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ABSTRACT

Intervertebral disc degeneration (IDD) is thought to be the primary cause of low 

back pain, a severe public health problem worldwide. Current therapy for IDD aims to 

alleviate the symptoms and does not target the underlying pathological alternations 

within the disc. Activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway 

protects against IDD, which is attributed to increase of ECM content, prevention of cell 

apoptosis, facilitation of cell proliferation, induction or prevention of cell autophagy, 

alleviation of oxidative damage, and adaptation of hypoxic microenvironment. In 

the current review, we summarize recent progression on activation and negative 

regulation of the PI3K/Akt signaling pathway, and highlight its impact on IDD. 

Targeting this pathway could become an attractive therapeutic strategy for IDD in 

the near future.

INTRODUCTION

Low back pain (LBP) is a major public health 

problem worldwide, resulting in a huge socioeconomic 

burden [1–4]. Although the etiology of LBP is complex, 

intervertebral disc degeneration (IDD) has been regarded 

as the primary cause [5]. It is acknowledged that genetic 

predisposition, aging and lifestyles including occupational 

exposure, smoking, and alcohol consumption are 

implicated in disc degeneration [6–9]. Although its 

pathogenesis is not fully elucidated, loss of active IVD 

cells, progressive breakdown of extracellular matrix 

(ECM), alternation of intervertebral disc (IVD) cell 

phenotypes, and excessive inflammatory response have 
been proposed as critical contributors to IDD [10, 11]. 

Current therapy for IDD aims to relieve pain and control 

symptom rather than interfere with its pathophysiology 

[12]. Although several biological strategies capable of 

slowing mild and moderate disc degeneration through 

induction of ECM remodeling have been considered 

[13–17], their clinical efficacy remains to be determined. 
Therefore, a better understanding of its pathogenesis is 

essential to develop effective treatments.

The intervertebral disc (IVD) is made up of the central 

nucleus pulposus (NP), the peripheral annulus fibrosus 
(AF) enclosing NP, and the upper and lower cartilaginous 

endplates (CEPs) [18]. These three distinct anatomic 

regions form a complicated structure for maintaining spinal 

stability. The IVD is the biggest avascular tissue in human 

body, with limited blood supply via peripheral capillaries 

[19]. Given the fact that the IVD resides in a nutrient 

deficient environment, disc degeneration is prone to occur 
if nutrition is depleted or impeded.

Dysregulation of multiple signaling pathways has 

been shown to be implicated in disc degeneration [20]. 

As a main intracellular signaling pathways, activation of 

the phosphatidylinositol 3-kinase (PI3K)/Akt pathway 

can modulate cell proliferation, apoptosis, autophagy and 

differentiation under the physiological and pathological 

conditions by interacting with multiple downstream 

target proteins, including mammalian target of rapamycin 

(mTOR) and forkhead box O1 (FoxO1) [21–23]. More 

importantly, targeting this pathway has shown promise 

for the prevention or reversal of IDD. In this review, after 

introduction of the PI3K/Akt pathway, we explore its role 

in disc degeneration.
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THE PI3K/AKT SIGNALING PATHWAY 

AND NEGATIVE REGULATORS

Activation of the PI3K/Akt signaling pathway 

and downstream effectors

As a unique family of intracellular lipid kinases, PI3Ks 

contain three classes (Class I, II and III). Among these, 

Class I is the most studied, which is subdivided into class 

IA (PI3Kα, β and δ) and class IB (PI3Kγ). Class I PI3Ks are 
heterodimer that are made up of a catalytic subunit (p110α, 
β, γ or δ,) and a regulatory subunit (p85α, β or γ) [24]. Akt, 
a serine/threonine kinase, includes three isoforms (Akt1, 2, 

and 3). These isoforms have high homology [25].

