in the long term. A similar conclusion first 

emerged from the analyses of interactions between gl and ψl of fruit trees growing in the 

Negev desert (Schulze and Hall 1982). 

In olive, the regulation of gl below its maximum during much of the day is the 

cause of the small canopy conductance (gc) for the entire orchard (Villalobos et al. 2000).   

The impact of small canopy conductance on orchard T depends on the degree of coupling 

of the canopy with the atmosphere  (MacNaughton and Jarvis 1983).  Smooth, short 

canopies of field crops are not well coupled with the atmosphere and show only small 

reduction in transpiration as canopy conductance is reduced.  In contrast, sparse, rough 

tree canopies, such as olive, are well coupled so a reduction in canopy conductance 

reduces T by a similar magnitude (Villalobos et al. 2000).  Small canopy conductance of 

olive explains the small values of the empirical crop coefficients recommended to 

estimate ET of olive orchards (Orgaz and Fereres 1998; Pastor et al. 2001).  At full cover 

(CC >0.5), drip-irrigated orchards experience little soil evaporation, and ET is in the 

range 50 to 65% of reference crop evapotranspiration (ET0).  Such values are less than 

those proposed for citrus (75%) and for most tree crops (85 -110% of ET0) (Allen et al. 

1998). 

IV.  MINERAL NUTRITION 

Olive, as other higher plants, requires macro- (C, H, O, N, S, P, K, Mg, Ca) and micro-

nutrients (Fe, Zn, Cu, Mn, B, Cl) in appropriate amounts for continuing growth and yield.  

With exception of C, H, and O, obtained from air and water, the remainder are absorbed 

by roots from soil.  Nitrogen deserves special attention, not just because it is the nutrient 

required in the greatest amounts, but also because unlike other soil-borne nutrients, it 

exists dominantly in the organic phase.  In the soil, N exists in continual interaction 

between living organisms, dead organic matter, and the mineral forms NH4
+
 and NO3

-
.  

Ammonium (NH4
+
) does not persist in aerobic soils and NO3

-
, a large molecule, exists 

dominantly in the soil solution.  Three features typify the nutritional relationships of 

olive.  First, as a perennial, it is able to mobilize and store nutrients internally, for 

example by withdrawal from senescing organs, especially leaves.  Second, the mineral 

content of harvested fruit is small and thus the export of nutrients, especially from low-

yielding rain-fed systems, is trivial.  Third, pruning together with natural litter fall 

provides the possibility of significant external cycling of nutrients, including the recovery 

of nutrients from depth and their concentration in surface layers of the soil. 

The nutrition of olive can be discussed in two ways.  The first is the detection of 

nutrient deficiency, or in some cases toxicity, by visual symptoms and soil and/or plant 

tissue analysis. The application of knowledge here is on tactical fertilizer management to 

maintain or improve productivity.   The second concerns the contribution to the long-term 

functioning of olive orchards by the cycling of nutrients internally within the trees and 

externally by litter fall, pruning, and the return of harvest residues.  An understanding of 

nutrient cycling is required for the development of sustainable nutrient management 
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strategies that have special importance to the current expansion of organic production 

systems. 

A.  Deficiencies and Toxicities 

Catalogues of visual symptoms of nutrient deficiency have been published for many 

species and while some photographs are available for olive (Sanz Encinas and Montanes 

Garcia 1997; Fernández-Escobar 1998), no comprehensive catalogue has been published.  

Analyses of soil nutrient content are also useful in diagnosis.  Caution must be expressed 

here, however, because in addition to substantial spatial variability within orchards, there 

may also be large differences between amounts and availability of individual nutrients in 

the soil.  Soil analysis is most useful to detect the presence of extremely deficient or toxic 

levels of nutrients, e.g. deficiencies of N, P, K, Fe, and B or toxic levels of Na, Cl, or B.  

Soil pH is itself a simple diagnostic test because it can predict availability of some 

nutrients, e.g. Mn and Fe. 

The best means for detecting the nutritional status and thus the fertilizer 

requirements of olive orchards is by analysis of leaf nutrient concentration (Fernández-

Escobar 1998).  While there has also been some success using flowers in other crops, 

only preliminary data are available for olive (Bouranis et al. 1999).  For leaf analysis, 

care is needed in sampling, because leaf nutrient concentration varies depending upon 

leaf age, position on tree, weather conditions, and fruit load (see e.g. Fernández-Escobar 

et al. 1999; Sibbett and Ferguson 2002).  Consequently, a standardized sampling 

procedure is required.  For olive, this currently requires the collection around PS71 to 

PS74 of two to three current year’s leaves, including petioles, from the base to the middle 

of non-fruiting shoots at various positions around the canopy. Time of leaf collection is 

not well defined and some data suggest that nutrient concentrations change during July 

but are more stable in October (M. Pastor, pers. comm.).   To assess an orchard for 

nutritional requirements, a number of trees should be sampled.  Sampling should avoid 

atypical trees, except for the specific purpose of diagnosis.  Comparison with diagnostic 

data such as presented in Table 1 can, together with observations of visual symptoms, soil 

analysis, and local experience provide a basis for fertilizer recommendations. Care should 

be taken in assessing fertilizer N needs based on short-term field trials, because olive, as 

most perennials that evolved in Mediterranean environments, has the capacity to mobilize 

N to meet its small needs for several years before leaf deficiency or a response to the 

addition of N can be detected.   

The objective of fertilization is to maintain or improve the nutrient status of the 

tree, so as to maintain or increase crop productivity.  It can be achieved, depending on 

individual nutrient and cost, by direct application to soil (either broadly or directed to 

each individual trees) or more efficiently through injection into a drip irrigation system 

(fertigation), application by spray to canopies (Fe, B, N), or by direct injection (Fe) into 

tree trunks (Fernández-Escobar et al. 1993). All these methods are appropriate and are 

used for olive. 

B.  Extraction and Cycling of Nutrients in Olive Orchards 

The available data on nutrient concentrations in the various organs of olive are variable.  

There are many data on leaves and fruit, one study on inflorescences (Bouranis et al. 

1999) but nothing, to our knowledge, on branches, trunk, and roots.  Data presented in the 
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studies of nutrient uptake of young orchards (Celano et al. 1999; Xiloyannis et al. 2002) 

are only marginally useful.  A compilation of data (Table 2), together with information on 

organ biomass, can be used to evaluate a range of issues in nutrient cycling in relation to 

orchard function and management. These include what is present in trees, how much is 

required for each year's growth, how much is cycled internally, what is removed by 

harvest, and what is cycled externally by litter fall and pruning.  As olive production 

becomes more intensive, the nutrient dynamics and requirements contrast sharply with 

those of traditional olive culture.   

The data in Table 2 allow estimates of extraction of nutrients in harvested fruit.  It 

is small for P (1.1 kg t
-1

), greater for N (7.2), and greatest for K (10.9).  Natural net 

accretion of N from storms and dust could account for extraction by 1 t ha
-1

 yield, but 

there is no such replacement for K, which is extracted in greater quantities, pointing to 

the need for care in developing K fertilization strategies.  From a physiological 

perspective, there is no information on the role of K in fruit growth of olive but by 

comparison with other plants K must play many roles in olive physiology, including 

some critical ones in the water relations through its osmotic activity. 

There are few individual studies of the internal cycling of nutrients in olive.  

Exceptions are the comparisons of nutrient concentrations of mature and senescent leaves 

of 12-y-old ‘Picual’ (Fernández-Escobar et al. 1999) and observations of the apparent 

movement of B from young leaves to flowers during anthesis (Delgado et al. 1994; Perica 

et al. 2002).  The data in Table 2 permit an analysis of the internal nutrient cycling from 

leaves as they senesce because in this case the authors report that leaf mass (85 mg) did 

not change from maturity to the senescent condition. Leaves live for 2 to 3 years so ca. 

40% of the canopy is lost (and replaced) each year.  The biggest recorded change is for N. 

For an orchard, N withdrawal will be around 12 kg ha
-1 

per unit loss of leaf area index 

(LAI) (SLM = 200 g m
-2

) which amounts to 39% of the N supply required for leaf 

replacement. External cycling of N by leaf fall is around 19 kg LAI
-1

 but not all of this 

would be available to the tree after leaf fall. Severe pruning that removes up to 30% of 

the leaf canopy (with associated branches) is an infrequent intervention, but one that has 

substantial effects on nutrient and water demand as well as on nutrient cycling. The 

impact on nutrient cycling would depend on whether the pruned branches are removed 

from the orchard, burnt in place, or chopped and left on the soil surface, as in 

recommended organic farming practices.  Information on nutrient contents of wood and 

on external recycling is needed to make complete analyses. 

V.  CARBON ACCUMULATION 

Carbon accumulation is the net result of assimilation of CO2 from the atmosphere by 

photosynthesis and subsequent dissimilation of part of that by respiration.  The remainder 

is retained as the major component of biomass.  Leaves are the dominant organs of 

assimilation in olive while all living tissues respire.  Fruit play a minor role in 

assimilation but have high respiration rates consistent with their intense metabolic 

activity in lipid synthesis (see Section VID).  Respiration provides energy in appropriate 

forms (e.g. ATP, NADH) for all metabolic processes ranging from maintaining integrity 

of membranes, transport and interconversions of nutrients, through to providing the 

energy for the construction of new organs.  While there is no single chemistry of 

respiration (release of CO2), it is useful to consider it in two components.  The first is 
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maintenance respiration (MR) that provides the energy that sustains existing organs and 

the second, constructional respiration (CR) that provides the energy to build the complex 

chemical compounds of new tissues.  Maintenance respiration is expressed as CO2 release 

per unit tissue mass per unit time and shows a major response to temperature, essentially 

doubling for each 10ºC rise in temperature.  In contrast, CR is expressed as CO2 release 

per unit of growth, so although the underlying metabolic processes respond to 

temperature, CR depends upon the amount and nature of the new growth.  For example, 

polymerization of sugar to starch or cellulose requires less energy that the construction of 

proteins or fats. This gives rise to the notion of glucose requirement of growth (GR = g 

glucose g
-1

 dry matter produced or maintained) that can be calculated from chemical 

composition (Penning de Vries et al. 1974) or elemental analysis (McDermitt and Loomis 

1981).  Merino (1987) used these methods to compare the cost of growing and 

maintaining leaves of a range of Mediterranean species.  Olive, with GR for growth = 

1.66 g glucose g
-1

 dry matter (d.m.), was greater than the mean for tree species (1.54) 

while GR (assessed at 20º C) for maintenance = 0.0136 g glucose g
-1

 d.m. day
-1

  was very 

close to the mean (0.0138). 

A.  Leaf Photosynthesis 

Photosynthesis (A) in olive proceeds by the C3 pathway (Bongi et al. 1987b) and, in 

common with many other shrub and tree species, achieves a lower maximum rate (Amax) 

at higher saturating photon flux density (800 to 1000  µmol m
-2

 s
-1

) (Bongi and Long 

1987; Bongi and Loreto 1989; Bongi and Palliotti 1994; Proietti and Palliotti 1997) with 

a smaller quantum efficiency (φ) and higher internal [CO2] under optimal conditions and 

ambient [CO2] (ca. 350 µmol mol 
-1

) than herbaceous C3 (crop) species. 

The highest Amax of 22 µmol CO2 m
-2

 s
-1

 was recorded for ‘Coratina’ grown 

outdoors in pots (Angelopoulos et al. 1996).  Other studies also report reasonably high 

rates, e.g. 19 µmol CO2 m
-2

 s
-1

 in an 18-year-old orchard of ‘Picual’ (Moriana et al. 

