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THE PICARD GROUP OF NONCOMMUTATIVE RINGS,
IN PARTICULAR OF ORDERSt1)

BY

A. FRÖHLICH

ABSTRACT. The strucrure of the Picard group of not necessarily commuta-
tive rings, and specifically of orders, and its relation to the automorphism group
are studied,   mainly with arithmetic applications in mind.

This paper is concerned with the Picard group, Pic (A), of a noncommutative

(i.e. not necessarily commutative) ring A  with identity, defined via the tensor

product of invertible bimodules (see e.g. [Bl] or [B2]).   Although some general

results on  Pic (A)  are known, relatively little systematic work has been done so

far.   The real interest of the noncommutative theory has until now been the

special case of Azumaya (central separable) algebras, when in fact  Pic (A)  coin-

cides with   Pic  of the commutative ring  cent (A)  (the centre of A) (see [RZ]).

On the other hand our principal interest lies in orders.   But although our strongest

results come in this case, some of these extend without too much weakening to a

wider class of rings.   In fact in the early part of the paper the treatment is com-

pletely general.
Although most of the present paper is algebraic in spirit, the whole work was

done with applications to the arithmetic of noncommutative orders over the ring  Z

of integers in mind.   Our theory then becomes a tool both for certain local as well

as for noncommutative "local-global" problems, and it leads up to the consider-

ation of arithmetic subgroups in certain algebraic groups.   Moreover the explicit

computations for integral group rings given at the end of this paper are really

number theoretic, i.e. depend crucially on  Z  being the base ring.

For the general theory one can, without loss of generality, view the ring A

as an algebra over some commutative ring R  and look at  Pic„ (A), the group

given by bimodules with  R  acting the same on both sides.   One can always take

R = Z, noting that  Pic (A) = Pic7(A).   For theoretical reasons and for applica-

tions it is however the normal subgroup  Pic      , . .(A) = Picent(A)  which is the°        r cent(A )
really interesting object, even when one considers R-orders, and  R /= cent (A).
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2 A. FRÖHLICH

The significance of the Picard group lies in its relation to other aspects of

ring theory.   We mention three of these.

1. Multiplicative ideal theory.   If A   is an order over an integral domain R   in

a finite-dimensional semisimple K-algebra, K the quotient field of R , then

Picent(A)  is a quotient of the group l(A)  of invertible fractional ideals, just as

in the commutative case.   We shall show in fact that this is a special case of a

completely general exact sequence, associated with a change of base ring  R, for

any R-algebra A.   This is based on an adaptation of K-theory techniques to

"noncommutative" products.

2. The class group of rank one projectives.   This group, denoted by  C(A), is

defined for orders  A, via the direct sum.   In the commutative theory one gets an

isomorphism  Picent(A) S C(A).   There is however also a connection in the non-

commutative case, and in a subsequent joint note [FRU] we shall for certain

orders  A, on the basis of results of the present paper, define a homomorphism

Picent(A) —> C(A) with interesting properties.

3. The automorphism group of the algebra A.   There is a homomorphism

AutR (A) —» PicR (A) (cf. [RZ], [Bl]) which gives rise to a homomorphism Q,:
Autcent(A) —> Picent(A), where  Autcent(A)  consists of those algebra automor-

phisms of A   which leave the centre elementwise fixed.   This is the most interest-

ing and specifically noncommutative aspect of the theory.   We shall derive a sig-

nificant variant of ÎÎ, useful in applications, by considering algebras  A ®r E,

C = cent (A), with  E  running over C-Azumaya algebras or just over matrix rings,

and then going to the limit.

The role of the Picard group in its relation to other objects explains why one

should want to study this group.   The main purpose of this paper is to show how

one can study it.   We shall introduce a sequence of normal subgroups and analyse

the consecutive factors.   In the case when A   is an order over a Dedekind domain

R, in a separable algebra over the quotient field  K, we shall obtain a fairly com-

plete description which makes explicit computations feasible.   We display the de-

creasing subgroups (on the left) and the quotients (on the right) in a diagram,

where  C = cent (A).

PicR(A)

Picent (A)

Picent(C)
(contained in

cent (Picent (A))

Aut„ (cent (/OP-SHrzU))R

Il Picent (Af)

û Picent (M)

D{C) X
I

1 X
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THE PICARD GROUP OF NONCOMMUTATIVE RINGS 3

Explanations,   (i) That  PicR (A)/Picent (A)  is a subgroup of Aut„ (cent (A))

(algebra automorphisms) has been known.   Here we shall determine this subgroup,

as that consisting of those automorphisms which fix the Morita class of A   over

cent (A).   All this applies not only to orders, but in complete generality.   In con-

crete situations this group is easily computed,   (ii) The product   up   runs over the

maximal ideals   p of  R, A p  denoting localisations or completions.   The exact

(and central) sequence

(*) 1 — Picent (C) — Picent (A)—II Picent (A   ) -» 1
P

is really the central tool in the analysis and computation of  Pic„ (A).   Moreover,

for almost all   ¡3,   Picent(Ap) = 1, thus the product is finite.   The sequence (*)

remains exact, except for the right hand bit  " —> 1", under much more general

hypotheses,   (iii) For the local (or semilocal) case, i.e. for the description of the

factor Picent (A p)  we shall develop basic reduction theorems,   (iv)  In the commu-

tative case one has a fairly effective theory (see e.g. [F]).   The M .  are the

maximal orders in the extension fields of K which occur as factors in the commu-

tative K-algebra spanned by  C, and DÍC) has a nice description in terms of unit

groups.

The last third of the paper is taken up with particular orders and with compu-

tations.   These are included, being of independent interest in themselves, while

at the same time illustrating and testing the general theory.   In particular the

explicit calculations—although at first sight rather special—bring out genuine num-

ber theoretic aspects, and in fact I believe that one of the lines, along which a

good theory of orders should develop, is arithmetic specialisation.

Not included in this paper is a systematic treatment of fibre products.   I have

also not considered special classes of algebras which are still somewhat more

general than orders over a Dedekind domain in a semisimple algebra (e.g. R  a

Krull domain, or nonsemisimple algebras etc.).

I wish to record my gratitude to I. Reiner and S. Ullom for careful checking

and constructive criticism of a first draft, which led to improvements and to the

elimination of some errors.

1. The Picard group and automorphisms. All rings have identities. These

act as identity maps on all modules and are preserved by ring homomorphisms.

Let A and B be rings. An A-B-bimodule AX„ (A acting on the left, B on

the right) is invertible if it satisfies the following conditions (I) and (II), each of

which implies the other.
(I) X„   z's finitely generated projective (i.e. X as B-module), and A Si

End(X„)  via the action on  X, plus analogous statements on interchange of A

and B.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4 A. FRÖHLICH

(II)  There is a bimodule   „y.   and isomorphisms

f: Y  ®A X at B       (of  B-B-bimodules)

so that the diagrams

Y

Y

X

g'-*

X

Y Sé A       (of A-A-bimodules)

/ ® Y ♦ s ®B y

y® g

A

y ®Ax

x ® /

g ® x

X ®B B-.       X

COZTZZTZZZÍe.

In (II) X will determine its inverse   Y, and the maps  / and g uniquely to

within isomorphism.   For these concepts see e.g. [Bl] or [B2].

Now suppose A and B to be R-algebras, R being a commutative ring. If the

R-module structures of ,XB, via A and via B, coincide then we shall call X an

A-B-bimodule over R. The isomorphism classes (X) of invertible A-A-bimodules

under the product

(Xj)(X2) = (Xj   ®A X2)

form the Picard group, Pic (A), of A, those "over  R" a subgroup  Pic„ (A).   Of

course   Pic (A) = Pic7 (A), where  Z  is the ring of integers.

We wish to compare  Pic„ (A) and the group of algebra automorphisms of A

over R, which we shall denote by  Aut„ (A).   For a proper understanding of the

situation it is worth introducing two categories, ?Itg      and  5U!-EItg_.    The objects

of both are the R-algebras, the morphisms of 2lLg„   are the isomorphisms of

R-algebras, those of W-w¡      are the Morita equivalences over R.    A Morita

equivalence  B ~ A   over R   is simply an isomorphism class  (M)  of invertible

A-B-bimodules AM„   over R.   If (/V)  is a Morita equivalence C ~ B, then the

compositum is given by  (M ®„ N).   Thus  Aut„(A)  and  Pic„ (A)  are the automor-

phism groups of the object A   in  SXLg   ,   and in 5D!-?Hg       respectively.   In particular

Pic„   is a functor from the category of Morita equivalences of  R-algebras to the

category of groups and isomorphisms.

Both    ?ILg    and ïi-îHcj       are categories with product in the sense of [Bl],

given by  ®„.   The product of objects A     and A2   is  A.  ®„ A2.   The product of
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THE PICARD GROUP OF NONCOMMUTATIVE RINGS 5

morphisms /. : B . —» A .  (z = 1, 2)  in  SKgR   is /, ®R f2, the product of Morita
equivalences  ÍM ): B . ~ A .  is  (M. ®„ AL).   The crucial point here is that if  M .

is an invertible A -B -bimodule over  R   then M, ®„ M,   is an invertiblez      z 1      K      2
A. ®„ A   -B. ®„ B2-bimodule.   In particular we get homomorphisms

PiCpU,-) x PicJA,) -. Pic„U,   ®_ A,),(1.1) R      ! R     2 R     1      R     2

AutRUj) x AutR (A2) —* AutR Uj ®R A2),

the first of which is compatible with Morita equivalence, and so in particular

homomorphisms

(1.2)
PicR(Aj) -♦ PicR(Aj  ®R A2),

AutR(Aj) —» AutR(Aj ®RA2),

given by (X) l-> (X®R A A, and by  / l—► /®R A2  respectively.   If in particular
A?  is an R-Azumaya algebra (central separable R-algebra), then it is an object

of SJl-llLg      invertible under the product ®„   and hence, using the theory of cate-

gories with product, one deduces that the first map in (1.2) is an isomorphism.

We now have a functor

0: ?%R- MtgR,

which is the identity on,objects and associates with an isomorphism /: B —> A   of

R-algebras the class of the invertible A-B-bimodule  A..   Here we use the follow-

ing notation:   If X  is an A   -A   -bimodule and g: B . —>A   ,f:B2~->A     are alge-
bra homomorphisms then    X,  is an isomorphic copy of the additive group of X

under a map x —>    x  , made into a B   -B   -bimodule by setting

bligx/)b2 = g(gibl)xfib2))/, Vx 6 X,   bl £ Bv b2 £ B2.

If one of the two maps g  and / is an identity map  1, then we shall write   ,X, =

X,  or    X. =   X.    The verification that Í2  is indeed a functor and that it preserves/        g    1     g r
the product ®R  is now routine.

In preparation for our first theorem we introduce some more notations.   IniA)

is the group of inner automorphisms  a H» bab~     of A, a subgroup of Aut„ (A).

Proj(A)  is the set of isomorphism classes of finitely generated faithfully projec-

tive left A-modules.   Forgetting the right action of A   yields a map

y:   Pic (A) -» Proj(A).

Moreover  Pic (A) acts on  Proj (A)  by

(X), ,y}r-{X  ®^ yj,      (X) ePic(A), iyl eProj(A).

Next observe that associated with a pair B. , E?   of R-Asumaya algebras we

get a homomorphism FÍA ®R E ) —♦ FÍA ®R El ®R £2) for F = PicR, Aut
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6 A. FRÖHLICH

(cf. (1.3)) and similarly for F = In." These homomorphisms satisfy, for varying

E   , E     the obvious compatibility conditions, allowing us to define limit groups

lim FÍA ®„ E).   For F = PicR, the homomorphisms are all bijective (recall the

remark made after (1.2)).   Hence we may identify  lim PicR ÍA ®    E) = Pic„ (A).

Theorem 1.    (i) The sequence

iSA): 1  — IniA) -^AutRU) ^ PicR (A)

is exact, and the left cosets in  PicR (A)/Im 0 are the fibres of the map y:

PicR (A) —» Proj(A).    The orbits of Proj (A) under the action of PicR (A) are the

fibres of the map which sends  \Y\ £ Proj (A)  into the R-algebra isomorphism

class of End . (Y).
Moreover, 0   zs compatible with maps (1.1), and analogously for   i  and y.

(ii) For ÍX), (y) £ PicR (A) and M  a faithful, finitely generated projective

R-module,

X ®R EndR (M) S Y ®R EndR(M)

(isomorphism of left A ®„ End„(/M)-z?zo(izz/es)  if and only if

X ®R M* s Y ®R M*

(isomorphism of left A-modules), where M    = Hora„ (M, R).