Class IA and class IB PI3Ks are activated by 

different agents. Receptor tyrosine kinases (RTKs) 

are transmembrane glycoproteins with enzymatic 

activity. PI3Kα, PI3Kβ and PI3Kδ are activated when 
an extracellular ligand binds to a RTK [26]. In contrast, 

both G-protein-coupled receptors (GPCRs) and small 

GTPase Ras are responsible for PI3Kγ activation 
[22]. Once activated, PI3Ks convert membrane-

bound phosphatidylinositol 4,5-biphosphate (PIP2) 

into phosphatidylinositol 3,4,5-triphosphate (PIP3) 

[27]. PIP3 then recruits phosphoinositide- dependent 

kinase 1 (PDK1) to phosphorylate Akt at threonine 308 

(Thr308). Subsequently, mTOR complex 2 (mTORC2) 

phosphorylates Akt at serine 473 (Ser473) for full AKT 

activation [28, 29]. Thereafter, activated Akt interacts with 

downstream target proteins to regulate multiple biological 

processes, including apoptosis, autophagy and cell cycle 

progression (Figure 1).

Figure 1: Schematic diagram of the PI3K/AKT pathway. PI3K is activated upon binding of an extracellular ligand to RTK, GPCR 

or Ras. Activated PI3K converts PIP2 to PIP3, which is able to be reversed by PTEN. PIP3 then recruits PDK1, which phosphorylates and 

partially activates Akt. The mTORC2 mediates the second phosphorylation to fully activate AKT. Subsequently, the formation of the TSC1/2 

heterodimer is significantly decreased, which leads to a marked increase in Rheb-GTP content and mTORC1 activation. The mTORC1 
induces S6K phosphorylation to release 4E-BP1, which stimulate protein synthesis and cell proliferation. Akt activation enhances cyclin 

D1 and CDK expression by inhibiting GSK3β and FoxO1, respectively. Both effects contribute to cell cycle progression. Activated Akt 
can also suppress apoptosis via regulating the expression of apoptosis-associated genes. Raptor, regulatory-associated protein of mTOR; 

GβL, mammalian LST8/G-protein β-subunit like protein; PRAS40, proline-rich Akt substrate 40; Deptor, DEP domain containing mTOR-
interacting protein; mSIN1, mammalian stress-activated protein kinase interacting protein 1.
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As an evolutionarily conserved serine/threonine 

protein kinase from yeast to mankind, mTOR interacts 

with other proteins to form two multiprotein complexes: 

mTORC1 and mTORC2 [30]. The mTORC1 is extremely 

sensitive to rapamycin, whereas mTORC2 is insensitive 

to rapamycin. The activated Akt reduces the formation of 

tuberous sclerosis complex (TSC) 1/2 and then inhibits the 

conversion of GTP-Rheb to GDP-Rheb. Increased GTP-

Rheb activates mTORC1 [31]. Subsequently, mTORC1 

induces the phosphorylation of ribosomal protein S6 

kinase (S6K) and eukaryotic translation initiation factor 

4E-binding protein 1 (4E-BP1). Once phosphorylated, 

the latter stimulates the release of eukaryotic translation 

initiation factor 4E (eIF4E). Both S6K and eIF4E finally 
promote protein translation and cell proliferation [32, 33].

Besides mTORC1, Akt is capable of deactivating 

both glycogen synthase kinase 3β (GSK3β) and FoxO1 
by stimulating their phosphorylation [34, 35]. Inactivation 

of GSK3β increases the biogenesis of cyclin D1 and 
then accelerates cell cycle. FoxO1 contains a conserved 

forkhead domain and three putative phosphorylation 

sites for Akt. Decreased activity of FoxO1 restrains 

the transcription of p27 and p21, two inhibitors of 

cyclin-dependent kinase (CDK), resulting in cell cycle 

progression [36]. Activated PI3K/Akt signaling can also 

facilitate cell survival via attenuating pro-apoptotic Bad, 

Bax and p53 levels as well as enhancing anti-apoptotic 

Bcl-2 and Bcl-xl levels [37, 38].

Negative regulators

The major negative regulator of this pathway is 

phosphatase and tensin homolog (PTEN) that converts 

PIP3 back to PIP2, an opposite action with PI3K (Figure 

1) [39, 40]. Notably, the activated PI3K/Akt pathway can 

also facilitate ubiquitin-mediated proteasomal cleavage 

of PTEN by upregulating the expression of NEDD4-1 

(an E3 ligase), leading to permanent activation of this 

pathway in a positive feedback loop [41, 42]. In addition 

to PTEN, there are some specific inhibitors targeting PI3K 
or Akt. The PI3K inhibitors primarily contain LY294002, 

BYL719 and BKM120. The Akt inhibitors consist of MK-

2206, GSK690693 and RX0201 [43].

