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 10 
Abstract 11 
The legal status of Cannabis is changing, fueling an increased diversity of Cannabis-derived products. 12 
Because Cannabis contains dozens of chemical compounds with potential psychoactive or medicinal 13 
effects, understanding its phytochemical diversity is crucial. The legal Cannabis industry heavily markets 14 
products to consumers based on widely used labelling systems purported to predict the effects of different 15 
Cannabis “strains.” We analyzed the cannabinoid and terpene content of tens of thousands of commercial 16 
Cannabis samples across six US states, finding distinct chemical phenotypes (chemotypes) which are 17 
reliably present. After careful descriptive analysis of the phytochemical diversity and comparison to the 18 
commercial labels commonly attached to Cannabis samples, we show that commercial labels do not 19 
consistently align with the observed chemical diversity. However, certain labels are statistically 20 
overrepresented for specific chemotypes. These results have important implications for the classification 21 
of commercial Cannabis, the design of animal and human research, and the regulation of legal Cannabis 22 
marketing. 23 
 24 
 25 
Introduction 26 

Cannabis sativa L., a flowering plant from the family Cannabacea (Clarke and Merlin 2013; 27 

Clarke and Merlin 2016), is one of the oldest domesticated plants (Russo 2007). The plant has been used 28 

by humans for more than 10,000 years (Abel 2013) and has spread throughout the globe such that, today, 29 

distinct varieties exist, which have been cultivated for multiple purposes. This versatile and phenotypically 30 

diverse plant has been used for a wide variety of commercial and medicinal purposes (Clarke and Merlin 31 

2013). The Cannabis genus is considered to have a single species, Cannabis sativa L (Watts 2006), 32 

inclusive of all forms of hemp and marijuana, with high genomic and phenotypic variation (Vergara et al. 33 

2016; Kovalchuk et al. 2020) across multiple lineages (Sawler et al. 2015; Lynch et al. 2016; Vergara et 34 

al. 2016). ‘Marijuana-type’ lineages are used for human consumption (recreational and medical), while 35 

the ‘hemp’ lineage is used in industry settings for fiber or oil extraction. 36 

For human consumption, the mature female inflorescences are grown, harvested and processed 37 

into dried plant material commonly called “marijuana”, “weed,” “flower,” or other informal names. New 38 
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laws leading to decriminalization and legalization have given rise to a global, multibillion dollar industry 39 

that is projected to continue to grow aggressively (Hutchison et al. 2019). The cannabis industry has 40 

innovated across genetics, cultivation, extraction, distribution, and compliance to keep pace with the 41 

demands of consumers, competitors, and regulators. Beyond dried flowers, there are concentrated oils, 42 

confections and beverages, topicals, suppositories, and many other delivery mechanisms (Steigerwald et 43 

al. 2018; Goodman et al. 2020). To avoid confusion with the confounding terminology (Riboulet-Zemouli 44 

2020), we will use “Cannabis” in reference to the plant genus including its different varieties, and 45 

“cannabis” as a generic term encompassing processed Cannabis in all forms or in reference to the cannabis 46 

industry generally. 47 

Cannabis is renowned for the production of secondary metabolites, including cannabinoids and 48 

terpenes. Cannabinoids are a class of compounds that can interact with the endocannabinoid system 49 

(Gertsch et al. 2008) and many have medicinal (Russo 2011; Swift et al. 2013) or psychoactive (ElSohly 50 

and Slade 2005; Russo 2007) properties. Two of the most abundant cannabinoids are Δ-9-51 

tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA), which are converted to the neutral 52 

forms Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) once heated (Hart et al. 2001). The 53 

enzymes responsible for the production of these cannabinoids are highly similar at the biochemical 54 

structure and genetic sequence levels (Onofri et al. 2015; Vergara et al. 2019) and accept the same 55 

substrate, Cannabigerolic Acid (CBGA) (Franco 2011; Chakraborty et al. 2013). 56 

Beyond THC and CBD, there are various “minor cannabinoids,” typically present at much lower 57 

levels. This includes CBGA, the aforementioned precursor molecule to both THCA and CBDA. A third 58 

compound, CBCA (cannabichrommenic acid), is also part of the same biochemical pathway that gives 59 

rise to CBDA and THCA (Page and Stout 2017). Other minor cannabinoids include cannabinol (CBN), a 60 

byproduct that accumulates with the breakdown of THC (Turner and Elsohly 1979; Ross and ElSohly 61 

1997; Trofin et al. 2012), Δ-9-tetrahydrocannabivarin carboxylic acid (THCVA), and others. Similar to 62 

THCA and CBDA, decarboxylation is responsible for the formation of cannabigerol (CBG), Δ-9-63 

tetrahydrocannabivarin (THCV), and other neutral cannabinoids (Valliere et al. 2019). Due to their low 64 

abundance, these have generally been less well-studied than THC and CBD, although they display a range 65 

of interesting pharmacological properties with potential medicinal value (Izzo et al. 2012; Borrelli et al. 66 

2014; McPartland et al. 2015). 67 

Cannabinoid levels have been used both for setting legal definitions for different categories of 68 

cannabis products and for ‘chemotaxonomic’ purposes to classify different Cannabis varieties based on 69 

THC:CBD ratios (Hillig and Mahlberg 2004). For example, the legal definition of hemp in the United 70 

States is any Cannabis plant containing up to 0.3% THC. This arbitrary number intends to distinguish 71 
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Cannabis with low intoxication potential from varieties containing high THC levels. Commercial 72 

marijuana-type Cannabis usually falls within discrete groups based on THC:CBD ratios (Hillig and 73 

Mahlberg 2004), and has been categorized as either “THC-dominant” (low CBD levels), “CBD-74 

dominant,” (low THC levels and high CBD levels), or “Balanced THC/CBD” (comparable levels of THC 75 

and CBD), although the vast majority is THC-dominant (Jikomes and Zoorob 2018). The level of other 76 

minor cannabinoids has additionally been measured in a limited number of studies (Orser et al. 2017; 77 

Henry et al. 2018). However, a more comprehensive quantification of both major and minor cannabinoids 78 

from a large sample representative of commercial Cannabis, across multiple legal markets in the United 79 

States, is needed. 80 

In addition to cannabinoids, Cannabis harbors a diverse class of related compounds known as 81 

terpenes (Potter 2004, 2009). These are a type of secondary metabolite which often play defensive roles 82 

for the plant (Langenheim 1994; Sirikantaramas et al. 2005). They are responsible for its odors, can be 83 

pharmacologically active (McPartland and Russo 2001; ElSohly and Slade 2005), and may serve as 84 

reliable chemotaxonomic markers for classifying Cannabis beyond THC:CBD ratios (Orser et al. 2017; 85 

Reimann-Philipp et al. 2019). It has been shown that the chemical phenotype (“chemotype”) of plants can 86 

be used to classify Cannabis into chemical varieties (“chemovars”) (Hazekamp and Fischedick 2012; 87 

Lewis et al. 2018). Distinct chemovars, each with different ratios of cannabinoids and terpenes, are 88 

hypothesized to cause distinct effects for human consumers (Lewis et al. 2018). 89 

A variety of studies have looked at the chemical composition of Cannabis samples limited to a 90 

single geographic location (Hazekamp and Fischedick 2012; Orser et al. 2017; Henry et al. 2018; 91 

Reimann-Philipp et al. 2019), included measurements of a limited number of cannabinoids (Hillig and 92 

Mahlberg 2004; Elzinga et al. 2015; Hazekamp et al. 2016; Vergara et al. 2017; Jikomes and Zoorob 2018; 93 

Vergara et al. 2020), or included measurements of terpenes without cannabinoid content (Hillig 2004). 94 

Few studies have investigated the major and minor cannabinoids together with the terpenes (Mudge et al. 95 

2019) and none have performed a thorough chemotaxonomic analysis on a dataset with tens of thousands 96 

of samples across several legal cannabis markets in the United States. Mapping the chemical diversity of 97 

the Cannabis consumed by millions of people has important implications for consumer health and safety, 98 

such as identifying how many chemically distinct types of Cannabis are currently consumed in legal 99 

markets. This may be consequential if distinct chemotypes are later determined to cause reliably different 100 

effects. 101 

It has been suggested that the multiple compounds produced by Cannabis may act in combination 102 

to produce specific medicinal and psychoactive effects, the so-called ‘entourage effect’ (Russo 2011). 103 
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There is limited suggestive evidence for such an effect (McPartland and Russo 2001; Adams and Taylor 104 

2010), including improved patient outcomes in those who use whole-plant extracts (containing THC and 105 

unknown quantities of other compounds) versus synthetic THC (Venderová et al. 2004). For example, 106 

synthetic THC alone in manufactured products such as ‘Marinol’ may produce unpleasant effects 107 

(Calhoun et al. 1998; Carter et al. 2011). Whether or not distinct ratios of cannabinoids and terpenes are 108 

able to consistently yield different subjective effects or therapeutic outcomes is unknown, and a topic of 109 

debate (Russo 2019). 110 

Combinatorial effects, when the ingestion of two or more compounds yields different effects from 111 

either compound in isolation, may be more likely when a drug acts on multiple target systems 112 

(polypharmacology, (Proschak et al. 2018; Bolognesi 2019)), as CBD is known to do (Zlebnik and Cheer 113 

2016). Two compounds can also act directly on the same target, either by augmenting or antagonizing 114 

each other’s effect. CBD appears to ameliorate THC-elicited side-effects (Laprairie et al. 2015; Boggs et 115 

al. 2018); it acts as a negative allosteric modulator of the CB1 receptor (Laprairie et al. 2015), whereas 116 