(iii) By going to the limit over the R-Azumaya algebra  E, the sequences

ÍSAst)P) yield an exact sequence

ÍS A): 1 -. lim IniA   ®R E) -^ lim AutR (A ®R E) -?tpicR(A).

Moreover, the following conditions are equivalent:

(a) (X) = (Y)(U),  (U) £ Imfi.
(b) X ®„ E S Y ®„ E  (isomorphism of left A ®    E-modules) for some  E

(Azumaya over R).

(c) X ® „ ¡V = Y ®„ N  (isomorphism of left A-modules) for some faithful

finitely generated projective R-module N.

(d) X      = Y        (isomorphism of left A-modules) for some  n > 0, where

V        is the direct sum of n copies of V.

Remark.   For the sequence  ÍS.)  in (i) and a characterisation of

PicR (A)/lmQ  see [RZ] (with A   restricted to be Azumaya) and [Bl].   The
connection between automorphisms and the Picard group was for the first time

pointed out in [RZ].
Proof of Theorem 1.   (i)  Let / e Aut„ (A),   a i—> a, is an isomorphism A —*

A, oí left A-modules, and so every such isomorphism g: A —' A .   is  of form

gia) = iab),, where  b  is some unit of A.   Now one computes
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THE PICARD GROUP OF NONCOMMUTATIVE RINGS 7

g(ac) = g(a)f-lib-1cb),       Va, c e A.

Hence g  is an isomorphism of A-A-bimodules if and only if b~   cb = /(c), Vc e A.

We have thus shown that indeed  IniA) = Ker 0.

Next observe that for any A-A-bimodule  X,  X ®.  A, = X, is isomorphic with

X  as left A-module.   Conversely if X  and  Y  are invertible A-A-bimodules, and

h: X = Y  is an isomorphism of left A-modules then the compositum

t * t ™"
A JÜ, End^Y) Í-» End(AX) -^U  A,

where /y, L. are given by the right A-module structure, is an automorphism / of

A so that hixfia)) = hix)a. Thus indeed Y ^ X, as A-A-bimodule. We have now

shown that the cosets in  Pic„ (A)/lm fi  are the fibres of y.

The fact that fi  preserves products has already been noted.   That the same

is true for  i  and y  is obvious.

(ii) We are viewing M* as left E-module, for E = EndR (M).   Then  M     is an

invertible R-E-bimodule, hence A ®R M     is an invertible A-A ®R E-bimodule,
defining a bijection of the set of isomorphism classes  [v!  of left A ®R E-modules

onto the set of isomorphism classes  \ÍA ®„ M  ) ®(Aç^p\ ^î  °f ^^ A-modules.   In

this the isomorphism class of  (7 ®„ E  with  U  a left-A-module, corresponds to

that of  U ®R M*.
(iii) By (i), using the fact that  t,fi  and y preserve products, we obtain

commutative diagrams

¡n(A®E1)   -,    AutRiA®El)->PicR(A®El)->Proj(A®E1)

IniA ®Ej-®B2) ^_AutR(A ® Ej ® B2) _ PicR (A ®Bj ® E2) ^Proj (A ® Ej® B2)

(®=®   ).Note  in passing that, as E2   is a faithful projective  R-module, the

column of Aut„   is injective, hence so is that of In.   Going to the limit, we get

the exact sequence  ÍS.) and the equivalence of (a) and (b), all from part (i) of

the theorem.

Moreover, condition (b) is equivalent with the similar condition where  E  is

restricted to algebras  EndR (M)  with M  faithful, finitely generated projective over

R —as can be seen by tensoring with  Eop   in (b).   But now one concludes from part

(ii) that (b) is equivalent with (c).   Finally, (d) is condition -(c) with N  restricted

to  R^    , for n > 0, thus (d) implies (c).   Conversely, if (c) holds, tensor both sides

with a module  M  so that N ®„ M = R(" , and we get (d).   This completes the

proof of the theorem.

The ring A   may be viewed as an algebra over its centre cent (A).   We define

the central Picard group of A   to be
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A. FRÖHLICH

Picce„t(A)^ = Picent (A).

If A   is an R-algebra then  Picent (A)  is a subgroup of  PicR (A).    This central

Picard group will play an important role in the sequel.   Here we note some conse-

quences of the preceding theorem, relating to it.   Side by side with Picent (A)  we

shall also have to consider the central automorphism group

Autcem(A) (A) = Autcent(A).

Note that in the definition of these two groups the commutative base ring itself

depends on A.

With these definitions we get

Corollary.    We have exact sequences

1 -* in (A) -. Autcent (A) Jl Picent (A)

and iwith  C = cent (A))

1 —» lim In (A ®c E) —» lim Autcent (A ®c E) —»Picent (A),

E  running through the C-Azumaya algebras.

There is, for clean orders  A   over a Dedekind domain a connection between

Picent (A)  and the projective class group, which will be studied in a subsequent

joint note of I. Reiner, S. Ullom and myself [FRU]. This leads, under certain con-

ditions, to a longer exact sequence.

Proof of Corollary.   The extra  fact needed is that

(1.3) cent (A ®c E) = cent (A)

if E  is C-Azumaya.   Given this, the Corollary is just a special case of the theorem.

To establish (1.3) consider a C-algebra B, and a C-Azumaya algebra  E.

Then  cent(B)  embeds in  cent(ß) ®c E  and as  E  is flat this embeds in  B ®c E.

In other words the composite map cent(B) —> B —> B ®r E  yields an injection

cent(B) —» cent(ß ®c E).   Apply this first to  B = A, with given  E  and then to

B = A ®r E, and  E  replaced by an C-Azumaya algebra  E.   so that  E ®r E. =

M  (C)  the ring of zz  by «  matrices over  C.   We get injections  C = cent (A)—>

cent(A ®r E), cent(A®r E) —> cent(A ®„ M  (C))  whose composite is clearly a

bijection.   Thus  cent (A) —> cent (A ®r E)  is a bijection.

2.   The group Picent.    Let   SanaLg       be the category of commutative R-alge-

bras and their isomorphisms.   Taking centres we get a functor

cent:  ?HgR —> £omalgR.
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THE PICARD GROUP OF NONCOMMUTATIVE RINGS 9

This has the property that given an R-algebra A   and an automorphism / of the

R-algebra  cent (A)  there is an R-algebra  B  with  cent(ß) = cent (A)  and an iso-

morphism f '■ A —> B  of R-algebras so that / = cent (/ ).   This determines uniquely

the isomorphism class of B  as  cent(A)-algebra, and we shall write  B = A'.   We

shall write  AutR (cent (A) | §Kg (A))  for the subgroup of AutR (cent (A))  of elements

/ for which the isomorphism class'of A'   in   2IIg       .. ,   is that of A, and

AutR(cent  (A) tUg (A))  for the subgroup of AutR (cent(A))  of elements  /, for

which the isomorphism class of A'    in 5D!-2Eq       ,.,   is that of A.   Both these sub-r ü cent (A )
groups are stabilisers of the "class of A" with respect to the action of

Aut„ (cent(A))  on the isomorphism classes "above  cent(A)"   in

^"^ cent (A) respectively.
t(A) and

Theorem 2.   (i)  Given an invertible A-B-bimodule M  over R, there is a unique

isomorphism

<t>ÍM) = f:  cent (ß) —, cent ÍA)

of R-algebras, so that

j

This defines a functor

so that the diagram

fic)m = zzzc,        \jm £ M,   \jc £ cent (ß).

<D: Eomalg  ,

SomaXgR

commutes.

(ii)  The functors  cent and $ give rise to commutative diagrams with exact

rows

1 — Autcent (A) -, Aut„ (A) — Aut „ (cent (A)|«Lg (A))—,   1

1— Picent (A) —♦PicRU) — AutR(centU)|l-at9(A))  — 1

Remark.   The exact sequence   1 —» Pic„(A) —> PicR (A) —> AutR (C)   (C =
cent (A))  is already given in [Bl].

Proof of Theorem 2.   (i)  The map /   is the compositum of the isomorphism

cent(B) = End(.M„)  with the inverse of the isomorphism   cent(A) = End(.M„).

The remainder of (i) is now easy to verify.
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10 A. FRÖHLICH

(ii) The only nontrivial part is the determination of the images of cent:

AutR-(A) — AutR(cent(A))and of 4>: Pic   (A)—► AutR (cent(A)).   For the first it is
clear that an automorphism / of cent (A)  can be lifted to one of A  precisely when

A S A', as  cent (A)-algebras.
Next let N = 0(/ )  be the invertible A'-A-bimodule over  R, corresponding

under Í2 to a lifting J': A ~> A1 oí f £ AutR (cent (A)).    By (i), $(zV) = /.    If / e
AutR (cent(A) | 33!-?%(A))   let   M  be an invertible  A-A^-bimodule over cent(A).

Then  L = M   ®  . N  is an invertible A-A-bimodule over  R   with Í>(L) = f.    On theAl
other hand, if  L   is an invertible A-A-bimodule over R   with 3>(L) = / and N     is

the inverse bimodule of N, then M = L ®.  N     is an invertible A-A'-bimodule

over cent (A).   Thus indeed we get the required result on the image of <I>.

Corollary 1 (cf. [Bl]).    // A   z's commutative, then the sequence

1 -,  Picent (A) -» PicR(A) -, AutR(A) -^ 1

is exact and splits.

For now  Autcent (A) = 1, and all the other three automorphism groups appear-

ing in the diagram in (ii) coincide.

Corollary 2.    Picent  is a functor of ÎR-?ttg   ,  i.e. a Morita equivalence  B ~ A

over R  yields an isomorphism  Picent (ß) =  Picent (A).

Proof.   Immediate.

Corollary 3.   Picent (A)  is a normal subgroup of Pic (A)  (and of course

Autcent (A) a normal subgroup of Aut (A)).

Proof.   Take  R = Z.
Next note that, if if/: T —> R  is a homomorphism of commutative rings, then

PicR (A) C PicT (A), AutR (A) C AutT (A).

Corollary 4.   If lb: T —> R   is an epimorphism in the category of rings, then

PicR(A) = PicT(A),       AutR(A) = Autr(A).

Note.    This is of interest if R   is a residue ring or a ring of fractions of T.

Proof.   Let (X) £ Pic_(A).   This means that if /': R —> cent (A)  is the alge-
bra structure map then <t>(X) ° j ° if/ = j ° if/,   hence $(X) ° j = j, i.e.  (X) £

PicR (A).   Similarly for AutR.
Example.   Suppose   A   is  separable   over  R, i.e. Azumaya over cent (A).

Then AutR (cent (A) | 3S-?IIgA)   is just the subgroup of AutR (cent (A)) which
leaves the Brauer class of A   fixed.   In many cases this group is easily determined,

e.g. when we work over local or global fields  or over algebraic integers.
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THE PICARD GROUP OF NONCOMMUTATIVE RINGS 11

If cent (A) is a field and A is separable then  AutR(cent(A)|E(g A)
= AutR(cent(A)|l-?Ilg(A)).   For if / lies  in the  latter  group and A = M  (D), the n
by n matrix ring over the division algebra D, then  D S D' over cent(A), hence also

A SA7.
If R is a field and A semisimple, finite-dimensional over R, write

A = TÍA  ,        cent (A) = IIC
i       '

where the  A . are simple algebras, C. their centres.   Let / £ AutR(cent(A)) with

CJ. =  C,..y    Then   a   necessary   and   sufficient   condition   that   f £

AutR(cent(A)|l-2%(A)) is that for all i

cl (A >/C¿(.,)-cl (A^./C^)

where  cl(A ./C.) is the Brauer class of A . over C ..   Alternatively, if / induces
11 i      i.     i '

<V Ci = C<f>U)' We can Write this aS  cl<A/CP ' = cl(A<bU)/C<bU)X
We shall next use Theorem 2 to consider a product A = II.  ,A . of R-algebras,

/ being some not necessarily finite index set.   Let  ^-r(A ., 1) be the subgroup of

the full permutation group of / of permutations 77, for which A . and A   ... are Morita

equivalent over R, for all i.   Let  e. be the idempotent of cent(A) with At?. =

e?.A = A.,z z

Theorem 3. (i) Let PicR(A) be the subgroup of PicR(A) of classes of bimod-

ules X with Xe . = e .X for all i. The maps (X) h-> (Xe .) then define an injective

homomorphism

p.:  Pic* (A) — nPicR(A.),

which is bijective if the index set I is finite.