ROLES OF THE PI3K/AKT PATHWAY IN 

THE PATHOGENESIS OF IDD

IDD is a complicated disease involving numerous 

pathologic processes [44]. As expected, the PI3K/Akt 

pathway takes part in disc degeneration through multiple 

mechanisms (Figure 2), which will be discussed in detail 

below.

Increase of ECM content

The hallmark of IDD is progressive loss of 

ECM components due to increased production of 

matrix metalloproteinases (MMPs) and a disintegrin 

and metalloprotease with thrombospondin motifs 

(ADAMTSs) [45, 46]. Insulin-like growth factor-1 

(IGF-1) has a significant protective effect against IDD 
[47–49]. Serum (IGF-1) levels were lower in lumbar disc 

degeneration patients than those of healthy controls, and 

addition of IGF-1 to human NP SV40 cells induced Akt 

phosphorylation and then inactivated FoxO1, leading to 

inhibition of MMP-3 transcription [50]. In rat endplate 

chondrocytes, addition of IGF-1 dramatically decreased 

the expression and activity of MMP-13 by activating the 

PI3K/Akt pathway, which increased type II collagen (Col 

II) content [51]. Additionally, treatment of bovine NP 

cells with IGF-1 combined bone morphogenetic protein 7 

(BMP-7) synergistically promoted aggrecan accumulation 

by enhancing Akt activity [52]. Accumulating evidence 

suggests that dysregulation of microRNAs (miRNAs) 

participates in disc degeneration [53, 54]. Recently, Liu 

and colleagues observed that miR-4458 levels were 

significantly increased in degenerative human lumbar 
disc specimens [55]. They also found that transfection of 

human NP cells with miR-4458 mimic inhibited the PI3K/

Akt signaling via silencing of insulin-like growth factor 1 

receptor (IGF-1R), leading to increased ECM breakdown 

[55]. Collectively, activated PI3K/Akt pathway contributes 

to prevention of disc ECM degradation.

In addition to blockade of ECM catabolism, 

activation of this pathway promotes its anabolism. Sox9 

is an important transcriptional factor that can drive 

aggrecan gene expression [56–58]. It has been reported 

that miR-30a attenuates aggrecan content by targeting 

Sox9 in primary chondrocytes from cartilage isolated from 

osteoarthritis donors [59]. In contrast, overexpression of 

Sox9 dramatically facilitated aggrecan production in 

cultured human articular chondrocytes [60]. Similarly, 

activation of the PI3K/AKT signaling increased Sox9 

expression and activity, which subsequently induced 

transcription of aggrecan gene in rat NP cells [61].

Inhibition of cell apoptosis

In general, apoptosis occurs via two well-

characterized pathways in mammalian cells: the death 

receptor or extrinsic pathway and mitochondria or intrinsic 

pathway [62]. IVD cell loss resulting from excessive 

apoptosis has long been considered to be an important 

cause of reduced ECM synthesis during disc degeneration 

[63–65]. In addition to modulation of intradiscal ECM 

metabolism, this pathway can suppress apoptosis of IVD 

cells. Administration of 17β-estradiol combined with 
resveratrol (a natural polyphenol compound) promoted 

Akt phosphorylation and decreased caspase-3 activity, 

leading to apoptosis inhibition in rat NP cells treated 

with interleukin-1β (IL-1β) [66]. Transforming growth 
factor-β1 (TGF-β1) is a key factor during the development 
of both cartilage and spine tissues [67, 68]. Mesenchymal 
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stem cell transplantation with pure fibrinous gelatin-
TGF-β1 markedly decreased degenerative degree in a 
rabbit IDD model [69]. Treatment of rat AF cells with 

TGF-β1 was found to reduce apoptosis incidence by 
activating the PI3K/AKT/mTOR pathway under serum 

deprivation [70]. Conversely, miR-27a overexpression 

induced apoptosis of human degenerated NP cells via 

silencing of PI3K [71]. Thus, in vivo delivery of miR-27a 

inhibitors might be a promising therapeutic strategy to 

restore the number of viable NP cells for IDD patients.

