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The Phytoplankton Bloom in the Northwestern Arabian Sea 

During the Southwest Monsoon of 1979 

JOHN C. BROCK, •,2 CHARLES R. MCCLAIN, 3 MARK E. LUTHER, 4 AND WILLIAM W. HAY • 

The biological variability of the northwestern Arabian Sea during the 1979 southwest monsoon has 
been investigated by the synthesis of satellite ocean color remote sensing with analysis of in situ 
hydrographic and meteorological data sets and the results of wind-driven modeling of upper ocean 
circulation. The phytoplankton bloom in the northwestern Arabian Sea peaked during August- 
September, extended from the Oman coast to about 65øE, and lagged the development of open-sea 
upwelling by at least 1 month. In total, the pigment distributions, hydrographic data, and model results 
all suggest that the bloom was driven by spatially distinct upward nutrient fluxes to the euphotic zone 
forced by the physical processes of coastal upwelling and offshore Ekman pumping. Coastal upwelling 
was evident from May through September, yielded the most extreme concentrations of phytoplankton 
biomass, and along the Arabian coast was limited to the continental shelf in the promotion of high 
concentrations of phytoplankton. Upward Ekman pumping to the northwest of the Somali Jet axis 
stimulated the development of a broad open-sea phytoplankton bloom oceanward of the Oman shelf. 
Vertical mixing during the 1979 southwest monsoon was apparently not a primary cause of the 
regional-scale phytoplankton bloom. 

INTRODUCTION 

Ship-based observations of phytoplankton blooms are 

limited by their spatial and temporal variability. Ocean color 

shifts from blue to green with increasing concentration of 

phytoplankton pigments, and coastal zone color scanner 

(CZCS) sensor measurements of ocean color can provide 

quantitative estimates of near-surface phytoplankton pig- 

ment concentrations. The pigments of relevance to remote 

sensing are chlorophyll a and phaeophytin a, and remote 

sensing of the sum of these pigments is an index of phyto- 

plankton biomass. 

Aside from the capacity to globally map the concentration 

of chlorophyll a in the world's oceans, satellite ocean color 

images have great utility in studies of the major physical and 

chemical processes that act to drive marine biological activ- 

ity at the most basic level. The coupling of visible-band 

ocean remote sensing with concurrent ancillary wind and 

hydrographic data in multidisciplinary studies holds great 

promise for increasing understanding of the marine biologi- 

cal pump [Brewer et al., 1986; Moore and Bolin, 1986; 

McClain et al., 1990]. Various schemes can relate phyto- 

plankton biomass to primary productivity and the develop- 
ment of such models is an active area of research [Esaias, 

1980; Yentsch, 1983; Platt and Sathyendranath, 1988]. 

The purpose of this paper is to examine the relations 

between wind-driven ocean circulation and oceanic phyto- 

plankton blooms in the northwestern Arabian Sea, a classic 

region for atmospheric forcing of upper ocean circulation 

[Wyrtki, 1973]. The primary objectives are to describe the 
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evolution of summer phytoplankton biomass during the First 

GARP Global Experiment (FGGE) in 1979, and to evaluate 

the relative importance of different processes in producing 

the phytoplankton bloom. 

Within this study the 1979 southwest monsoon phyto- 

plankton bloom is conceived to result from physical pro- 

cesses that act to inject nutrients into the euphotic zone. The 

physical processes assessed are vertical mixing, coastal 

upwelling, the offshore advection of water upwelled along 

the Arabian coast, and Ekman pumping driven by the curl of 

the wind stress. Following the observation of Molinari et al. 

[1986] that the Arabian Sea directly off Arabia underwent 

positive net heat gain throughout the southwest monsoon of 

1979, the possibility that convective overturning promoted 

algal production is discounted and is not examined in any 

detail in this study. Other processes that may affect vertical 

nutrient fluxes and phytoplankton biomass, for example, salt 

finger convection and zooplankton grazing, are not consid- 

ered within this paper. 

BACKGROUND 

A prominent zonal subsurface front at 10øS separates the 

high-oxygen, low-nutrient southern Indian Ocean from the 

low-oxygen, high-nutrient northern Indian Ocean [Wyrtki, 

1973]. In the Arabian Sea, nutrient levels increase sharply 

with depth above 200 m near the base of the pycnocline. 

High levels of phosphate, nitrate, and silicate are found just 

below or within the limits of the euphotic zone at depths of 

50 to 100 m. As expected, the nutrient concentration trends 

are opposite to those observed for oxygen, which drops 

sharply from 5 mL/L at the surface to 0.1 mL/L below about 

200 m [Ryther and Menzel, 1965; Ryther et al., 1966; Wyrtki, 

1971; McGill, 1973]. 

Monsoon Atmospheric Circulation Over the Arabian Sea 

Driven by regional changes in the global-scale atmo- 

spheric circulation, the monsoonal wind system of the Indian 

Ocean causes a striking semiannual reversal of the surface 

currents in the Arabian Sea and the Bay of Bengal. The 

southwest monsoon develops annually during May as the 
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Fig. 1. Map of the Arabian Sea depicting currents active during 
the southwest monsoon [Wyrtki, 1973] and hydrographic areas 1 
through 4 of Colburn [1975]. 

prevailing pressure gradient forces air to the northeast 

across the Arabian Sea. The surface low level southeasterly 

trade winds of the southern hemisphere extend across the 

equator to become southerlies or southwesterlies in the 

northern hemisphere. Hastenrath and Lamb [1979] used 

ship reports for the period 1911 to 1970 to provide an account 

of the low level meteorology of the Indian Ocean, including 
the surface southwest monsoon circulation. The frictional 

stresses of these southwesterly winds in turn drive the 
Somali Current and the Southwest Monsson Current in the 

Arabian Sea (Figure 1). Coastal upwelling develops off 

Oman and Somalia, and later Ekman pumping spreads 

upwelling throughout the northwestern Arabian Sea [Wyrtki, 

1973; Smith and Bottero, 1977; Swallow, 1983; Bauer et al., 

1991]. 

Fu et al. [1983] examined the summer monsoon wind field 

over the Indian and western Pacific oceans, analyzing sur- 

face wind data for 1860 through 1970 contained in marine 
data files available from the National Climate Data Center. 

They recognized three branches of intensified southwest 

monsoon wind flow, each to the east of a low pressure 

trough, and located in the western Arabian Sea, the Bay of 

Bengal, and the South China Sea. Embedded in the western 

Arabian Sea branch is a low level jet stream, the Somali or 

Findlater Jet. It reaches higher wind speeds of shorter 
seasonal duration than those observed in the surface wind 

field of the Asian summer monsoon elsewhere. 