(ii) // the A . are indecomposable R-algebras then with each  (X) £ PicR(A)

there is associated a unique tt £ SR(A ., /), so that

xe . = e     ..x,       V i £ I, V x £ X.

The map (X) H> tt is a homomorphism  PicR(A) —> £R(A ., /), which has kernel

Pic n(A), and which is surjective when I is finite.   Thus, for finite I, we have an

exact sequence

1 — IIpícr(A.) ^PicR(A) — 2R (A., I) — 1.i

Proof. If the A . are indecomposable, i.e. the e. are primitive idempotents of

cent(A), then we have a homomorphism of Aut(cent(A)) into the permutation group

of /, / being mapped into tt, with f(e .) = e   ....   The map  PicR(A)     » l.R(A., I) is
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12 A. FRÖHLICH

given by the composition of  PicR(A)—»Aut (cent (A) | Si-2IIg(A)) with this map.

It clearly has   PicR(A) as kernel.
It is clear that in (i) p. is a well-defined homomorphism.   To show that it is

injective consider the natural homomorphisms

l: M -*He.M,        r-.N-.Ti Ne .

for left A-modules M and for right A-modules N.   If  M = N is an A-A-bimodule with
e .m = me . for all m £ M and all i, these two maps coincide and give a bimodule

homomorphism.   On the other hand if M is finitely generated projective then / is an

isomorphism, this being so for  M = AA.   Thus if (X) £ PicR(A) and Xe . ^ Ae . as

bimodules, then  X S A   as bimodule.   Thus p is indeed injective.

Now suppose that / is a finite set.   If the  A . are indecomposable, and

tt £ SD(A ., /) choose X. as an invertible A   ,..-A .-bimodule over R.   Then  X =
K       I ' l TT(l)       I

n.X. maps onto tt under PicR(A) —> SR(A., /).   Next if X. are given invertible

A -A -bimodules over R, then  (X) = (II.X.) maps onto II (X .) under p.

Corollary 1.   Picent(A) —> II. Picent(A .) z's injective, and for I finite, bijective.

Proof.  Take  R = cent(A).   By Corollary 4 to Theorem 2, PicR(A .) = Picent(A¿).
Now apply Theorem 3.

Remark.  Analogous results obviously hold for AutR  and for Autcent.

3. Change of base ring.   Throughout this section if/: R —> S is a homomorphism

of commutative rings.   We shall extend definitions and results of algebraic K-theory

to the present situation, where the products involved are no longer necessarily

commutative.

Let A be a T-algebra, R  —> T a homomorphism of commutative rings.   Through-

out, the unadorned tensor product sign ® will stand for   ®R.   A   ® S is then a

T  ® S-algebra.   Define   Outr(A) = AutT(A)/zra(A).   We get homomorphisms

PicT(A) -^ PicT(8s(A ® S),

(3.1) AutT(A) —, AutT(8S(A ®S),

OutT (A) —, OutT(8S (A ® S),

the first given by (X) h-> (X  ® S), the second by f H» / ® S  and the third induced
by the second.

We shall define certain relative groups.   Consider pairs   (X, /), X an invertible

A-A-bimodule over R, and / an isomorphism X ® S ^ A  ® S of A  ® S-A ®5-bi-
modules.   An isomorphism  (X, /) ^ (Y, g) of such pairs is given by an isomorphism

h: X ~ Y of A-A-bimodules, so that the diagram
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THE PICARD GROUP OF NONCOMMUTATIVE RINGS 13

X®5-      f
A ® S

commutes.   The product  (X  , / ) ® (X     / ) is defined as   (X     ® A X     f   • f )
where  /.  • /_,  is the compositum

(Xj ®^ X2)®5 S (Xj®5) ®A9S (X2® S)
fvfi

(A ® S) ®A9S (A ® S) = A ® S.

The isomorphism classes of the (X, /) form a group Pic ,(A) with respect to this

product, those with X being "over T" a subgroup Pic , r(A). The map ((X, /)) H

(X) is a homomorphism

(3.2) Pic,¿(A) -.PicRU).

On the other hand, if we associate with  zz £ f(cent(A ® S)) (U( ) is always the

group of units) the pair  (A, g  ), where  g  (a ® s) = u(a ® s), we get a homomor-

phism

(3.3) ij(cent(A ®S)) -. Pic^ÍA).

Let now M be an invertible A-B-bimodule over R, with inverse module M  .

With every pair  (X, /), as above, we associate the pair  (M    ®^X ®AM, f ), where

/  is the compositum

(M* ®, X ®, M) ® S s M* ®. (X ® S) ®, M
from /

M' (A®S) ®. M = B ®S,

the last isomorphism being that defining M   as inverse of M.   This yields an iso-

morphism

(3.4) Pic^U) s Pic^ÍB).

Next let  Aut,(A)   be the fibre product (pull back) with respect to the diagramV

AutR(A)

UÍA ® S)

-,   Auts(A ® 5).

This is the group of pairs  (/, u), f £ AutR(A),  u £ U(A ® S) for which u'a ® l)zz_1 =
f(a) ® 1,  Ma £ A.   Inserting the maps   ¡7(A) — AutR(A),   U(A) -, U(A  ® S) in the
appropriate places, the above diagram would be commutative, and hence we get a

homomorphism
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14 A. FRÖHLICH

l^A:  UÍA) - Aut^(A)

which takes v into the pair  (s   , v ® 1), where  s     is the inner automorphism in-

duced by v.   We define

Outj,(A) = Aut^(A)/Im/^.

Restricting to automorphisms in Aut^A), we get subgroups Aut^ -p(A), and

Out^ T(A) of the above groups.   Associating with  zz £ U(cent(A ® S)) the pair

(1, zz), we get homomorphisms

ij(cent(A ®S)) —> Aut , (A),
(3.5)

(7(cent (A ® S)) -* Out^U).

Next the map (/, u) H» / yields homomorphisms

Aut AA) — AutR(A),
(3.6)

Out^U) — OutR(A).

Next if  (/, zz) £ Aut ,(A), then g(zz, ® s) = (a ® s)zz defines an isomorphism

g: Af ® S S A ® S of A ® 5-A ® 5-bimodules.   If (/, zz)elm/^  then the pair
^/> ¿?) is isomorphic to  (A,   1).     Thus the map  (/, zz) H» ((A., g)) yields homomor-

phisms

Aut, (A) — Pic , (A),(3.7) v

Out/A) -. Pic^U).

Now suppose that A —> A ® S is injective.   This is a property preserved by

Morita equivalence.   View A as embedded in A ® 5.   We define the product  VW

of A-A-subbimodules V and W of A  ® S as the module of sums   Siz.zzz.,   zj   e V.z    z'      z '
w{ £ W.   Call V an invertible fractional ideal of A in A  ® S  if, for some W,   VW -
WV = A.   These form a group under the product we have just defined, to be denoted

by  /^(A); or just  1(A).   The normaliser N,(A) or N(A) is the subgroup of   U(A ® S)

of elements zz with zzAzz-    = A.

Now we can at last state our theorem, where the new maps are those explicitly

defined above, or are obvious.

Theorem 4.   Let if/: R —> S  be a homomorphism of commutative rings, R —> T

a homomorphism of commutative rings and A a T-algebra.

(i) We have a commutative diagram with exact rows and columns.
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Í7(cent (A)) -, Í7(cent (A ® S)) — Pic^ (A)  -,    PicR (A) -♦ Pic^ (A ® S)

il III
--nt(A)) -» [/(cent A ® S)) -» Pic^U) -» PicT(A) — Pic^,

mm   || I] 1
nt(A)) -, f7(c<

I I
1 1

A Morita equivalence  A ~ B oizer T yields an isomorphism E(A) S E(B) o/ zaiza-

pz-zzztzs.

(ii) We have a commutative diagram

1 1111

1 I I I 1
(/(cent (A)) -»(/(cent (A ® S)) ->Out0 T (A) -,OutT(A) — OutT0S (A ® 5)

(E(A)) I I i I
(7(cent(A)) -> (/(cent (A ® S))-» Out, (A) —-   OutR(A) — Outs (A ® 5)

I I
1 1

wziA exact rows and columns.

The maps  Out JA) ~~* Pic JA) an«? Out , T(A) —> Pic , T(A) are injective and

yield, together with the maps  Out —> Pic  induced by ÍJ a homomorphism  (F(A))—>

(E(A)) of diagrams.
(iii) Suppose now that A C A  ® S.   Then every invertible fractional ideal of

A in A ® S is an invertible A-A-bimodule over R.   Associating with each such

fractional ideal V the pair (V, fv), where /„: V ® S —»A  ® S  is induced by
V t-t A ® S, we get an isomorphism  I JA) = Pic JA), and a commutative diagram.

(/(cent (A ® S)) — I^(A) -, PicR(A)

Pic^(A)

Here the maps of the top row are  u H> uA  and V >—» (V) respectively.

The map u   (-»(/, u),  u £ NJA),  f the automorphism of A induced by u, is an

isomorphism  NJA) S Aut, (A), and giving rise to an isomorphism /V ,(A)/(/(A)s

Out ,(A).   The map  u \—> uA = Au,  u £ NJA), yields a homomorphism, with kernel

(7(A),   NJA) —» IJA), so that the diagram
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16 A. FRÖHLICH

N^ÍA) — Aut^(A)

I 1
VA)   - Pic^(A)

cozzzzzzzzzes.

Proof.   The main work leading to the theorem has already been done by de-

fining the appropriate maps.   The verification of the exactness of the rows of

(E(A)) and (E(A)) is now purely routine, following the standard procedures of K-

theory.   The commutativity of the diagrams, the Morita invariance of  (E(A)) and

the homomorphism  (F(A)) —> (E(A)) are all obvious.   The exactness of the columns

in both diagrams is already known to us, except for the middle column where it is

a consequence of the others or of the definition.   The same type of reasoning yields

the injectivity of  Out^ —> Picj^
For (iii) we have to do a bit more work.   If V, W £ I JA), multiplication in

A  ® S yields a homomorphism  q: V ®AW —> VW oí A-A-bimodules, clearly sur-

jective.   Let  2 v. ® w{ £ Ker q.   Suppose   VV' = V' V = A, with  Sx.y, = 1,

xk6V> /k6 ^'^Then

£ v.««*. = £ *kyhv. ®w.= Y,xk® yhvyi = °-
' i,k l,k

Thus q is an isomorphism.   In particular we now get isomorphisms   V ®A V  = A,

V   ®AV S A, which by the associative law for multiplication in A  ® S satisfy

condition (II) in §1.   Thus  (V) £ PicR(A), the fact that V is "over R'J being
trivial.   Provided we can show that  fy, as defined in the theorem, is an isomor-

phism we thus have a homomorphism w: I JA) —» Pic^A).

Identify   V ® S = V ®A(A  ® S).   Then fv(v ® b) = vb, for v £ V,  b £ A ® S.
As V is invertible, fy is surjective.   If  S v . ®Ab . £ Ker/w,  v. £ V,  b. £ A  ® S,
then with  x,, y,  as above we have

£ v.Q>b.= ,Z.xkyhvi%bi= zlxt®vi. = 0.
i i;k i,k

Thus  fy  is an isomorphism.

Next we shall show that w is an isomorphism, by displaying its inverse map.

Let  ((X, /)) £ Pic JA), with inverse   ((Y, g)), and write  f(X) for the image of the

composite map X —» X ® S -I—.A ® S.   Then f(X) solely depends on the class of

(X, /), and f(X)g(Y) = g(Y)f(X) = A.   Thus   ((X, /)) h-, f(X) is a well-defined map
w   : Picji/A) —» IJA) with w   ° w = 1.   To show that also w ° w   =l,we have to

prove that X = f(X) as bimodules, i.e. that  X —> X ® 5  is injective.   In fact

(/ —> U ® S is injective for every finitely generated, projective (say left) A-module

U, this being so for   (/ = A.
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The assertions with respect to  NJA) ate straightforward to check.

For  T = cent(A) write Outcent(A) = OutT(A),   Picent^(A) = Pic^ T(A),

Autcent^A) = Aut^T(A),  Outcent^A) = Out^ r(A).

Corollary 1.   (i) Suppose that cent(A) ® S —> cent(A  ® S) is surjective.   Then

we have exact sequences

(/(cent (A)) -, (/(cent (A ® S)) -, Picent^A) — Picent (A) -, Picent (A ® S),

(/(cent (A)) -, (/(cent (A ® S)) -, Outcent^U) -.Outcent (A) —, Outcent (A ® S).