Sirtuin 1 (SIRT1) is a NAD+-dependent class III 

histone deacetylase [72]. The protective effects of SIRT1 

against disc degeneration are primarily derived from its 

abilities to promote ECM anabolism, inhibit inflammatory 
response and alleviate senescence of CEP cells [73–76]. 

It has been demonstrated that SIRT1 markedly decreases 

the rate of apoptosis in multiple cell types, such as 

osteoblast-like MC3T3-E1 cells [77], human kidney 

proximal tubule epithelial cells [78], cardiomyocytes 

[79], and chondrocytes [80]. In human degenerative NP 

cells, SIRT1 was also reported to protect against apoptosis 

via autophagic induction [81, 82]. Notably, resveratrol-

induced SIRT1 activation stimulated Akt phosphorylation 

and reduced apoptotic incidence of human NP cells, 

whereas either Akt knockdown or LY294002 abrogated 

the inhibitory effect of SIRT1 on NP cell apoptosis [83]. 

In a later study, miR-138-5p knockdown upregulated the 

expression of its target gene SIRT1 and then inhibited 

apoptosis in human NP cells treated by tumor necrosis 

factor-α (TNF-α) [84]. Mechanistically, upregulation 
of SIRT1 decreased PTEN levels to activate the PI3K/

Akt pathway [84]. These findings reveal the PI3K/AKT 
signaling as another important mechanism for SIRT1-

mediated inhibition of NP cell apoptosis. Targeting this 

pathway might have enormous potential for retarding or 

reversing disc degeneration.

Promotion of cell proliferation

Appropriate proliferation of IVD cells represents 

a tissue repair process during disc degeneration [85]. In 

addition to blockade of IVD cell apoptosis, this pathway 

can raise the number of viable IVD cells by promoting cell 

Figure 2: Illustration of PI3K/Akt-mediated protection against IDD and the underlying mechanisms. Activation of this 

pathway increases ECM content via downregulating MMP-3 and MMP-13 expression and upregulating Sox9 expression, inhibits apoptosis 

by activating mTOR and attenuating caspase-3 activity, and promotes cell proliferation by upregulating cyclin D1 expression. This pathway 

can also suppress autophagy by activating mTOR, alleviate oxidative injury via activating the Nrf2/HO-1 signaling and decreasing ROS 

levels, and enhance adaptation of hypoxic microenvironment by upregulating HIF-1α expression and inactivating GSK3β. All of these 
effects result in alleviation of disc degeneration.
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proliferation. In human IVD cells, exogenous treatment 

with either PDGF or IGF-1 stimulated DNA synthesis, 

which was at least partially attributed to activation of 

this pathway [86]. A similar effect was also observed in 

bovine coccygeal NP and AF cells [87]. Conversely, high 

osmolality significantly reduced Akt phosphorylation 
and then inhibited PDGF or IGF-I-induced synthesis of 

novel DNA in bovine NP cells [88]. Leptin belongs to a 

peptide hormone, and its plasma levels are significantly 
increased in obesity patients. It can be produced by 

fibrocartilaginous tissues, such as articular cartilage and 
IVD, besides adipose tissues [89]. Recently, Zhao et al. 

reported that human herniated disc tissues expressed leptin 

and its functional receptor, and administration of leptin 

could stimulate rat NP cell proliferation [90]. Leptin also 

promoted the proliferation of primary cultured human NP 

cells [91]. Mechanistically, leptin increased cyclin D1 

expression via inhibition of Akt phosphorylation [91]. 

Thus, the PI3K/AKT signaling may function as a cross-

talk between obesity and IDD.

MiR-21 functions as an inducer of cell proliferation 

[92–94]. Interestingly, transfection of human NP cells 

with miR-21 mimic dramatically increased Akt activity 

via targeting PTEN, leading to upregulation of cyclin 

D1 expression and subsequent cell proliferation [95]. 