2002), 18 µmol CO2 m
-2

 s
-1

 in mature ‘Picual’ (Giménez et al. 1997), 15 to 16 µmol CO2 

m
-2

 s
-1

   for ‘Koroneiki’ and ‘Amphissis’ (Chartzoulakis et al. 2002), 14 µmol CO2 m
-2

 s
-1

 

for ‘Frantoio’ and ‘Maurino’ (Proietti and Palliotti 1997), ‘Kalamon’ (Giorio et al. 1999), 

and ‘Mastoidis’ (Chartzoulakis et al. 1999).  These results contrast with much smaller 

Amax recorded in other studies, when plants were grown in artificial environments or at 

low irradiance.  High irradiance is required for complete development of leaf anatomy 

and carboxylation capacity for photosynthesis.  Thus, Amax was 7.7 µmol CO2 m
-2

 s
-1 

for 

‘Rajo’ (Bongi and Long 1987) and 5.4 µmol CO2 m
-2

 s
-1

 for  ‘Manzanilla’, ‘Dolce 

Agogia’, ‘Coratina’, and ‘Leccino’ (Bongi et al. 1987a) in controlled environments. 

Given the variability in Amax that has been recorded in various published studies, it is only 

possible to make effective comparisons between cultivars when they are grown together 

under optimal conditions and measured with the same equipment.  One example is that of 

Chartzoulakis et al. (2002) who established differences in Amax (p <0.05) among five 

cultivars, viz. ‘Koroneiki’ 15.6, ‘Mastoides’ and ‘Amphissis’ 14.5, ‘Kothreiki’ and 

‘Megaritiki’ 13.5, and ‘Kalamata’ 10.4 µmol CO2 m
-2

 s
-1

, respectively.  A second  (Loreto 

et al. 2003), working with 1-year-old potted plants, established extreme differences 

ranging from 17 µmol CO2 m
-2

 s
-1

 for ‘Kerkiras’ to 4 µmol CO2 m
-2

 s
-1

 for ‘Chalkidikis’.  

Others were intermediate, ‘Valanolia’ at 7.5 and ‘Throubolia’, ‘Adramitini’ and 

‘Agouromanaki’ at 6 µmol CO2 m
-2

 s
-1

. Such intraspecific variations in Amax are greater 

 22



than those found in most crop plants, suggesting the existence of cultivars with low Amax 

but always with concern over the effect of growing environment.  Not surprisingly, all 

major cultivars have relatively high Amax values. 

Quantum efficiency is the ratio (mol mol
-1

) of photosynthesis to absorbed PAR at 

low irradiance because under that condition, with other factors optimal, [CO2] does not 

limit photosynthesis.  Two papers from Bongi and collaborators offer conflicting 

estimates of φ.  The value of 0.026 reported by Bongi and Long (1987) for ‘Rajo’ seems 

more consistent with developing views of olive photosynthesis, restricted as it is by 

substantial inactive absorption of PAR in the sclerophyllous leaves and a possibly 

inefficient photochemistry. The matter does require further experimental evaluation, 

however, because the above value conflicts with a value of 0.052 reported for ‘Coratina’, 

‘Manzanilla’, ‘Dolce Agogia’, and ‘Leccino’ (Bongi et al. 1987a) that would make olive 

comparable with herbaceous C3 crop species (Ehleringer and Pearcy 1993).

The ratio of CO2 concentration within the leaf to that outside (Ci/Ca) reflects the 

relative magnitude of gaseous conductance from atmosphere to leaf spaces relative to the 

total pathway from atmosphere to the sites of fixation within the chloroplast where [CO2] 

approaches zero.  High values of Ci/Ca indicate that low internal (liquid phase) 

conductance is a significant limitation to photosynthesis.  In olive, recorded values of 

Ci/Ca at high Amax generally exceed 0.75 (Bongi and Long 1987; Bongi et al. 1987a; 

Bongi and Loreto 1989; Proietti and Palliotti 1997; Minnocci et al. 1999), values 

common to C3 species. In physiological experiments, measurements of the relationship 

between A and Ci are also used to examine the relative limitations imposed by stomata, 

internal conductance of CO2 transfer, and carboxylation under various experimental 

conditions. 

The explanation of these photosynthetic characteristics of olive is found in three 

major features of the anatomy and morphology of the leaf.  First, the anatomical basis of 

the low conductance to gaseous flow across the leaf surface was described earlier.   

Second, the internal anatomy, with closely packed chlorenchyma, provides little space for 

gaseous diffusion inside the mesophyll.  A stereological analysis that assessed the extent 

of packing in ‘Ascolana’ calculated an internal cell wall conductance to CO2 transport of 

0.11 mol m
-2

 s
-1

 that is one quarter of the corresponding value for wheat (Bongi et al. 

1987b).  The interplay of leaf surface and internal conductances explains the high Ci/Ca 

ratio that characterizes olive photosynthesis.  Whereas low wall conductance is an 

effective mechanism to reduce loss of internal water under severe stress it always limits 

photosynthesis by restricting the supply of CO2 to the sites of fixation.  Third, the tightly 

packed mesophyll, together with the additional structural tissue that together provide the 

rigid sclerophyllous leaves characteristic of olive, result in low chlorophyll and N content 

(see Table 2) and therefore more inactive absorption of PAR than occurs in herbaceous 

(crop) C3 species.  Inactive adsorption and low internal conductance explain the low Amax 

and the high PAR needed to achieve it.  Internal PAR absorption also explains why olive 

leaves have greater photosynthesis when illuminated at low irradiance from both sides. 

Proietti and Palliotti (1997), working with ‘Frantoio’, proposed light compensation points 

of 30 and 50 µmol m
-2

 s
-1

 for leaves irradiated on both, or only on the upper surface, 

respectively.  These responses have significance within olive canopies where the 
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proportion of reflected PAR increases with depth.  Illumination from both sides decreases 

the light compensation point, i.e. the threshold irradiance for positive net photosynthesis.   

The effect of peltate trichomes, especially common on the lower surfaces of olive 

leaves, on photosynthesis is controversial.  Theory would propose a reduction in 

photosynthesis resulting from greater reflectivity.  Consistent with this, 

Grammatikopoulos et al. (1994) report an increase of 11% (76 to 84%) in PAR 

absorptance following trichome removal in an unspecified cultivar, not all of which 

would be actively absorbed by chlorophyll within the leaf.  On this basis, one would 

expect a small increase in A at low irradiance gradually diminishing as irradiance 

approaches saturation.  This may explain why comparisons of A between leaves with and 

without trichomes (Grammatikopoulos et al. 1994; Proietti and Palliotti 1997) have 

revealed no differences.  Those comparisons were mostly made at high irradiance when 

responses should not be expected.  Further, the wide range of measurements, with 

confidence levels at around 25% of the means, prevented detection of small differences in 

the few measurements taken at low irradiance (Proietti and Palliotti 1997). 

Changes in the external environment, or internal factors that affect the 

photosynthetic system of the leaf, will reduce A below Amax.  Photosynthesis can be 

reduced by stomatal closure, decreased internal transport of CO2 to the sites of fixation, 

and/or by reduced carboxylation.  The effects may be transitory, as can be seen in diurnal 

patterns of photosynthesis that recover from day to day.  If they are persistent, however, 

they may be of great importance because olive leaves usually remain on trees for two 

years or more and can maintain a stable photosynthetic capacity until the final stages of 

senescence (Bongi et al. 1987a).  The most important factors that affect photosynthesis in 

the field are irradiance, temperature, and water status.  Others of significance are salinity 

and photo-inhibition, and of increasing interest, atmospheric pollutants, UV-B radiation, 

and [CO2]. 

1.  Effects of Temperature. The optimum temperature for net photosynthesis (A) is 

around 28ºC (Bongi et al. 1987a; Chartzoulakis et al. 2002) with high rates maintained in 

the range 20 to over 30ºC.  In this temperature range, gl is maintained high and 

respiration rates are small relative to assimilation.  Bongi et al. (1987a) compared A of 

four cultivars, chosen to represent distinct thermal zones of olive production in the 

Mediterraean region (‘Manzanilla’ - warm Spanish area, ‘Dolce Agogia’ - cold Italian 

area, ‘Coratina’ - medium-warm Italian area, and ‘Leccino’ - medium-warm area), in 

response to temperatures of 10, 20, 30 and 40ºC.  The optimum temperature was around 

28ºC for all cultivars, but with differences at the extremes. While all cultivars displayed a 

similar and major reduction of A at 10ºC (to 10% of maximum) and significant A at 40ºC 

(>50% of maximum), ‘Manzanilla’, maintained highest A at 40ºC (80% of maximum).  

While the performance of ‘Manzanilla’ at high temperature is consistent with its region of 

origin, the complete characterization of temperature responses must include assessing 

acclimation to low and high temperatures when grown in the field. The role of 

acclimation in olive must be critical, given the wide range of temperatures experienced 

seasonally by this crop within the various environments where it is grown.

2.  Effects of Water Deficit.  Many papers have dealt with the reduction of A under and 

following water stress ( Xiloyannis et al. 1988; Angelopoulos et al. 1996; Giménez et al. 

1997; Giorio et al. 1999; Nogués and Baker 2000; Moriana et al. 2002).  Taken together, 
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these studies show that A is significantly reduced by water deficit and that stomatal 

closure plays a major role.  There are, however, non-stomatal effects that may persist 

after prolonged water shortage.  

Moriana et al. (2002) provided a comprehensive analysis of measurements taken 

on irrigated and droughted trees over the summer-autumn period in an 18-year-old 

orchard of ‘Picual’ at Córdoba, Spain.  Midday xylem water potential (ψx, measured as ψl 

of covered leaves) in rain-fed trees fell to -8.0 MPa and VPD reached 7 kPa.  For all 

measurements at saturating irradiance and ψx >-4.5 MPa, A at 350 µmol CO2 mol
-1

 was 

linearly related to gl.  At lower ψx, there was clear evidence of non-stomatal limitation.  A 

similar conclusion was drawn by Angelopoulos et al. (1996) whose data, on 2-year-old 

potted plants of ‘Coratina’ grown outdoors (Fig. 4), display a two-part relationship 

between maximum A and gl.   Stressed plants had A <5 µmol CO2 m
-2 

s
-1

 and did not 

conform to the general linear relationship but displayed smaller A than controls at 

equivalent gl.  The diurnal patterns of A under water deficit also follow closely those 

reported by Moriana et al. (2002).  As stress intensified, maximum A was observed 

earlier in the morning and the rate at midday gradually decreased.  Contrary to the 

variability in A among cultivars in response to salinity (see below), there is no evidence 

of intraspecific variation in the response of A to water deficits. 

3.  Effects of Salinity.  Accumulation of salt in leaves reduces A at concentrations below 

those at which visual symptoms are evident, and well below those that cause leaf drop. 

Salt is carried from roots to leaves in the transpiration stream so that plants have 

decreasing salt concentration from old to young leaves.  This explains why effects on A 

and visual symptoms appear first in old leaves. Thus, Bongi and Loreto (1989), in 

experiments with 3-year-old plants of ‘Rajo’, exposed to external NaCl concentration of 

250 mM in hydroponics for up to 90 days, recorded leaf salt profiles from apex to base of 

46 to 90 mM at 25 days and from 75 to 990 mM at 90 days compared with controls 

exposed to 35 mM salt.  Leaf photosynthesis was reduced by 18%, leaf growth ceased, 

and there was 50% leaf drop when tissue salt exceeded 80 mM.  Salt reduced A by 

decreasing gl, decreased internal conductance (smaller gw), and effects at the 

photosynthetic sites (Bongi et al. 1987a; Tattini et al. 1997; Centritto et al. 2003; Loreto 

et al. 2003).  The smaller internal conductance results from leaf thickening and greater 

water content. Measurements of chlorophyll fluorescence revealed irreversible damage at 

salt levels exceeding 200 mM. 

Differential responses of A between cultivars to external salinity can derive from 

exclusion/sequestration of salt by the roots as well as by ability to sustain A in response 

to increasing leaf salt concentration.  Both responses have been established in olive. 