(ii) Suppose moreover that cent(A) —, cent(A) ® S  is injective.   Then

Picenti/,(A) = Pic,^(A),

Autcent ,(A) = Aut .(A),

Out cent j, (A) = Out , (A).

Proof,   (i) From the theorem and Corollary 4 to Theorem 2.

(ii) By Theorem 2 we have a commutative diagram

1  —Picent(A)   -,      PicR(A)   -,   AutR (cent (A)| l-TOg(A))  -^ 1

1*. I <i>
1  _ Picent (A ® S) -, Pic^ (A ® S) — AutR(cent(A ®S),l-?Hg(A   ® S)) -» 1

with exact rows.   The hypothesis implies that lb     is injective, hence   Keri/fj^

Kerib  ,and thus by Theorem 4 (diagram (E(A)) implies that the subgroup  Picent ,(A)

actually is the whole of  Pic^iA).   A similar argument yields the result for Outcent,

and that for Autcent is an immediate consequence.

Condition (i) holds if S is flat over R and A is finitely generated as R-module

(see e.g. Lemma A in §4).

Next we get

Corollary 2.   Let R be an integral domain with quotient field K and let A be a

finitely generated, torsion free R-module and an R-algebra so that A  ® K is semi-

simple.   Let  1(A) be the group of invertible fractional ideals of A in A   ® K and

N(A) the normaliser of A in A  ® K.   Then the following sequences are exact:

(a) 1  -» i7(cent(A  ® K))/(/(cent(A)) -> N(A)/U(A) -^ Outcent(A) -, 1,
(b) 1  -» i/(cent(A   ® K)) ->,V(A) -.Autcent(A) — 1,
(c) (7(cent(A   ® K)) — 1(A) -^ Picent(A) -> 1,
(d) 1 — Picent(A) -» PicR(A) — PicR(A  ® K),
(e) 1 — U(A)/U(cent(A)) — ,V(A) /i7(cent(A   ® K)) -^Picent(A)

and the cosets in  Picent(A)/lm Ü    are the fibres of Picent(A)  —> Proj (A).

Remark,   (c) and (d) yield new characterisations of Picent.   In particular (c)
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18 A. FRÖHLICH

shows that Picent is a generalisation of the classical ideal class group.   The group

1(A) for certain orders A has been considered classically (see LDEJ) and since.

Proof.  That  Picent(A  ® K) = 1   is well known.   In any case the proof of this

reduces by the Corollary to Theorem 3 to the case when A  ® K is simple, i.e. is

Azumaya over a field L.   As remarked earlier (after (1.2)) then Picent(A  ® K) =

Picent(L), and the latter = 1 as L is a field.   By Corollary 1 (i) and (ii) (the con-

ditions for which certainly hold here), we get a surjection  Pic^A) —» Picent(A),

and by Theorem 4 (commutativity of  E(A))t the map  Picj,(A) —>PicR(A) factors

through the injection  Picent(A) —» PicR(A).   By Theorem 4 (i) we now conclude

that (d) is exact, hence (c) is exact.

Analogously we get a surjection  Out JA) —» Outcent(A) with kernel

(7(cent(A ® K))/U(cent(A )), yielding a surjection N(A) —> Autcent(A) with the obvious

kernel  (/(cent(A ® K)).   Thus we have the exactness of (a), (b).   That of (e) and the

characterisation of  Picent(A)/lm 0   follows now from the corollary to Theorem 1.

Corollary 3.   With R and A as in Corollary 2, suppose moreover that R is a

discrete valuation ring and let R be its completion.   Then

1(A) S* 1(A ® R), Picent (A)  tt Picent (A ® R~),

N(A)/U(A) ^ NÍA ® R)/(7(A ® R~),       Outcent (A) a Outcent (A ® R~).

(Here I and N are defined via the maps if/: R —> K, and if/: R —+ R ® K = K.)

Proof.   Using the obvious natural properties of the diagrams of Theorem 4 for

commutative diagrams

R   -, S

R  -^ S

we have a commutative  diagram with exact rows (and with  A = A ® R)

1 -» (/(cent (A)) — (/(cent (A ® K)) -» /(A) -, Picent (A) -> 1

|i J* j*
1 -» (/(cent (A)) -» (/(cent (A   ®^ K) —/(A) -^Picent (A) -♦ 1

h is an isomorphism, induced by the bijections between R-lattices in A  ®  K and

R-lattices in A ® R K.  Thus k is surjective. As  (/(cent(A)) isopen in  (7(cent(A ®^ K)),

and     (7(cent(A   ® K))   is   dense   in   it,   the product   of   these   two subgroups is

the whole of   (7(cent(A ®R K).   Now a bit of diagram chasing shows that k is in-

jective.

We have a commutative diagram
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NÍA)/VÍA) ->I(A)
_i i

NÍA)/UÍA) -> IÍA)

with injective rows and right hand column.   Thus   N(A)/U(A) —> N(A)/U(A) is in-

jective.   As   N(A) is dense in   N(A) and U(A) open, that map is also surjective.

For the last   isomorphism   one now uses a diagram as above with / replaced by

N/U and Picent by Outcent.

4. The localisation sequence and central embedding.

Notation. If ^ is a prime ideal of the commutative ring R, write Mp for the

localisation at |o of an R-module M. In particular Rp is the local ring of R at J3

and  Mp  UM ®R R„.
The localisation maps  PicR(A) —> PicR    (Ap) clearly commute with the iso-

morphisms induced by Morita equivalence, and with the tensor product A    ®R A

of algebras.   The latter applies also to the localisation maps AutR(A) —> AutR (Ap).

We have also to consider the homomorphism   1: Picent(cent(A)) —> Picent(A),

given by  (M) H» (M ®        ia)^)'     This again commutes with Morita equivalence

over cent(A), and if E is a cent(A )-Azumaya   algebra then the diagram

Picent (cent (A)) —> Picent (A)

Picent (A ® .    E)cent (A )

will commute.

One more notation: If Y is an A-A-bimodule then

YA = [y £ Y| ya = ay  \/a £ Al

Y    is a cent(A)-module.

Theorem 5.   Let A be an R-algebra.
(i)  The map T: Picent(cent(A)) —> Picent(A) is injective and ImT  is central

in Picent(A ).
(ii)  Ker[PicR(A) — Ilr, PicR(Ap )] C Picent(A).

(iii) if for every maximal ideal m of R, cent(A)m= (cent(A))®     Rm  z's semilocal

(i.e. has only a finite number of maximal ideals) then

ImTCKer |"picent(A) — II PicR (Ap)1 •

(iv)  //, for every invertible A-A-bimodule Y,   Y     is finitely generated over

cent(A) and, for all maximal ideals m of R, the map  (Y   )m —* Ym induced by
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AY    —' Y is bijective, then

Ker ÍPicent(A) ->IIPicR(Ap)     C Im T.

(v) // cent(A)m is semilocal for every maximal ideal of R, cent(A) z's

Noetherian and A is finitely generated over cent(A), then the sequence

(a) 1 -» Picent(cent(A)) — Pics(A) — up Pics(A„ )
is exact for S = R, or more generally whenever A is an S-algebra and R —> S a

homomorphism of commutative rings.   Moreover we have an exact sequence

(b) 1 — Picent(cent(A)) — Picent(A) -. Up Picent(Ap ).
Throughout up runs over a subset of spec(R) containing all maximal ideals.

Remarks.  (1) Recall that Pics(Ap ) = Pics   (Ap ), by Corollary 4 Theorem 2.

(2) The hypothesis in (v) holds e.g. if  R is Noetherian and A is a finitely

generated R-module.

The proof depends on two lemmas.

Lemma A.   Let A be an algebra over a commutative ring S, finitely generated

as S-module and let T be a commutative, flat S-algebra.   Then for any A-A-bimodule Y,

YA ®ST S (Y ®s T)A®T.

Proof.   Let Ae = A ®s Aop}   Aop  the opposite algebra, and consider the exact

sequence

0 —Ker/ — Ae -L A — 0,

f(a ® b9) = ab.   If \a.\ is a set of generators of A as ^-module, then \a. ® 1 - 1 ® a.)

is   a   set   of   generators   of Ker / as A -module.   Thus A is a finitely presented

A  -module, and hence by a standard argument,

A
Next we consider the natural homomorphism Wy: Y    ®     ttA)

Horn      ÍA, Y) ®ç T tt Horn   „        (A ®- T, Y ®c T),Ae

which is exactly what was required

Next we consider the natural h
(wy(y ® a) = yd) for A-A-bimodules Y.

Lemma B.  // (X) e Picent(cent(A)) then X St (X ®cent(A)A)'4.
Let (Y) £ Pic(A).    Then   (Y) £ ImT   if and only if firstly   (YA) £

Picent(cent(A )), and secondly wy  is an isomorphism.

Proof.  The natural map for cent(A)-modules

*^(X®centW    A)A t» •"•*•!)
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is an isomorphism for X = cent(A), hence for all finitely generated, projective X.

This result implies that whenever  (Y) £ ImT, then the stated conditions are

satisfied.   The converse is immediate.

Proof of Theorem 5.   (i) The injectivity of T follows from the first part of

Lemma B.   If X is a cent(A )-module, Y an A-A-bimodule over cent(A), then the in-

terchange x ® y h-> y ® x  is an isomorphism X ®      ,A. Y & Y ®      ,A. X.   As

(X ®cent(A) A) ®A Y = * ®cent(A)y> and similarly on the other side, ImT is indeed

central in  Picent(A).

In the remainder of the proof we may suppose that up = IIm runs precisely

over the maximal ideals m of R.   For, the kernel of the map into the product of the

localisations is always the same provided that all maximal ideals occur.

(ii) Let (X) 6 Ker[PicR(A)->IImPicR(Am)].   With c £ cent(A) associate the
endomorphism / of X, where f(x) = ex - xc.   As  cent(A)m embeds in cent(Am),

and as  Xm ^ Am   as bimodules, fm = 0.   This being so for all m, / = 0.   Thus

indeed (X) e Picent(A).
(iii)  Picent(cent(A)) —> Picent(A) —>PicR(Am) factorises through

Picent(cent(A)m).   But this group vanishes, cent(A)m being semilocal.

(iv) Suppose that, for all m, Ym ^ Am (isomorphism of bimodules).   Then

Ymm ^cent(Am).   But  Ym™   ^(Y   )m, in particular cent(Am) =*cent(A)m.   Thus

for all maximal ideals m of R,  (Y   )    ^cent(A)m.   This then holds for all prime

ideals of R, hence for all prime ideals of cent(A).   As   Y     is finitely generated
A   . A \

over cent(A) it follows that   Y     is a rank one projective over cent(A), so  (Y   ) £

Picent(cent(A)).

The map (wy)m  factorises as

W   y

{yA  «WA,/*»  Í    {YX «cnt^ K   -    ymm®cent(A)nf m ~- Yu,

where / is the natural isomorphism of the tensor product on ring extension, g is an

isomorphism, as  (Y   )m  = Ym      and in particular  cent(A)m at cent(Am), and wy

is an isomorphism, as   Ym = Am.   Thus (wY)m  is an isomorphism for all maximal

ideals m of R.   Hence  Wy  is an isomorphism.   By Lemma B, (Y) £ ImT.

(v) We assume the hypotheses of (v). Apply Lemma A to S = cent(A), T =

cent(A)m, for m a maximal ideal of R, and we deduce that (Y )m = Ym as re-

quired under (iv).   Moreover every finitely generated projective left A-module Y is

finitely generated over  cent(A), this being so for   Y = A.   As  cent(A) is Noetherian,
A

it follows for any invertible A-A-bimodule Y that the  cent(A)-submodule Y     is

finitely presented.   Thus the hypothesis of both (iii) and (iv) hold, and hence the

sequence

(c)  1 —» Picent(cent(A)) ^Picent(A) —> IIm PicR(Am) is exact.
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The conclusion in (ii) clearly implies an analogous statement with R replaced

by S (S as under (v)).   The exactness of (c) thus implies the exactness of the se-

quence (a) in (v).   We have moreover seen that the hypotheses of (v) imply those

of (iv) and in particular that  cent(A)mS cent(Am) for all m.   But then the exactness

of (b) follows from that of (a) for S = cent(A), as   Pic^(Am ) = Pic^   (Am ) by

Corollary 4 to Theorem 2.

5. Localisation for orders.  An R-algebra A ¡s an order over R, if A is finitely

generated and projective as an R-module.