THC is a partial agonist (Pertwee 2008). Randomized control trials observed different effects from both 117 

compounds consumed alone versus in combination (Solowij et al. 2019). These effects depend both on 118 

dose and consumers’ past experience, suggesting that future studies looking for possible THC-CBD 119 

combinatorial effects must control for these factors, which may be why previous studies have had 120 

conflicting results (Boggs et al. 2018). Carefully controlled in vivo studies are needed to determine 121 

whether distinct ratios of compounds have combinatorial effects. A first step toward defining possible 122 

chemical ratios to be used for vivo studies is to quantify the ratios present in commercial Cannabis. Doing 123 

so will also be important for informing the design of human clinical studies aimed at investigating the 124 

purported therapeutic effects of cannabis products. Ideally, such studies will test formulations with 125 

comparable cannabinoid and terpene ratios to those widely encountered by millions of consumers. 126 

Another important reason to quantitatively map the chemotaxonomy of commercial Cannabis is 127 

that products are commonly labelled with distinct “strain names” or categories with alleged effects, 128 

implying that distinct chemical combinations are consistently linked to those labels. For example, 129 

consumers believe that Cannabis flower labelled “Indica” are reliably sedating, while flower labelled as 130 

“Sativa” provide energizing effects (Clarke and Merlin 2013; Lynch et al. 2016; Vergara et al. 2016). 131 

Cannabis products are aggressively marketed using these labels. Thus, a better understanding of whether 132 

these labels have any reliable association with distinct chemical profiles may have implications for 133 

consumer health and safety as well as the regulation of cannabis product marketing. 134 
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The lack of a standardized, regulated naming system for commercial Cannabis varieties has been 135 

discussed previously (Sawler et al. 2015; Vergara et al. 2016; Vergara et al. 2020). Various studies, each 136 

limited in different ways, have investigated whether these labels capture real chemical variation. For 137 

example, cannabinoid and terpene measurements from California samples found limited differences 138 

between “Indica” and “Sativa,” with some strain names more consistently associated with specific 139 

chemical compositions than others (Elzinga et al. 2015). Flower samples from the Netherlands were found 140 

to contain specific terpenes more often associated with “Indica” than to “Sativa” samples (Hazekamp et 141 

al. 2016). Samples from Washington state limited to total THC and CBD content found no differences 142 

between “Indica” and “Sativa,” with potency variation between certain strain names (Jikomes and Zoorob 143 

2018). Cannabinoid samples across the US did not find a clear relationship between strain name and 144 

chemotype, although terpene measurements were not included (Vergara et al. 2020).  145 

         In this study, we conducted the largest chemotaxonomic analysis of commercial Cannabis flower 146 

to date (N = 89,923), using samples from cannabis testing labs in six US states. We analyzed both the 147 

cannabinoid and terpene content available for these samples, together with common industry labels and 148 

popularity metrics associated with them by the consumer-facing cannabis platform, Leafly. We defined 149 

distinct chemotypes that reliably show up across US states and quantified how well the industry labels 150 

“Indica,” “Hybrid,” and “Sativa” map to these chemotypes. We also examined the consistency of “strain 151 

names” across samples from different producers. These results provide new possibilities for systematically 152 

categorizing commercial Cannabis based on chemistry, the design of preclinical and clinical research 153 

experiments, and the regulation of consumer marketing in the legal cannabis industry. 154 

 155 
RESULTS 156 

Cannabinoid Composition of U.S. Commercial Cannabis 157 

To assess total cannabinoid levels across samples, we plotted the distribution for each cannabinoid 158 

that was consistently measured across regions (Figure 1A) and for every cannabinoid measured within 159 

each region (Figure S1). In all regions, total THC levels were much higher compared to levels of all other 160 

cannabinoids. Total CBD and CBG were present at modest levels in some samples, while other minor 161 

cannabinoids were usually present at very low levels (Figure 1A; Figure S1). Following past work (Hillig 162 

2004; Jikomes and Zoorob 2018), we established the presence of three distinct chemotypes based on 163 

THC:CBD ratios by plotting total THC against total CBD levels (Figure 1B; see Methods). Most samples 164 

belonged to the THC-dominant chemotype (96.5%) in the aggregate dataset (Figure 1B-C) and in each 165 

individual region (Figure S2). A much smaller proportion of samples were classified as CBD-dominant 166 

(1.4%) or Balanced THC:CBD (2.2%; Figure 1; Figure S1). 167 
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 168 

Figure 1: Cannabinoid variation among commercial Cannabis samples in the US. (A) Violin plot of distribution 169 
of the set of common cannabinoids measured across all regions (B) Total THC vs. Total CBD levels, color-coded 170 
by THC:CBD chemotype. (C) Histogram showing THC:CBD distribution on a log10 scale. “Inf” stands for “infinite” 171 
(any samples with 0 total THC or CBD). (D) Principal Component Analysis of all cannabinoids shown in panel A, 172 
color-coded by THC:CBD chemotype.  173 

 174 

Although most samples contained low levels of cannabinoids beyond THC, we observed that 3.9% 175 

and 23.1% of samples, respectively, had total CBD or total CBG of 1% by weight or higher. To further 176 

understand any systematic patterns of variation in cannabinoid profiles beyond THC and CBD levels, we 177 

performed Principal Component Analysis (PCA) on all samples that contained measurements for total 178 

THC, CBD, CBG, CBC, CBN, and THCV content. Most of the variance in this dataset (96%) was 179 

explained by the first principal component (Figure 1D), which was highly correlated with samples’ 180 

THC:CBD ratios (rs = -0.51, P < 0.0001). Most of the remaining variation (3.6%) was explained by the 181 

second principal component, which was highly correlated with total CBG levels (rs = 0.95, P < 0.0001). 182 
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Thus, the vast majority of variance in cannabinoid profiles is explained by variation among the three most 183 

abundant cannabinoids (THC, CBD, CBG) in commercial Cannabis in the US. 184 

To further understand the relationship between levels of each pair of these three cannabinoids, we 185 

plotted total levels of THC, CBD, and CBG against each other, separately for each THC:CBD chemotype. 186 

Given that CBGA is the precursor molecule to both THCA and CBDA, we expected to see positive 187 

correlations between each cannabinoid pair. This is what we observed, with the strength of each 188 

correlation varying across THC:CBD chemotypes (Figure 2). One notable finding with potential 189 

regulatory consequences is the substantial correlation between total THC and CBD levels in CBD-190 

dominant samples (rs = 0.65, P < 0.0001). 84.5% of CBD-dominant samples had total THC levels above 191 

0.3%, the threshold used to legally define hemp in the US. This indicates that a substantial fraction of 192 

CBD-dominant Cannabis would not meet the legal definition of hemp in the US. 193 

     194 
Figure 2: Correlations among total THC, CBD, and CBG levels in each THC:CBD chemotype. Scatterplots 195 
showing the linear correlation between total THC, CBD, and CBG levels in each of the main THC:CBD 196 
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chemotypes. Top Row: Total THC vs. Total CBD; middle row: Total CBD vs. Total THC. Bottom row: Total CBD 197 
vs. Total CBG. ***P < 0.0001 198 

 199 

Terpene Composition of U.S. Commercial Cannabis 200 

We next assessed which terpene compounds were most prominent in samples by plotting the 201 

distribution of each terpene that was consistently measured in each region. On average, the terpenes 202 

myrcene, β-caryophyllene, and limonene were present at the highest levels (Figure 3A). In most cases, 203 

individual terpenes were rarely present at more than 0.5% weight and most were present at low levels (< 204 

0.2%) in the majority of samples. Overall, total terpene content averaged 2% by weight and displayed a 205 

modest but robust positive correlation with total cannabinoid content (rs = 0.37, P < 0.0001), suggesting 206 

that the production of one type of compound doesn’t come at the expense of the other.  207 

To validate that patterns expected from previous studies were observed in the terpene data, we first 208 

looked for correlations between specific terpene pairs. We chose pairs that have been previously observed 209 

to display robust positive correlations, likely stemming from constraints on their biochemical synthesis 210 

(Booth et al. 2017; Allen et al. 2019; Booth and Bohlmann 2019). Strong positive correlations were seen 211 

between α- and β-pinene (Figure 3B; rs = 0.78, P < 0.0001), as well as β-caryophyllene and humulene 212 

(Figure 3C; rs = 0.88, P < 0.0001). These correlations held for both the aggregate dataset (Figure 3) and 213 

for each individual US state (Figures S3 and S4), demonstrating their robustness across regions. 214 

  215 
 216 
Figure 3: Terpene 217 
abundance across 218 
commercial Cannabis 219 
samples in the US. (A) Violin 220 
plots showing distributions of 221 
the set of common terpenes 222 
measured across all regions 223 
(B) Scatterplot showing the 224 
correlation between α- and β-225 
pinene, two common pinene 226 
isomers. rs = 0.78, ***P < 227 
0.0001 (C) Scatterplot 228 
showing the correlation 229 
between β-caryophyllene and 230 
humulene, two Cannabis 231 
terpenes co-produced by 232 
common enzymes. rs = 0.88, 233 
***P < 0.0001 234 