Tattini et al. (1997) concluded that the effect of internal salt (250 mM) was greater in 

‘Frantoio’ than in ‘Leccino’, with threshold values for 50% reduction of A at 146 and 275 

mM, respectively, in the two cultivars.  This conclusion is, however, dominated by a 

couple of data points (their Fig. 5) and the true difference may be much smaller.  In 

contrast, A in young leaves was reduced by 60% by 200 mM salt in ‘Koroneiki’, 

‘Mastoides’, and ‘Amphissis’, by 40% in ‘Kothreiki’ and ‘Megaritiki’, and by 20% in 

‘Kalamata’ (Chartzoulakis et al. 2002).   No difference was detected, however, in the 

relationship between A and leaf tissue salt concentration, so the differences in tolerance 

between these cultivars must derive from exclusion/sequestration of salt at the root level.  
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Certainly, ‘Kalamata’, the least affected cultivar, maintained the lowest leaf salt 

concentration across the range of external salt and showed no visual symptoms over the 

5-month period of treatment.  It is significant that cultivars with the smallest A and gl 

under control conditions, ‘Kalamata’ in this study and ‘Chalkidikis’ in that of Loreto et 

al.  (2003), were also least affected by salt. 

The most interesting feature of these experiments is that the response of A does 

not coincide with current views on the relative salt tolerance of olive cultivars based on 

growth and performance data as reviewed by Gucci and Tattini (1997) (see Section 

VIIC).   ‘Frantoio’ is considered more salt tolerant than ‘Leccino’ but A of ‘Frantoio’ 

appears the more sensitive to internal salt.  Smaller gl and transpiration could certainly 

contribute to restricting salt load but, as with ‘Kalamata’, the major component of salt 

tolerance likely resides in the ability of the root system to exclude salt from the xylem 

flow.  ‘Kalamata’ was not recorded as salt-tolerant (Gucci and Tattini 1997) but 

‘Megakaritiki’ that was, also showed major reduction in A in the experiments reported 

above (Chartzoulakis et al. 2002). 

4.  Photo-inhibition.  Any stress that reduces the ability of leaves to dissipate excitation 

energy through photosynthetic reduction of carbon dioxide increases the excess energy in 

the leaf and the potential for damage to the light reactions of photosynthesis and the 

development of reducing power.  Photo-inhibition is most likely at high irradiance and 

may have long-lasting effects on photosynthetic performance. Photo-inhibition is 

potentially important in olive when photosynthesis is limited by high temperature and 

water shortage in summer and by low temperature in winter (Pavel and Fereres 1998).  

Photo-inhibition can be detected when photosynthesis is not maintained at fixed 

conditions of irradiance, [CO2], leaf temperature, and gl.  It can also be detected by 

measuring, chlorophyll content, quantum efficiency (φ), and by evaluating the condition 

of photo-system II (PSII) in chloroplasts by measuring leaf fluorescence.  Two studies 

reveal aspects of these responses in olive. 

Bongi and Long (1987) studied the effect of low and high temperature on non-

stomatal responses of photosynthesis of potted plants in controlled environments.  

Attached leaves of ‘Rajo’ were exposed to 5ºC for up to 12 hr at low (95 µmol m
-2 

s
-1

) 

and high (1850 µmol m
-2 

s
-1

) irradiance and VPD = 0.4 kPa and then allowed to recover 

for 24 hr under low irradiance (95 µmol m
-2 

s
-1

) at 26ºC.  Treatment in low and high 

irradiance reduced both φ and Amax by 10 and 50%, respectively.  Non-stomatal effects 

were responsible for half of the effect on Amax.  Leaves that had been treated for 12 hr in 

low irradiance recovered photosynthesis completely within a few hours but those treated 

at high irradiance did not.  Leaves that were recovering from chilling at high irradiance 

had far more damage when chilled a second time.  When entire plants were chilled, the 

effects on individual leaves were more severe.  Treatment of individual leaves at 38ºC for 

up to 7 hr in low irradiance produced no significant effect on φ when returned to 26ºC.  In 

contrast, leaves subjected to 38 ºC at high irradiance suffered reductions in φ of 25% after 

1 hr and 75% after 3 hr.  In both cases, however, recovery was complete after 3 to 5 hr in 

low irradiance at 26ºC. 

Angelopoulos et al. (1996) studied potted plants (‘Coratina’) subjected to various 

watering regimes outdoors during the summer.  Analysis of A vs. gl revealed the 

existence of non-stomatal limitations in stressed plants that were confirmed by 
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measurements of chlorophyll fluorescence.  Both well-watered and stressed plants had 

greatest A in the morning.  Rates fell during the morning, especially rapidly in stressed 

plants.  All leaves had increasing fluorescence during the day, and while the control 

plants recovered in the evening, the stressed plants did not.  These non-stomatal effects 

were, therefore, both transient and persistent.  Perhaps we find here the reason for low 

Amax measured in some experiments.  For example Giorio et al. (1999) made 

measurements at 2000 µmol m
-2 

s
-1

, well above that (800 to 1000 µmol m
-2 

s
-1

) required 

for saturation. 

Protection against photoinhibition caused by excess excitation energy may be 

achieved directly in the chlorophyll carotenoid-binding antennae complex of photosystem 

II leading to smaller ϕ.  In a comparison with Eucalyptus globulus, Quercus suber and Q. 

ilex, olive (cultivar not specified), with the smallest A, also displayed the greatest 

concentration of carotenoid pigments, and these increased during the summer (Faria et al. 

1998).  The high levels of carotenoids and the seasonal variation are consistent with 

adaptation in olive to low A, allowing diversion of excess excitation energy into the 

electron transport chain to match the consumption of its products with supply from the 

Calvin cycle.  In this way, the danger of photo-inhibition may be minimized. 

5.  Atmospheric Changes.  Measurements have also been reported of the effect of 

increasing levels of CO2, UV-B radiation, and industrial pollution (O3 and SO2) on 

photosynthesis in olive. 

Carbon Dioxide (CO2).  Increasing  [CO2] to double current levels of ca. 350 µmol mol
-1

 

will increase leaf photosynthesis for the same transpiration rate, and therefore increase 

transpiration efficiency (TE), unless there is an accompanying reduction in gl.  Leaf 

conductance (gl) responds to changes in stomatal morphology, i.e. density and size, and 

such responses to increasing [CO2] have been measured among a range of species, with 

differences also established between cultivars.  For olive, Tognetti et al. (2001, 2002) 

have measured leaf photosynthetic characteristics in ‘Frantoio’ and ‘Moraiolo’ after 7 

months exposure to 560 and 360 µmol CO2 mol
-1

  For both cultivars, Amax increased, 

stomatal density and gl decreased, but Ci/Ca remained constant, all in response to higher 

[CO2].  This Ci/Ca ratio reveals that increased carboxylation capacity was offset by 

reduced gaseous diffusion but the net effect was a major increase in TE.   The two 

cultivars responded differently.  Amax increased more in ‘Moriaolo’ than in ‘Frantoio’ (44 

vs. 31%) but reductions in stomatal density were similar in both cultivars (-11 v. -9%) 

and both cultivars had similar decreases in gl (-31%).  The net result of changes to 

photosynthesis and transpiration was a greater response in TE by ‘Frantoio’ than in 

‘Moriaolo’ (94 v. 73%).  Tognetti et al. (2001) also reported that Amax of both cultivars 

increased to 31 µmol m
-2 

s
-1

 at Ci = 1000 µmol CO2 mol
-1

 for plants acclimated at both 

360 and 550 µmol mol
-1

.  This provides an interesting comparison with the measurements 

of Amax under current ambient conditions reported previously, and also suggests that 

down regulation of Amax, reported for many species following exposure to high CO2, 

either does not occur in olive or would occur only after a longer period of exposure.  The 

long life of olive leaves, 2 to 3 years, is likely critical to such acclimation. 

These large differences of Amax at the leaf level are not expected to translate to 

similar differences in growth and productivity because processes at higher levels of 

organization in the plant play further determining roles. 
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UV-B Radiation.  A number of studies conclude that olive is unlikely to be affected by 

UV-B radiation that increases with depletion of stratospheric ozone (Karabourniotis et al. 

1992; Liakoura et al. 1999; Nogués and Baker 2000).  These studies covered a range of 

cultivars and up to four times the current levels of UV-B radiation (6 kJ m
-2

 d
-1

) 

experienced in the Mediterranean Region.  Nogués and Baker (2000) recorded reduced A 

at high UV-B due to stomatal closure, while other observations (Karabourniotis et al. 

1992; Liakoura et al. 1999) revealed significant protection from the UV-B absorbing 

capacity of the peltate layers (60% at 310 nm for ‘Koroneiki’).  Other work has recorded 

stomatal effects on Amax and, in the case of de-haired leaves, persistent damage to 

exposed epidermal and guard cells (Grammatikopoulos et al. 1994).  That work was, 

however, performed at a very high UV-B (5.9 W m
-2

) and although applied only during 

the measurement of photosynthesis at PAR = 900 µmol m
-2 

s
-1 

may not, therefore, be 

relevant to current concerns about environmental effects of increasing UV-B radiation. 

Ozone (O3) and Sulphur Dioxide (SO2).  Ozone is a major atmospheric pollutant in the 

Mediterraean Basin where significant concentrations in the range 70 to 100 vppb have 

been recorded for several consecutive months, including large areas away from pollution 

sources (Vitagliano et al. 1999). These gases are able to enter leaves, be absorbed by the 

liquid phase, and interfere with metabolism.  Photosynthesis can be reduced by both 

stomatal and non-stomatal effects and can occur before visual symptoms are evident.  

There is evidence of significant effects on photosynthetic productivity in local areas. 

Similar effects have been reported with O3 by Minnocci et al. (1999) and 

Sebastiani (2002).  Six-year old potted plants of ‘Frantoio’ and ‘Moraiolo’ were exposed 

daily to 3, 50, and 100 vppb O3 for 5 hr over a period of 18 months.  Amax of newly 

developed leaves was reduced in both cultivars but more markedly in ‘Frantoio’ 

(reductions to 35 and 24% of control of 16 µmol CO2 m
-2

 s
-1

 at 50 and 100 vppb, 

respectively) than in ‘Moraiolo’ (comparable values 35 and 69% of 13 µmol CO2 m
-2

 s
-1

).  

The effect in both cultivars was mediated entirely by reduction in mesophyll 

photosynthetic capacity, except for ‘Moraiolo’ at 50 ppb, which also experienced reduced 

leaf conductance (gl).  The recovery of Amax in ‘Moraiolo’ at 100 ppb was a consequence 

of greater gl. 

In the case of SO2, ‘Frantoio’ and ‘Moraiolo’ were subjected to five months 

exposure to SO2 at up to 100 ppb (Giorgelli et al. 1994).  No visual symptoms were 

recorded in either cultivar, but they did have different anatomical and physiological 

responses.  In ‘Frantoio’, Amax decreased by 38% at 100 vppb but was unaffected in 

‘Moraiolo. Leaf thickness decreased significantly in both cultivars, by a maximum of 15 

and 9%, respectively, in ‘Frantoio’ and ‘Moraiolo’. There was also a reduction in 

stomatal density and size that was slightly greater in ‘Frantoio’ than in ‘Moraiolo’. 

B.  Interception of Radiation 

The extensive results on leaf photosynthesis contrast with the little information available 

on the photosynthetic performance of tree canopies or entire orchards.  Such work, 

combined with measurements of the efflux of CO2 from the soil, is critical to 

understanding the role of physiological responses at leaf and lower levels of organization 

that underlie the environmental adaptation and productivity of olive.  Measurements of 

the CO2 balance of individual trees can be made within transparent chambers, and of 
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entire orchards, by meteorological techniques that establish the flux of CO2 into the 

canopy.  Efflux of CO2 from the soil (respiration of root and soil) can be collected in 

various ways.  Models of canopy photosynthesis then offer the best opportunity to 

synthesize these data and assess the importance of cultivar, weather and management on 

productivity.  The first step in productivity analysis, however, is to assess the interception 

of radiation. 