Theorem 6.   Let R be a Dedekind domain with quotient field K, and A an order

over R, so that A  ® K is a semisimple algebra.   Then

(i) ¡(A) s II m I(Am), the product running  over all maximal ideals of R, and

1(A) being the group of invertible fractional ideals of A in A  ® K.

(ii)  Picent(Am) = 1  for almost all m (i.e. with at most a finite number of ex-

ceptions).

(iii) The sequence

1 — Picent (cent (A)) —»Picent (A) -, II Picent (A  ) -*1
m

z's exact.

Remark.   By Corollary 3 to Theorem 4, the  Am   can be taken as local comple-

tions rather than localisations.

Proof,   (i) If   Y 6 1(A) then Ym = Am   for almost all m.   Thus the localisation
map  1(A) —>Ul(Am) actually goes into U/(Am).   It is injective, as   Ym = Xm) for

all m, implies   Y = X, whenever Y and X are R-lattices in A  ® K.   On the other

hand, there is an R-lattice Y in A ® K with given localisations   Ym , provided

that  Ym = Am  for almost all m.   If  Ym lies in I(Am) for all m, then Y lies in 1(A).
Thus we have (i).

(ii) Let Ae = A  ®      ,A. Aop  be the enveloping algebra of A and consider the

homomorphism /: Horn     (A, Ae) —> Horn     (A, A) = cent(A).   This commutes withA e Ae

flat ring extension, and the surjectivity of / is necessary and sufficient for A to

be separable over cent(A).   Thus   / ®      ,A^ (cent(A) ®RK) = / ®RK  is surjective,

hence  /m  is surjective for almost all m, i.e.  Am   ¡s separable over cent(Am), and

so Picent(Am) ^ Picent(cent(Am)) = 1  for almost all m, cent(Am) being semi-

local.   [This argument simplifies if one assumes A ® K to be separable over K.I

(iii)  By part (i)(ii), and Corollary 2 to Theorem 4, we get a commutative

diagram
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IÍA)   ->  Picent (A)

II1ÍAJ — II Picent (Am) — 1

1

with exact rows and columns.   Hence the right-hand column is surjective.   The re-

mainder of (iii) follows from Theorem 5.

For a closer study of localisation it is natural to introduce idele groups.    We

define   (/(A) = UmU(Am), where Am  is the completion of Am.   Next  /(A) =

nm((/(A m ® K); U(Am)) is the product of the groups   U(Am ® K), restricted with

respect to the subgroups   U(Am), i.e. the subgroup of   IIm(/(Am® K) of elements u

with  um£ U(Am) for almost all m (i.e. with at most a finite number of exceptions).

/(A)   is given the topology for which   U(A) is an open subgroup, and the subgroup

topology on   U(A) coincides with the product topology of ITm (7(Am).    These defi-

nitions fit into the context of adele groups of algebraic groups.   If K is a global

field, then for deeper properties one has to take into account the "infinite primes"

(i.e. those not coming from ideals of R).   For the moment those can be neglected.

Alternatively one can, for every infinite prime m, define   UAm) = U(A  ® K)m),

where  (A  ® K)m  is the completion at m.

U(A  ® K) is embedded diagonally in  /(A).   We shall also consider  /(cent(A))

as embedded in  ](A) (componentwise).   Finally the idele normaliser oí A is N(A) =

}(A) O nmN(Am).   Thus   N(A) is (algebraically and topologically) the product of

the groups   N(Am) restricted with respect to the subgroups   (7(Am).   As   U(Am) is

open in  N(Am) and N(Am) dense in NAm), we have

(4.1) NÍAJ/UÍAJ S NiÄJ/UiÄJ.

As   í/(cent(Am® K)) is dense in   (7(cent(Am® K)), it follows by Corollary 2 to

Theorem 4 that

(4.2) N(A )/U(A ) ](cent(A )) Si II  Outcent(A m ).

Now we have

Corollary 1.   There is a commutative diagram with exact rows and injective

columns

1 — Ker A — MA)/(/(A)f7(cent(A ® K)) -• N(A)/U(A)J (cent (A))

1                                      I I
1 — Picent (cent (A)) — Picent(A) -,   II   Picent (A) -, 1.m m

We shall derive a useful variant of this diagram.   A left A-module X is locally
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free if Xm   is free of constant rank over Am, for all m.   For an invertible A-A-bi-

module X over cent(A) this amounts to saying that the image of (X) under the lo-

calisation map falls into the subgroup   IIm Outcent(Am ) of II    (Picent(Affl )).   These

classes (X) form a subgroup of  Picent(A) to be denoted by LFPicent(A), which coincides

with Picent(A) if A is a clean order (cf. [ST]).   From Corollary 1 we now have

Corollary 2.   There is a commutative diagram with exact rows and columns

1 1 1

1 1 X [
1 —Ker A —/V(A)/(/(A)[/(cent (A ® K)) — N(A)/U(A)j (cent (A))

1
1 — Picent (cent (A)) -?-»    LF Picent(A)   -^    NÍA)/UÍA) jicent (A))  —1

I
1

Ker A measures the deviation from the Hasse principle for Outcent(A).   On

the other hand the coset space

(4.3) Coker A = [Ñ(A)/(/(A)/(cent(A))]/lm A

measures the obstruction to local approximation.   A similar interpretation also

applies to the coset space

(4.4) Coker r¡ = LFPicent (A)/Outcent (A) = LF Picent (A )/lm 7]

which in the first place, as a subset of  Proj(A) (cf. Theorem 1) was defined as a

set of left A-module isomorphism classes.   In fact the maps   N(Am) —>/(Am)  (cf.

Theorem 4) yield an injective homomorphism  N(A)/U(A)—>U /(Am) ^ ¡(A), in whose

image are exactly those fractional ideals, whose class falls into  LFPicent(A).

Identifying  N(A)/U(A) with its image in  1(A) we get a commutative diagram

1 — (/(cent (A ®K))/U(cent(A)) — N(A)/U(A) — N (A)/U (A)} (cent (A)) — 1
I! I I-

1 — (/(cent (A ® K))/(/(cent(A)) -> N(A)/U(A) —LFPicent (A) — 1.

Thus indeed

(4.5) Coker rj = Coker [N(A)/U(A) — Ñ(A)/(/(A)]

(coset spaces).   As q is injective so is   N(A)/U(A) —► N(A)/U(A) i.e. the Hasse

principle holds for  N(A)/U(A).
Via the map T   , Picent(cent(A)) is identified with a central subgroup of

LFPicent(A).   Its action by, say, left translation yields an action of Picent(cent(A))

as permutation group on   LFPicent(A)/Outcent(A) = Coker zy.   We shall now obtain

a characterisation of  KerA  and of Coker A in terms of this action.   Clearly the

composite map
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LFPicent(A) — NÍA)/UÍA )/(cent (A)) —Coker A

factorises uniquely through a map

8: Coker rj —> Coker A .

We then have

Theorem 7. (i) Ker A is the stabiliser of every element of Coker rj under the

action of Picent(cent(A)).

(ii) ¿5 induces a bijection of the set of orbits of Coker rj under the action of

Picent(cent(A)) onto Coker A.

Proof.   A straightforward bit of diagram chasing.   In fact Theorem 7 arises

from an application of a general non-Abelian snake lemma!

6. Radical reduction.   The localisation theorems of V4 and §5 almost reduce

the study of Picent to the commutative and the local case.   In the next two sec-

tions we shall develop results and techniques relevant for the local case, although

the contents of the present section is somewhat more general.

A radical ideal 3c of A is an ideal of A contained in the Jacobson radical(  )

](A)= J of A  and so that, for all invertible A-A-bimodules Y, 3rlY = Y3c.    Then-
A/3t ®AY = Y®A A/31 is an invertible  A/3r.-A/3l-bimodule and we get a homo-

morphism

(6.1) p  :  PicR (A) — PicR (A/31),

which can be useful for computing   PicR(A) and which will be studied here.   The

main application is to  31 = ](A)T when A is a finite dimensional algebra over a

field or a local order, and to 31 = ](R)rA.
Recall the definition of an R-derivation d: B —> L, where B is an R-algebra

and L a ß-ß-bimodule.   d is an R-linear map so that d(b,b2) = b, d(bA) + d(b,)b2.
With each  I £ L  one associates the inner derivation  d. given by d,(b) = bl - lb.

The map  / r-> d., L —> DerR(B, L) (R-module of R-derivations B  —> L) is R-linear,
and its cokernel is the R-module H (B, L).

We shall denote by AutR(A; 31) the subgroup of AutR(A) of automorphisms /

with /3l = 31, and which induce the identity automorphism on A/3t.

Theorem 8.   Let 3i be a radical ideal of A.   Then we have an exact sequence

AutR(A;3l) — PicR(A)   Jl  PicR(A/31)

where the left-hand map comes from fi (cf. Theorem 1).   If moreover 31 C ](A) ,

J(A)31 + n ](A) = 0, then we have an exact sequence

(   ) Note that we are from now on using the symbol / in an entirely different meaning
from that in ;>5.   No confusion should arise.
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hHa/JÍA)2, 31) - PicR (A) - PicR U/DT).

Proof.   If / e AutR(A; 31) then clearly A/31 ®AAf S A/31  as bimodules.   Con-
versely let  (X) £ Kerp„.   We are thus given an isomorphism /: A/31 S X ®AA/Ífl,

of bimodules.   We can lift / to an isomorphism / : A S X  of left A-modules.   By

Theorem 1 there is an automorphism g of A with / (fl) = / (l)g(fl),  Va £ A.   By

hypothesis  g(fl) - fl £ 31, i.e. g £ AutR(A; 31), as we had to show.
With the additional hypothesis on 31 one gets an R-linear map Der^(A// , 31)—>

AutR(A; 31) by first lifting a derivation A/J    —' 31 to one d: A —* 31  and then de-
fining fd(a) = a + d(a).   Then fd £ AutR(A; 31).   One easily sees that this yields
an isomorphism.   The inner derivations map precisely onto the inner automorphisms

induced by elements in  1+31.   By Theorem 1, we now get the required result.

Corollary 1.   If A is a finite-dimensional algebra over a field, or an order over

a discrete valuation ring, and if cent(A) —» cent(A/f) (/ = ](A)) is surjective then

Autcent(A) —» Picent(A) z's surjective.

For, we can apply the theorem with  R = cent(A), and just use the fact that

Picent(A//)= 1.

Corollary 2.   If A is a finite ring then  Pic(A) z's finite.   If moreover the addi-

tive group of A is a p-group then  Ker[Pic(A) — Pic(A//   )]  z's a p-group.

Proof.   Take  R = Z.   As  A/J is semisimple   Picent(A//) = 1, hence, by Theo-
rem 2, Pic (A//) is embedded in the finite group Autz(cent(A//)).   Also Autz(A)

is finite, and so by Theorem 8 Picz(A) is finite.

Let Ln = Ker[Pic(A//n) — Pic(A//2)]. Under the hypothesis that A is a p-
group we show, by induction on n > 2, that L is a p-group. As /" = 0, for some

n, the required result will follow.

The assertion is trivial for rz = 2.   For n > 2  we get a homomorphism. L       »

L„_l  whose kernel is embedded in  Ker[Pic(A//") — Pic(A//"-1)] and it only
remains to show that the latter is a p-group.   Here we take  R = (Z/p)Zm,   m large

enough.   Then we can apply the second part of Theorem 8, with A replaced by

A/Jn and with 31 = /"-1//".   We conclude that   Ker[Pic(A//*) — PiciA//""1)]
is a quotient of  H  (A/J  , /""   //*) which is an R-module, hence a p-group.

Corollary 3.   Let R be a discrete valuation ring with quotient field K, A an

order over R in a semisimple algebra A  ® K.   Suppose that cent(A) —, cent(A//)

z's surjective.   If /Vj(A) is the subgroup of the normaliser N(A) of A in A  ® K, of

elements u with  uau~l = a  (mod /), Vfl £ A, then  N(A) = N 1(A)Í7(A).

Proof.   By the theorem, Autcent(A; /) —> Picent(A) is surjective, i.e. has the

same image as  Autcent(A) —> Picent(A).   Translate this into a statement on  N(A),

to get the corollary.
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7. Local orders.
Notation.  R is a discrete valuation ring with quotient field K and maximal

ideal (3,  R/^p= k,  Rfrf = k .   A is an order over R and A  ® K is separable over

K.   The unadorned ® is over R.

Let, for s > 1,

(7.1) Ts = [a e A | ax - xa £ \AA, Vx e A].

We then have

Theorem 9.   3 r, so that  T   C cent(A) + \>A, and, for any such r,   Picent(A) —>

PicR(A ® k )  is injective.