 235 

 236 
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In order to systematically understand relationships between all terpene pairs, we performed 237 

hierarchical clustering on all pairwise correlations among terpenes (Figure 4A; see Methods). This 238 

revealed distinct clusters of co-occurring terpenes. After controlling for multiple comparisons, we 239 

observed many robust correlations between terpenes (see Methods). We also plotted this data in the form 240 

of a network diagram configured to display connections between terpenes with the strongest correlations 241 

(Figure 4B). This diagram provides a more compact picture of terpene co-occurrence and likely reflects 242 

the underlying biosynthesis pathways that give rise to these correlations (Booth et al. 2017; Allen et al. 243 

2019; Booth and Bohlmann 2019). 244 

 245 
Figure 4: Patterns of terpene co-occurrence among commercial Cannabis samples in the US. (A) 246 
Hierarchically clustered correlation matrix showing pairwise correlations between all terpenes consistently 247 
measured across regions. (B) Network diagram where nodes are terpenes and edges are thresholded to the strongest 248 
observed correlations and their widths correspond to the strength of the correlation. [explanation of circle sizes and 249 
line widths] 250 

 251 

THC-Dominant And High-CBD Cannabis Display Distinct Levels of Terpene Diversity 252 

 Historically, the major focus of both clandestine and legal Cannabis breeding in the US has been 253 

on THC-dominant varieties, which is why they predominate in the commercial marketplace (Figure 1) 254 

(Clarke and Merlin 2016). It is therefore expected that THC-dominant cultivars will display a more diverse 255 

array of terpene profiles than CBD-dominant and balanced THC:CBD cultivars. To visualize patterns of 256 

variation among terpene profiles, we performed a Principal Component Analysis (PCA) on the terpene 257 

data (see Methods). The first three principal components explained 78.7% of the variance in the data 258 
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(Figure 5A), indicating that most of the variance in terpene profiles can be explained with just a few 259 

components. 260 

To visualize how patterns of terpene profile variation map to the major THC:CBD chemotypes 261 

shown in Figure 1, we plotted PCA scores for all samples along the first three principal components, with 262 

each sample color-coded by its THC:CBD chemotype (Figure 5 B-D). The superimposed vectors encoding 263 

the five terpenes with the strongest loadings onto each principal component help clarify the terpene 264 

composition of different points on the graph. Most CBD-dominant and balanced THC:CBD samples 265 

cluster within a smaller subsection of the plots compared to THC-dominant samples. To quantify terpene 266 

profile variation across each THC:CBD chemotype, we computed the mean pairwise cosine distance in 267 

terpene profiles within each THC:CBD chemotype and used this as a measure of diversity. We conducted 268 

this analysis at the product level rather than sample level, as individual samples of the same product tend 269 

to be highly similar (see Methods). THC-dominant products displayed significantly higher levels of 270 

diversity than both balanced THC:CBD (Figure 5E; P < 0.0001, |d’| = 0.74) and CBD-dominant products 271 

(Figure 5E; P < 0.0001, |d’| = 0.89). In particular, a higher proportion of CBD-dominant and balanced 272 

THC:CBD products displayed myrcene-dominant terpene profiles compared to THC-dominant samples 273 

(Figure 5F).  274 
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 275 

Figure 5: Patterns of terpene profile diversity across THC:CBD chemotypes. (A) Histogram showing the 276 
proportion of variation explained by each principal component after performing Principal Component Analysis on 277 
the terpene dataset. (B) PCA scores plotted along PC1 and PC2, color-coded by major THC:CBD chemotype. 278 
Vectors depict the loadings of the five individual terpenes onto these principal axes. (C) PCA scores plotted along 279 
PC1 and PC3. (D) PCA scores plotted along PC2 and PC3. (E) Violin plot showing distribution of ‘product 280 
diversity’ values (cosine distances) for each THC:CBD chemotype. Product values are calculated by averaging 281 
samples with the same strain name linked to a given producer ID. ***P < 0.0001, Welch’s t-test and Cohen’s d’. 282 
(F) Stacked bar chart showing the percent products with a given dominant terpene for each THC:CBD chemotype. 283 
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Cluster Analysis Reveals Distinct Terpene Chemotypes And Poor Validity of Common Commercial 284 

Labels 285 

 Given the observed diversity of terpene profiles displayed by THC-dominant samples, we wanted 286 

to establish how this diversity is captured by the categorization system most commonly used for 287 

commercial THC-dominant Cannabis. Commercial products are routinely labelled “Indica,” “Hybrid,” or 288 

“Sativa.” Prevailing folk theories assert that “Indica” products provide sedating effects, “Sativa” 289 

energizing effects, and “Hybrids'' intermediate effects (McPartland and Small 2020). If this were true, we 290 

would expect to see a reliable difference between the chemical composition of samples attached to each 291 

label. To test this, we devised an approach using silhouette analysis to quantify how well these industry 292 

labels capture the observed chemical diversity (see Methods). We compared this commercial labelling 293 

system to labelling the data with simplified chemical designations (each samples’ dominant terpene), as 294 

well as an unbiased approach using k-means clustering.  295 

 Figure 6A displays THC-dominant samples plotted along the first two principal components, 296 

color-coded by their Indica/Hybrid/Sativa label. The samples are highly intermingled, with no obvious 297 

segregation of data points by commercial label. This is reflected in the corresponding silhouette plot, 298 

which displays a low mean silhouette score (Figure 6B). The majority of samples have a negative score, 299 

indicating that many samples with one label could be easily confused with samples of a different label in 300 

terms of terpene profile. In other words, it is likely that a sample with the label ‘Indica’ will have an 301 

indistinguishable terpene composition as samples labelled “Sativa” or “Hybrid.” By comparison, when 302 

samples are labelled by their dominant terpene, there is better visual separation of data points by their 303 

label (Figure 6C) and a higher mean silhouette score (Figure 6D). These results indicate that even a 304 

simplistic labeling system, in which THC-dominant samples are labelled by their dominant terpene, is 305 

better at discriminating samples than the industry-standard labelling system.  306 

 To segment samples in an unbiased fashion based on terpene profile, we applied the k-means 307 

clustering algorithm to define clusters of samples in the data. This approach allowed us to cluster the data 308 

using a standard method for determining a number of clusters that fits this dataset well (Figure 6E; Figure 309 

S6-8; see Methods). Three major clusters were defined. As expected, this algorithmic partitioning of the 310 

data is better at assigning points to distinct groups, especially compared to the Indica/Sativa labels. This 311 

is reflected in the higher mean silhouette score and low proportion of samples with negative silhouette 312 

values (Figure 6F). This data can be clustered in different ways, such as defining additional sub-clusters 313 

within the clusters displayed here (Figure S5). Ideally, this type of analysis would be further constrained 314 

by other data sources, such as sample genotypes and other classes of metabolites. For the purposes of this 315 
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study, we focused on the three large clusters depicted in Figure 6 and conducted further analysis on their 316 

relationship to common commercial categories.  317 

 318 

Figure 6: Commercial ‘strain category’ labels poorly align to patterns of phytochemistry. (A) PCA scores for 319 
all THC-dominant samples plotted along PC1 and PC2, color-coded by Indica/Hybrid/Sativa label attached to each 320 
sample. (B) Silhouette coefficients for each sample with a given Indica/Hybrid/Sativa label. (C) PCA scores for all 321 
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THC-dominant samples plotted along PC1 and PC2, color-coded by the dominant terpene of each sample. (D) 322 
Silhouette coefficients for each sample with a given dominant terpene. (E) PCA scores for all THC-dominant 323 
samples plotted along PC1 and PC2, color-coded by k-means cluster labels attached to each sample. (F) Silhouette 324 
coefficients for each sample with a given k-means cluster label. Each silhouette plot depicts a random subset of 325 
10,000 samples from the full dataset (n=41,201). 326 

 327 

 The distribution of silhouette scores across each of the three labelling systems allows us to compare 328 

the results depicted in Figure 6. Labelling data either by dominant terpene or by k-means cluster was 329 

significantly better at capturing the terpene diversity seen in THC-dominant samples compared to the 330 

commercial labels (Figure 7A; P < 0.0001, |d’| = 3.49, k-means vs. commercial labels). Regardless of the 331 

labelling system, samples are not evenly distributed among groups (Figure 7B). To further visualize the 332 

clusters defined in Figure 6E-F, we used Uniform Manifold Approximation and Projection (UMAP) to 333 

visualize the data (Figure 7B). UMAP is a dimensionality reduction technique like PCA but without 334 

linearity assumptions. The dimensions returned by UMAP lack the interpretability (e.g. factor loadings) 335 

associated with PCA but are superior at recovering latent clustered structure within high-dimensional data 336 

(Dorrity et al. 2020). More of the individual data points are visible in this plot compared to the PCA plots 337 

shown in Figure 6. 338 

 Averaging the full cannabinoid and terpene profile of all products within each cluster allowed us 339 

to depict the average chemical composition of each cluster. We plotted mean terpene profiles as 340 

normalized polar plots together with the total THC, CBD, and CBG distributions of each cluster (Figure 341 

7C-F). In relative terms, a simplified description for the terpene profiles characterizing each cluster is: 342 

“high caryophyllene-limonene” (Cluster I), “high myrcene-pinene” (Cluster II), and “high terpinolene-343 

myrcene” (Cluster III; Figure 4 B-D). Similar groups are seen across regional datasets (Figure S6). We 344 

also observed that one cluster (Cluster III: “high terpinolene-myrcene”) had somewhat higher total CBG 345 

levels compared to the other clusters (median CBG 0.98% vs 0.65%; P < 0.0001, |d’| = 0.57). This 346 

appeared to be due to a modest but significant correlation between total CBG and terpinolene levels (rs = 347 