In olive orchards, individual trees usually have separated canopies, widely in 

traditional orchards to manage water demand, and more closely in modern high-density 

orchards to provide space between rows for the entry of machinery for management 

operations.  The important consideration is the balance between the total amount of 

radiation intercepted that determines growth, and its distribution within the canopy that 

determines flowering and the formation and filling of fruit.  This horizontally non-

homogeneous distribution of foliage in olive orchards contrasts with that of most field 

crops for which simple descriptions of canopy structure (leaf area index, LAI, and 

extinction coefficient, k) are generally adequate for the analysis and management of 

radiation and energy exchanges.  The canopies of olive orchards are more appropriately 

defined by combinations of tree spacing (row and inter-row, m), tree height (m), row 

orientation (degrees N), vertical projection of canopy cover (CC), and canopy volume 

(m
3
 ha

-1
).  Villalobos et al. (1995) have shown how many of these parameters can be 

measured non-destructively by analysis of light interception in isolated olive trees and 

orchards using the gap-inversion method.  At low canopy cover, trees intercept more 

incident radiation per unit leaf area than field crops of lower stature, and consequently 

shade more of the soil surface than herbaceous crops, except at high solar angles. This 

behavior is especially pronounced for evergreen trees in the temperate latitudes, where 

solar angles are low for several months of the year. 

The relationship between interception of radiation and canopy structure varies 

throughout the year depending upon solar position and cloudiness (i.e. the proportions of 

direct and diffuse radiation). Existing approaches used in interception models for forest 

and orchard canopies have been recently extended to olive.  Mariscal et al. (2000a) have 

developed a model of the interception of photosynthetically active radiation (PAR) and 

its distribution within the canopies of olive orchards.  The geometrical analysis has 

separate treatments of the passage of direct and diffuse radiation through tree canopies of 

defined tree spacing, row orientation, canopy height, canopy volume, leaf area density, 

leaf angle distributions, and leaf optical properties.  The model is appropriate for the 

calculation of tree or orchard photosynthesis and could also be useful in the analysis of 

flower survival, fruit survival, fruit filling, and fruit color.  On the other hand, for many 

practical applications, interception is readily measured with linear PAR sensors and, in 

this, olive orchards have the advantage that canopy structure does not change rapidly. 

 

C.  Tree and Canopy Photosynthesis 

There are no published data on direct measurement of photosynthesis of olive trees or 

orchard canopies.  Information is required not just on total canopy photosynthesis but 

also on the distribution of activity throughout the canopy.  The latter should contribute 

significantly to understanding flowering, fruit set and fruit filling, as well as devising 
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improved strategies and timings of pruning.  The lack of such measurements is a major 

restriction to the development of models of olive productivity.  Current attempts at 

modelling (see Section VIII) have been developed using net growth in response to 

intercepted radiation (RUE).  This approach avoids the issue of assimilate balance 

(photosynthesis and respiration separately) that is central to understanding source-sink 

activities in the partitioning of biomass - an important part of growth strategy and 

adaptation of the perennial olive. 

With the data available at present, it is only possible to make rough estimates of 

orchard photosynthesis, in the absence of stress, using quantum efficiency (φ) as 

introduced in Section VA.  If one assumes, for example, that the average conversion 

efficiency of intercepted radiation is one half of φ to account for reflection and the 

relatively high irradiance received by many leaves in the canopy, then the product of 

PAR × effective crop cover × φ/2 will estimate orchard photosynthesis.  Thus for an 

orchard of full cover (CC = 1), daily gross photosynthesis with incoming short wave 

radiation of 20 MJ m
-2

 would be 20 MJ m
-2

 × 2.06 (mol quanta MJ
-1

) × 0.026/2 (mol CO2 

mol quanta
-1

) = 0.54 mol CO2 m
-2

, corresponding, with a respiratory loss of 30%, to a net 

photosynthetic gain of 16.6 g CO2 m
-2

.  This, converted to estimate biomass gain of ca. 

13.1 g m
-2

, including an ash content of 8%, would estimate radiation-use efficiency 

(RUE) of 1.31 g MJ
-1

 (PAR) comparable with the value of 1.35 that Mariscal et al. 

(2000b) measured experimentally. 

 VI.  BIOMASS PARTITIONING AND DEVELOPMENT OF YIELD 

Plant organs, roots, stems, leaves, and fruits, can be considered as a group of connected 

sources and sinks, whose seasonal patterns of supply and demand determine the 

partitioning of assimilates among them, and hence the survival, growth, and yield of the 

entire plant.  A simple view sees leaves as the major source of assimilates and all other 

organs are sinks, but a more complex description of plant assimilate relationships is 

required because many organs can serve as both sources and sinks.  Sink strength is 

determined by size and by two components of activity.  First, assimilate to support 

general metabolism (MR) and second, for growth of existing and new organs (CR).  The 

development of new organs, leaf and shoot units, flowers, roots, and fruits, that appear in 

response to external and internal signals are of particular importance here.  The flow of 

assimilates from sources to sinks is determined by proximity and anatomical 

connectedness.  In the event of inadequate supply for all maintenance and growth 

activities, sinks will compete for assimilate, with variable effects on plant production and 

survival. 

The supply and demand for assimilates in plants also responds to plant hormones, 

and in this, N plays an important role.  Roots export NO3
-
 to leaves where it is reduced to 

the amino level at substantial energetic cost.  This growth strategy reduces the energy 

cost of root systems that receive metabolites by return flow through the phloem.  It is 

known, in many plants, that when NO3
-
 levels are high roots also export cytokinins, plant 

hormones that stimulate cell division and growth.  Alternatively, when NO3
-
 levels are 

low, xylem sap is more concentrated in abscisic acids, hormones that restrict cell 

division, cause stomatal closure ( Zhang and Davis 1990; Peuke et al. 1994), and increase 

leaf abscission in olive cuttings (Kitsaki et al. 1999).  Because NO3
-
 moves in the 

transpiration stream, its quantity and composition signal the shoot of both water supply 

 30



and fertility available from roots.  Herein lays the theory behind partial root zone drying 

(PRD) that is being applied with variable success to vines (Dry and Loveys 1999; Dry et 

al. 2000), but has not, as yet, been evaluated in olive.  By alternating irrigation on 

opposite sides of the root zone, the notion is to develop root signals to close stomata, 

control growth, and reduce overall water demand, without exposing the plant to severe 

water stress.  In practice, the ability to achieve alternate wetting and drying depends upon 

rainfall patterns and importantly soil water-holding capacity, being more effective in soils 

of light texture.  It now appears, however, that irrigation water deficits imposed in this 

fashion, have the same effects on growth, water relations and productivity as those 

produced when the same quantity of water is applied with conventional deficit irrigation 

practices (Fereres et al. 2003). The advantage of double irrigation lines may reside in a 

larger wetted zone and a more extensive root system that may be of value in arid areas 

with marginal soils (see Section IIIA). 

Two questions arise from the above description of assimilate relationships within 

plants.  First, how much of this behavior is known for olive.  Second, does current 

knowledge support the validity of this source-sink approach to its assimilate relationships 

and growth.  There is little information to answer the first question, so the second 

question cannot be answered.  The only structured study is that of Priestley (1977) who 

studied the monthly growth and assimilate profiles in leaves, stems, and roots of 3-year-

old potted plants of ‘Ascolana’ for one yearly cycle.  That study demonstrated aspects of 

the coordination of growth and also that chemical techniques are available to distinguish 

the assimilate content of organs from their biomass (Proietti et al. 1999b).  Growth was 

most rapid in summer and took place in all organs concurrently.  There were no signs of 

alternating growth among organs.   The data also describe the seasonal variability of 

assimilate in the various organs, showing, for example, the importance of leaves in 

storing as well as producing assimilate. Even in these young plants, total non-structural 

carbohydrates accounted for 50% of dry weight in mature leaves compared with 40% in 

stems and 10% in roots. 

A paucity of information on assimilate relationships is not unusual, even to well-

studied annual crops.  In the case of olive, we have much information on assimilation by 

individual leaves and on the productivity of olive fruit (mass and oil), but little else. 

There are even few static descriptions of the distribution of biomass between organs, let 

alone on the factors that control partitioning of assimilates among organs.  There is 

evidence of competition for assimilates during flowering and fruit growth (Rallo and 

Suarez 1989), and the same probably applies to more general interactions between 

canopy, trunk, and root system. 

A.  Movement of Assimilate from Leaves. 

Measurements of phloem exudates reveal that assimilates are translocated from olive 

leaves mainly as raffinose oligosaccharides (50%, predominantly stachyose) and sucrose 

(30%), with mannitol comprising a small proportion (<10%) (Flora and Matore 1993; 

Gucci et al. 1998b). This contrasts with the sugar composition of leaf tissue in which 

mannitol forms the major component (30%), followed by glucose (18%), sucrose (8%), 

and various oligosaccharide precursors (galactose, raffinose, verbascose).  Pulse chase 

experiments with C
14

 reveal the location and sequence of the interconversions.  Mannitol 

and sucrose are formed rapidly (2 min) from the primary assimilate, glucose, in the 
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mesophyll close to site of C fixation.  Mannitol is synthesized in the cytosol from 

mannose-6-P and quickly localized in cell vacuoles.  In contrast, stachyose 

(sucrose+galactose+galactose) and raffinose (sucrose+galactose) appear later (10 min), 

consistent with synthesis closer to the point of phloem loading, probably in the 

intermediary cells associated with minor vein endings (Flora and Matore 1993).  This 

transport-synthesis sequence for the major translocates may explain why Gucci and 

Minchin (2002) reported slow translocation of C
11

 label in their observations of in situ 

translocation from olive leaves.  Mannitol has been shown to increase in concentration in 

leaves of plants subjected to salinity stress as well as water stress (Gucci et al. 1998a; 

Gucci et al. 1998b), but the role of mannitol as an intermediate store of assimilate and the 

adaptive significance, if any, of the dominance of assimilate transport as stachyose in 

olive remain unclear. 

Other important aspects of assimilate relations relate to linkages between organs. 

There is some information on this from labelling and defoliation experiments. Studies of 

the movement of isotopically labelled (C
11

) assimilate from leaves along an actively 

growing olive shoot, cultivar unspecified (Gucci and Minchin 2002), revealed that 

assimilate movement depended on leaf age.  In this case there was no export within 2 hr 

from the youngest expanded leaf but assimilate flowed in both directions; the older the 

leaf position, the more assimilate moved out of the stem.  This pattern has been seen in 

many plants.  Other important features, not shown here, and so far not confirmed for 

olive, are that young expanding leaves may be importers and exporters at the same time, 

and that once expanded, old leaves do not become importers, even when they enter a 

period of negative carbon balance due to shading or senescence.  In defoliation and 

shading experiments, Proietti and Tombesi (1996) have further inferred the effective 

isolation of branches, to the tertiary level, in terms of vegetative growth, and limited 

transfer from closely associated branches for fruit growth.  Sub-units of the tree canopy 

act more or less independently to support their own growth, including that of fruit, while 

maintaining active xylem and phloem connections with the root system via the 

subtending stems and branches. A tree may then be considered, from the standpoint of 

carbon utilization, as a collection of branches loosely connected and operating 

individually. The implications of this notion to attempts to extrapolate measurements at 

the leaf level up to the canopy are obvious. Virtually nothing is known of the long 

distance relationships that determine the contribution of assimilate to trunks and roots. 