A series of studies by Findlater [1969a, b, 1974] in the late 

1960s and early 1970s revealed the presence of this major 

low level air current in the western periphery of the monsoon 

regime and centered at an elevation of about 1.5 km (Figure 

2). During the northern summer this 3-km-thick airflow 

originates in the southeast trade winds of the South Indian 

Ocean, passes just to the north of Madagascar, heads north 

across the flat arid lands of eastern Kenya, Ethiopia, and 

Somalia, and finally crosses the Arabian Sea. The monthly 

mean airflows in the Somali Jet for the months of June, July, 

and August are similar, showing wind speed maxima near 

the northern tip of Madagascar and immediately downstream 

from the Somali coast, a wind speed minimum along the jet 

axis near the equator, and bifurcation of the jet as it crosses 

the Arabian Sea [Findlater, 1977]. 
Several researchers have examined the evolution of the 

low level airflow over the Arabian Sea during the onset of the 

1979 southwest monsoon. From an analysis of moisture and 

mean tropospheric enthalpy distributions based on FGGE 

data for May and June 1979, Pearce and Mohanty [1984] 

recognized two main phases of the southwest monsoon 
onset. An initial moisture increase over the Arabian Sea took 

place during the latter part of May and the first week of June, 

concurrent with the development of synoptic and mesoscale 

disturbances. A rapid intensification of the wind field fol- 

lowed, beginning about June 10. This second phase was 

accompanied by a large increase in latent heat release, a 

large-scale positive feedback process. Finally, the southwest 

monsoon became fully developed over the Arabian Sea by 

mid-June, with reversed, large-scale, cross-equatorial air- 

flow and maxima in atmospheric heating, moisture, and 

moisture convergence in the region from 10 ø to 20øN and 60 ø 

to 120øE [Pearce and Mohanty, 1984]. 

Krishnamurti et al. [1981] made use of the Summer 

Monsoon Experiment (MONEX) data sets also collected 

during May and June 1979, including winds from geostation- 

ary satellites, constant level balloons, and windsondes 

dropped from aircraft, and World Weather Watch data, to 
examine the onset of low level flow over the Arabian Sea. 

These researchers found that over the central Arabian Sea 

the kinetic energy of the wind field increased by an order of 

magnitude 1 week prior to the onset of monsoon rain over 

central India. Also, a cyclonic onset vortex formed over the 

northern Arabian Sea on June 14, just to the north of the 

strong low level jet. 

Response of the Arabian Sea to the Southwest Monsson 

Prominent features of the ocean response to the southwest 
monsoon circulation within the Arabian Sea include the 

northeastward Somali Current, the eastward Southwest 

Monsoon Current, regions of strong coastal upwelling off 

20øN 
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Fig. 2. July mean wind field at 1 km over the Arabian Sea showing 
the Somali Jet (modified after Findlater [1981]). 
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TABLE 1. Data Sets 

Parameter Source Comments 

NASA GSFC CZ CS images 

1000-mbar FGGE winds 

Sea surface temperature 
Mixed-layer depth 
Vertical temperature distribution 

ECMWF 

CAC 

Levitus [ 1982] 
NOAA NODC 

surface pigment color concentration 
at 4-km resolution* 

wind speed* 
wind stress* 

Ekman transport* 
Ekman upwelling* 
SST at 2 ø resolution 

climatology based on 0.5 ø criterion 
monthly temperature sections 

NASA GSFC, NASA Goddard Space Flight Center; ECMWF, European Center for Medium Range 
Weather Forecasts; CAC, Climate Analysis Center; NOAA NODC, National Ocean Data Center, 
National Oceanic and Atmospheric Administration. 

*Derived field. 

Somali and Arabia, a weaker upwelling off northwestern 

India, broad-scale open-sea upwelling in the northwestern 

Arabian Sea, and the presence of numerous mesoscale 

eddies. The Somali Current is a strong western boundary 

current reaching a maximal transport estimated at 65 Sv, 

mostly in the upper 200 m. High speeds of up to 200 cm/s 

have been measured in the Somali Current; this rapid current 

leads to a strong baroclinic adjustment along the Somali 
coast that extends to about 1000 m. In 1964 the surface water 

upwelled off Somalia dropped to a minimum temperature of 

13.2øC, suggesting a depth of origin of about 200 m [Wyrtki, 
1973; Bruce, 1974]. 

The southwest monsoon circulation off southern Arabia is 

poorly understood. In comparison to the Somali Current, the 

boundary current along Oman is relatively weak, but up- 

welling is more persistent, and the region observed to 

undergo upwelling is more extensive. Previous work has 

suggested two separate mechanisms for the southwest mon- 

soon upwelling off Arabia: a coastal upwelling due to Ekman 

divergence of surface water offshore, and an open-sea up- 

welling due to Ekman pumping driven by the strong positive 
wind stress curl to the northwest of the axis of the Somali Jet 

[Bottero, 1969; Smith and Bottero, 1977; Swallow, 1983]. 

The surface concentrations of phosphate, nitrate, and 

silicate in the western Arabian Sea during the southwest 

monsoon are high [Ryther et al., 1966; Aruga, 1973; Krey, 

1973; McGill, 1973; Wyrtki, 1973; Swallow, 1983]. The 

southwest monsoon chart of Wyrtki [1971] shows phosphate 

maxima above 1.0 tam at sites along the coasts of Somalia 

and Oman, dropping to less than 0.2 tam to the southeast. 

The summer distributions for nitrate and silicate provided by 

Wyrtki [1971] are similar. Both display highs exceeding 10.0 

tam off Somalia and Oman. 

The high biological productivity of the northwestern Ara- 

bian Sea has been attributed to the presence of these 

unusually high concentrations of nitrate, phosphate, and 

silicate at shallow depths within the euphotic zone [Ryther 
and Menzel, 1965; Ryther et al., 1966; Kuz'menko, 1973]. 

Qasim [1977, 1982] combined the International Indian Ocean 

Expedition (IIOE) data of Ryther et al. [1966] and other 

IIOE participants with additional biological measurements 

to describe the distributions of primary, secondary, and 

tertiary biological production in the Indian Ocean. This 

compilation showed integrated mean primary productivity 

for the euphotic zone of the Arabian Sea, with maxima 

exceeding 1.0 g C/m2/d adjacent to the Gulf of Oman, off 

southwestern Oman about Salalah, and off Somalia. Currie 

et al. [1973] prepared transects along the Oman coast based 

on the Discovery data set collected in July and August, 1963. 
These transects show a correlation between nutrients and 

both chlorophyll a and zooplankton biomass. 

The variation of the primary biological productivity of the 

Indian Ocean with the annual monsoon cycle was studied by 

Kabanova [1968] using data collected by a number of expe- 

ditions from 1959 to 1965. Kabanova [1968] produced maps 

of primary productivity in the photosynthetic layer for both 

winter and summer. These show strong seasonal changes 

within the Arabian Sea. During the northeast monsoon 

productivity in the northwestern Arabian Sea is less than 0.1 

g C/m2/d. During the southwest monsoon, euphotic zone 
primary production rises above 1.1 g C/m2/d over all of the 
northwestern Arabian Sea. Krey [1973] provided a qualita- 

tive summary of the association of the larger phytoplankton 

found in the northwestern Arabian Sea, and listed diatoms, 

dinoflagellates, and blue-green algae as dominant. 

METHODS 

The data sets used in this study are coastal zone color 

scanner images for 1979, the 1000-mbar FGGE wind fields, 

NOAA Climate Analysis Center (CAC) sea surface temper- 

ature (SST) data, Levitus [1982] mixed-layer depth fields, 

and NOAA National Ocean Data Center (NODC) expend- 

able bathythermograph (XBT) profiles (Table 1). 