It is worth noting that overexpression of miR-21 could 

also stimulate these cell proliferation via silencing of 

programmed cell death 4 (PDCD4) [96]. Recently, Li et al. 

identified growth arrest specific gene 1 (GAS1) as a direct 
and functional target of miR-184 [97]. Moreover, ectopic 

expression of miR-184 markedly attenuated GAS1 levels, 

which promoted Akt phosphorylation and human NP cell 

proliferation [97]. Like miR-21 and miR-184, miR-10b 

is also a multi-functional miRNA. Aberrant expression 

of this miRNA contributed to the proliferation of 

malignant tumor cells [98–100]. Similar to these reports, 

transfection of human NP cells downregulated homeobox 

D10 (HOXD10) expression, leading to increased Akt 

phosphorylation and cell proliferation [101]. However, 

restored expression of HOXD10 or Akt suppression 

reversed the mitogenic effect of miR-10b [101]. Taken 

together, miR-21, miR-184 and miR-10b promote NP cell 

proliferation by activating the PI3K/AKT signaling.

Regulation of cell autophagy

Autophagy is an orchestrated homeostatic process 

involving the degradation and digestion of intracellular 

components by lysosomes [102, 103]. Recent studies have 

focused on the relationship between autophagy and IDD 

[104]. There is a low basal level of autophagy in normal 

NP and AF cells [105]. In contrast, degenerative NP and 

AF cells exhibited a significant increase in the autophagic 
activity [106, 107]. When compared with healthy controls, 

human degenerated AF tissues showed more autophagic 

vacuolization and autophagosomes [108]. In NP cells 

isolated from rat lumbar discs, hydrogen peroxide (H
2
O

2
) 

induced an early autophagic response via the extracellular 

signal-regulated kinase (ERK)/mTOR pathway; however, 

prevention of autophagy by 3-methyladenine (3-MA) 

markedly attenuated the apoptosis of H
2
O

2
-treated NP 

cells [109]. On the other hand, human degenerative NP 

cells exhibited a marked decrease in autophagy activity 

[81]. Importantly, activation of autophagy by rapamycin 

suppressed IL-1β-induced ECM degradation in rat NP 
cells [110]. Thus, autophagy acts as a double-edged sword 

in the development of IDD, depending on the stimuli.

The PI3K/Akt pathway is closely associated with 

autophagy [111, 112]. Recently, Ni et reported that 

treatment of rat AF cells with TGF-β1 markedly decreased 
autophagy incidence by activating the PI3K/AKT/mTOR 

signaling pathway under serum deprivation, leading to 

increased viable cell number [70]. Notably, IGF1 promoted 

the survival of human NP cells exposed to compression 

via autophagy induction, which was abrogated by the 

specific Akt inhibitor LY294002 [113]. These findings 
reveal a complex role of this pathway in regulating IVD 

cell autophagy. This discrepancy may be attributed to the 

differences in stimuli, cell types and downstream effectors. 

However, both alterations of autophagy activity contribute 

to its protection against IDD (Figure 3).

Alleviation of oxidative damage

Oxidative stress is a critical contributor to disc 

degeneration, because it not only reinforces ECM 

degradation and inflammatory response, but also reduces 
the viability and number of IVD cells [114, 115]. 

Once activated, the PI3K/Akt pathway can enhance 

endogenous antioxidant ability in multiple cell types, 

such as macrophages [116], human umbilical vascular 

endothelial cells [117], and intestinal epithelial cells 

[117]. Epigallocatechin 3-gallate (EGCG) is known to 

delay painful disc degeneration by reducing inflammation 
and catabolism [118]. Recently, Krupkova et al. reported 

that EGCG administration protected human degenerative 

NP cells from oxidative stress by promoting Akt 

phosphorylation [118]. This reveals a novel mechanism by 

which EGCG protects against IDD. It has been believed 

that activation of nuclear factor erythroid 2-related factor 

2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway 

stimulates the synthesis of antioxidant enzymes such 

as superoxide dismutase (SOD), catalase (CAT) and 

glutathione-peroxidase (GSH-Px), leading to enhancement 

of antioxidant defense system [119, 120]. Moreover, 

activated PI3K/Akt signaling can promote nuclear 

translocation of Nrf2 and subsequent upregulation of 

HO-1 expression under oxidative stress [121, 122]. Thus, 

it is likely that activation of Nrf2/HO-1 pathway by the 

PI3K/Akt signaling is, at least partially, responsible for 

EGCG-mediated attenuation of oxidative damage during 

IDD.