B.  Above- and Below-ground Biomass 

Growth and partitioning of biomass were studied during the first two years of two fully 

irrigated high-density ‘Picual’ orchards, 5000 and 20,000 trees ha
-1

, at Córdoba (Mariscal 

et al. 2000b).  There was a large response of total growth to tree density.  Competition 

among trees was evident in summer of the second year (from day 500) as divergences in 

stem diameter and plant leaf area between the two densities.  There was, however, a 

strong linear relationship between the biomass of the organs in all cases.  The young olive 

trees partitioned 0.26 of total biomass to roots and of the remainder (0.74) that remained 

in shoots, 60% was in wood and 40% in leaves.  As competition increased in the second 

year, biomass partitioned to wood (trunk, branches, and stems) increased to 70%.  Other 

data on root-shoot partitioning of olive orchards provide comparable data and also 

describe the impact of water shortage on partitioning.  Dichio et al. (2002) reported 
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measurements on ‘Coratina’ for 8 years after planting at 6 × 6 m spacing.  Up to year 5, 

shoots retained a steady proportion of total biomass, 0.76 and 0.69 for irrigated and rain-

fed treatments, respectively. Towards year 8, partitioning to roots increased, so that 

shoots then represented a smaller proportion, 0.58 and 0.55, of total biomass.  Water 

shortage reduced overall growth, 33 vs. 19 t ha
-1

 for irrigated and rain-fed treatments, 

respectively, but the effect was seen more in the stem and canopy than in the root system.  

This response is common to most plants and is an advantageous adaptation that 

establishes a more favorable water balance under drought conditions. 

An important issue in considerations of the partition of biomass between organs 

concerns the energetic cost of dry matter production that was seen earlier (Section V) in 

the explanation of the glucose requirement (GR) for growth. Leaves, stems and fruits of 

olive have markedly different chemical constitution and therefore have different 

assimilate costs of production.  In their study of biomass production and partition in 

young orchards of ‘Picual’, Mariscal et al. (2000b) estimated GR = 1.49 ( cf. 1.66 by 

Merino 1987), 1.43, and 1.54 for leaves, fine branches and trunk respectively.  The value 

for fruit varies depending upon composition, especially oil content for which GR = 3.11.  

For oil cultivars, GR of fruit is 2.3, for an estimated composition of oil = 50%, sugar = 

10%, lignin = 27%, protein = 9%, and minerals = 2% (Hermoso et al. 1998; Jordão and 

Lietão 1990). 

C.  Shoots and Fruit 

The seasonal distribution of biomass within a fruit-bearing limb (“on” year) of 8-year-old 

trees of ‘Picual’, studied by Rallo and Suarez (1989), displayed the growth and 

interactions of the component organs.  The presence of fruit greatly reduced concurrent 

vegetative growth relative to the “off” condition, by 50 and 40% for new nodes and new 

leaf area, respectively.  The major proportion of new biomass was directed to the fruit.  

Accounting for a 50% reduction in the biomass of previous year’s leaves, 85% of new 

biomass from PS65 to PS79 was in fruit, with the rest in new leaves (10%) and shoots 

(5%).  The previously existing shoot did not increase in biomass.  Those data reflect an 

even greater diversion of current assimilate to fruit. 

Competition between shoot and fruit during “on” years is also an important 

determinant of yield in the following year, because shoot growth provides the sites for 

flower formation.  The role of assimilate supply for floral induction, a process that occurs 

during fruit growth, is uncertain.  Both leaves and fruit are involved in the internal signals 

that influence the process, but the distinction between assimilate supply and other exports 

from leaves has not been satisfactorily resolved.  The experiments of Proietti and 

Tombesi (1996), for example, revealed a dramatic effect of defoliation and intense 

shading on return to flowering as well as on current fruit growth.  Given the relative 

isolation of shoots with regard to assimilate (Proietti and Tombesi 1996), however, it 

seems highly likely that the treatments imposed on assimilate supply were too severe for 

a proper conclusion. 

The irregular distribution of fruit in the canopy and its importance to tree 

productivity and management have long been recognized (Ortega Nieto 1945).  Fruit are 

formed preferentially on the more-illuminated parts of canopies, the top and southern 

sides in the northern hemisphere.  Pruning practice, well illustrated in the widely used 
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open-vase form, is directed to improve light penetration to promote more fruiting sites.  

Surprisingly, though, there has been little research on the role of assimilate in the 

sequential steps from floral initiation to fruit filling. 

Acebedo et al. (2002) studied flower and fruit dynamics in 6 × 6 m, 16-year-old 

ca. N-S planted orchards, of two widely planted cultivars at Mengibar, Spain.   ‘Picual’ 

forms a relatively open canopy and usually sets one large fruit per inflorescence, while 

‘Arbequina’ is shrubby, more dense, and sets small, multiple fruit.  The authors followed 

the fate of flowers on previous year’s shoots formed at five positions around the 

periphery (top, N, S, E, W at 1.5 m height), low (L) on the south side at 0.4 m, and within 

the canopy (I) adjacent to it.  They established differences in behavior between locations 

that became increasingly pronounced in the sequence, inflorescence number, fruit 

number, and fruit weight per shoot (Fig. 5).  Both cultivars showed the dominance of top 

and exposed locations in fruit yield and oil percentage. The major difference between 

cultivars was in fruit number, which did not translate into more fruit weight per shoot. 

This sequence suggests the increasing importance of assimilate supply on fruit filling and 

oil content.  It should now be possible to combine measurements of orchard illumination 

patterns and models of canopy photosynthesis to the study of this issue, and importantly, 

extend the analysis to new orchard designs distinct from those developed by traditional 

practice over centuries. 

D.  Assimilate Supply and Oil Formation. 

There are two sources, relative sizes unknown (and probably variable), of assimilate for 

fruit growth in olive.  The major source is certainly the sugars translocated in the phloem 

from leaves or sites of storage.  These were seen previously to comprise raffinose 

oligosaccharides (mainly stachyose) and sucrose.  The secondary source is sugars formed 

by photosynthesis in fruit themselves that remain green for a considerable period and 

retain active chlorophyll even when they change color (PS81) as they approach maturity.  

While chlorophyll is mostly in the exocarp, the mesocarp has been shown to contain 

significant amounts of phosphoenol pyruvate carboxylase (Sánchez 1994), the CO2-

fixation enzyme of the CAM and C4 photosynthetic pathways.  This means that fruit can 

continuously sequester respiratory CO2 in the mesocarp and release it to enter the Calvin 

Cycle (C3) photosynthesis during the light, along with any free CO2 in the tissue at that 

time. This internal CO2 is generated by the intense metabolism related, initially with the 

cell division and growth, and later, and for a considerable period, to the synthesis of oil.  

On this point, it seems that seed and mesocarp behave differently with respect to 

assimilate supply.  Seed growth depends exclusively on assimilate imported by the 

phloem while isotopic label was recovered only from the mesocarp when 

photosynthesizing fruit were exposed to C
14

O2 at 21 weeks after full bloom (Sánchez 

1994). 

Observations confirm that fruit photosynthesis makes a positive contribution to 

mesocarp growth, even though the CO2 balance of fruit is apparently negative from the 

outset. Comparisons of CO2 exchange in light and dark (Proietti et al. 1999a) reveal that 

young fruit in full sunlight are able to fix up to 80% of respired CO2, the proportion 

falling gradually to zero towards maturity as chlorophyll is lost. The provision of CO2 for 

photosynthesis was considerable, with internal Ci always >400 µmol mol
-1

 and rising to 

800 µmol mol
-1

 during the second half of the fruit-filling period when the conductance of 
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the exocarp fell as stomata were lost and cuticular wax thickened.  The available CO2-

balance data do not, however, allow an estimate of the overall contribution that re-

fixation makes to mesocarp growth over the seasonal cycle.  If re-fixation reduces the 

dependence of fruit growth on current assimilation rate to a significant extent, that may 

help explain why fruit load had no apparent effect on leaf photosynthetic rate (Proietti 

2000), a source-sink feedback that has been observed in many crop plants. 

The sugar content of young mesocarp is high, around 20% dry matter, but falls 

steadily as the mesocarp accumulates oil.  The synthesis and formation of these storage 

lipids (triacylglycerols , TAG) is complex requiring many steps, essentially common to 

all plants (Browse and Somerville 1991), that occur in various cellular compartments.  

Aerobic respiration of sugars provides acetyl CoA and malonyl CoA the primer and 

building blocks, respectively, for the stepwise elongation of the fatty acid chain.  This 

process involves a multi-enzyme fatty acid synthase (FAS) complex and a low molecular 

weight acyl-carrier protein that sequentially adds 2-C units up to the saturated 16-C stage 

(C16:0, palmitic).  Further elongation with some desaturation, not controlled by FAS, 

continues with the majority terminating at the 18-C stage in olive.  The storage 

triacylglycerols (TAG) are then formed by sequential acylation of glycerol-3-phosphate 

and desaturation steps that determine the fatty acid profile of the fruit (and cultivar).  Oil 

bodies are formed by accumulation of TAG within leaflets of the endoplasmic reticulum. 

Oil formation commences around pit hardening (PS75), about 2 months after full 

bloom (PS65), and persists for 100+ days.  The oil concentration in the seed increases 

quickly and reaches a maximum well before ripening begins (PS81) but continues in the 

mesocarp even after this time. The pattern of accumulation varies greatly, including 

between oil cultivars.  Garcia and Mancha (1992) presented a comparison of lipid 

synthesis capabilities of ‘Picual’ and ‘Gordal’, measured by the incorporation of 
14

C-

labelled acetate in slices of mesocarp tissue.  The activity in ’Picual’, an oil cultivar, was 

three times greater, peaked later, and persisted longer than in ’Gordal’, a table cultivar.  A 

comparison of oil accumulation in the six cultivars, ‘Carolea’, ‘Maurino’, ‘Leccino’, 

‘Frantoio’, ‘Moraiolo’ and ‘Dolce Agogia’, was presented by Farinelli et al. (2002) 

(Table 3, Fig. 6). Oil formation commenced first in ‘Carolea’ (41 days after full bloom) 

with the other cultivars following about 20 days later.  ‘Leccino’ and ‘Moraiolo’ had the 

longest oil-filling period of 172 days but the seasonal patterns varied considerably.  

‘Carolea’ had the greatest relative rate of 21.5 mg oil (g fruit)
 -1

 day
-1

 and ‘Maurino’ and 

‘Moraiolo’ the least at 9.5 mg oil (g fruit)
 -1

 day
-1

.  Compared to the variability in these 

production patterns, the data also reveal relative consistency in oil content and 

composition among cultivars, compared with the variability of polyphenol content, as 

discussed above. 

Hermoso et al. (1998) provide a general description of the composition of oil 

cultivars.  Total fruit weight, comprises 70 to 90% mesocarp, 9 to 27% endocarp, and 2 to 

3% seed.  At the usual harvest time for oil production, mesocarp has about 60% water, 

30% oil, 4% sugars, 3% protein, and the rest primarily fibre and ash.   The endocarp has 

10% water, 30% cellulose, 40% other carbohydrates, and about 1% oil.  The seed has 

30% water, 27% oil, 27% carbohydrates, and 10% protein. 

Two features endow a human dietary advantage to olive oil.  First, the mono-

unsaturated oleic acid (C18:1) which exists in high proportions, up to 80%, has strong 
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hypocholesterolemic properties and is considered to reduce the risk of coronary diseases. 

Other acids, present in smaller amounts, are the saturated palmitic (C16:0, 10 to 15%) 

and stearic (C18:0, 2 to 3%), and the polyunsaturated linoleic (C18:2, 5 to 10%) 

(Tombesi 1994).  Linoleic acid also has hypocholesterolemic properties and is as an 

essential fatty acid, i.e. is required but is not synthesized by human metabolism.   Second, 

a range of antioxidant phenolic compounds, especially in virgin oil, are active in reducing 

the incidence of bowel and breast cancer (Owen et al. 2000; Visioli et al. 2002).  Other 

constituents important in the market place are flavor (organoleptic) compounds that are 

produced enzymatically in the mesocarp and transferred to the oil during extraction by 

pressing.  The types and amounts of oils and organoleptics have a strong genetic base and 

are, therefore, characteristic of individual cultivars, but are also under environmental 

control.  Uceda and Hermoso (1998) report a comparison of oil and organoleptic 

properties of 30 cultivars, harvested over five years. Cultivar explained 78, 71 and 46% 

of the variation in the contents of oleic acid, tocopherols, and polyphenols, respectively. 