A total of 35 CZCS images acquired during May through 

September of 1979 were processed to depict surface pigment 

concentration at 4-km spatial resolution within 10 ø to 27øN 

and 50 ø to 67øE (Figure 3). The SEAPAK software package 

developed and implemented at NASA Goddard Space Flight 

Center (GSFC) was used for all CZCS processing opera- 

tions. SEAPAK is a comprehensive satellite image analysis 

system oriented specifically toward the processing of CZCS 

and AVHRR imagery and ancillary environmental data 

[Darzi et al., 1989]. The CZCS archive maintained by the 

National Space Science and Data Center at NASA Goddard 

Space Flight Center was first browsed on video disk [Feld- 

man et al., 1989] to identify all usable CZCS scenes of the 

northwestern Arabian Sea acquired during May through 

September 1979. The entire data set of level 1 scenes was 

ingested at a factor of 4 subsampling in order to prepare a 

regional time series of overview images covering the north- 
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Fig. 3. Location map depicting the CZCS image region and mean pigment concentration subregions. Contours depict 
the bathymetry at 3000 m depth. 

western Arabian Sea at one-sixteenth the original spatial 
resolution (Figure 4). 

•ngstr6m exponents used in processing the CZCS data set 
were obtained using the "clear water" radiance concept 
described by Gordon and Clark [1981]. Clear water CZCS 
image sites with phytoplankton pigment concentrations less 

than 0.25 mg/m 3 were selected on a time series of several 
separate scenes collected over the western Arabian Sea 

during May-September 1979. Normalized water radiances 

were derived at each site for a variety of •,ngstr6m expo- 
nents n(A), and exponents at 520 and 550 nm that consis- 
tently yielded clear water radiance values similar to those 

14 

CZCS Data Availability 

0• 

O 

o 

7 

May 15 Jun 1 Jun 15 Jul 1 Jul 15 Aug 1 Sepl O• 1 Aug 15 

15 Day Time Periods 

Sep 15 

Fig. 4. CZCS data availability for the study region for May-September 1979. 
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Fig. 5. Plot of (a) CZCS band 2 •ngstr6m exponent value versus band 2 normalized water radiance and (b) CZCS 
band 3 •ngstr6m exponent value versus band 3 normalized water radiance (mW/cm 2 /am sr) showing selection of 
•ngstr6m value yielding clear water radiance value. Each symbol on the plot indicates a normalized water radiance 
determination at a clear water site on one of several CZCS images acquired during the early phase of the 1979 southwest 
monsoon. 

reported by Gordon and Clark [1981] were applied in subse- 

quent processing. Within this analysis, the relationship pro- 

posed by Gordon et al. [1983] to derive the •ngstr6m 
exponent for 443 nm (n(443)) was applied: 

[n(520) + n(550)] 
n(443) = (1) 

2 

Exponent values near 0.2 were obtained by this procedure 

for 443 nm, 520 nm, and 550 nm (Figures 5a and 5b). These 

exponents are within the -0.5 to +0.5 range cited by Gordon 

[1990] as typical for CZCS imagery. This approach was 

adopted in order to define a more realistic regional set of 

•ngstr6m exponents than were used in the CZCS global 
processing (n(443) = 0.12, n(520) = 0.0, n(550) = 0.0) 

[Feldman et al., 1989]. A scene-by-scene determination such 

as that used by McClain et al. [1988] was not employed 
because "clear water" sites within the scenes were not 

always available during the late phase of the 1979 southwest 
monsoon. 

High aerosol radiance due to an abundance of atmospheric 

dust, as well as strong sensor electronic overshoot [Mueller, 

1988] or "ringing" downscan of boundaries between highly 

reflective desert land or clouds and ocean, presented imaging 

problems in the study region, and necessitated the develop- 

ment of specialized correction procedures. A level 1, band 4 

threshold set at grey level 254 was used to avoid processing 

pixels with saturated 670-nm radiances. Also, following a 

study of the occurrence of sensor ringing in the level 1 CZCS 

data set, a procedure was developed to recognize rapid grey 

level changes along individual scan lines in band 4 and to flag 

a number of subsequent downscan pixels in the level 2 image 

as invalid. The threshold used for the bright side of the edge 

was 210 counts, the brightness change threshold was 10 grey 

levels, and the number of downscan pixels flagged was set to 

4 [Brock et al., 1990]. 

The branching, two-channel bio-optical algorithm of Gor- 

don et al. [ 1983] was used to retrieve phytoplankton pigment 

concentration. This algorithm employs two empirical bio- 

optical relationships based on data collected by a field 

program conducted in waters adjacent to the United States 

in the Atlantic, Pacific, and Gulf of Mexico. Although these 

algorithms were based on a limited number of stations in 

U.S. coastal waters, many studies have demonstrated their 

validity for much of the world ocean [Feldman et al., 1984; 

McClain et al., 1984, 1986; Abbott and Zion, 1985; Barale et 

al., 1986; Mtiiller-Karger et al., 1989, 1990]. Gordon et al. 

[1983] report an error of the order of 30-40% in pigment 

concentration in the range 0.08 to 1.5 mg/m 3 for this algo- 
rithm under a variety of atmospheric turbidities. 

Once masked for the effects of wind-blown dust, sun glint, 

and sensor ringing, the level 2 surface pigment concentration 

images were transformed to a uniform cylindrical equidistant 

projection. The registration of all scenes to a coastline 

contour derived from a global coastline data set followed. 

Thus a spatially coregistered CZCS pigment data set for the 

FGGE year southwest monsoon was produced. Separate 

CZCS level 3 surface pigment concentration images were 

averaged to produce mean pigment fields [McClain et al., 

1988] for the early and late phases of the monsoon. The 

available CZCS data allowed the generation of an early 

phase composite from eight scenes acquired from May 19 to 

June 16 and a late phase composite based on 27 scenes from 

August 1 to September 29 (Plates 1 and 2). 

Monthly mean wind stress, Ekman horizontal transport, 

and Ekman upwelling velocity were calculated from the 

1000-mbar FGGE III-b wind fields for May through Septem- 

ber, 1979. This wind data set has undergone extensive 

refinement and validation at their source, the European 

Center for Medium Range Weather Forecasts (ECMWF). It 

has a spatial resolution of 1.875 ø and a temporal resolution of 
12 hours. 

The procedure described by McClain et al. [1990] was 

applied to estimate surface wind stress based on the 1000- 

mbar winds. First the wind velocity at 10 m, W•0, was 
estimated by a 15 ø cyclonic rotation and 30% reduction in 

magnitude [Thompson et al., 1983]. The standard quadratic 

expression with a wind-speed-dependent drag coefficient, 

Ca, was employed to estimate wind stress. The stress 
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Plate 1. CZCS pigment concentration composite for the early Plate 2. CZCS pigment concentration composite for the late phase 
phase of the 1979 southwest monsoon. of the 1979 southwest monsoon. 

formulation used is similar to that of Large and Pond 

[1981], and may be expressed as 

(rx, ry)= PaCdJWloJ(ulo, v10 ) (2) 

where (u]0, v•0) are components of W•0 and 

Ca = 0.0012 0 < W]0 < 1 1 m/s 

Ca = 0.00049 + 0.000065W•0 1 lm/s>W•0 

Once the surface wind stress has been obtained, the zonal 

and meridional Ekman transports (Ue, Ve) are calculated by 

(Ue, Ve)= (3) 

and the Ekman upwelling velocity W e is given by 

curl z (r/f) 
We = (4) 

Pw 

In these expressions, pw is the water density, 1000 kg/m 3, 
and f is the Coriolis parameter. All computations on the 
FGGE winds were carried out on data at the 12-hour time 

step, followed by averaging of the derived fields to obtain 

monthly means. The 1.875øresolution monthly wind stress, 

Ekman transport, and Ekman upwelling fields were interpo- 

lated using a bicubic spline technique to create images. 