0.17, P < 0.0001).  348 

 349 
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 350 

Figure 7: Cluster analysis reveals distinct chemotypes of THC-dominant commercial Cannabis commonly 351 
present in US states. (A) Violin plot showing the distribution of silhouette coefficients for each labelling method. 352 
***P < 0.0001, Welch’s t-test and Cohen’s d’. Absolute effect sizes are given as Cohen’s d’ values. ***p<0.0001, 353 
**p<0.001; *p<0.01 (B) Stacked bar chart showing the percent of samples falling within each group for each 354 
labelling system. (C) UMAP embedding in two dimensions showing samples classified into each k-means cluster. 355 
(D) Polar plot showing the mean, normalized levels of eight of the terpenes most commonly observed for Cluster I 356 
(high caryophyllene-limonene) products. (E) Similar polar plot for Cluster II (high myrcene-pinene) products. (F) 357 
Similarly polar plot for Cluster III (high terpinolene-myrcene) products. Gray lines represent the top 25 products 358 
from each cluster with the most samples per product. 359 

 360 
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Commercial “Strain Names” Display Differential Levels of Chemical Consistency 361 

 The cannabis industry also uses colloquial “strain names” to label and market products. Distinct 362 

“strains” of THC-dominant Cannabis are purported to offer distinct psychoactive effects, such as “sleepy,” 363 

“energizing,” or “creative.” While the commercial use of nomenclature is not accepted by the scientific 364 

community, it is conceivable that distinct chemovars of THC-dominant Cannabis could cause different 365 

psychoactive effects, on average. In principle, if commercial “strain names” are indicative of different 366 

psychoactive effects in a discernible way, then different strain names should reliably map to distinct 367 

chemotypes. Alternatively, because there are few regulatory constraints on the nomenclature of 368 

commercial Cannabis, it is possible that Cannabis producers attach strain names to their products in 369 

arbitrary or inconsistent ways. If this were true, we would not expect to see strain names consistently map 370 

to specific chemotypes above chance levels. 371 

 To quantify chemical consistency among THC-dominant products, we compared each product's 372 

chemical composition in terms of the 14 major terpenes depicted in Figures 3-4. We did this for all strain 373 

names where the underlying data was attached to at least five product IDs each having five or more 374 

samples with that particular strain name. To validate whether the strain names attached to more testing 375 

data are representative of those encountered by consumers, we plotted the number of products attached to 376 

each strain name vs. consumer popularity, measured in terms of unique online pageviews to the consumer 377 

Cannabis database, Leafly.com. We observed a strong positive correlation (rs = 0.59, P < 0.0001), 378 

indicating that the strain names in our analysis are representative of the names encountered by consumers 379 

in commercial settings.  380 

As a measure of consistency, we computed the pairwise cosine similarity of all products attached 381 

to each strain name and visualized this in a similarity matrix (Figure 8B, ten most abundant strain names 382 

shown). Next, we quantified the average pairwise similarity of all products sharing a common strain name. 383 

For each strain name, we plotted the distribution of product similarity scores, sorted from highest to lowest 384 

mean similarity, for the 41 strain names used in this analysis (Figure 8C). We compared these values to 385 

the average similarity score computed after randomly shuffling strain names across all product IDs (Figure 386 

8C, dashed line). This allowed us to model the situation where each producer has arbitrarily labelled their 387 

product with a given strain name. The mean between-product similarity was significantly higher compared 388 

to the shuffled dataset for the majority strain names (Figure 8C, P < 0.0001, |d’| = 1.44). For some strain 389 

names, product similarity did not significantly differ from the shuffled distribution or was even below 390 

this, and there was a large amount of variability in mean consistency scores across all strain names. To 391 

illustrate this variability further, we overlaid the individual profiles of all products with a given name, 392 
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separately for two strain names: one with a relatively high level of between-product similarity (“Purple 393 

Punch”) and one with a low level (“Tangie”; Figure 8D).  394 

 To assess between-product similarity in terms of the major clusters defined previously, we applied 395 

the same clustering approach from Figures 6-7 to the product averages analyzed in Figure 8. These data 396 

were visualized in a UMAP embedding, with all products attached to the two example strain names (Figure 397 

8D highlighted Figure 8E). This illustrates how a relatively consistent (Purple Punch) vs. inconsistent 398 

(Tangie) strain name maps to this space. 96% of product averages attached to Purple Punch fall within 399 

Cluster I (high caryophyllene-limonene), while only 62.5% of product averages for Tangie fall into a 400 

single cluster.  401 

 Figure 8: Strain names are 402 
associated with variable 403 
levels of chemical 404 
consistency across Cannabis 405 
products. (A) Scatterplot of 406 
the number of products tested 407 
vs. normalized Leafly 408 
popularity for all product-409 
level data attached to strain 410 
names (log10 scale). rs = 0.59, 411 
***P < 0.0001 (B) Similarity 412 
matrix depicting pairwise 413 
cosine similarities between all 414 
product-level data attached to 415 
the ten most common strain 416 
names by abundance. (C) 417 
Violin plot depicting the 418 
distribution of cosine 419 
similarity scores between 420 
products attached to the same 421 
strain name. Dashed line 422 
represents the average 423 
similarity level after randomly 424 
shuffling strain names. **P < 425 
0.001, ***P < 0.0001, 426 
Welch’s t-test.***p<0.0001; 427 
**p<0.00024; *p<0.0012 428 
Welch’s t-test. (D) Violin 429 
plots representing total 430 
cannabinoid distributions and 431 
polar plots representing 432 
terpene profiles for all 433 
products attached to the strain 434 
names “Purple Punch” (left) 435 
and “Tangie” (right); (E) 436 
UMAP embedding showing 437 
where each of the product 438 

samples for Purple Punch and Tangie from panel D show up in this representation.  439 
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Some Commercial Labels Are Over-Represented in Specific Chemically Defined Clusters 440 

 To further understand whether any strain names were overrepresented in our algorithmically 441 

defined clusters, as appeared true for Purple Punch (Figure 8E), we calculated the proportion of all 442 

products with a given strain name that belonged to each cluster. For each strain name displayed in Figure 443 

8C, we calculated that proportion for whichever cluster contained the highest count of products with that 444 

name. For example, 96% of products attached to the name “Purple Punch” were found in Cluster I, much 445 

higher than the 61.8% expected if product strain names are randomly shuffled (P < 0.0001, |d’| = 2.47). 446 

We plotted this proportion for the 18 most overrepresented strain names, grouped by their primary cluster 447 

and compared these to the average cluster frequency expected from shuffling strain names across products 448 

(Figure 9A). For each cluster, there are strain names that are highly overrepresented. 100% of “Dogwalker 449 

OG” products are found within Cluster I (“high caryophyllene-limonene”; P < 0.0001, |d’| = 1110.4), 450 

88.5% of “Blue Dream” products are found within Cluster II (“high myrcene-pinene”; P < 0.0001, |d’| = 451 

1.2), and 85.9% of “Dutch Treat” products are found within Cluster III (“high terpinolene”; P < 0.0001, 452 

|d’| = 1.0). 453 

Similar to Figure 8E, we plotted the single most over-represented strain name associated with each 454 

cluster in a UMAP embedding of all the product-level data (Figure 9B). These strain names represent 455 

those that are the most consistently associated with a given chemotype. Notably, even these strain names 456 

are not perfectly associated with a single chemotype, and products attached to each name display 457 

variability within each cluster. This indicates that even the strain names with the highest levels of 458 

consistency across products still display a non-trivial amount of variation. An interactive 3-D version of 459 

this product-level UMAP (including high-CBD products) is also included (see Methods). 460 

In doing this analysis, we noticed that one cluster (Cluster III, characterized by high terpinolene 461 

levels) contained a paucity of products attached to strain names labelled as “Indica.” To understand 462 

whether any of the Indica/Hybrid/Sativa industry labels were over- or under-represented within any of 463 

these clusters, we performed a similar analysis for commercial categories as we did for strain names: for 464 

each of the three clusters, we calculated the proportion of products attached to Indica/Hybrid/Sativa labels. 465 

For each of these, we compared it to the population frequency of each category. For Cluster I and Cluster 466 

II, the frequency of products attached to Indica/Hybrid/Sativa labels did not significantly differ from those 467 

observed in the full set of products with Indica/Hybrid/Sativa labels. In contrast, Cluster III (high 468 

terpinolene) did show a significant difference, with approximately twice as many Sativa-labelled products 469 

and half as many Indica-labelled products as expected from the full population (Figure 9B; X2 = 22.2, P 470 

< 0.0001, Chi-squared test). This over-representation of Sativa-labelled products can also be seen in the 471 
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UMAP embedding (Figure 9D), which displays product-level data color-coded by Indica/Hybrid/Sativa 472 

label. 473 

 474 
Figure 9: Some commercial Cannabis labels are overrepresented for specific chemotypes. (A) UMAP 475 
embedding of product-level data as in Figure 8E, color-coded by Indica/Hybrid/Sativa label. (B) Stacked bar chart 476 
showing the proportion of products labelled as Indica, Hybrid, or Sativa within each k-means cluster, compared to 477 
the overall distribution. ***P < 0.0001, Chi-squared test. (C) UMAP embedding of product-level data as in Figure 478 
8D, color-coded by k-means cluster label, showing where all products attached to either “Blue Dream” or “Dutch 479 
Treat” are found. (D) Bar charts showing the percent of products attached to each strain name that are found in a 480 
given k-means cluster, color-coded by its most prominent cluster. Dashed line represents expected percent after 481 
randomly shuffling strain names. ***P < 0.0001, Welch’s t-test. 482 
 483 
Discussion  484 