VII.  STRESS PHYSIOLOGY

The ability of olive to survive and yield in marginal areas is based on resistance to 

environmental stresses of drought, low temperature, and salinity.  Water stress is common 

in Mediterranean environments and olive has long been considered a tree adapted “par 

excellence” to water deficit.  The importance of low temperature has increased as 

production has moved to higher latitudes and higher altitudes within the present zone of 

distribution.  Salinity is a common problem in soils of arid and coastal environments and 

is becoming more important in olive production as the search to increase productivity by 

irrigation is challenged by water of low quality. 

Resistance to stress is usefully considered with components of escape, avoidance, 

and tolerance (Loomis and Connor 1992).  The first, escape, derives from development 

patterns that allow plants to complete life cycles without stress in potentially stressful 

environments.  In contrast, avoidance and tolerance, derive from physiological attributes.   

Avoidance mechanisms maintain high internal water or low salt in the face of stress, 

when these mechanisms fail or are insufficient, stress resistance depends upon tolerance 

to adverse internal conditions. 

From a strategic viewpoint, it is interesting to compare the success of olive with 

that of winter cereals, the major productive option for rain fed agriculture in the 

Mediterranean environment.  For these annual cereals, success in this environment is 

primarily achieved by rapid phenological development (drought escape) combined with 

aspects of drought avoidance (Loomis and Connor 1991). For perennial, evergreen olive, 

in contrast, success depends upon a broad combination of avoidance and tolerance 

attributes.

A. Drought 

Olive culture has prospered under rain fed conditions in Mediterranean environments 

because the tree is capable of acceptable yield while subjected to the characteristic 

prolonged summer water shortage (drought).  Olive achieves this result with 

physiological and morphological responses that reduce water loss and maintain water 

uptake at high plant water status as drought commences (drought avoidance), with others 

that maintain turgor and tolerate dehydration at low plant water status as the drought 
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deepens (drought tolerance).  In general terms, drought avoidance combines low leaf 

conductance, low leaf area, minimizing radiation load, deep roots, high root length 

density, and high hydraulic conductance.   Olive maintains turgor by osmotic adjustment 

of cell contents, small cell size, and changes in cell wall elasticity.  Olive also tolerates 

dehydration by other properties of protoplasm and cell wall.  For productivity, rain fed 

olive must tolerate summer drought and recover quickly to fill fruit in Autumn.  The 

success of this strategy is aided by conservative water use in Spring that in turn 

minimizes the extent and intensity of the ensuing summer drought.  

1.  Leaf Water Relations.  Olive leaf tissue has the ability to tolerate and recover from 

low ψl ( <-8 MPa) ( Xiloyannis et al. 1988; Moriana et al. 2003) that would kill most 

annual and perennial crop plants.   Olive leaves reduce radiation load by adopting a more 

vertical angle (Natali et al. 1999) and also maintain turgor and functionality at low ψl by 

osmotic adjustment.  The latter response is further aided under dehydration by high tissue 

elasticity (Bosabalidis and Kofidis 2002).  A study of the relation between relative water 

content and ψl (moisture release curves) of leaf tissue of ‘Picual’ (E. Fereres, 

unpublished) revealed significant osmotic adjustment (ca. 1 MPa) when soil water deficit 

lowered predawn ψl from -1 to -4 MPa. These moisture release curves exhibited a large 

change in ψl per unit hydration change, indicative of relatively rigid cell walls which 

confer the advantage of sustaining low ψl with moderate dehydration (Kramer and Boyer 

1995).  The combination of the capacity of olive to lower ψl below -8 MPa and an 

extensive root system enhances capacity to withstand drought by increasing the volume 

of extractable soil water.  Moriana et al. (2003) estimated that rain fed trees with ψl 

around -8 MPa extracted an additional 40 mm from below the conventional permanent 

wilting point of -1.5 MPa in a 240-cm deep profile.  This is a significant additional 

contribution that corresponds to 10 to 15% of the seasonal ET of a traditional rain fed 

orchard in that area (Orgaz and Fereres 1998). 

The diurnal pattern of leaf conductance and photosynthesis of olive follows, 

contrary to that observed in most crop plants, the optimization theory of stomatal 

operation in relation to water use proposed by (Cowan 1982).  When the tree is subjected 

to water deficit, this behavior becomes even more firmly established.  Transpiration 

efficiency (TE) is maximized, as stress develops, because stomata open (greatest diurnal 

gl) earlier each day, when VPD is lowest, and remain open for shorter periods.   

Transpiration efficiency was four times greater in the early morning than at midday 

(Moriana et al. 2002).  While it is well established that severe water stress decreases TE 

in many plants due to direct effects on the photosynthetic apparatus (Brodribb 1996), the 

response of olive is uncertain.  For example, there was no effect of water stress on TE of 

severely stressed olive until ψl fell below -4.4 MPa (Moriana et al. 2002) and Larcher et 

al. (1981) found that TE increased (relative to control) in potted olive trees when re-

hydrated following cycles of water stress.  Comparable behavior, that would hold great 

adaptive significance, has not been established in the field although TE, that had 

decreased under severe water deficit, returned to normal values immediately after the first 

autumn rain (Moriana et al. 2002). 

Taken together, these observations on stomatal response point to efficient capture 

of carbon by olive leaves at low water cost, even when trees are subjected to substantial 

water deficit.  It remains to be seen if these leaf-level responses to stress translate to 
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favorable responses to water deficit at tree and orchard levels.  If such observations 

confirm the curvilinear relationship found between yield and ET in olive ( Patumi et al. 

2002; Moriana et al. 2003) that defines greater water productivity below maximum ET, 

they would lend theoretical support to the value of deficit irrigation in this crop, a 

practice already used extensively in areas of limited water supply. 

2.  Xylem Cavitation and Vulnerability to Embolisms.  Water is transported in the 

xylem under tension and is therefore vulnerable under drought (low ψl) to cavitation and 

the rapid expansion of a gas-filled space (embolism) within individual xylem conduits.  

Cavitation may be initiated during water stress by the entry of air through conduit pit 

membranes when xylem tension exceeds a critical level, or by bubbles formed during 

freezing and thawing of xylem sap. Cavitation has been demonstrated in water-stressed 

plants by acoustic techniques (Milburn and Johnson 1966; Tyree and Sperry 1989) and 

measured by changes in hydraulic conductivity of excised stem or root sections before 

and after pressurization with degassed water to remove embolisms (Sperry et al. 1988; 

Tyree et al. 1995; Lo Gullo et al. 1998). 

Embolisms are important because they reduce the hydraulic conductivity of the 

xylem giving rise to the possibility of ‘runaway’ reduction in hydraulic conductance 

unless transpiration is reduced to relieve tension and prevent further cavitation (Tyree and 

Ewers 1991).  Stems harvested from trees usually have a degree of embolism and Tyree 

and Sperry (1988) have estimated an ability to accommodate a 5 to 20% loss of hydraulic 

conductance without danger of approaching an unstable state.  Adaptations to minimize 

the number of cavitations are found in the small diameter of conduits and the ability of pit 

membranes to prevent expansion of embolisms into neighboring conduits.  Adaptations to 

minimize the effect of embolisms on xylem hydraulic conductivity are found in short 

conduits and the generally complex pathway of water flow (Sperry 2003).  Optimization 

of xylem structure thus requires a balanced adaptation because the features that reduce 

vulnerability to cavitation, narrow conduits and many inter-conduit connections, also 

result in the low hydraulic conductivity that generates the high xylem tensions that trigger 

cavitation.  Of particular importance here is the fourth power relationship (Poiseulle’s 

Law) between conduit diameter and hydraulic conductance.  To maintain equivalent 

xylem hydraulic conductivity, the aggregate area of vessel conduits must increase 

dramatically as the diameter of individual conduits decreases. 

Until recently, embolisms were thought to be largely irreversible (Sperry 1995) 

and thus cavitation was considered a serious xylem dysfunction in plants, whose repair in 

woody species must then generally await the formation of new water-filled xylem vessels 

around the expanding periphery.  That process is undoubtedly important but it now 

appears that embolisms can be repaired (Salleo et al. 1996; Hacke and Sperry 2003) and 

that xylem hydraulic conductance may consequently vary from day to day, or even 

diurnally. There is also the suggestion that the hydraulic shock from individual 

embolisms may play a role in regulating stomatal conductance (Salleo et al. 2000) and 

that the release of water may contribute significantly to the capacitance of the xylem 

tissue (Meinzer et al. 2001).    

Some of this work on drought response and adaptation has been undertaken on 

sclerophylls of the Mediterranean region (Lo Gullo et al. 1998; Martínez-Vilalta et al. 

2002).  Lo Gullo et al. (1998) measured the response of root hydraulic conductivity of 
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potted seedlings of wild olive (O. oleaster) to water stress and subsequent watering.  

They recorded significant decreases in hydraulic conductivity that were only recoverable 

following short, mild stress.  Observations on root anatomy revealed loss of roots and 

also changes to root anatomy.  A thicker, more suberized endodermis decreased 

conductivity from soil into the stele, the least conductive part of the transport pathway in 

the root.  Given these morphological and anatomical changes, complete recovery of root 

conductivity was achieved only following the growth of new roots.  A study of the 

hydraulic properties and vulnerability to cavitation of nine woody species of an evergreen 

oak forest in Catalonia, Spain, included Phillyrea latifoli  (Oleaceae) (Martínez-Vilalta et 

al. 2002).  It established a common trade-off across species and their component tissues 

between hydraulic conductivity and xylem security.  The latter, expressing the resistance 

to cavitation, was parameterized as the water potential causing a 50% decrease in 

hydraulic conductivity per unit conducting area (specific conductivity).  Xylem security 

increased with decreasing conduit diameter (d) according to relationship 1/d
2
.  According 

to this criterion, roots of the studied species operated closer to their hydraulic limit for 

cavitation than did stems.  This characteristic has also been reported for other species and 

potentially holds important clues for evolution of xylem tissues, ecological adaptation of 

species, and the mechanisms by which embolisms can be repaired.  As yet, there have 

been neither observations nor analyses on cavitation responses in olive.  This could now 

be a priority area for research, given the low water potentials that the tree sustains and the 

unanswered questions concerning stomatal responses. 

3. Flowering and Fruit Filling.  Compared to the water relations of leaves of 

droughted plants, there is relatively little information on the drought responses of the 

reproductive processes from flowering through fruit growth to oil accumulation. 

Olive flowers late compared with winter cereals adapted to the Mediterranean 

climate.  This late-Spring flowering behavior is consistent with the subtropical origin of 

the plant (Section II) and presents a compromise between the risk of damage by cold and 

by water deficit.  While it significantly decreases the risk of flowering to low 

temperature, it increases the risk of damage to flowering by water and/or high 

temperature stress, and also delays fruit growth into an extended period of water shortage.  

There exists a wide range of flowering responses (Barranco et al. 1994), as yet 

incompletely understood (Section IIC), that is the basis for adaptation of cultivars to 

individual sites. 

Observations in drought years suggest the possible loss of most flowers or fruits 

when water deficits develop, a response that enhances the alternate bearing habit. Thus, 

while there is very little doubt that flowering and fruit set are very sensitive to water 

deficits (Moriana et al. 2003), there is an urgent need for studies to uncover the degree of 

sensitivity, the potential for adaptation to stress, and the possibility of differential 

responses among cultivars, especially as olive cultivation extends into drier 

environments. 

 The nature and pattern of fruit growth is important to adaptation to drought and 

also to the effectiveness of various irrigation strategies.  Olive does not follow the 

classical pattern of cell division and expansion described for drupes (Bollard 1970).  