We first prove

Lemma C.   11, so that, for all s,  T       C cent(A) + \fA.

Proof of the lemma.   The inclusion will be shown to   hold   whenever

p.'//  (A, A) = 0.   One knows there is such a t, the least value giving the Higman

ideal (cf. [DH]).
In fact if a £ T then there is a derivation d of A so that ax - xa =

TTS + td(x),  Vx £ A, where  tt £ R,  ttR =■ "p.   But then by hypothesis  n'd is princi-
pal, i.e., for all x, TTCd(x) = bx - xb, for some fixed  b £ A.   Hence  a — ttsb £

cent(A), and this is what we had to show.

Proof of the theorem.  The first part follows from the lemma, taking s = 1.

For the second part recall that   Picent(A) = Ker[PicR(A) — Pic(A   ® K)1 (cf.

Corollary 2 to Theorem 4).   We have to show then that the kernel of

PÍCr(A) — Pic (A ® K) x Pic (A ® k)

is null, if r satisfies the stated condition.

Consider a bimodule Y whose class falls into this kernel.   Then A ® K^

Y ® K as bimodules, whence  C ® K S Y    ® K, where we shall write C = cent(A).

Thus

A(7.2) C and Y     are free R-modules of the same rank.

Next let

(7.3) Tr(Y) = [y £ Y\ yx - xy £ p/Y,   V* £ A].

We are given an isomorphism g: A  ® k    = Y ® k    of bimodules giving rise to

isomorphisms

p(A ®k) S #Y ®k),

and
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T/prA = (A ® k)A B (Y ® O* = Tr(Y)/prY,

and hence to a commutative diagram

0— pA/9rA — Tr+ pA/prA   —,   Tr+pA/^A—0

(7.4) | J jgI
o — py/pry — rr(y) + py/pry — rr(y) + py/py -* o

with exact rows and bijective columns.   By hypothesis on r,   T'  + pA/pA =

C+pA/pA StC/'pC, and hence  dimfe(T (Y) + p Y/pY) = dimfe(C/ pC), and the
latter coincides by (7.2) with dim AYA/pYA )= dim^Y'4 + pY/pY).   (We are using
the fact that   YA   is pure in Y.)   But   YA + p Y/p Y C T^Y) + pY/pY and hence in
fact, on comparing dimensions,

(7.5) YA + pT/pY = Tr(Y) + pY/pY.

Thus the isomorphism g   (last column of (7.4)) is really an isomorphism C/pC =

Y   /p Y   , of C-modules, lifting to a homomorphism  C —» Y     which by Nakayama's

Lemma is surjective, and so by (7.2) is bijective, i.e. we have

(7.6) C SiYA

as C-modules.

Now observe that in view of the given isomorphism A ® k   = Y ® k , the

map izzy _ ,   : (Y ®& )     ®c „,     A ® k —> Y ® k    is an isomorphism, i.e. the

pairing

T(Y)/prY®A/prA — Y/prY

is surjective, hence a fortiori

TriY) + pY/pY ® A/pA — Y/pY

is.   But then, by (7.5), the pairing

YA + pY/pY ® A/pA — Y/pY

is surjective.   As   Y    + pY/pY S Y   /p Y     it follows, by Nakayama's  Lemma,

that (with Wy as in V4, Lemma B) wy: Y    ®c A     * Y   ¡s surjective.   As w    ® K =

i"y8i/  is bijective, wy is injective, hence bijective and so by (7.6)

a at c ®c A ^y%c/i^r

as bimodules, as we had to show.

Corollary 1.   // k is finite then  Picent(A) z's finite.
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Proof.   By the theorem and by Corollary 2 to Theorem 8.

Corollary 2.   // k is finite then N(A)/U(A) U(cent(A  ® K)) is finite.

For, by Corollary 2 to Theorem 4 this group embeds in  Picent(A).

Corollary 3.  // k is finite of characteristic p then  KertPicent(A) —>PicR(A//2)]

z's a p-group.

Proof.  We may choose  r > 1   in Theorem 9.   Then A//2= (A/J2) ® kf =
(A ® kr)/(J(A ® k )) .   We now get, by Theorem 9, a commutative diagram with

exact row

1 — Picent (A)  —   PicR (A ® k)

1' 1«'
PicR ÍA/J2) = PicR ÍÍA ® k)/ÍJÍA ® k))2).

By Corollary 2 to Theorem 8, Ker g is a p-group.   Hence so is its subgroup Ker /.

Corollary 4.   For some  t > 0,   PicR(A) —* Pic(A  ® k ) is injective.

Proof.   Choose t so that, as in the theorem.   Picent(A) —> Pic(A ® k ) is in-

jective, and that moreover AutR(cent(A)) —> AutR(cent(A) ® k ) is injective, which

can clearly be achieved, as  AutR(cent(A)) is a finite group.   If now   Y is an in-

vertible A-A-bimodule over R so that Y ® k   at A ® k   as bimodules, then   Y ®k

is "over"  cent(A  ® k ).   As  cent(A) ® k    embeds in cent(A  ® k ) the automor-

phism <&(Y) ® k   is trivial, hence O(Y) is trivial, hence  (Y) £ Picent(A), and thus

Dy the Theorem  Y St A   as bimodule.
Remark.   There is a quick direct proof of the  last corollary, along lines sug-

gested by I. Reiner and S. (Jllom.   One takes t > s, where   p    is the Higman ideal.

An isomorphism A ® k    = Y ® k    of bimodules lifts to an isomorphism f: A = Y

of left A-modules.   Viewing  Homi^Y, AA) as an A-A-bimodule via the right A-
module structures of Y and A, we moreover   see that there is a derivation fl" of A in

Hom(. Y,   .A) so that, with  tt £ R,  ttR = p, we have fa - af = TTld(a).   Moreover

TTsd is principal, say induced by g, and then / - Tr'~sg  is a bimodule homomorphism

A .—> Y, and as t — s > 0  is still an isomorphism.

I have retained Theorem 9 in its present form however as the actual minimal

value of r does matter.   Thus if A = R(Í2) is a group ring of a finite group Q then

we may take r = 1 and so Picent(A) —> Pic(A ® k) is injective, while the Higman

ideal is  R(cardT).
Topological interpretation  of Lemma C.  (/(A ® K) as a linear group over the

valued field K has a topology, and  U(C  ® K) is a closed subgroup.   We can then

define on  Autcent(A ® K) the quotient topology, via the identification

U(A ® K)/U(C ® K) S Autcent(A  ® K).   On the other hand Autcent(A ® K) is a closed
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subgroup of the linear group of linear automorphisms of the K-vector space A ® K,

and as such has a subgroup topology.   Then we have immediately

Corollary to Lemma C.   The two topologies coincide.

8. Commutative orders.   The localisation theorem for orders largely reduces

the computation of  Picent(A) to two special cases, namely the local one and the

commutative one.   Thus the results of [F]  for commutative orders are in fact of

wider interest, and for convenience and completeness sake we restate some of

these here.   Throughout R is a Dedekind domain with quotient field K.   A is a

commutative order over R with A  ® K = H.L^1' where the L^1' are separable ex-z r

tension fields of K.   The maximal order M of A ® K over R is then the product

M = n.M(í) of the integral closures M(i) of R in L(0.

Theorem 10.   There is an exact sequence

1 _ V(M)/U(A) -fl* UÍMm)/ÜÍAm) -Picent (A) - TÍCÍM(,)) -* 1,
m i.

where C(/VPz)) = Picent(M ') is the ideal class group of M ., and where II extends

over a set of maximal ideals m containing all thoses with Mm 4 Am. Hence if we

define

[-i
Picent (A)  — Ilc(M(,>)

then

DÍA) s û* UÍMj/TÍ* UÍA  ) • Í7(M).my
m

// the residue class fields of R are all finite then we get for the group order

card (0(A)) = TT* WÍM ): UÍAjlAuÍM): UÍA)1Xi m m  /m /

where [X : Y] z's the group index. If p is the characteristic of R/rv. then the p

part of lU(Mm): U(Am)1 is L/(,Mm) : /(Am)] (Jacobson radicals) and the p-prime
part is

card((/(Mm//(Mm)))/card((/(Am//(Am))).

Proof   (cf.  [F]).

9. Finiteness.   We take  R = Z.   It is obvious that analogous results hold

whenever class numbers for integral closures in algebraic field extensions and

residue class fields are finite.
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Theorem  11.   // A z's a Z-order with A ® 0  semisimple,    then  Pic(A)  is

finite.

Proof.   By Theorem 2, Pic(A)/Picent(A) embeds in the finite group

Aut„(cent(A ® Q)).   By Theorem 9, Corollary 1, the   Picent(A   ) are finite and by

Theorem 10  Picent(cent(A))  is finite.   Hence by Theorem 6 Picent(A)  and thus

Pic(A) are finite.   The theorem is of course a consequence of the Jordan-Zassen-

haus Theorem, but as seen we have a short direct proof.

10. Maximal orders.   Here R is a Dedekind domain with quotient field K,  B is

a finite dimensional separable K-algebra.   In the example of ^2 we showed how

to compute  PicK(B) = AutK(Cent(ß) 11-?%(B)) by  looking  at the  effect  of auto-

morphisms on Brauer groups.

Theorem 12.   Let A be a maximal order in B.   Then

(i) Azzy maximal order A   in B is Morita equivalent to A, and all such Morita

equivalences yield the same isomorphism  Picent(A   ) s Picent(A).

(ii) AutR (cent(A)|14%A)) = AutK(cent(B) |l-ttïg(B)) n AutR(cent(A)).
(iii) All invertible A-A-bimodules are locally free (always as left A-modules).

(iv) 1(A) is a free Abelian group on the maximal two-sided ideals of A.

Picent(A)  z's an Abelian group.

Now suppose moreover that B is central simple over K.   Then

(v) For every maximal ideal m of R,  I(Am) is free Abelian on the radical

J(Am), and, for mAm = J(Amfm, we have  Picent(Am) =   Z/emZ.

(vi) With A = A .   as in Corollary 1 to Theorem 6, (Ker A.)" = 1 where dim„(S) =
n  , and (Cok A.)e = 1, e the lowest common multiple of the   e  .    Hence

(cokA^r = 1.

[Note that  Cok A.   is a group, as   IIm Picent(Am)  is Abelian.]

One can obtain rather stronger results than (vi), in the context of a change of

orders from A to M (A)(r by r matrices over A), i.e. involving the application of

Theorem 1, (ii) and (iii).   It is however tidier to discuss this when the additional

result of the subsequent note  [FRC]  is at our disposal.

A great deal of the Theorem is known in some form or other, specifically the

Morita equivalence  A ~ A   in (i),   also  (ii),  (iii), (iv) and (v).   (See e.g.  [R], [SW],

[RIID].) We shall therefore only give a brief outline, indicating how this special

case fits into our general theory.   We shall assume certain basic results of Morita

theory, plus (a) the valuation theory for a division algebra over the quotient field

of a complete discrete valuation ring R (cf. [DF]), (b) the fact that locally any two

maximal orders of a separable algebra are conjugate (cf. [R]), (c) that in the local

case with B simple any finitely generated A-module, torsion free over R is a

direct sum of copies of a unique indecomposable such A-module (cf. [R]).
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(c) immediately implies (iii).   (b) implies that A   and A are Morita equivalent,

and the remainder of (i) then follows from the fact that  Picent(A) is Abelian.

Moreover by (i) and Morita theory, any two maximal orders A and A   of Morita

equivalent simple algebras B and B    are Morita equivalent.   This is easily seen

to imply (ii).
(iv) will follow from  (v).   To prove (v) we can suppose that R is complete

local and, by Morita theory, that B is a division algebra.   Then the result follows

from valuation theory.

Finally for  (vi) first observe  that   CokA^, as  a  quotient of II Picent(A m ) =

IIZ/emZ,  is   annihilated   by   e.   For   the   result   on   Ker A.    one   uses   the

reduced   norm   v.   A   straightforward   local   computation   shows   that   the composi-

tion  Picent(cent(A)) i Picent(A) -^ Picent(cent(A)) is just (X) h-, (X)".   But

Outcent(A) C Ker v.   For, the image under v of the class of Ah (b £ N(A)) is the

class of the reduced norm of b, i.e. the principal class in  Picent(cent(A)).   Thus

if  (X) e Ker XA then (X)" = VT(X) = 1.

11. Congruence orders.   These orders provide examples for a number of in-

teresting phenomena—in particular a splitting of the localisation sequence, non-

Abelian Picard groups and special properties of the normaliser.