To our knowledge, this study represents the largest quantitative chemical mapping of commercial 485 

Cannabis to date. It builds on a literature examining the chemotaxonomy of Cannabis samples taken from 486 

individual regions of the US (Elzinga et al. 2015; Henry et al. 2018; Vergara et al. 2020), Canada (Mudge 487 

et al. 2019), and Europe (Hazekamp and Fischedick 2012; Hazekamp et al. 2016), as well as classic studies 488 
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of the chemotaxonomy of non-commercial Cannabis (Hillig 2004; Hillig and Mahlberg 2004). We 489 

mapped and analyzed the cannabinoid and terpene diversity of almost 90,000 samples from six US states 490 

and found distinct chemotypes of Cannabis that are reliably present across regions. 491 

Because Cannabis remains federally illegal in the US, the laboratory-derived data from each state 492 

represent distinct pools of Cannabis found within those states. Even with clones, environmental factors 493 

such as variation in growing conditions and preparation procedures can cause differences in morphology 494 

and chemotype expressions that are measured by testing labs (Magagnini et al. 2018). Moreover, the 495 

measurements themselves are made by different labs, using methodologies that may not be standardized 496 

(See Methods, Data Collection). Nonetheless, we observed similar patterns across regions. In all states, 497 

the sample population is comprised mostly of THC-dominant samples, each with a similar distribution of 498 

major terpenes (Figures S2, S6) and displaying the terpene-terpene correlations expected based on the 499 

constraints of terpene biosynthesis (Booth et al. 2017; Booth and Bohlmann 2019; Booth et al. 2020), as 500 

has been observed elsewhere (Allen et al. 2019; Mudge et al. 2019). The pooled dataset also displays 501 

features seen in sample populations from US states not represented here (Henry et al. 2018). Collectively, 502 

these results suggest that, while some regional variation may exist, the major patterns of cannabinoid and 503 

terpenes profiles are similar throughout the US.  504 

We used cluster analysis to define at least three major chemotypes of THC-dominant Cannabis 505 

prevalent in the US (Figures 6-7; Figure S5). In simplified terms, samples from each cluster tend to be 506 

characterized by relatively high levels of β-caryophyllene and limonene (Cluster I), myrcene and pinene 507 

(Cluster II), or terpinolene and myrcene (Cluster III). Samples across these clusters display similar total 508 

THC distributions, while Cluster III is associated with modestly higher CBG levels (Figure 7). The 509 

chemotype landscape of commercial Cannabis is highly uneven, with less than 96.5% of samples 510 

classified as THC-dominant, and 87.4% of these samples belonging to either the Cluster I (high 511 

caryophyllene-limonene) or Cluster II (high myrcene-pinene). Breeding new Cannabis chemotypes not 512 

represented in the current commercial landscape will be a key area of future innovation. 513 

We observed that the diversity of cannabinoid profiles displayed by commercial Cannabis in the 514 

US is explained almost entirely by variation in total THC, CBD, and CBG content, with the majority of 515 

variation coming from THC content (Figure 1). Similar to classic work on non-commercial Cannabis 516 

(Hillig and Mahlberg 2004), our results show distinct THC:CBD chemotypes: THC-dominant, balanced 517 

THC:CBD, and CBD-dominant. These likely arise from distinct genotypes. The genes giving rise to the 518 

cannabinoid synthases responsible for producing the major cannabinoid acids are highly similar (Vergara 519 

et al. 2019; van Velzen and Schranz 2020; Vergara et al. 2021b). Copy number variation (Vergara et al. 520 

2019; Vergara et al. 2021b) or allelic variation (Onofri et al. 2015) in the genes encoding these enzymes 521 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 6, 2021. ; https://doi.org/10.1101/2021.07.05.451212doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.05.451212
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

may explain the observed variation in cannabinoid ratios. Interesting areas of future study will be to 522 

correlate chemotype and genotype directly and determine why other minor cannabinoids have such low 523 

abundance in commercial Cannabis. For example, there are numerous CBC-related genes (van Velzen 524 

and Schranz 2020) but we observe very low levels of CBC (Figures 1-2), supporting previous claims that 525 

CBCA synthase may not be selective for CBC production (Vergara et al. 2020).  526 

The observed variation in terpene profiles is also likely related to underlying genotypic variation. 527 

While environmental and developmental modulation of terpene profiles is possible (Aizpurua-Olaizola et 528 

al. 2016), the fact that we observe a similar set of major profiles across US states (Figure S6) suggests that 529 

these profiles have a strong genetic component. Cannabis terpenes are synthesized from enzymes encoded 530 

by multiple genes (Booth et al. 2017; Allen et al. 2019; Booth and Bohlmann 2019; Booth et al. 2020). 531 

The robust correlation patterns we observed among many of the most abundant Cannabis terpenes likely 532 

arise from variation in biosynthetic enzymes. The underlying genetic networks regulating these 533 

biochemical pathways are complex (Booth et al. 2017; Allen et al. 2019; Booth and Bohlmann 2019; 534 

Booth et al. 2020) and more research may be needed to inform efficient breeding programs to generate 535 

novel chemotypes. 536 

Despite the chemotypic diversity we observed for THC-dominant Cannabis, this likely represents 537 

a fraction of the diversity the plant is capable of expressing. For example, although one of the clusters we 538 

defined is characterized by especially high myrcene levels, each of the three clusters contain samples 539 

where myrcene is more abundant than most other terpenes. This pattern is stronger for CBD-dominant 540 

and balanced THC:CBD chemotypes, where the majority of samples are myrcene-dominant. This may 541 

reflect a historical genetic bottleneck, whereby most Cannabis grown in the US is descended from a subset 542 

of the worldwide lineages (McPartland and Small 2020). The relative lack of diversity among high-CBD 543 

cultivars is likely due to the historical focus on breeding high potency THC-dominant Cannabis in the 544 

US. In principle, there is no biological limitation preventing the breeding of high-CBD cultivars with 545 

similar terpene diversity to what is seen in THC-dominant cultivars. Many of the genes encoding the 546 

synthetic enzymes for terpene production are located on different chromosomes from those involved in 547 

cannabinoid acid synthesis (Booth et al. 2020) or are found far apart from each other in the same genomic 548 

region (Allen et al. 2019), and therefore could be assorted through recombination. These two aspects of 549 

chemical phenotype may therefore be independently inherited, similar to other phenotypic traits (Vergara 550 

et al. 2021a).  551 

While not observed in this commercial dataset, chemovars that predominate in other cannabinoids, 552 

such as CBG, have been bred and may offer distinct psychoactive or medicinal effects compared with the 553 

high-THC chemovars that predominate commercially (Hutchison et al. 2019). There were few samples 554 
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that contained an abundance of minor cannabinoids, suggesting that commercial Cannabis in the US is 555 

much more homogenous than it could be. An exciting area for academic research and product innovation 556 

lies in the breeding of new varieties with higher levels of other cannabinoids. For example, cannabinoids 557 

like THCV have interesting pharmacological properties suggesting they may be dose-dependently 558 

psychoactive (Pertwee 2008), with potential medicinal benefits (Bolognini et al. 2010). Chemotypes 559 

expressing distinct ratios of minor cannabinoids and terpenes, with and without significant THC levels, 560 

will likely elicit effects of interest to consumers and clinical researchers. Our results are consistent with 561 

the notion that the full chemotype landscape of Cannabis has yet to be filled in (Figure 10). 562 

 563 

Figure 10: Potential scheme for classifying commercial Cannabis based on cannabinoid and terpene profiles. 564 
Flow chart showing a potential classification framework for commercial Cannabis. Level 1 represents cannabinoid 565 
ratios and displays the three common THC:CBD chemotypes as well as novel cannabinoids that could be bred. 566 
Level 2 represents terpene profiles and displays the three clusters we identified as well as other terpene combinations 567 
which could come to exist. Terpene clusters overlap slightly to illustrate that terpenes in each cluster are not 568 
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mutually exclusive. Grey lines demonstrate a chemotype that may be possible (e.g., CBD-dominant and terpinolene-569 
dominant) but has not yet been observed. 570 
 571 

In addition to mapping the chemical landscape of commercial Cannabis in the US, we also 572 

quantified how well commonly used industry labels align with the chemical composition of samples. In 573 

general, we found that industry labels are poorly or inconsistently aligned with the underlying chemistry. 574 

In particular, the Indica/Hybrid/Sativa nomenclature does not reliably distinguish samples based on their 575 

chemical content, making it highly unlikely that this widely used commercial labeling system is a reliable 576 

indicator of systematically different effects. Marketing emphasizing Indica-labelled products as sedating 577 

and Sativa-labelled products as energizing are not borne out by our analysis of the underlying chemistry.  578 