Recent work has shown that cell division and cell expansion are both active in the 

mesocarp at 8 to 10 weeks after full bloom when expansion of the endocarp is virtually 
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complete (PS75) (Rallo and Rapoport 2001).  From then until maturity, considerable cell 

expansion occurs and up to 40% of mesocarp cells may be produced, depending on 

cultivar (Manrique et al. 1999).  The timing as well as the extent of stress, therefore, 

determine the effect on cell number and cell size.  Rapoport et al. (2004) studied the 

effect of water shortage during the first 4 to 9 weeks after full bloom (PS65) on fruit 

growth of 3-year-old potted plants of ‘Leccino’.  Predawn ψl fell to –3.1 MPa in the stress 

treatment compared to –0.8 MPa in the control.  Measurements taken at 6, 8, and 22 

weeks after full bloom were taken to assess the impact of water stress and recovery of 

fruit characteristics.  Mesocarp cell size (area) was reduced to 40% of the control by the 

end of the stress period (week 8) and recovered to 65% by week 22.  In contrast, 

mesocarp cell number was unaffected during the treatment period and division continued 

comparable with the control during recovery when ca. 15% of final cell number was 

produced.   The major effect of drought was seen in the endocarp.  By the end of the 

stress period (week 8), it had achieved 90% of final growth in the control but only 40% 

under stress.  Thus by week 8, fruit fresh weight (1.13 v. 2.25 g) and volume (1.6 v. 2.6 

cc) were substantially reduced compared to the control, and recovery remained 

incomplete to week 22 (PS81).  At that time, the dry weight and oil contents of the 

mesocarp were unaffected by the early stress (mean values 25 and 46%).  In general, the 

reported effects in the literature of drought and irrigation practice on oil proportion and 

quality have been variable (see Patumi et al. 2002) and this not surprising considering the 

range of cultivar, stress level, timing, and duration involved as well as the range of 

parameters needed to define oil quality. 

Olive growers commonly express surprise at the capacity of the tree to recover 

from prolonged summer drought to produce reasonable yields.  It is likely that the ability 

of olive to recover from water deficit is its most important feature of drought response.  

Thus, in a 1983 experiment at Cordoba (E. Fereres unpublished), trees of ‘Picual’ re-

hydrated within three days from a predawn ψl of -4 MPa to reach normal gl in less than 

two weeks.  Further observations at Cordoba in 1995 when an unusual drought lowered 

ψl to -8.0 MPa in some trees are summarized in Fig. 7.  Despite the initial low ψl, trees 

reached control values and were fully re-hydrated within six days of 60 mm of rain 

received over two days in early November (Fig. 7a).  The recovery of gl was much 

slower, as seen in many species (Hsiao 1973).   Leaf conductance increased after the rain 

but remained below control values for about two weeks.  Interestingly, there was much 

tree-to-tree variation in gl and those trees that had a heavy fruit load, also had high gl, in 

some cases as high as in control trees (Fig. 7b).  It appears that functional recovery, and 

presumably carbon assimilation, was faster in trees with a heavy fruit load, leading to a 

recovery in fruit growth and yield.  Moriana et al. (2003), showed that oil accumulation is 

slowed or perhaps stopped by summer drought, but resumes in the stressed treatments in 

Autumn at a faster rate than in fully irrigated trees. 

B. Low Temperature 

Olive has good cold tolerance compared to other species that share its subtropical origins 

(Larcher 1987).  Leaves and bark can withstand temperatures to -12ºC or less, depending 

upon cultivar and duration, provided the tissues have been previously hardened by 

prolonged exposure to temperature in the range 0 to 5ºC (Bartolozzi and Fontanazza 

1999).  Significant damage to aerial parts, mainly leaf drop and twig desiccation, that 
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threaten survival and reduce productivity can, however, be expected at temperatures 

around -7ºC (Palliotti and Bongi 1996).  In susceptible areas, damage is greatest in late 

autumn and early winter, decreasing in severity for the same temperatures as the plants 

gradually harden.  Young plants require hardening before planting in the field because 

they are especially susceptible to low temperature.  In newly planted orchards, sensitive 

leaf and apex tissues are close to the ground where temperature is lowest during radiative 

frosts.  In contrast to the substantial tolerance of bark and leaves, the reproductive organs, 

flower buds and flowers, are seriously damaged by temperatures around 0ºC and there is  

Field experience, for example after the 1985 and 1991 freezes in Italy (Roselli et 

al. 1989; Bartolozzi and Fontanazza 1999) and in experiments with young trees in 

controlled environments  (Mancuso 1998, 2000), have enabled the classification of some 

cultivars with regard to cold tolerance (Table 4). The wide range of olive germplasm 

means, however, that evaluation is far from complete so further understanding of 

response mechanisms to freezing temperatures is required to improve selection for cold 

tolerance. 

Studies with many plant species have shown that damage to tissues becomes 

irreversible when ice forms and disrupts membranes and organelles.  Further, it is known 

that tolerance to deep cold depends upon the ability of tissue to supercool through 

metabolic adjustments that lower freezing point.  Measurement of supercooling and tissue 

damage now form the basis of tests designed to compare the behavior of cultivars.  The 

challenge remains to ensure that such tests correlate well with field performance.  

Alternative screening techniques rely on correlations.  For example Roselli et al. (1989) 

have reported that low stomatal density correlated well with cold hardiness in cultivars 

that experienced the severe freeze (<-20ºC) in Tuscany in 1985. 

Measurements of freezing tolerance on leaves are made by sampling stem 

segments to detect ionic leakage (leaf discs give unstable results), and on bark and leaves 

by measurements of differential thermal analysis and of electrical conductivity during 

cooling (Bartolozzi and Fontanazza 1999; Mancuso 2000). Ion leakage identifies that 

freezing has occurred while differential thermal analysis and electrical conductivity 

identify membrane disruption.  Mancuso (2000) showed that measurements of freezing 

temperature made by electrical conductivity satisfactorily discriminated between two 

cold-tolerant, ‘Ascolana’ (-14.5ºC), ‘Leccino’ (-12.9ºC), and two cold-sensitive, 

‘Frantoio’ (-12.3ºC), ‘Coratina’ (-11.8ºC), cultivars.  That study also revealed that the 

sensitivity of tissues was in the order roots > leaves > shoots > vegetative buds.  The 

sensitivity of roots is understandable because they do not experience low temperatures 

that characterize the aerial environment and therefore do not harden.  The tolerance of 

vegetative buds contrasts with the sensitivity of floral buds and flowers. 

Water stress improves the ability of olive to super cool and therefore to tolerate 

freezing, presumably by concentrating the aqueous phase of the cell solution.  Certainly, 

Palliotti and Bongi (1996) showed that the increased tolerance they recorded in cold-

sensitive ‘Frantoio’ to treatment with mefluidide, a plant growth regulator, was associated 

with a decrease in leaf relative water content.  Perhaps this relationship reveals a further 

adaptive advantage of the leaf water shortage that olive experiences in winter despite high 

soil moisture content and low evaporative demand.   Pavel and Fereres (1998) working 

with ‘Picual’, showed that leaf water stress in winter had its origin in low water uptake 
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caused by decreased hydraulic conductivity of the root system.  The cause, either 

physiological change in roots or some pattern of root senescence, has not been 

investigated.   

C.  Salinity 

Salinity, either naturally occurring or induced by irrigation, is a major concern in many 

semi-arid areas to which olive is climatically adapted.  The major salt concerned is NaCl, 

but SO4
2-

, HCO3
-
, and CO3

2-
 ions may also be present. The salinity of the saturated soil 

extract and of irrigation water can be measured most easily by electrical conductivity 

(EC, dS m
-1

 at 25 ºC), or summarized chemically as total dissolved salts (g L
-1

), but is 

most accurately described with details of particular ionic composition.  As bench marks, 

EC of sea water falls in the range 50 to 60 dS m
-1

 and 3 ML of irrigation water with EC = 

1 dS m
-1

 adds 2 t salt. 

Olive is considered moderately tolerant to salinity (Gucci and Tattini 1997) but, as 

in all higher plants, growth is negatively affected by salinity in three ways.  First, there is 

an osmotic effect in the soil solution that restricts the availability of water thus causing a 

water stress. Second, there are toxic effects of particular ions (most commonly Na
+
 and 

Cl
-
) when they accumulate within tissues.  Third, there is the metabolic energy expended 

in exclusion of salt by roots and/or its sequestration within the plant. In these ways, salt 

has many effects on physiological processes, including water relations, photosynthesis, 

nutrition, biomass partitioning, and fruit quality.

The accumulation of salt modifies leaf anatomy with effects on water relations 

(Section IIIB) and photosynthesis (Section VA).  Leaves become thicker and have greater 

water content. Bongi and Loreto (1989) recorded increases in palisade cell length and 

mesophyll thickness of 38 and 50%, respectively for plants, ‘Rajo’, exposed to 250 mM 

salt.  Water relations are also affected and osmotic adjustment is enhanced.  Exposure of 

1-year-old plants of ‘Frantoio’ and ‘Leccino’ (Gucci et al. 1997) to 200 mM salt for 35 

days reduced pre-dawn ψl, ψπ at full turgor, and ψπ at the point of turgor loss.  Inorganic 

ions (Na
+
, K

+
) made the major contribution to lower ψπ, but with significant contributions 

from glucose and mannitol.  The two cultivars differed in their ability to accumulate 

inorganic ions but not carbohydrates.  Net solute accumulation was greater in ‘Leccino’ 

than in the salt-tolerant ‘Frantoio’. 

Olive owes its tolerance to salinity to ability to restrict transport to shoots, isolate 

Na in vacuoles, and maintain a high K/Na ratio to support tissue metabolism (see also 

Section VA), but a major component of its salinity tolerance actually resides in its ability 

to avoid salinity by restricting salt uptake by the roots.  There is good evidence of 

variation in salt tolerance among cultivars of olive and Table 5 is constructed from 

experiments in which plant growth, and sometimes yield, have been used to evaluate 

relative tolerance to salt.  An important point that has emerged during this review is that 

salt tolerance does not necessarily imply ability of individual physiological processes to 

withstand internal salt.  Thus, it was shown that the salt-tolerant ‘Frantoio’ ceases 

photosynthesis at lower levels of leaf salt than does the salt-sensitive ‘Leccino’.  In this 

case, ‘Frantoio’ was successful by excluding salt rather than by tolerating it.  As has been 

emphasized previously, the detailed physiological investigations on responses to salinity 

conducted at the leaf or at lower levels of organization, have not been matched by studies 
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leading to a complete assessment of the salinity tolerance of olive and of its responses to 

salinity under the relevant field conditions. Thus, we do not yet have information on yield 

reductions expected in olive plantations of the major cultivars from irrigating with saline 

waters. 

D.  Waterlogging 

Although the roots of few plant species are able to tolerate anaerobic (lactate) respiration 

for considerable periods, most rely on a continuing supply of oxygen to sustain aerobic 

(Krebs Cycle) respiration to provide energy for metabolic processes associated with 

growth and nutrient uptake.  Roots can acquire adequate oxygen directly from the air 

within drained soils or through specialized aerenchyma tissue that conducts air from 

shoots to roots in species, e.g. rice, that are adapted to waterlogged conditions.  Olive, in 

common with most plants, is susceptible to waterlogging (Navarro and Parra 1998) and 

plantations are advisably located where inundation does not occur, or where raised tree 

lines or surface drains can shed water rapidly.   Despite the well known sensitivity of 

olive plantations to waterlogging, there have, however, been no studies on the anatomy 

and physiology of the response of olive to waterlogging or in search of differential 

adaptations between cultivars. 

VIII.  INTEGRATION OF RESPONSES 

Two techniques are currently available to evaluate the interactions between component 

physiological responses of crops.  The first considers responses of growth and yield in 

terms of resource-use efficiencies for radiation, water, and nitrogen.  These efficiencies 

are the quantities of biomass or yield per unit of radiation intercepted (RUE), water used 

(WUE), water transpired (TE), and nitrogen uptake (NUE).  Biomass and yield can also 

be expressed in terms of glucose requirement to facilitate comparisons between organs of 

different chemical composition.  The second is the construction of physiologically based 

simulation models of crop development, growth, partitioning, and yield in response to 

environment and management.  There are many such models for herbaceous field crops  

(van Ittersum and Donatelli 2002) and some for perennial fruit crops also (e.g. DeJong 

and Goudriaan 1989; Grossman and DeJong 1994). 