Transformation of these wind parameter fields to an cylin- 

drical equidistant projection resulted in a set of FGGE 

wind-derived environmental fields coregistered to the 4-km- 

resolution CZCS regional image time series for May through 

September of 1979. Images of monthly mean CAC SST fields 

for May through September of 1979 and the Levitus monthly 

mixed-layer depth fields were generated in a similar manner. 

The NODC expendable bathythermograph data were 

binned by month for May-September 1979 using SEAPAK. 

Following the selection of stations for individual sections, 

these monthly XBT data files were imported into a surface 

modeling software package. Gridding and contouring produced 

monthly temperature sections coincident with the May- 

September 1979 CZCS data set. 

MODEL UPWELLING INDEX 

Information on ocean upwelling was derived from a wind- 

driven numerical model of the Arabian Sea for comparison 

with the CZCS images. The model used is that described by 

Luther and O'Brien [1985], Luther et al. [1985], Luther 

[1987], and Simmons et al. [1988]. The model simulates the 

response of the upper layer of the ocean to an applied wind 

stress. It is a nonlinear reduced-gravity model forced by the 

observed winds. In the reduced-gravity approximation the 

density stratification of the ocean is represented by two 

hydrostatic, Boussinesq fluid layers of slightly different 

densities, with the further requirement that the depth- 

integrated transport in the lower layer vanishes. The model 

dependent variables are the upper layer thickness H, the 

zonal component of the depth-integrated upper layer trans- 

port (U), and the meridional component of the depth- 

integrated upper layer transport (V). The advantage to such 

a model is its inherent simplicity. As was demonstrated by 

Lin and Hurlbutt [1981], this is the simplest model that 

contains the necessary physics to reproduce the observed 

eddy patterns in the Somali Current. Luther and O'Brien 

[1985] and Luther et al. [1985] show that the model faithfully 

reproduces most of the observed features of the seasonal 

cycle of the northwestern Indian Ocean circulation, such as 

the formation and coalescence of the two-gyre system during 

the southwest monsoon, the formation and decay of the 

energetic eddy field off the Arabian Peninsula during the fall 

transition, and the formation of the southwestward Somali 
Current with the onset of the northeast monsoon. Simmons 

et al. [1988] show that the model can reproduce the features 

observed in a particular year by comparing model fields 

driven by the observed winds for 1985 with extensive 
observations taken off the coasts of northern Somalia and 

the Arabian Peninsula during the fall of that year. Since the 
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model physics are well known and the model fields are more 

easily analyzed, and because it reproduces many of the 

important features of the observed flows in this region, this 

model is ideal for use in long-term integrations to assess the 

importance of interannual and seasonal variability in the 

region. In the present study we treat the model fields as 

adequately simulating the ocean's response to the imposed 

winds and treat the variability in the model fields as an 

expression of that in the ocean. 

The model integration discussed here is of a limited area 

version of the model that covers the northwestern portion of 
the Indian Ocean from 10øS to 26øN and from 40øE to 74øE at 

a resolution of 0.125 ø zonally and 0.25 ø meridionally. This 

high horizontal resolution is necessary to model the highly 

nonlinear flows found in the intense eddies in this region. 

The model geometry follows the 200-m isobath, so that the 

large shallow banks around Socotra, the Seychelles, the 

Maidives, the Laccadives, and the Chagos Archipelago 

appear as land areas. These banks are typically less than 30 

m deep and are dotted with reefs and small islands, so that 

they effectively present solid boundaries to flow. The bound- 

ary conditions at all solid (land) boundaries are the no-slip 

conditions: U = V = 0. The model employs open boundary 

conditions along the south and along a portion of the east 

boundaries. The boundary condition applied there is the 

Sommerfeld radiation condition described by Camerlengo 

and O'Brien [1980]. The free parameters in the model are the 

reduced gravity #', the initial upper layer thickness H 0 , and 

the Laplacian eddy viscosity coefficient A ev. For the results 

presented here, the model uses #' - 0.03 m/s 2, H 0 = 200 m 
and Aev - 750 m2/s. The initial value of H together with the 
value of •7' determine the mean stratification. For simplicity, 

the model year has 360 days, with 30 days in each month. 

The model is driven by objectively analyzed ship winds for 

1979. The ship winds are converted to a pseudostress, which 

is defined as the wind velocity vector multiplied by its 

magnitude, (u, v)lwl, where (u, v) is the vector wind 
velocity and Iwl is its magnitude. They are objectively 
analyzed onto a 1 ø by 1 ø latitude-longitude grid as described 

by Leglet et al. [1989]. These wind data are interpolated in 

space to the model grid using the natural bicubic spline 

interpolant and in time using a simple linear interpolant. We 

assume that each monthly mean represents the value at the 

middle of the respective month and interpolate linearly be- 

tween them to obtain pseudostress data at the model time step 

of 30 min. We convert the pseudostress fields to wind stress 

using (2) with a constant drag coefficient equal to 

1.25 x 10 -3 . The drag coefficient thus becomes a parameter of 
the model rather than the wind analysis. The model is initial- 

ized to a state of rest, with U - V = 0 and H = 200 m [Gent et 

al., 1983; Simmons et al., 1988]. The model is integrated 

forward in time for 3 years, with the annual wind cycle 

repeating each year. By the third year, the model produces a 

steady, repeating seasonal cycle. Results from the third year of 

this integration are used to compute an index of upwelling. 

We treat the model upper layer thickness (H) fields as a 

surrogate variable for thermocline (or pycnocline) depth. A 

thinning of the upper layer implies upwelling and cooler 

SST, while a thickening upper layer implies downwelling and 
warmer SST. Variations in H are indicative of variations in 

heat content of the upper layer of the ocean and are expected 

to be positively correlated with SST variations. Addition- 

ally, a thinner upper layer enhances the effect of wind-driven 

entrainment in lowering SST and increasing primary produc- 

tivity by bringing cooler, nutrient-rich water nearer the 

surface where it can be more easily mixed upward, while a 

thicker upper layer reduces the efficiency of entrainment and 

allows local heating to more effectively increase SST. The 

model does not explicitly include thermodynamics, and in 

some instances thermodynamic effects will dominate the 

SST response; however, in the dynamically active regions of 

the Arabian Sea, variability in model upper layer thickness is 

highly correlated with SST variability, especially on longer 

time and space scales [Simmons et al., 1988]. 

As an indicator of upwelling strength, we computed the 

integrated, rectified upward interface displacement following 

Luther et al. [1990] over 5-day intervals throughout the year. 