We also examined the popular “strain names” commonly attached to products, which are used 579 

commercially to reference cultivars purported to offer distinct effects. In particular, we quantified the 580 

terpene profile consistency of THC-dominant products sharing the same strain name across different 581 

producers. We modeled the situation where strain names are randomly applied to products, finding that 582 

many strain names are more consistent from product-to-product, on average, than would be expected by 583 

chance. However, we also observed a wide range of consistencies for all strain names, suggesting that 584 

some are more homogeneous than others (Schwabe and McGlaughlin 2019), perhaps because these names 585 

are more often attached to cultivars that are clonally propagated. These results indicate that while strain 586 

names may be a better marker of product chemistry than the Indica/Sativa/Hybrid category labels, they 587 

are far from ideal (Figure 8).  588 

While commercial labels tended to have poor validity overall, we found evidence that certain strain 589 

names and categories were statistically overrepresented within specific chemically defined clusters. In 590 

particular, Cluster III samples (high terpinolene-myrcene) displayed an over-representation of Sativa-591 

labelled products. While certain strain names were over-represented in Clusters I and II, neither of these 592 

Clusters displayed an over-representation of Indica or Sativa labels. Although the origins of this pattern 593 

are unclear, one hypothesis is that it echoes patterns of phytochemistry that may have been more 594 

distinctive prior to the long history of Cannabis hybridization in the US. It is conceivable, for example, 595 

that certain cultivars commonly associated with “Sativa” lineages may have historically displayed a 596 

chemotype reliably distinct from those in other lineages. Over time, hybridization and a lack of 597 

standardized naming conventions may have decorrelated chemotaxonomic markers from the linguistic 598 

labels used by cultivators. Thoroughly tracing which chemotypes tend to map to different lineages will 599 

require datasets that combine both genotype and chemotype data for modern commercial cultivars and, 600 

ideally, the landrace cultivars from which they descended (Clarke and Merlin 2016). 601 
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 Medical Cannabis has been described as a “pharmacological treasure trove” (Mechoulam 2005) 602 

due to the diversity of pharmacologically active compounds it harbors. Cannabis-derived formulations 603 

and specific cannabinoids (namely THC and CBD) have demonstrated efficacy for conditions ranging 604 

from chronic pain (Haroutounian et al. 2016) to childhood epilepsy (Lattanzi et al. 2018). Medical 605 

Cannabis patients report an even wider array of conditions they believe Cannabis is efficacious for, 606 

including mental health outcomes (Lucas et al. 2019). It has also been hypothesized that distinct 607 

chemotypes of Cannabis, each with different ratios of cannabinoids and terpenes, may offer distinct 608 

medical benefits and psychoactive effects (Russo 2019; Koltai and Namdar 2020). This hypothesized 609 

“entourage effect” has been difficult to confirm experimentally due to onerous regulations that make it 610 

challenging to execute in vivo studies with controlled administration of the myriad compounds found in 611 

Cannabis. 612 

The results of this study can serve as a guide for future research, including in vitro assays, animal 613 

studies, and human trials. Studies seeking to falsify claims about the psychoactive and medical effects of 614 

different Cannabis types should test chemical ratios that match those found commercially. If it is true that 615 

different chemotypes of THC-dominant Cannabis reliably produce distinct psychoactive or medicinal 616 

effects, then a sensible starting point is to design studies comparing the effects of common, distinctive 617 

commercial chemotypes, such as those described by our cluster analysis (Figures 6-7). Likewise, if there 618 

is any modulatory effect of specific cannabinoids or terpenes on the effects of THC, then this should be 619 

tested using formulations designed to match the ratios that people choose to consume under ‘ecological’ 620 

conditions. 621 

 While the present study represents the largest chemotaxonomic analysis of commercial Cannabis 622 

to-date, there are important caveats. One is that the dataset we analyzed was an aggregation of lab data 623 

from different states. We had no access to the genotype or the growing conditions for any of these samples 624 

and important outstanding questions remain for how these factors relate to chemotype in Cannabis. It is 625 

also possible one or more compounds that were not consistently measured in each region is an important 626 

chemotaxonomic marker. State-level markets have different regulations which may influence the expertise 627 

of commercial growers or the choice and development of Cannabis products. Finally, this dataset did not 628 

include the variation found in hemp. An exciting area of future research will be to investigate these 629 

questions using datasets that combine sample-level features about genotype, chemotype, and 630 

environmental conditions.  631 

 Our results also have regulatory implications. For example, we observed a robust correlation 632 

between total THC and total CBD levels for CBD-dominant Cannabis samples. Because the legal 633 

definition of hemp in the US is based on an arbitrary threshold of total THC levels, the majority of CBD-634 
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dominant samples would not be legally classified as hemp within the US, despite such samples being 635 

characterized by low THC:CBD ratios distinct from those seen in high-THC samples (Figure 1-2).  636 

Legal THC-dominant Cannabis products are marketed to consumers as if there are clear-cut 637 

associations between a product’s label and its psychoactive effects. This is deceptive, as there is currently 638 

no clear scientific evidence for these claims and our results show that these labels have a tenuous 639 

relationship to the underlying chemistry. In contrast to other widely used but federally regulated plants 640 

(e.g., corn and other crops regulated by the Federal Seed Act), there are no enforced rules for the naming 641 

of Cannabis varieties. This stems from the fact that Cannabis is not federally legal in the US, which 642 

prevents an overarching, enforceable naming standard from emerging. As a consequence, legacy 643 

classification systems inherited from the illicit market have persisted with unwarranted trust in the 644 

provenance and predictability of products' effects.  645 

We have shown that in the US, multiple, distinct chemotypes of commercial Cannabis are reliably 646 

present across regions. Due to the chemical complexity of these products, which may contain dozens of 647 

pharmacologically active compounds with potentially psychoactive or medicinal effects, we believe it is 648 

in the public interest to devise a classification system and naming conventions that reflect the true 649 

chemotaxonomic diversity of this plant. The general approach we have used in this study can serve as a 650 

basic guide for cannabis product segmentation and classification rooted in product chemistry. Consumer-651 

facing labelling systems should be grounded in such an approach so that consumers can be guided to 652 

products with reliably different sensory and psychoactive attributes. 653 

 654 
MATERIAL & METHODS 655 
Data Collection 656 

The data analyzed in this paper was shared by Leafly, a technology company in the legal cannabis 657 

industry. Leafly made a variety of data available as part of a data sharing program where university-658 

affiliated researchers can access data for research purposes with the intent to publish results in peer-659 

reviewed scientific journals. The data Leafly made available included laboratory testing data (cannabinoid 660 

and terpene profiles; see below) as well as metrics related to consumer behavior and preferences, 661 

including: normalized values of the number of unique views to each of the web pages within its online, 662 

consumer-facing strain database; consumer ratings and common categorical designations associated with 663 

commercial strain names (Indica, Hybrid, or Sativa); crowd-sourced metrics related to the perceived 664 

flavors and effects of associated with popular strain names, derived from online consumer reviews. For 665 

the purposes of this study, we focused mainly on analyzing the laboratory testing data and its relationship 666 

with popular commercial labelling systems (i.e. strain names and Indica/Hybrid/Sativa designations).  667 
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Laboratory testing data came from Leafly via partnerships they have with cannabis testing labs 668 

across the US. Each lab consented to allowing researchers to analyze its data for academic research 669 

purposes. Each laboratory dataset consisted of the complete set of cannabinoid and terpene compounds 670 

measured by each lab within a given time period between December 2013 and January 2021. The name 671 

of each lab is listed below, together with the US state their data was measured in and a link to their 672 

websites, which contain more detailed information on their specific testing methodologies. Each lab used 673 

different variations of High Performance Liquid Chromatography to measure cannabinoid levels and Gas 674 

Chromatography (GC-FID or GC-MS) to measure terpene levels. 675 

● CannTest, Alaska, http://www.canntest.com/ 676 

● Confidence Analytics, Washington, https://www.conflabs.com/  677 

● ChemHistory, Oregon, https://chemhistory.com/  678 

● Modern Canna Labs, Florida, https://www.moderncanna.com/  679 

● PSI Labs, Michigan, https://psilabs.org/  680 

● SC Labs, California, https://www.sclabs.com/  681 

 682 

Leafly shared a single, standardized lab dataset composed of Cannabis flower samples that had 683 

been tested for cannabinoid, or for both cannabinoid and terpene content. Raw cannabinoid acid, 684 

cannabinoid, and terpene measurements had been converted to common units (% weight) together with 685 

additional information for each sample: anonymized producer ID, test date, and the producer-given sample 686 

name. 687 

For each lab testing sample, Leafly included the strain name associated with each web page in its 688 

online Cannabis strain database together with the popular industry category (“Indica,” “Hybrid,” or 689 

“Sativa”) associated with each strain name. The strain names from Leafly’s database were matched to the 690 

producer-given strain name of each flower sample (e.g. “blue-dream”), wherever such a match was found, 691 

using a similar string-matching algorithm as described in Jikomes & Zoorob (2018), supplemented with a 692 

human expert-supplied dictionary used to standardize names with common variations (e.g. “SLH” = 693 

“super-lemon-haze,” “GDP” = “granddaddy-purple,” and so on). In total, 81.5% of samples were attached 694 

to popular strain names and 73.4% additionally attached to a Indica/Hybrid/Sativa label, with the 695 

remainder labelled as “Unknown.”  696 

 697 

Technologies Used 698 

All data cleaning and analysis for this paper was performed using the Python programming 699 

language (Python Software Foundation, https://www.python.org) and utilized the following libraries: 700 
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NumPy, pandas, SciPy, and scikit-learn. All data visualizations were made using the Python libraries 701 

Seaborn and Matplotlib.  702 

 703 

Data Processing: Raw Data Filtering & Outlier Removal 704 

 The standardized dataset consisting of rows of lab data was cleaned and processed using custom 705 

code in Python. A small number of duplicate rows were removed from the dataset (n = 11). We also 706 

removed any samples with biologically implausible values (i.e. very high or low) for dried Cannabis, 707 

which likely represent rare measurement anomalies or come from samples which do not truly represent 708 

dried Cannabis flower (e.g. “shake” or other plant material different from the dried female inflorescence). 709 