Mitochondrion dysfunction is a major cause of 

excessive reactive oxygen species (ROS) production, 
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the hallmark of oxidative stress. ROS has been shown to 

induce NP and AF cell apoptosis through the mitochondria 

pathway [109, 123, 124]. Noticeably, the PI3K/Akt 

signaling pathway can affect ROS-stimulated apoptosis 

in these cells. For example, administration of chlorogenic 

acid markedly decreased ROS production and inhibited 

apoptosis by activating the PI3K/Akt signaling in H
2
O

2
-

treated rat NP cells [125]. In human degenerative NP cells 

exposed to H2O2, EGCG promoted the phosphorylation 

of Akt, leading to decreased mitochondrial membrane 

depolarization and increased cellular survival [118]. 

Taking these findings into account, activating this 
signaling cascade may be an important approach for 

alleviation of intradiscal oxidative damage by blocking 

the mitochondria apoptotic pathway.

Adaptation of hypoxic microenvironment

Since the disc is avascular, the main components 

within the disc, including water, aggrecan and fibrillar 
collagens, proportionally vary considerably depending 

on the location across the disc. Moreover, there is 

always a steep concentration gradient of oxygen across 

the disc, with pO2 falling to as low as 1 % in the center 

of the disc. Therefore, the IVD resides in a hypoxic 

microenvironment, which is essential for maintaining 

its normal physiological functions, including cellular 

metabolism and protein synthesis [126, 127].

The IVD cells have developed some important 

mechanisms to ensure their survival in the hypoxic 

microenvironment of the disc. Hypoxia-inducible 

factor-1α (HIF-1α), an important transcription factor, 
is responsible for the induction of genes that facilitates 

adaptation and survival of cells and tissues under hypoxia 

condition [128]. Risbud et al. detected HIF-1α expression 
in rat, human, and sheep NP cells in the presence of 

either hypoxia or normoxia, and found that these cells 

consistently expressed functionally active HIF-1α in the 
presence of hypoxia [129]. Given the fact that activation of 

the PI3K/Akt signaling can upregulate HIF-1α expression 
under hypoxia in multiple cell types [130, 131], this 

pathway may be also implicated in upregulation of HIF-1α 
expression induced by hypoxia in NP cells. On the other 

hand, Risbud et al. observed that under serum starvation 

condition, hypoxic contributed to attenuating apoptosis of 

rat NP cells [132]. Moreover, cell survival in response to 

hypoxia was associated with activation of the PI3K/Akt/

GSK3β signaling pathway [133]. Thus, activated PI3K/
Akt pathway can enhance the adaptation of NP cells to 

hypoxic microenvironment.

CONCLUSIONS AND FUTURE 

PERSPECTIVES

Although activated PI3K/Akt pathway has 

been shown to protect against disc degeneration 

through multiple mechanisms, there are a number of 

outstanding issues that need to be addressed. One of 

the most important aspects is the fact that no signaling 

pathway operates in isolation, which necessitates further 

Figure 3: Involvement of autophagy in PI3K/Akt-mediated protection against IDD. Autophagy is a successive process 

involving the formation of phagophores, autophagosomes and autolysosomes, and degradation of vesicle contents. Activating the PI3K/

AKT pathway can antagonize or induce IVD cell autophagy, thereby leading to inhibition of disc degeneration.
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investigation into how this pathway interacts with other 

signaling mediators. Establishment and application of 

chemically defined culture conditions would greatly 
promote such investigations and diminish non-associated 

signaling interference. The nuclear factor-κB (NF-κB) 
and mitogen-activated protein kinase (MAPK) signaling 

pathways have been frequently reported to be  implicated 

in disc degeneration [134–137]. Considering NF-κB and 
MAPK as downstream effectors of Akt, it is also important 

to clarify whether this pathway affects the development of 

IDD via regulation of NF-κB and MAPK. Hyperactivation 
of the PI3K/Akt pathway has been frequently reported in 

a wide variety of malignant tumors [138, 139]. Whether 

targeting this pathway in disc degeneration would lead 

to tumorigenesis is a considerable issue. Like MMPs, 

ADAMTSs are responsible for the degradation of 

Col II and aggrecan. It remains unclear whether this 

pathway inhibits ECM catabolism in the disc through 

downregulation of ADAMTS expression. In summary, 

more research into this pathway contribute to developing 

novel biological treatments for disc degeneration.
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