We further summed the upward interface displacement from 

these 5-day intervals over the 2-month period preceding the 

monsoon onset (mid-April to mid-June) and over the 2 

months after the onset which constitute the primary up- 

welling season of mid-June to mid-August. This time frame 

includes the onset and mature stages of the southwest 

monsoon and is the period of most active upwelling along the 

Arabian Peninsula. Waters above the thermocline are typi- 

cally nutrient-depleted, while the waters below the thermo- 

cline are relatively nutrient-rich. We integrated only upward 

motions of the model interface, ignoring downward motions, 

since upward motions of the interface bring nutrient-rich 

waters closer to the surface, where they can be mixed into 

the euphotic zone and sustain primary productivity, while 
downward motions of the interface do not remove these 

nutrients. This is admittedly a crude index of upwelling 

strength. The index has the negative properties that it 

rectifies small-amplitude oscillations so that they may appear 

as large upwelling signals and that it does not account for the 

initial depth of the interface. For example, an upward 

displacement from an initial depth of 80 m would be more 

effective in bringing nutrients toward the euphotic zone than 

would the same displacement from an initial depth of 200 m. 

It does capture the upwelling driven by the mechanisms of 

upward Ekman pumping and coastal Ekman divergence, 

shown by Smith and Bottero [1977] to be the dominant 

mechanisms off the Arabian Peninsula, and does compare 

favorably with information on upwelling strength derived 

from sediment data from this region [Prell et al., 1990]. It is 

sufficient therefore for the purpose of investigating variabil- 

ity in upwelling patterns in this region. 

The calculated index of the upward displacement of the 

interface differs from the steady state Ekman upwelling We 

of (4) in that it includes time-dependent wave and eddy 

driven components of upwelling that are not represented in 

We. Given the strongly time-dependent nature of the wind 

stress forcing in this region and the large-amplitude eddy 

field found here [e.g., Simmons et al., 1988] these compo- 

nents of the upwelling may be important. 

RESULTS 

Coastal Zone Color Scanner Observations 

The CZCS composite image generated from eight separate 

scenes acquired from May 19 to June 16, 1979, depicts high 

surface pigment concentrations over and near the Arabian 

continental shelf, with values typically exceeding 5 mg/m 3 
(Plate 1). Oligotrophic conditions occurred offshore, where 

pigment concentrations were generally below 0.3 mg/m 3. 
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TABLE 2. Pigment Concentration Mean Values by Subregion 

Pigment, mg/m 3 

Early Phase Late Phase 

Gulf of Oman 0.8 0.7 

Positive curl subregion 0.1 2.8 
Negative curl subregion NA 0.6 

NA, not available. 

Within and adjacent to the Gulf of Oman, intermediate pigment 

concentrations ranging up to roughly 3.0 mg/m 3 are seen. 
Following a period of minimal CZCS coverage in the 

month of July, 27 scenes were acquired for August and 

September, and a composite of these scenes depicts an 

extensive phytoplankton bloom extending over the north- 
western Arabian Sea to about 65øE (Plate 2). The highest 

pigment concentrations exceeded 8.0 mg/m 3 and were ob- 
served within the Oman and Pakistan continental shelf 

regions. Offshore within the bloom, pigment concentrations 

between 2.0 and 5.0 mg/m 3 were typical. To the west of a sharp 
horizontal pigment gradient within the Gulf of Oman, pigment 

values were generally less than 1.0 mg/m 3. 
Phytoplankton pigment means were obtained for selected 

subregions within the early and late phase composites (Fig- 

ure 3). In addition to a subregion coveting the central Gulf of 

Oman, two subregions were defined based on the July 

monthly mean surface wind stress curl chart of Hastenrath 
and Lamb [1979]. This chart depicts strong cyclonic wind 

stress north of a southwest to northeast trending boundary 

about 500 km off Arabia, with anticyclonic stress to the 

south. The pigment means obtained for the two subregions 

defined by July mean positive and negative wind stress curl 
and those for the Gulf of Oman subregion outline the 

phytoplankton biomass changes that occur in response to the 
southwest monsoon (Table 2). 

The positive curl subregion lies at the center of the bloom, 

and this is made apparent by the increase in mean pigment 

from a prebloom value of 0.1 mg/m 3 to 2.8 mg/m 3 for 
August-September. Similarly, on the basis of data from a 
research cruise during the southwest monsoon of 1987, 

Bauer et al. [1991] found surface chlorophyll a to be highest 

north of 17øN in August. 

Although no CZCS coverage exists for the negative curl 

subregion during the early monsoon phase, a broad olig- 

otrophic region was immediately adjacent at this time over 

most of the northwestern Arabian Sea. During the late phase, 

the negative curl subregion was to the east of the bloom and 

had a mean pigment value of 0.6 mg/m 3. This subregion 
overlaps with hydrographic areas 2 and 3 of Colburn [ 1975], for 

which Banse [1987] has compiled ship-observed chlorophyll 

concentrations. Colburn's [1975] areas 2 and 3 both display 

seasonal peaks for mean upper 25 m chlorophyll concentration 

in August that reach 0.74 (area 3) and 0.78 (area 2) mg/m 3 . This 
is in close agreement with the CZCS-derived August- 

September 1979 mean surface pigment concentration of 0.6 

mg/m 3 in the negative curl subregion. 

FGGE Winds and Derived Fields 

During the early phase of the southwest monsoon in May 

and June of 1979, the FGGE wind field over the northwest- 

ern Arabian Sea became southwesterly. The southwest 

monsoon onset was obvious as a strong increase in wind 

stress from May to June (Plate 3). The appearance of the low 
level Somali Jet is shown in the June monthly mean wind 

stress field as an elongate region of maximal stress that 
trends northeast-southwest across the Arabian Sea immedi- 

ately to the southeast of Socotra Island (Plate 3). An Ekman 

horizontal transport high in June that exceeded 6.0 m2/s 
coincided with the June wind stress maximum, but along the 

Arabian coast this calculated parameter was low, at values 

less than 1.0 m2/s (Plate 4). The extremely weak May mean 
winds yielded a prediction of weak Ekman downwelling over 

all of the northwestern Arabian Sea (Plate 5). This was 

rapidly altered by the vigorous arrival of the summer mon- 
soon southwesterlies in June, which resulted in calculated 

upward Ekman pumping within a 400-km-wide zone that 
stretched from Somalia to the northeast along the Arabian 

Peninsula (Plate 5). The maximum monthly mean June 

Ekman upward velocities calculated for the core of this 

region near Socotra Island exceeded 0.5 x 10 -5 m/s. 
The FGGE monthly mean southwesterly surface wind field 

attained peak intensity in July. Surface wind speed reached 15 

m/s within the elongated northeast-southwest region of maxi- 
mal wind stress 600 km off Arabia (Plate 3). This was the 

surface manifestation of the low level Somali Jet (Plate 3). As 

is to be expected, the July mean total surface Ekman transport 

(Plate 4) based on the FGGE winds displayed a pattern 

spatially coincident with the wind stress distribution. At the 

Arabian coast the monthly mean July surface Ekman transport 

was estimated to be about 1.0 m2/s, much less than the peak of 
greater than 8.0 m2/s seen 500 km off East Africa. Off Arabia, 
the calculated open-sea upwelling resulting from Ekman pump- 

ing reached its maximal intensity of 1979 in July, with upward 

velocities greater than 0.4 x 10 -5 m/s at the core (Plate 5). 
The FGGE monthly mean winds lessened during the late 

phase of the 1979 southwest monsoon in August and Septem- 
ber. The maximal monthly mean August wind speed, 12 m/s, 

was again found along the Somali Jet axis, and the associated 

wind stress peak exceeded 0.16 N/m 2 and was centered about 
300 km to the south of the island of Socotra (Plate 3). The 

Somali Jet also coincided with the horizontal Ekman transport 

maximum of about 6.0 m2/s (Plate 4). In August the FGGE 
wind analysis indicated a broad region of Ekman upwelling 

along the Arabian coast (Plate 5), but by September the decay 
of the southwest monsoon resulted in weak downward Ekman 

pumping over most of the Arabian Sea. 