R and K ate as in the previous section.   With each integer n > 0  and each

nonzero ideal a of R we associate a congruence order A - R + a/M  (R) C M  (K).

Clearly A spans M  (K).   For a maximal ideal m of R, Am = Rm + maM (Rm), where

tna is the precise power of m dividing a.

We shall write   PGL(5, n) for the projective general linear group of a ring S

in dimension n, i.e. fot the quotient of GL(S, n) module U(S).

Theorem 13.   (i) Every invertible A-A-bimodule is locally free.

(ii) N(A) = N(Mn(R)).   Hence  GL(R, n) C N(A).   The resulting map GL(R, n)-»
Outcent(A)  is surjective if R is a principal ideal domain.

(iii) Picent(Am)= PGL(Rm/ma, n) (ma as above).   Hence  IT m Picent(Am) =

PGL(R/a, n).
(iv)  The localisation sequence   1 —» Picent(R) —> Picent(A) —» PGL(R/a, n)

—► 1  splits.
(v)  The map  X  r->XM  (R) defines a homomorphism  1(A) — I(M  (R)) and the

map  (X) i-> (X ®AMJR)) ((X) £ Picent(A)) a homomorphism into  Picent(Mn(R))
so that the diagram

Picent (R)-+    Picent (A)

Picent ÍM (SUVn
. commutes.
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Proof.   We shall first suppose that R is a local ring with maximal ideal m.

The case   a= R   is trivial, and so we assume   <X= ma with a > 0.   Then  A/J(A) =

R/îtl.   As every  R/m-module is free, the same is true for every projective left A-

module.   Thus every invertible A-A-bimodule is free of rank 1.   This establishes

(i).
For (ii), still keeping R local, observe that clearly  N(M (R)) C N(A).   Con-

versely one shows (e.g. by induction on fl) that  T £ R + maM (R),  det T £ mna is

equivalent with   T £ muM (R).   Thus any normaliser of A also normalises  maM (R),

hence  M  (R).   Thus  N(A) = N(M  (R)).   This result then holds also globally.
By (ii) we have  GL(R, n) C N(A) for any R and hence we get a map

p:   GL(R, h) — Outcent(A) = N(A)/U(A)U(K).

If R is a principal ideal domain then  Outcent(M  (R)) C Picent(M (R))= Picent(R) = 1,

i.e. N(M (R)) = GL(R, n) U(K).   Thus, by (ii), p is surjective.   In the local case

Ker p consists precisely of the matrices in   (/(A), and hence now

Outcent(A) at GLÍR, n)/U(A) = PGL(R/ma, n).

By (i), this is also  Picent(A).

For (v) consider X e 1(A).   For every m, Xm = Amam,  am £ N(Am).   As

am£N(Mn(Rm)), by (ii), we get

X M  (R) = M  ÍRm)Xm = M ÍRja   = a  M (RJ,mrzm n     m    m n     m    m        m   n     m

and thus  XM (R) = M (R) X is an M  (R)-M (R)-bimodule, and thus an invertiblen n n n '
fractional ideal of M  (R).   It is clear that we get a homomorphism 1(A)—>¡(M (R)).

Going over to isomorphism classes we get, by Theorem 4, the required homomor-

phism, clearly satisfying the stated commutativity condition.

The column in the diagram in (v) is an isomorphism.   The resulting map

Picent(A) —> Picent(R) thus splits the localisation sequence, as asserted under

(iv).

Corollary.   Cok A¿   is a group and there is a surjective homomorphism of

Cok[(/(R) —* (/(R/a)/(/(R/a)"] onto Cok A^, which is an isomorphism if R is a
principal ideal domain.

Proof.   We simply have to show that the image of  r: GL(R, n) —> PGL(R/a, n)

is normal and that  Cok r SsCok[(/(R) — U(R/a)/U(R/a)"1.
One knows, as  R/a is a semilocal ring, that  SL(R, n) —> SL(R/'a, n) is sur-

jective, hence via the determinantal map Cok[GL(R, n) —» GL(R/ct, zz)] s

Cok[U(R)  -> U(R/a)1 with Im[GL(R, n) — GL(R/ct, n)]  indeed a normal subgroup.
The result is now immediate.
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12. Croup rings. In this section we collect a number of results on group rings.

We first consider the local groups Picent(Am), for group rings A. Let then R be a

discrete valuation ring, Y a finite group, R(Y) the group ring. We assume that the

characteristic of the quotient field K of R does not divide the order of T.

Theorem 14.   (i) // the characteristic of the residue class field k of R does not

divide the order of Y then Picent(R(T)) = 1.
(ii) // T is a p-group and k is finite (and K is of characteristic 0) then

Picent(R(r))  is a p-group.

Immediately we have

Corollary.   // R z's any Dedekind domain, not necessarily local, and if Y is a

p-group then   TJm Picent(Rm(F)) is a p-group.

Proof of Theorem 14. (i) k(Y) is separable over k. Hence R(Y) is separable

over R, i.e. is Azumaya over cent(R(r)), and the latter is a semilocal ring. Thus

Picent(R(D) = Picent(cent(R(D)) = 1.
(ii) We may suppose that the residue class field characteristic is p.   The re-

sult follows then by Corollary 3 to Theorem 9, provided we can show that the map

Picent(R(D) — PicR(R(D//(T)2)  is null, where we shall write  J(Y) for the radi-
cal of  R(Y).   As all invertible  R(D-R(r)-bimodules are free as left R(D-modules,

we may replace here Picent by Outcent.   In fact we shall prove more, namely that

the map  Autcent(R(T)) —> AutR(R(F)//(T) ) is null.   This will be done in a number

of steps.   This map is of course given by the restriction of a homomorphism

<br: AutR ÍRÍY)) - AutR (R(r)//(D2)

so that for any / £ AutR(R(F)) the diagram

RÍY)     -f-^    RÍY)

'r 't

RÍY)/JÍY)2   -+->  RÍY)/JÍY)2

commutes, q„   being the quotient map.

Let now Y be the commutator quotient group of Y.   We shall obtain a unique

homomorphism

ib: AutR(R(D) — AutR(R(D)

so that for all / £ AutR(R(D) the diagram
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RÍY)

RÍY)

- RÍY)

*f - R(F)

commutes, where s is the quotient map.   Then we shall also show that we get a

commutative diagram

RiY) RÍY)

1_
* r

RiYVjiY)2 R(Y)/J(Y)7

with t an isomorphism. It follows then on identifying via t that </J>r = cßf ° ib.

Finally, we shall then prove that if/ maps Autcent(R(F)) into the identity.

Ezz-sz" step.  The existence and uniqueness of ifi follows from the fact that

Ker s  is a characteristic ideal.   It is the ideal generated by the commutators
xy - yx,   Vi, y e R(T).

Second step.  Let (r, Y) denote the commutator group of Y and let L(Y) be

an additive copy of TAT, DT* with /(y)  corresponding to the class of y

mod(r, r)F?.   L(D   is a vector space over the field  F    oí p elements.   Let

ER(D = k ®p    L(Y),  k = R/m the residue class field.   ER(D is a R/m2-module,

via the surjection  R/m    —> R/m.   On the direct sum  R/m    © ^r(T)  we define an

algebra-structure by

(cj, Xj)(c2J %2) = (clc2, c,*2 + C2X\)

c. £ R/m2, x. £ LR(Y).   Then we can identify R/m2 ® LR(Y) = R(Y)/JÍY)2 with
q     being given by  flp (y) = (1, l,^A (1 £ R/m2).   It is now clear that the required

isomorphism t, with the above identification, is given by  (1, 1¡WA *~* (1, h^y\)>

where   y = y mod(r, D.
Third step.   It f £ Autcent(R(D), then / fixes the sum zzz(y) = S y '  over the

conjugates of an element y.    Thus  if/f fixes the image of  zzz(y) in R(D.    But this

is just a strictly positive integer multiple  of y = y mod(r, Y).    As  R(Y) is torsion

free, ib f fixes y,   V y, and so ibf = 1, as we had to show.

Next we consider group rings over the ring of integers.   In  [F]  I proved that

the kernel  D(Z(D) (cf. §8, Theorem 10 for notation)-with Y an Abelian p-group-is

itself a p-group.   Here I shall generalise this to Picard groups of  Z(D, when Y

is an arbitrary finite p-group.   There is another possible direction in which the

Abelian theorem can be extended, namely to the projective   class group of   Z(D,
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and this generalisation has in fact been established by I. Reiner and S. Ullom

(cf. [RU]).   Here I consider the commutative order A = cent(Z(r)) and I shall prove

Theorem 15.   If Y is a finite p-group then D(A) is a p-group.

Proof.   The proof is effectively the same as in the Abelian case.   Let L be

one of the fields which are direct summands of cent Q(D.   L is a field of p"th

roots of unity over Q, and so there is exactly one prime ideal p of the maximal

order M of L lying above p.   Let   U     (Mf ) (note  M p   = M  ) be the group of units

u = 1   (mod p) of M. .   Then by Theorem 10 it will suffice  to show that
U(M) U     (¡M„ ) = (/(M- ), or in other words that all prime residue classes of  M/p

are occupied by global units.   In fact this is ensured by the Hilbert cyclotomic

units.

Finally we consider the group AutR(R(D), for any commutative ring.   Note

that the automorphism group Aut(r) of Y acts on the group Hom(T, U(R)) of R-

characters of Y, via its action on Y.   To be explicit let cb £ Hom(r, U(R)),

f £ Aut(r).   Then  <bf(y) = cb(f(y)),  Vy.   Let Hom(r, U(R)) • Aut(D denote the
semidirect product of these two groups with respect to the action of Aut(T) as in-

dicated.   Then we get a homomorphism

(12.1) 6»:  Horn (r, U(R)) ■ Aut ÍY) — AutR (Rip))

which takes f ' 4>  icb £ Hom(r, U(R)), f £ Aut(T)) into the automorphism   d(f • cb) =
[f,<p] with [/, <p](y) = /(y)<p(y).

Theorem 16.   0 is injective.   If Y is Abelian and R is a ring of algebraic inte-

gers then 6 is an isomorphism.

Proof.   The first assertion is obvious.   The second assertion follows from

Higman's Theorem (cf. [GH]).

13- Computations. The dihedral group A . Here p is an odd prime and A = A

has two generators a and r, with relations r = o^ = 1, tot~ = o~ . The rational

group ring  QÍA) has three central idempotents, centrally primitive,

1      p 1     P 1    P
e = l--Y.ol,       ex = ± Z oHX + r),       e_ j - ~ £ aHl - r),

and

e + 1centQ(A) S Q,        e cent Q(A)   S L = QÍq + r/"1)

where q is a primitive pth root of unity.   These notations will be kept throughout.

Note that Autz(cent(Z(A))|  l-?ttg (Z(A))) = Pic(Z(A))/Picent(Z(A)) is a subgroup
of Aut0(cent(Q(A))).   The latter group is the product of a group of order 2 acting
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by permuting the two idempotents  e±,, and of the Galois group Gal(L/Q) of L/Q

which is cyclic of order (p - l)/2.
We shall need one more notation to state our results.   Let S be the integral

closure of Z in L.   As the maximal order of cent(2(A)) is thus S x Z x Z, we get

by Theorem 10 a surjective homomorphism  Picent(cent(Z(A))) —» C(S).

Theorem 17.  (i) Pic(Z(A))/Picent(Z(A)) & AutQ(cent(Q(A))) and in fact the
sequence

1 — Picent (Z(A)) — Pic (Z(A)) — AutQ (cent (Q(A))) — 1
splits.

(ii) Z)(cent(Z(A))) is cyclic of order (p - l)/2  and the sequence

1 -D(cent(Z(A)))  —Picent (cent (Z(A))) — C(S) -1

splits.
(iii) T yields an isomorphism

D(cent(Z(A))) x CÍS) s Picent (Z(A)).

Remark. One can also determine Outcent(Z(A)). This however requires a

result of the forthcoming note   [FRU] and will be deferred until then.

Proof of Theorem 17. (i) We know that Pic(Z(A))/Picent(Z(A)) embeds in
A ut0 (cent (2(A))), while on the other hand, with 6 as in (12.1), the composite map

6': Horn (A, i/(Z)) . Aut (A) - Autz (Z(A)) - AutQ (cent (Cj(A)))

factorises through  Pic(Z(A))/Picent(Z(A)).   So we get the isomorphism under (i)

if we can show that 6   is surjective.   In fact Aut0(cent(Q(A))) is the product of

Gal(L/Q) (which under 8    is  the image of the group of automorphisms r t-> r,

o t-» or ((r, p) = 1) of A), and of the transposition  e 1 — e_l   (which under 6' comes

from the unique nontrivial element y of Hom(A, (/(Z)), i.e. is given by S H y^(S)8,

where of course x^a) = 1 = — X^T))'   Thus in fact 6   is surjective.