There are, as yet, few integrative studies for olive.  Some work on leaf 

photosynthesis, referred to earlier, has been extended to evaluations of RUE (Mariscal et 

al. 2000b) and TE (Moriana et al. 2002), but nothing has been reported on NUE.  In any 

event, that level of analysis is well removed from the functioning of entire trees, which 

should be an important focus for physiological research.  There is now some work at the 

orchard level on the redistribution of rainfall intercepted by canopies (Gómez et al. 2001), 

interception of radiation (Villalobos et al. 1995; Mariscal et al. 2000a), transpiration and 

photosynthesis of trees (Diaz-Espejo et al. 2002), evapotranspiration (Bonachela et al. 

1998; Villalobos 1999), and growth and partitioning of biomass (Villalobos 1999; 

Mariscal et al. 2000b).  The complexities of working with tree crops must be 

acknowledged but so also must be the importance and utility of models as the only known 

means to integrate knowledge for practical application and as a guide for research effort. 

For olive, system-thinking will be useful in identifying the major shortcomings in 

knowledge of root systems, the complexity of flowering response, the hydraulic 

architecture of trees, the photosynthesis of canopies, and the filling of fruit. Simulation 
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modelling offers the only known opportunity to build frameworks of interacting 

processes to evaluate available information and to guide future research but this research 

technique has hardly been applied to the study of olive (Villalobos 1999).  To make 

significant progress, physiological research needs now to turn to more comprehensive 

studies of whole-tree and orchard systems and develop simulation models at various 

levels.  It would probably be a great advantage if research in various places concentrated 

on few cultivars, perhaps selected from those now being planted worldwide in new 

plantation methods.  A modeling framework that can provide a means to evaluate the 

relevance of currently available information and identify what new information is 

urgently required, and in what form. 

IX.  RECOMMENDATIONS FOR FUTURE RESEARCH 

The following recommendations for future research are discussed under the 

headings of phenological development, and the balances of carbon, water, and nutrients 

that form the logic of simulation models. 

A. Phenological Development. 

The internal mechanisms by which fruit load effects flowering behavior in the following 

year have received much attention.  While this helps explain what occurs in the field, 

there has been relatively less effort to quantitatively define the role of environment on 

flowering and other aspects of phenological development.  The substantial work on 

response to cold and temperature alternation has not been extended to the development of 

predictive models of phenological development such as exist for many field crops.  An 

understanding of how the environment establishes signals for development could help 

untangle the present confusion about internal controls and provide a more secure way to 

seek appropriate cultivar-location combinations for new production environments. 

B.  Carbon Accumulation and Partitioning.   

Leaves are clearly the dominant organs of carbon acquisition and it is evident that studies 

of leaf photosynthesis dominate the physiological literature about olive. Despite the many 

studies of leaf gas exchange, studies on the C balance of entire trees that include 

photosynthesis, respiration, partitioning of biomass, and fruit filling are missing.  The 

measurements on leaf photosynthesis, together with the start that has been made on the 

illumination patterns of orchard canopies, can provide inputs to studies (and models) of 

tree and orchard photosynthesis.  Such studies are needed to understand the effect of 

canopy illumination on flower survival, fruit fall, and competition with shoot growth 

during fruit filling.  There is little information on competition between leaf and shoot 

growth, nothing on the role of assimilate storage (C and N) in stems and roots in tree 

growth or survival, or the energy cost of the growth and maintenance of root systems.  

Studies are needed of the quantitative contribution that the olive fruit, which remains 

green for many months and has an internal supply of CO2 from intense respiration, make 

to growth and oil formation and how this contribution can be maximized. 

C.  Water Relations 

In common with studies on many trees, leaves have been the focus of evaluations of 

drought resistance in olive. Tree water balance, however, also has components of uptake 

and storage, and there is little information on olive at this level.  There are a few, but 
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contradictory, measurements of the extent of root systems but little on their seasonal 

dynamics and activity. Important questions relate to the uptake of water by root systems 

and the possibilities for internal redistribution. How does root growth and activity relate 

to the formation of new leaves, quantitatively and anatomically? How does the complex 

stomatal behavior influence the transpiration of canopies of different densities and 

arrangements?  What is the quantitative relationship between leaf area and the sapwood 

that supports it? Are there preferential flow pathways within the tree?  What are the 

relative contributions of sapwood, heartwood and canopy to diurnal and seasonal water 

status of the canopy? 

D.  Nutrient Balance 

For centuries, olive has been produced in regions of marginal water supply where yield 

and hence extraction of nutrients have been small.  Natural fertility, together with 

accessions of nutrients by rainfall and dust, have provided a continuing supply of 

nutrients for productivity. Recycling by leaf fall and heavy pruning also reduced nutrient 

export and thus deficits. However, adequate attention has not been paid to the question of 

whole crop nutrient balance that will become increasingly critical for the sustainability of 

new intensive production systems.  This requires, as a first step, the construction of 

nutrient balance sheets for orchards taking into account extraction by yield, internal and 

external cycling in nutrient withdrawal through, litter fall, pruning, and cover crops, as 

well as losses by runoff erosion, and leaching.  The contrast between the nutrient 

balances of high intensity production systems, on the one hand, and the current 

development of organic production systems for olive, place these issues in sharp 

perspective. 

 

X.  CONCLUSION 

This review reveals that literature on the physiology of olive has expanded greatly in 

recent years providing much insight into the functioning and adaptation of the tree but 

that the distribution of effort has been uneven and has left important areas untouched.  

Areas of strong activity have been in photosynthesis and water relations of leaves, 

pollination, fruit set, tolerance to salinity and freezing, and some micronutrient issues.  

Areas that have received little attention include environmental control over flowering 

together with the assimilate, water and nutrient balances of entire trees, including fruit 

and root systems, as they affect productivity and adaptation. 

One noticeable feature of the literature is that a wide range of cultivars has been 

studied and yet few differences have been established between them at the physiological 

level.  This can be explained by the genetic proximity that characterizes olive cultivars in 

response to vegetative propagation and longevity of the tree.  Conflicts in the literature on 

relative freezing tolerance of cultivars, and to a lesser extent on salinity tolerance, are 

noteworthy.  An exception may be in the terminal processes that determine oil quality.  

Cultivars are major determinants of quality, although that too is under, as yet 

incompletely understood, environmental control.  Another feature is the amount of work 

that has been performed under conditions far removed from the field.  There is a 

concentration of work on plants in pots in controlled environments that continues the 

emphasis on leaf physiology at the expense of whole-tree responses in the field.   There is 
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a real danger that the literature contains too many 'exact answers to approximate 

problems'.  It will be a major challenge to assemble the totality of physiological responses 

that determines the climatic adaptation, growth, and yield responses of what are often 

large (and old and substantially manipulated) trees.  Progress will require investment of 

effort more evenly across responses in realistic field environments if an adequate 

understanding of the processes that determine productivity and adaptability is to emerge. 

In contrast to wheat and barley, the other long-standing crops of importance that 

evolved with it in the Mediterranean region, physiological understanding of olive remains 

influenced by folklore. That difference cannot be explained only by its more complicated 

perennial growth habit alone.  Perhaps part of the answer resides in globalization.  Wheat 

and barley spread more quickly to other continents and cultures that have applied 

additional scientific skills to their study and development.  Olive has remained a regional 

crop, but that too is changing.  Perhaps we are now poised for more intense interest, 

scientific activity, and understanding of olive. 
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Table 1. Diagnostic levels for nutrient concentrations in olive leaves.  Source:
 
Reuter 

(1997); Fernández-Escobar (1998). 

 
Nutrient Deficient Marginal Adequate Toxic 

N (%) < 1.4  1.5–2.0  

P (%) 0.05  0.1-0.3  

K (%) < 0.4 0.4-0.8 > 0.8  

Ca (%) 0.3  > 1.0  

Mg (%) 0.08  > 0.1  

Na (%)    > 0.2 

Cl (%)    > 0.5 

Cu (ppm)   > 4  

Zn (ppm)   10-30  

Mn (ppm)   > 20  

Fe (ppm)     

B (ppm) < 14 14-18 19-150 > 185 

 

 

 

 

 

 

 

 

Table 2.  Nutrient concentrations (dry weight basis) in component organs of olive 

trees. 

 

Leaf1 Fruit Nutrient 

currrent senescent 

Inflores- 

cence2
Pulp3 Entire4

N (%) 1.53 0.95 0.21  0.72 

P (%) 0.15 0.11 0.10 0.125 0.11 

K (%) 0.60 0.40 0.60 1.930 1.09 

Ca (%) 3.0 4.5 0.35 0.118 0.10 

Mg (%) 0.12 0.10 0.03 0.046 0.03 

Na (%)    0.082  

Cl (%)      

Fe (ppm) 35 22 125 24.5 30.9 

Mn (ppm) 40 32 16 4.3 4.1 

Cu (ppm) 60 50 12 9.1 9.3 

Zn (ppm) 17 15 12 27.0 7.6 

B (ppm) 32 30   7.9 

 
1. Fernández-Escobar et al. (1999).  Leaves (‘Picual’, 12-year orchard) are means of age classes, 

dead leaves are oldest (2+ year) on tree. Note that mean leaf wt of 85 mg was maintained in oldest 

leaves. 
2. Bouranis et al. (1999), ‘Konservolia’, 25 year, “on”, at full bloom.  Inflorescences of 4 branches 

from mid-shoot positions reached maximum dry weight of c. 85 mg. 
 3. Mulas et al. (1999), means of 9 clones of ‘Nera’ (table olive) 
4. Jordão and Lietão (1990). Means of 50 cultivars. 
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Table 3.  Fruit and oil characteristics of six olive cultivars.  Source: Farinelli et al. 

(2002). 

 

 

Fruit characteristics 

 

Carolea 

Dulce 

Agogia 

 

Frantoio 

 

Leccino 

 

Maurino 

 

Moraiolo 

Fruit dry mass (g) 2.0 0.8 1.1 1.3 0.9 1.0 

Fruit volume (cm3) 4.8 1.9 2.2 3.0 1.9 1.9 

Pulp/stone ratio (DW) 2.7 1.6 1.5 1.3 1.6 1.9 

Final oil content pulp (%DW) 77.3 75.9 77.0 84.6 79.7 78.1 

Final oil content fruit (%DW) 56.1 44.7 45.8 47.6 49.2 51.1 

Oil characteristics       

Palmitic (% of oil) 12.5 11.6 12.2 12.9 14.9 12.2 

Stearic (% of oil) 2.0 1.8 1.8 1.7 1.3 1.6 

Oleic (% of oil) 75.5 77.3 77.1 76.4 73.4 75.0 

Linoleic (% of oil) 5.7 6.0 6.4 5.2 7.0 7.3 

Polyphenol (ppm of oil mass) 647 438 874 756 295 501 

 

 

 

 

 

 

 

Table 4.  Some established tolerances of olive cultivars to freezing temperatures.  

Source: Roselli et al. (1989); Bartolozzi and Fontanazza (1999); Mancuso (2000). 

 

Tolerance Cultivars 

High Ascolana Tenera, Bouteillan, Nostrale di Rigale, Leccino, Leccino Uzzano, 

Borciona, Madonna dell’Impruneta, Vocio, Morchiaio.  

Low Frantoio, Coratina, Moraiolo 

 

  

 

 

Table 5.  Some established tolerances of olive cultivars to salinity.  Source: Gucci and 

Tattini (1997). 

 

Tolerance Cultivars 

High Megaritiki, Frantoio, Arbequina, Picual, Lechin de Sevilla, Chemlali 

Low Chondrolia, Chalkidikis, Leccino, Pajarero 
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