Levitus Mixed-Layer Depth Fields 

The mixed-layer depth distributions shown in the May and 

June climatologies [Levitus, 1982] are uniform at 30 to 40 m 

except proximal to Arabia and in the Gulf of Oman, where 

mixed-layer depth is less than 10 m (Plate 6). For July, the 

monthly climatology reveals a deepening of the mixed layer 
in the central Arabian Sea, consistent with calculations of 

Ekman downwelling. Mixed-layer deepening at this site is 

greatest in August, exceeding 90 m within a 500-km-diameter 

region centered at 12øN, 64øE. In September, shallowing of 
mixed-layer depth is apparent off Yemen and southern 

Oman, but in the central Arabian Sea the deepened mixed- 

layer conditions persist. 

Climate Analysis Center SST Fields 

The May Climate Analysis Center SST field revels a 

warm, equable surface temperature pattern with zonal iso- 
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Plate 3. FGGE monthly mean wind stress fields for May-September 1979. 

therms (Plate 7) increasing southward across the Arabian 

Sea from 28øC to 3 IøC. The June monthly mean temperature 

field shows a broad region of depressed SST roughly coin- 

cident with the region of upward Ekman pumping predicted 

by the FGGE wind analysis. This surface cooling intensified 

through July and peaked in August as an extensive region 
below 25øC that extended northeast from the Somali coast 

nearly to the mouth of the Gulf of Oman. Although cooler 
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Plate 4. FGGE monthly mean Ekman horizontal transport fields for May-September 1979. 

water is still apparent on the CAC SST field for September 

1979, the low temperatures in the northwestern Arabian Sea 

began to dissipate as the southwesterly winds slacked. 

The evolution of SST from May to September shown by 

the 1979 CAC data set closely resembles that shown by the 

multiyear surface temperature climatologies of Hastenrath 

and Lamb [1979] and Wooster et al. [1967] and the distribu- 

tions for the summer of 1963 [Wyrtki, 1971]. As depicted by 
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Plate 5. FGGE monthly mean Ekman vertical velocity fields for May-September 1979. 

these atlases, SST across the Arabian Sea at the close of the 

intermonsoon in May averages about 29øC and shows little 

variability within the zonal patternof isotherms. The south- 

west monsoon produces dramatic changes in this pattern of 

SST, as is apparent on the average August surface temper- 
ature chart of Hastenrath and Lamb [1979] and on the CAC 

monthly mean SST fields for 1979. By August, cooler water 

is at the surface over all of the western Arabian Sea; the 
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Plate 6. Levitus monthly mixed-layer depth climatology for May-September [Levitus, 1982]. 

lowest temperatures are off the coasts of Arabia and Soma- 

lia, where the mean temperatures drop to 22ø-23øC. 
Previous individual observations have revealed even 

colder temperatures during the southwest monsoon. The 

R/V Argo survey of August-September 1964 measured tem- 

peratures lower than 14øC off Somalia [Stommel and 

Wooster, 1965]. The R. R. S. Discovery survey of July- 

August 1963 found 19 ø water at the surface immediately 
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offshore of Oman [Currie et al., 1973]. The 2 ø spatial resolution 

and monthly time averaging of the CAC data set is insutficient 

to resolve the surface temperature structure on this fine scale, 

and hence the coldest temperatures seen on the CAC field 

adjacent to Arabia in August 1979 are nowhere less than 20øC. 

Vertical Temperature Fields 

The May surface temperatures shown on May XBT tem- 

perature section A (Figures 6 and 7a) are in general agree- 

ment with those of the monthly mean CAC SST field. The 
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Fig. 6. Location maps for temperature sections based on expendable bathythermograph data. 

18øC isotherm, here taken to represent the base of the 

thermacline (J. C. Brock et al., manuscript in preparation, 

1991), was at about 200 m depth and horizontal. June 

temperature section A (Figures 6 and 7b) extending 1200 km 
from Ras al Hadd at the northern end to the island of Socotra 

shows upward doming of the 18øC isotherm for over 700 km, 

reaching a minimum depth about 350 km northeast of the island 

of Socotra. This location is near the center of the upward 

Ekman pumping region predicted by the FGGE winds analysis. 

The three temperature sections for August (Figures 6, 7c, 

7d, and 7e) reveal perturbations of the subsurface tempera- 

ture structure that in general match the pattern of cooling 

seen on the August monthly mean CAC SST field. On 

August section A (Figures 6 and 7c), which extends from Ras 

al Hadd for over 500 km to the southeast, isotherms slope up 

toward the Arabian shore; at the landward end the 18øC 

isotherm is at a depth of about 90 m. The position of August 

section B (Figures 6 and 7d) nearly duplicates that of section 

A for June. It shows that uplift of the 18øC isotherm to 

depths less than 100 m has propagated northeast along 

Arabia to the entrance to the Gulf of Oman. This corre- 

sponds to the progression of the Ekman pumping field 

estimated from the FGGE winds. The position of August 

temperature section C (Figures 6 and 7e) approximates that 

of May section A. It shows strong uplift of cool water to the 

northwest, spatially coincident with the FGGE wind-derived 

region of upward Ekman pumping. On the August section 

the depth of the 18øC isotherm ranges from 150 m (southeast) 
to 60 m at its northwest extreme. 

Numerical Model Results 

All upward incremental displacements of the model inter- 

face are summed for the 2 months preceding June 16 (Plate 

8a) and for the 2 months preceding August 16 (Plate 8b). 

These two periods correspond to the pre- and postmansoon 

onset periods referred to above. Model upwelling during the 

early phases of the southwest monsoon begins off the coast 

of Samalia, to the south and west of Socotra, and in the west 

and north of the Gulf of Aden. This upwelling signal 
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progresses northward as the monsoon intensifies. The most 

active upwelling occurs during the period of mid-June to 

mid-August. Upwelling prior to June 16 is confined to the 
coastal region and has the character of classical coastal 

upwelling. Upwelling after June 16 off Arabia extends much 
farther offshore and has a maximum at the coast and another 

maximum beneath the area of strong cyclonic wind stress 

curl associated with the Somali Jet. This model upwelling 

signal is consistent with the analysis of Smith and Bottero 

[1977]. The broad upwelling band that extends out to the 

core of the Somali Jet is driven directly by the wind stress 

curl through upward Ekman pumping. The patchiness of the 

upwelling signal is probably caused by the eddy field and 

planetary wave field that is superposed on and interacts with 

the Ekman pumping mechanism [Luther et al., 1985; Sim- 

mons et al., 1988]. 

The high values of upwelling off the coast of Somalia are 

due to the formation of the upwelling wedges in the two gyre 

system of the Somali Current and due to the northward 
movement of the Great Whirl. The center of the Great Whirl 

is indicated by the area of low upward interface displace- 

ment located at 8øN, 53øE, since this is an area of deepening 
of the thermocline. Much of the narrow band of coastal 

upwelling that is seen along the coast of the northeastern 

Arabian Sea is driven by the rectification of coastal Kelvin 

waves. Similarly, high values of upward interface displace- 

ment along the equatorial wave guide have been attributed to 

the rectification of equatorially trapped waves [Luther et al., 

1985; Simmons et al., 1988]. 