We used the following, conservative criteria: any single cannabinoid measured at over 40% (percent 710 

weight; n = 80), or samples which had summed total cannabinoid measurements over 50% (n = 2); samples 711 

which had null or 0.0 measurements for both total THC and total CBD (n = 591). The total number of 712 

samples dropped from the dataset was 684, or 0.75% of the raw dataset. The final number of samples was 713 

89,923. 714 

 Terpene data was also removed for samples which had a terpene measurement variance less than 715 

0.001 (n = 2,048), samples which had any single terpene measurement over 5% (n = 8), or for samples 716 

which had over 10 measurements equalling zero among the 14 most common terpenes (n = 2,178). The 717 

total number of samples which had terpene data removed was 4,234, or 9% of samples having any terpene 718 

data. The final number of samples with terpene data was 42,843, or 47.6% of the final dataset. The reason 719 

that many laboratory testing samples contain only cannabinoid measurements is that terpene levels are 720 

generally not legally required to be measured. Nonetheless, we were still left with 42,843 samples with 721 

terpene measurements attached, which to our knowledge is the largest such dataset of commercial 722 

Cannabis analyzed to date.  723 

 724 

Data Processing: Total Cannabinoid Levels 725 

 Total cannabinoid levels were calculated from the raw cannabinoid and cannabinoid acid values 726 

attached to each flower sample. This widely used convention calculates the total levels of a cannabinoid 727 

found in a Cannabis product assuming complete decarboxylation of a cannabinoid acid to its 728 

corresponding cannabinoid. For total THC, the formula is: 729 

 Total THC = (0.877 * THCA) + THC 730 

 731 

0.877 is a scaling factor which accounts for the difference in molecular weight between raw cannabinoid 732 

and cannabinoid acid values for THC, CBD, CBG, CBC, CBN, CBT, and delta-8 THC. The equivalent 733 
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formula, with the scaling factor of 0.8668, was used to calculate total cannabinoid levels for THCV and 734 

CBDV. 735 

 736 

Data Processing: THC:CBD Chemotypes 737 

Following past work (Hillig and Mahlberg 2004; Jikomes and Zoorob 2018), we classified all 738 

flower samples as THC-dominant, CBD-dominant, or Balanced THC:CBD based on the THC:CBD ratio 739 

of the sample. THC-dominant samples are those with a 5:1 THC:CBD or higher, CBD-dominant samples 740 

are those with a 1:5 THC:CBD or lower, and Balanced THC:CBD are in between. 741 

 742 

Data Analysis: Cannabinoid and Terpene Analysis 743 

Given that cannabis testing is not standardized nationally, each lab had a unique set of 744 

cannabinoids and terpenes that they measured. Because of this, we established a list of compounds 745 

common across every lab and used these in our main analyses. These compounds were: 746 

● Common Cannabinoids:  747 

○ Tetrahydrocannabinol (THC)  748 

○ Cannabidiol (CBD)  749 

○ Cannabigerol (CBG) 750 

○ Cannabichromene (CBC) 751 

○ Cannabinol (CBN) 752 

○ Tetrahydrocannabivarin (THCV) 753 

 754 

● Common Terpenes:  755 

○ Bisabolol  756 

○ Camphene  757 

○ β-Caryophyllene (Caryophyllene) 758 

○ α-Humulene (Humulene)  759 

○ Limonene  760 

○ Linalool 761 

○ β-Myrcene (Myrcene) 762 

○ cis- and trans-Nerolidol (Nerolidol) 763 

○ α-, β-, cis-, and trans-Ocimene (Ocimene) 764 

○ α-Pinene 765 

○ β-Pinene  766 
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○ α-Terpinene  767 

○ γ-Terpinene 768 

○ Terpinolene 769 

 770 

In the case of polar plots used to describe basic terpene profiles, α-pinene and β-pinene were 771 

summed together and shown as “pinene” (see figures 7D-F and 8D). For certain terpenes (ocimene and 772 

nerolidol), some labs measured individual isomers, and some reported a single total sum. In our main 773 

analyses using data aggregated across labs, we summed across cis- and trans-nerolidol, and across α-, β-, 774 

cis-, and trans-ocimene. 775 

 776 

Data Analysis: Sample- vs. Product-level Analysis 777 

Most of the analysis was conducted on the sample-level, meaning the data analyzed were the 778 

individual Cannabis flower samples labs received and measured. We conducted some analyses at the 779 

product-level. A product represents the average cannabinoid and terpene measurements for all strain 780 

name-anonymized producer combinations. For example, Producer 101 might have 15 separate samples 781 

attached to the name “blue-dream” that were submitted over some period of time. For product-level 782 

analyses (Figures 5E-F, 7D-F, 8AB-E, and 9A-D), we averaged across such samples for each unique 783 

combination of Producer IDs and strain names. THC:CBD chemotype was assigned to products based on 784 

the average total THC and CBD values.  785 

 786 

Data Analysis: Statistics 787 

When performing statistical tests, we opted for statistical tests that do not depend on assumptions 788 

about the distribution of the underlying data. For comparing groups, we used the Welch’s t-test, which 789 

does not assume equal population variances. For correlations, we computed Spearman's rank correlation 790 

coefficient by default, as it provides a nonparametric measure of correlation. Any samples with null values 791 

among the variables being analyzed were excluded in the calculation. Significance levels were corrected 792 

using the most conservative Bonferroni correction to adjust for multiple comparisons, when applicable. 793 

All p-values reported in the figures and text as significant are significant at the particular corrected alpha 794 

level. Stars in figures (*, **, ***) correspond to the alpha levels 0.01, 0.001, and 0.0001 (with Bonferroni 795 

correction), respectively. Due to the large sample sizes in our dataset, we tended to obtain very small p-796 

values that vary by many orders of magnitude. In these cases, p-values are reported as < 0.0001 (with 797 

Bonferroni correction). 798 
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With sufficiently large sample sizes, statistically significant p-values can be found even when 799 

differences are negligible. For this reason, we report effect sizes in addition to the p-values obtained from 800 

Welch’s t-test. We used an adjusted version of Cohen’s d (“d-prime”) in order to estimate the effect size 801 

for independent samples without the assumption of equal variances (Navarro 2020).  802 

This version averages the two population variances: 803 

 804 

𝑑	′	 = 	𝑋! − 𝑋"
'𝜎!" + 𝜎""2

 805 

 806 

Data Analysis: Figure 1 807 

 The total levels for the six common cannabinoids were visualized as combination violin and box 808 

plots. A scatter plot and a histogram of the relationship between total THC and total CBD were visualized 809 

with the THC:CBD chemotypes color-coded. Principal component analysis (PCA) was run on the 810 

normalized values of the six common cannabinoids (i.e., the % of measured common cannabinoids). Null 811 

values were filled with zeros. A PCA biplot was created to visualize the PCA scores of the samples and 812 

the weight of each cannabinoid on the first two principal components. 813 

 814 

Data Analysis: Figure 2  815 

The data was filtered by each of the three chemotype classes identified in Figure 1 (THC-dominant, 816 

CBD-dominant, and balanced THC:CBD). Pairwise scatterplots for each permutation of the three most 817 

abundant cannabinoids (THC, CBD, CBG) were made for the three THC:CBD chemotype classes. No 818 

additional filtering or outlier removal was performed. The resulting nine plots are visualized in Figure 2. 819 

The Spearman rank correlation for each cannabinoid relationship in each class was computed to measure 820 

the strength of the relationship. Statistical significance was evaluated after using the Bonferroni correction 821 

for 9 multiple comparisons. All observed relationships were significant at the (corrected) P < 0.0001 level.  822 

 823 

Data Analysis: Figure 3  824 

 The fourteen common terpenes were visualized for samples with terpene data in a combination 825 

violin/box plot, ordered by median value, descending. The linear relationships between two pairs of 826 

terpenes (α- and β-pinene, and β-caryophyllene and humulene) were quantified with a linear regression 827 

and Spearman rank correlation. Statistical significance was evaluated after using the Bonferroni correction 828 

for two multiple comparisons. 829 
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 830 

Data Analysis: Figure 4 831 

The fourteen terpene levels were correlated with each other using a Spearman rank correlation. A 832 

clustermap visualization in Figure 4 combining a heatmap and hierarchical clustering visualizations was 833 

made. Because of the multiple pairwise comparisons (14 x 13 / 2 = 91), statistical significance was 834 

evaluated after using the Bonferroni correction for 91 multiple comparisons. Cells were colored by the 835 

strength of the relationship (bluer are stronger negative correlations, redder are stronger positive 836 

correlations) and annotated with the correlation value only if the relationship was significant at the 837 

(corrected) p < 0.05 level. Only four compound combinations had non-significant corrected relationships: 838 

(1) terpinolene-nerolidol, (2) terpinolene-humulene, (3) myrcene-bisabolol, and (4) ocimene-camphene. 839 

The distances between clusters were evaluated using the “average” method in the “hierarchy.linkage” 840 

function and the “euclidean” function was used as a distance metric.  841 

The clusters recovered by the clustermap visualization can also be represented as a network where 842 

the nodes are the terpenes and the (weighted) edges are the correlations. Because nearly all compound 843 

combinations have statistically significant correlations (even after Bonferroni correction), the resulting 844 

network would be (nearly) completely connected. To sparsify the network for visualization purposes, the 845 

correlation values were thresholded to greater than or equal to 0.10 to show the strongest relationships. 846 