DISCUSSION 

Vertical Mixing 

Extensive previous work has established that within many 

portions of the world ocean, vertical mixing is associated 

with abundant plant and animal biomass [McGowan and 

Hayward, 1978; Marra, 1980]. Recently, Banse and McClain 

[1986] observed that winter mixing of the northern Arabian 

Sea primarily due to surface cooling and mechanical stirring 

promotes enhanced algal production, raising the possibility 

that mechanical convection might act to enhance phyto- 

plankton biomass during the summer monsoon. The July 

FGGE monthly mean wind stress field across the northwest- 

ern Arabian Sea (Plate 3) provides an indication of the 

relative distribution of the potential for mixing. The wind 

stress high beneath the Somali Jet 650 km east of the Somali 

coast is more than 700 km south of the core of the phyto- 

plankton bloom seen on the CZCS late phase composite. 

Although the exact role of vertical mixing is uncertain, this 

suggests that it is not a dominant process in the stimulation 

of the regional bloom. 

Coastal Upwelling 

The Ekman model explains coastal upwelling as the con- 

sequence of the offshore transport of a wind-driven surface 
current due to the Coriolis effect. Within this model the 

balance between friction and Coriolis forces implies diver- 

gence away from the coastal boundary and upwelling [Smith, 

1968]. Large gradients in the surface physical, chemical, and 

biological properties of the ocean are created by upwelling. 

The upward movement of subnutracline waters causes the 

intense phytoplankton blooms and dense zooplankton 

patches that are typical of these zones [Barber and Smith, 

1981; Dugdale, 1983; Smith, 1983; Packard et al., 1984]. 

Coastal upwelling in the western Arabian Sea is unique in 

that it is monsoon driven, occurring only in summer during 

the active period of the southwest monsoon [Wyrtki, 1973]. 

Bottero [1969] conducted a detailed study of the summer 

field of motion off Arabia using hydrographic data obtained 

by the R. R. S. Discovery in June and July of 1963. His 

analysis indicated northeastward nearshore geostrophic flow 

velocities between 0.25 and 0.5 m/s, the presence of three 

large eddies, and intense upwelling within a narrow band 

along the Oman coast. The total offshore wind-induced 

transport in the study region was calculated to be 14 x 10 6 
m3/s, balanced by the surface current from the southwest, 
and to a lesser extent, shoreward flow at depth [Bottero, 

1969]. 

Upwelling along the Arabian coast in the summer of 1979 

is indicated by the XBT vertical temperature observations 

and the wind-driven numerical modelling of circulation. The 

coastward shoaling of the 18øC isotherm on August XBT 

temperature section A is inferred to result from coastal 

upwelling (Figures 6 and 7c). Upward displacement of an 

interface representing the Arabian Sea pycnocline produced 

by the numerical model also suggests coastal upwelling along 

Arabia. Upward interface movement summed over the time 

period of April 17 to June 16, 1979, reaches 25 m within a 

narrow strip along the Oman coast [Plate 8a]. The summa- 

tion of upward model interface movement for the subsequent 

2-month time period, June 17 to August 16, 1979, depicts a 

more intense coastal strip of upwelling that reaches 50 m 
inshore (Plate 8b). 

The numerical model predictions of Oman coastal up- 

welling beginning during the early onset phase and persisting 

though the peak period of the southwest monsoon are 

consistent with the phytoplankton biomass distributions 

inferred from the CZCS composites. On both the early and 

late phase monsoon CZCS composites, the Oman continen- 

tal shelf is a region of high surface pigment concentration. 

Depicted on the early phase composite is a sharp pigment 

gradient at about the position of the continental shelf edge 

that separates the eutrophic coastal water from low-pigment 

water further offshore (Plate 1). Within the extensive bloom 

seen on the late phase composite, a strong oceanward 

pigment gradient still exists at the continental shelf edge, 

although the background pigment concentration is greatly 

increased (Plate 2). 

Ekman Pumping 

Bottero's [1969] analysis of the Discovery data indicated 

that wind stress increased with distance offshore, yielding 

divergent Ekman flow and creating an upwelling area ex- 

tending 1000 km along the Oman coastline and out 400 km 

into the Arabian Sea. Smith and Bottero [1977] estimated 

that during the height of the southwest monsoon, the total 

upward transport at 50-m depth within this region is 8 x 10 6 
m3/s. Vertical velocities in the range of 1 to 2 x 10 -5 m/s 
were calculated at 50 m, dropping to about 0.4 x 10 -3 m/s at 
700 m depth. This Ekman pumping was indicated to cause 

strong upward motion to depths in excess of 700 m [Bottero, 

1969]. 
The dominant influences on northwestern Arabian Sea 

surface and mixed-layer temperature in summer are the 
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wind-driven upwelling of cooler water and surface heat 

fluxes [Diiing and Leetmaa, 1980; Molinari et al., 1986; 

McCreary and Kundu, 1989]. Since the net surface heat flux 

was positive north of the Somali Jet [Molinari et al., 1986] in 

1979, cooling depicted on the CAC monthly mean SST fields 

may be interpreted as the coarse scale distribution of Ekman 

pumping in the northwestern Arabian Sea. This inference is 

supported by previous studies of the summertime mixed- 

layer heat budget of the Arabian Sea. Although coastal 

upwelling also must affect SST [Bruce, 1974], given the 

space scale of this process and its restriction to a narrow 

coastal fringe within the Rossby radius of deformation, the 2 ø 

spatial resolution of the CAC monthly mean temperature 

fields is regarded as appropriate only to the inference of 

open-sea upwelling. 

The onset of surface temperature cooling in the northwest- 

ern Arabian Sea during June 1979 (Plate 7) was correlated in 

space and time with the development of upward Ekman 

pumping in a 400 km wide zone trending southwest- 
northeast from the Horn of Africa to the Gulf of Oman. The 

most intense depression of SST seen on the CAC data set 

lagged the peak open-sea upwelling calculated from the 

FGGE winds by 1 month (Plate 5). The CAC SSTs reached 

a minimum in August 1979 and dropped about 6øC from May 

to August. On the mean field for this month, SST is below 

27øC over most of the Arabian Sea. Possible explanations for 

the eastward extension of cool SSTs beyond the upwelling 

region include latent heat transfer from ocean to atmosphere 
at the axis area of the Somali Jet and advection of cool 

upwelled water into the central portion of the Arabian Sea. 

The shoaling of isotherms at the northwest end of August 

temperature section C (Figure 7e) relative to May (Figure 7a) 

also suggests upward Ekman pumping. The 18øC isotherm 

rose from about 120 m in May to 95 m in August. The 

greatest rise was near the core of the upward Ekman 

pumping region calculated for July (Plate 5). 