There were 38 remaining edges after this thresholding procedure. This threshold value was chosen through 847 

qualitative iteration to generate a network that preserves all 14 compounds but is sufficiently sparse to 848 

visually recover the clusters identified in Figure 4A. The network was visualized using a spring-849 

embedding layout algorithm and visualized using the “networkx” library in Python.  850 

 851 

Data Analysis: Figure 5 852 

Principal component analysis (PCA) was run on the normalized values of the fourteen common 853 

terpenes (i.e., the % of measured common terpenes) on all samples with terpene data. Null values were 854 

filled with zeros. A bar plot was created to visualize how much variation each principal component 855 

captured in the data. PCA biplots were created to visualize the PCA scores of the samples and the weight 856 

of each terpene on the first three principal components (Figure 5X-Y).  857 

Sample level data was averaged across strain name/producer ID pairs to create a product level 858 

dataset. Pairwise cosine distances of terpene profiles were calculated for products in each chemotype. We 859 

then averaged the cosine distances across each product, so each product had an associated average cosine 860 

distance. These values were plotted in a violin/box plot (Figure 5E). Welch’s t-tests and effect sizes were 861 

calculated between each chemotype. Statistical significance was evaluated after using the Bonferroni 862 
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correction for three multiple comparisons. The top terpene among the 14 common terpenes was found for 863 

each product. If the most abundant terpene was not either myrcene, caryophyllene, limonene, terpinolene, 864 

alpha pinene, or ocimene, the top terpene was listed as “other” (Figure 5F).  865 

 866 

Data Analysis: Figure 6 867 

 For figures 6A-F, the sample level data was filtered to include only THC-dominant samples with 868 

terpene data. Terpene data were normalized to be % of measured common terpenes. Null values were 869 

filled with zeros. PCA was run on these normalized values and then plotted. 870 

 Silhouette coefficients for each sample were calculated using the mean nearest-cluster Euclidean 871 

distance (b) minus the mean intra-cluster Euclidean distance (a), divided by max (a,b). This value 872 

measures how similar a sample is to its labeled cluster compared to other clusters. The individual 873 

silhouette sample scores plotted were obtained from a random subsample of the data (n=10,000) due to 874 

graphic memory limitations, however the average silhouette score displayed on the figure was obtained 875 

using the full filtered dataset.  876 

 We used the k-means clustering algorithm to segment THC-dominant samples based on terpene 877 

profiles. To determine the optimal number of clusters we created an ‘elbow plot’, which plots a range of 878 

number of clusters versus within-cluster sum of squared errors (Figure S5A). This revealed that the 879 

optimal number of clusters to use was k = 3. K-means clustering was applied to the normalized dataset. A 880 

color palette was created using the color of the most abundant terpene for each cluster's average terpene 881 

profile. The correct choice of k can be ambiguous, so we also explored our cluster analysis for k=2 and 882 

k=4 clusters (Figure S5B-C). 883 

 884 

Data Analysis: Figure 7 885 

 To evaluate the difference between the labeling methods described above, silhouette scores 886 

(described above) were calculated on the full dataset for the three different methods. Welch’s t-tests and 887 

effect sizes were calculated between these methods. Statistical significance was evaluated after using the 888 

Bonferroni correction for three multiple comparisons. 889 

 A UMAP embedding (McInnes and Healy 2018) was run on the terpene data of THC-dominant 890 

samples and color coded by k-means cluster label. The parameters for number of components and number 891 

of neighbors were specified as 2 and 15, respectively. An interactive 3-D version of a similar product-892 

level UMAP can be found here: https://plotly.com/~cj.smith015/5/. Each data point can be hovered over 893 

to reveal the following information: strain name, Indica/Hybrid/Sativa label, THC and CBD concentration, 894 

dominant terpene, and k-means cluster label information 895 
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 To illustrate a simple terpene profile, we ran k-means clustering (k = 3) on the product-level 896 

dataset. α- and β-pinene were summed together. The normalized terpene values and total THC, CBD, and 897 

CBG values from the THC-dominant product dataset were grouped by k-means cluster label and averaged. 898 

Polar plots were constructed based on the average terpene profiles and limited to eight terpenes to help 899 

with visual legibility. The terpene profiles of the top 25 products in each cluster with the most samples 900 

were drawn in grey behind the cluster-level average.  901 

 902 

Data Analysis: Figure 8 903 

 To quantify consistency between products attached with the same name we needed to ensure that 904 

the underlying data contained multiple samples per producer ID and several unique producer IDs each. 905 

We used the following thresholds: to be included, a strain name must be linked to at least five producers 906 

with at least five samples from each producer. If the strain met this threshold, we included all samples of 907 

that strain in our examination, averaging all samples linked to each unique producer ID to create product 908 

averages. 41 strain names met this threshold. Due to the predominance of THC-dominant samples in the 909 

dataset, all strain names in the list happened to be THC-dominant. Measures of strain name popularity 910 

were supplied by Leafly in the form of normalized values for how many unique views each page of its 911 

public strain database received. 912 

 In figure 8B, a correlation matrix was constructed on the terpene values of THC-dominant samples 913 

for the ten strain names attached to the most samples. The samples were put in descending order based on 914 

the number of samples, and within each strain name, ordered by producer ID. Pairwise cosine similarity 915 

scores were calculated on the samples and plotted as a heat map with a Gaussian filter for visualization 916 

purposes.  917 

 Cosine similarities were calculated for the terpene profiles of products for each strain name, then 918 

averaged to assign a mean similarity score to each product (identity values of 1 were replaced with nulls 919 

so as to not artificially increase the average). A violin/box plot was created with these similarity scores, 920 

ordered by median value. The dashed line in figure 8C represents the average similarity score one would 921 

expect if strain names were randomly assigned, obtained by running a bootstrap simulation where strain 922 

names were shuffled across the product IDs. Average similarity scores for products were calculated based 923 

on these randomized strain names. Those scores were then averaged to give each (randomized) strain 924 

name a similarity score. A weighted average was created by taking the randomized strain-level similarity 925 

scores and weighing them by the number of products associated with each randomized strain name. This 926 

process was repeated 200 times and the mean of this distribution was calculated and displayed as the 927 

dashed line. Welch’s t-tests and effect sizes were calculated comparing the similarity scores for each strain 928 
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to the bootstrapped distribution of average randomized strain-level similarity scores. Statistical 929 

significance was evaluated after using the Bonferroni correction for 41 multiple comparisons. 930 

A UMAP embedding was run on the normalized terpene data of the entire THC-dominant product 931 

dataset and color coded by k-means cluster label, k = 3. The parameters for number of components and 932 

number of neighbors were specified as 2 and 15, respectively.  933 

 934 

Data Analysis: Figure 9 935 

 Using the THC-dominant product dataset with k-means clustering (k = 3), a UMAP embedding 936 

was run on the normalized terpene data and color coded by Indica/Sativa/Hybrid labels. 937 

Excluding products without an associated Indica/Sativa/Hybrid label, the percentage of 938 

Indica/Sativa/Hybrid labels for products was found for each k-means cluster label. Chi-squared tests were 939 

calculated comparing these percentages with the overall percentages. Statistical significance was 940 

evaluated after using the Bonferroni correction for three multiple comparisons.  941 

Using the list of 41 strains obtained by the thresholds described for figure 8, the most frequent k-942 

means cluster label was identified for each strain name. The number of products with that cluster label 943 

divided by the total number of products for that strain multiplied by 100 gave the percentage of products 944 

in the top cluster. Up to seven strains in each cluster were displayed in the bar chart in figure 9D, ordered 945 

by k-means cluster label and then by the percentage of products in the top cluster. The dashed line in 946 

figure 9D represents the average percentage of products one would expect if strain names were randomly 947 

assigned, obtained by running a bootstrap simulation where strain names were shuffled across the product 948 

dataset, as described above for Figure 8. Welch’s t-tests and effect sizes were calculated by comparing the 949 

distribution of products in the top cluster for each strain to the bootstrapped distribution of average 950 

percentage of randomized products in the top cluster. Statistical significance was evaluated after using the 951 

Bonferroni correction for 41 multiple comparisons. 952 
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Supplementary Materials 1169 

 1170 

Figure S1: Violin plot of distribution of all cannabinoids measured, by region. 1171 
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 1172 

Figure S2: Total THC vs. Total CBD levels, by region. 1173 

 1174 
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 1175 

Figure S3: Scatterplots showing the correlation between α- and β-pinene, by region. ***P < 0.0001 1176 
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Figure S4:Scatterplots showing the correlation between β-caryophyllene and humulene, by region. ***P < 0.0001 1178 
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 1179 

Figure S5: (A) Line plot showing the relationship between number of clusters in k-means clustering and within-1180 
cluster sum of squared errors, using THC-dominant sample terpene data. “Elbow point” was determined to be at 1181 
k=3. (B) PCA scores for all THC-dominant samples plotted along PC1 and PC2, color-coded by k-means cluster 1182 
labels, k=2. (C) PCA scores for all THC-dominant samples plotted along PC1 and PC2, color-coded by k-means 1183 
cluster labels, k=4. 1184 
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 1185 

Figure S6: PCA scores for THC-dominant samples plotted along PC1 and PC2, color-coded by k-means cluster 1186 
labels attached to each sample, by region. 1187 
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