Surface pigment concentrations seen on the CZCS late 

phase composite (Plate 2) correlate with the July monthly 

mean CAC SST field (Plate 7). The phytoplankton bloom 

depicted was characterized by pigment concentrations 

above 1.5 mg/m 3 and extended to about 65øE offshore of the 
very high pigment Oman continental shelf region. This open 

ocean portion of the phytoplankton bloom paralleled the 
Oman shelf and extended 700 km to the southeast into the 

Arabian Sea. This offshore bloom region corresponds to the 

zone of upwelling shown on the FGGE-based Ekman pump- 
ing fields for June, July, and August (Plate 5). Although the 

late phase CZCS composite is incomplete near Socotra 
Island in the much more dynamically active and complex 

region of the Somali Current, it appears that here high 

pigment did not correspond with sea surface cooling as 

shown on the CAC SST data, or with the Ekman upwelling 
predicted from the FGGE winds. 

The numerical model upwelling index is well correlated 

with southwest monsoon phytoplankton biomass (Plate 8b). 

The model upwelling index for the period mid-June to 
mid-August shows an east-west boundary to the north of the 

island of Socotra separating a zone of strong upward motion 
exceeding 40 m off southern Oman and Yemen from a region 

exhibiting upward displacements around 25 m to the south. 

This model result coincides with the pigment concentration 

boundary seen on the late phase pigment composite at about 

12øN, marking the southward limit of the phytoplankton 
bloom. 

The pattern of model upwelling for the post-monsoon 

onset period in general agrees with the monthly mean Ekman 

upwelling velocity fields calculated from the FGGE wind 

data. An area of open-sea upwelling adjacent to both the 
northern and southern Arabian Sea coast of Oman is sug- 

gested by a zone of upward interface displacement reaching 

50 m over an area of 400 km breadth. This region of model 

upwelling differs in detail from the wind-derived Ekman 

upwelling fields most significantly in the presence of an 

upward displacement low off central Oman at about 17.5øN, 

57øE. No pronounced drop in surface pigment concentration 

is seen at this site on the late phase CZCS composite. In the 
model, this feature arises from the formation of a warm or 

anticyclonic eddy at that location. Although this eddy is not 

seen in pigment concentration, there is evidence for alter- 

nating warm and cold eddies along the Arabian Peninsula in 

the XBT sections for June and August (Figures 7b and 7d) as 

was seen by Simmons et al. [1988] for this region in 1985. 

Unlike the Ekman upwelling analysis based solely on the 
wind fields, the numerical circulation model is sensitive to 

the effect of Arabia as a basin boundary, which is approxi- 

mated by the 200-m isobath. Accordingly, the model simu- 

lates and provides evidence for coastal upwelling within a 

roughly 75-km-wide fringe along Arabia from Ras al Hadd to 

the Gulf of Aden. The model interface is displaced upward 

approximately 45 to 50 m in this band during the post- 

monsoon-onset period of mid-June to mid-August. 
The numerical model does not admit the effects of me- 

chanical mixing, convective overturning, or offshore advec- 

tion of upwelled water; yet the model-derived upwelling 

patterns are consistent with the observed distribution of 

pigment concentration. This indicates that the mechanisms 

of coastal upwelling and open-ocean upwelling are the 

dominant mechanisms controlling the distribution of pigment 

concentration. Coastal upwelling is effective only within one 

internal Rossby radius from the shore (about 50 km), 

whereas the space scale of the broad band of open-ocean 

upwelling is determined by the distribution of the wind stress 

curl. This region is unique among the world's oceans in that 

high values of positive wind stress curl persist for 3 months 

over a large area due to the jetlike nature of the atmospheric 
flow. 

On a regional scale the Levitus monthly mixed-layer depth 

fields support the Ekman pumping distributions calculated 
from the winds and the numerical circulation model. The 

mixed-layer deepening in the central Arabian Sea shown on 

the Levitus charts for July through August (Plate 6) coin- 

cides with downwelling on the FGGE-based Ekman vertical 

velocity fields for June through August. The model interface 

deepens dramatically in this region under the influence of 

downward Ekman pumping driven by the negative wind 

stress curl to the south and east of the Somali Jet. Thus, 

convergence in the central Arabian Sea under the southwest 

monsoon atmospheric circulation appears to result in mixed- 

layer thickening, thermocline deepening and downwelling. 

Offshore Advection of Pigment-Rich Shelf Waters 

Banse [1987] suggested that during the summer season, 

nutrient-laden water upwelled at the Arabian coast is ad- 

vected into Colburn's [1975] hydrographic areas 2 and 3. 
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Banse [1987] reported low-salinity water over 800 km ocean- 

ward of Arabia, concluding that this was evidence for 

extensive advection. The hydrographic overview of the 
northwestern Arabian Sea of Premchand et al. [1986] calls 

into question the validity of this conclusion. They noted that 

immediately adjacent to Arabia the Arabian Sea Surface 
Water, the Persian Gulf Water, and the Red Sea Water 

coalesce to form a nearly isohaline layer in the upper 1000 m; 

hence upwelling should not result in fresher surface water. 

Bruce [1974] did not find strong decreases in surface salini- 

ties, and the July-August surface salinity chart of Wyrtki 

[1971] shows only slightly lower salinities off the Arabian 
coast. 

Eastward advection of surface water is predicted by the 

monthly mean total surface Ekman transport calculated from 

the FGGE winds. Horizontal Ekman transport approaches 

1.0 m2/s in July at the Arabian shore and increases to more 
than 3.0 m2/s 600 km offshore to the southeast. Further, the 
zones of convergence and divergence suggested by the 

Ekman pumping and the thickening of the mixed layer in the 

central Arabian Sea both imply offshore advection. How- 

ever, on the basis of the preceding discussions it is con- 

cluded that local vertical processes provide the nutrients 

regarded to support the summer bloom, rather than the 

horizontal advection of nutrients from the region of coastal 

upwelling. Phytoplankton blooms occur on time scales too 

short to be explained by nutrient advection on a basin scale. 

It should be noted that squirts similar to those that occur off 

promontories along the U.S. west coast are found off Arabia 

[Kelly, 1985; Kosro and Huyer, 1986; Abbott and Zion, 

1987]. These events can rapidly advect high-pigment water 

considerable distances offshore and may effect surface phy- 

toplankton pigment concentration within the offshore bloom. 

CONCLUSIONS 

This study involved the synthesis of satellite ocean color 

remote sensing with the analysis of in situ hydrographic and 

meteorological data sets, and the results of a numerical 

upper ocean circulation model. The multidisciplinary ap- 

proach has lead to the following conclusions: 

1. The 1979 southwest monsoon phytoplankton bloom in 

the northwestern Arabian Sea peaked during August- 

September, extended from the Oman coast to about 65øE, 

and lagged the development of open-sea upwelling by at least 
1 month. 

2. Vertical mixing does not appear to have been the 

dominant forcing mechanism of the regional-scale bloom in 
1979. 

3. The bloom was driven by spatially distinct local 

physical processes which forced upward nutrient fluxes to 

the euphotic zone, i.e., coastal upwelling in the nearshore 

zone and Ekman pumping in the offshore region. Coastal 

upwelling was evident from May through September; al- 

though it produced the highest concentrations of phyto- 

plankton, its impact was limited to over and near the 

continental shelf. Ekman pumping resulted in development 

of a broad phytoplankton bloom oceanward of the Oman 
shelf. 

4. Earlier suggestions that the widespread phytoplank- 

ton bloom in the open ocean region of the northwestern 
Arabian Sea could be attributed to advection of water 

upwelled along the Arabian coast are not supported by our 

analysis. 
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