Assuming part (iii) of the Theorem, one observes that T yields an isomorphism

of the sequence in (i) with the corresponding sequence for cent(Z(A)) in place of

Z(A).   But the latter splits (cf. Corollary 1 to Theorem 2).
(ii) Write  A = cent(Z(A)), and use the notation of Theorem 10.   Let M be the

maximal order of cent(<2(A)).   Then e(o + o~  ) and eio1 + o~l — o— o~  ) = o1 +

o~l — o- o~    form a Z-basis of Me, which extends to a Z-basis of M, by including

e^ and e_ ,.   Localising at p, we note that the Jacobson radical  J(M  ) of M    lies

in A     hence  1 + J(M ) C U(A   ).   Moreover, as is easily verified, (/(M2)= U(A   ).

It follows now that  D(A) is given by the exactness of the sequence

UÍAAUÍM) ->UÍM/JÍM)) -^DÍA) —1.
P P '     P
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Al    is the direct product of three local  Z  -algebras and A     is a local  Z  -P r P     B P P

algebra, and the residue class field in each case is the field of p-elements.   There-

fore   (/(Al   //(Al  )) is the product of three copies   V      V       and V of (/(Z   /p Z   )
(corresponding to the three idempotents  e     e       and e), and the image of   U(A   )

is the image of   (7(Z   ), i.e. the group  (/(Z  /p Z   ) embedded diagonally in   V. x

V_ . x V.   Finally   (/(Al) = (/, x (/_ , x (/, corresponding to the decomposition

Al = Ale, + Me, + Mg.   U. = S±lS maps onto the subgroup of order 2 in  V., simi-

larly for   (/_j.   Because of the existence of Hilbert cyclotomic units, (/ = U(S)

maps onto the whole of V.   It now follows that  D(A) is indeed cyclic of order

(P-D/2.
»    For the splitting of the exact sequence in (ii) we shall define a map  l(Ae)—►

Picent(A),   I(Ae) the group of invertible fractional ideals of Ae = Me.   Let

X £ l(Ae).   Then  X   = bA  e,  b = be an invertible element of  (Ae ® Q) .   Thus
(1 - e + be)A     is an invertible fractional ideal of A     and for all rational primes

q, other than p, (1 - e)A    + X     is an invertible fractional of  (1 - e)A    + eA   = A  .q        q i q       q
It follows that there is a unique  X £ 1(A) with X   = (1 - e + be)A   ,X   = (1 - e)A   +
Xq all fl / p.

X depends on the choice of b.   We may in fact replace b by bu, ue = zz £ (/(Al e).

But by what we have already proved, (1 - e + ue) is a product of a unit w £ U(A   )

and a global unit  (1 - e + z^e),  v £ U(Me).   Thus we have to replace (1 - e + be) A   =

X    by (1 - e + z^e)X  .   For all  q / p,   1 - e + ve £ U(A   ), hence X   = (1 - e + ye)X .

Therefore starting with  bu in place of b we end up with  (1 — e + ve)X in place of

X.   Hence  X H» cl(X) e Picent(A) is a uniquely defined map.   One verifies easily

that it is multiplicative and that the homomorphism   Picent(A) —> Picent(Ae) =

C(S) takes cl(X) into cl(X).   Finally it is obvious that if X = aAe,  a = ae invert-

ible  in   Ae ® Q, then X = ((1 - e) + ae)A   is principal.   Thus the map  I(Ae) —»
Picent(A) yields a homomorphism  C(S) = Picent(Ae) —► Picent(A) splitting the

exact sequence in (ii).

Finally we shall show that

(13.1) Picent (Z2(A))= 1
and

(13.2) Picent (Zp(A))= 1.

By Theorem 14(i), (ii) and by the localisation theorem we then have Picent(Z(A))

sC(S)x D(A).
Let in the sequel II denote the group of order 2 and let  E = Q(rj) be the field

of pth roots of unity and  T = Z[zy] its ring of integers.   We shall write  £(II) and

TilY) fot the twisted group rings or trivial crossed product, the generator tt of II

acting by  77   = rf   .   Then
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(13.3) e(A) s* e(n) x b(ip
with Q(A)(ex + e   t) SQfll") via (e    + e_ ,)r (-» 77 and 2(A)e 2* Efll) via ea \~* 77,
er i—, Z7.   It follows that

Z2(A) Sí Z2(II)xT¡(n).

One knows that  Picent(Z2(II)) = 1  (see e.g. [F]).   Also  T2(II) = End5  (T2), hence
Picent(T2(II)) = 1.   Thus (13.1) does hold.

For (13-2) we need a rather more sophisticated fibre product technique.   We

shall not give here a general treatment but stick to the relevant special case.   The

relevant commutative square is

(13.4)

Z (A)P

TpiU)

Z (IT)p

S 2

Fp(U)

where   F    is the field of p-elements, and the   maps g^, g    are residue class maps

modulo the ideal generated by the unique maximal ideals in  Z    and in T    respec-

tively.   The maps from  Z  (A) comes from (13.3).

First of all observe that, as every invertible  Z   (A)-Z   (A)-bimodule   is' P P
free, we may replace Picent by Outcent.   We shall then show below that

(13.5) Outcent (Z  (A)) S$ Outcent (T (II), g A

where the group on the right is the subgroup of  Outcent(T (II)) of classes of auto-

morphisms a with gl ° a = g  .

We shall view   T (Tí) as embedded in the 2 by 2 matrix rings   End,.  (T ) andP _ SP     P     ,
End,   (E  ) over S    and L    respectively, with respect to the basis 1 and (77 — rf )/2 =

P     P P P s—^^
p, with u. and p    prime elements in  T   and in S    respectively.   Then  T  (II), as

algebra over S  , is generated by the matrices

(multiplication by p),

(action of 77),

and these two matrices together with the identity matrix  z?z,   and the product  zzz   ztz

form an  5  -basis of T (II).   One now easily concludes that  T (U) is the ring ofP P ' P b
2x2 matrices (a..) over S  , with a2X  lying in the maximal ideal.   (This is in fact
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a special case of a general result on the twisted group rings of tamely ramified

extensions).   To put it differently, T (II) is the intersection of the subrings

Endc   (T.) and Endr  (uTA oí End,   (E A, and these are the only two maximal
P       P P P L-p        P ^-J^S

orders containing it.    Thus any element of the normaliser  N(T (JT)) either nor-

malises  Endr  (TA, i.e. is a unit of the latter ring times a central element, or it

is the product of such a normaliser of End,  (T ) with a matrix which interchanges

the two maximal orders, e.g. with  ttz  .   One now verifies firstly that

(/(End,   (T )) n NÍTÍU)) = U(TAW),
p     P P P

e.g. by explicit computation.   Thus every central automorphism a of T (II)  is in-

duced by conjugation with a matrix  ums, where   u £ (/(T  (II)),  s = 0 or 1.   Ifs = 0

then indeed  g. ° a. = g .   But ttz" ttz   ttz    = - ttz   , and so if s = 1 then g    »a/j  .

Hence finally

Outcent (TpiÏÏ), g,)«1.

Given (13.5) this finally yields (13.2) and completes the proof.
It remains to establish a lemma on a special fibre product and to deduce

(I3.5) from it.   We consider a commutative diagram of rings, with gT and g?  sur-

jections,

B-,   B2

(13.6) U
Bi «l

where B and B. x B    are orders over a Dedekind domain R, both spanning the

same separable algebra over the quotient field K.   We assume that (13-6) is a fibre

product diagram, i.e. that B is the subring of  B. x B    of pairs (b., b  ) with g  b   =

g-.b2.   We moreover assume that  B? and B    are commutative.   Then we have an

isomorphism

(13.7) t:  Autcent (ß) Bt Autcent (ßj, g A

where the group on the right consists of those automorphisms a with g. °a= g,.

There results a surjective homomorphism

(13.8) T:  Outcent (B) — Outcent (Bj, gj)

the group on the right viewed as embedded in  Outcent(B   ).
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Lemma D. Ker t   S gxW(B A)/gx(U(cent(B A)) ' (g X(U(B j)) O g2(U(B2))).

Proof.  With  a £ Autcent(B), where   ta is an inner automorphism of ß., say

induced by  zz., associate the class  g Au A of g  (zz  ) in the group appearing on the

right in the lemma.    This class is clearly independent of the particular choice of

u. in (/(B).   Moreover, as

gl((/(Bj)) n g2ÍUÍB2)) ^gJ^UÍB)),

gAuA only depends on the class  cl(a) of a in Outcent(B).   We thus get a well-

defined map cl(a) — g Au A .which is a homomorphism r of Ker t   into the group on

the right-hand side in Lemma D.

r is surjective.   For, every inner  automorphism aof fl, satisfies g    ° cl - g  ,

as ß   is commutative,   r is also injective.   For suppose that g. (u  ) = gJu)g(v),

u~ £ U(B A,  v £ (/(cent(B   )).   Then the inner automorphism a   of ß   , induced by

u,, satisfies  a   = to., where a is the inner automorphism of B induced by

(uxv~   , u2).
It remains to deduce(13.5) from the lemma.   The conditions are certainly

satisfied, with (13.6)= (13-4).   Moreover as  Z  (II) is a complete semilocal ring

and  F  (II) the residue class ring modulo its radical, g?  induces a surjection on

the unit groups, i.e. in the notation of Lemma D, gJU(BA) 3g.((/(B   )).   There-

fore t   is an isomorphism.

14. Computations. The dihedral group and the quaternion group of order 8.

Let T be one of the two groups in the title of this section, and write  A =

cent(Z(r)).   We shall prove

Theorem 18.   D(A) S Picent(A) at Picent(Z(D)  z's of order 2.   Also
Outcent(Z(D) is of order 2, Y the dihedral group; Outcent(Z(D) = 1,  Y the qua-

ternion group.

Remark.  The fact that  Picent(Z(r))/Outcent(Z(F)) is of order 2 in the qua-

ternion case follows from a result of Martinet (cf. [M]).

Proof of Theorem 18. We first evaluate  card D(A), using the formulae of Theo-

rem 10.

We describe F by  generators   a and r and relations o   = 1,   tot"     =  o~    and

t   = 1   (r the dihedral group) or r   = a   (Y the quaternion group).   The central,

centrally primitive idempotents of  2(F) are

e = -(i -o2),     e   =-   Z yx(y)

where x runs through the elements of  Hom(r, U(Z))—there are four of these.   The

corresponding simple components of cent(2(T)) are all isomorphic to 2-   Thus the
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maximal order Al of cent(2(F)) is the direct sum of five copies of Z, and on lo-

calising at 2 we get  U(M2/j(M2))= U(A 2/J(A 2)) = 1.
Now  J(M?)= 2AL.   Writing N for the subgroup of  2AI generated by   2e and

8ex , for all y, we note that  N C A, in fact  N2 C ](A   ), and that  [/(M   ) : N   1 = 44.
Hence   [j(M2) : J(A2)1 = 44/[j(A2): N21.   Now  /(A2) is generated freely by  2e  and
by the elements  c    = y + yo"     (y = 1, cr, r, or).  Expressing the free generators

2e, 8ex   of N in terms of those of  J(A   ) we conclude that   [](A   ) : N A = 16.   Hence

[(/(A12):(/(A2)]= [/(Af2):/(A2)] = 44/16= 16.   Moreover  card((/(Al)) = 25, namely
(/(Al) consists of the elements

se + X,sx ex'        s  and sx  = ± !•
x

Checking which of those lie in A, we conclude that   (/(A) consists of ±1 and ±o   .

Hence  card D(A) = 16 • 4/32 = 2.   Trivially also  D(A) ^ Picent(A).
To show that   Picent(A) S Picent(Z(D) we have, by Theorem 6 and Theorem

14, to prove that   Picent(Z  (T)) = 1, or equivalently that

(14.1) Outcent(Z2(D)= 1.

For this and also for the computation of  Outcent(Z(D) we shall use a fibre pro-

duct diagram

r(y)_{l—, tm

(14.2) fx g2 R = Z or Z2.

>2
-   F2(<D).

Here $ is the Vierer group Y/\o   j, with /?  as quotient map.   F     is the field of

2 elements.   If Y is the dihedral group then E is the twisted group ring (trivial

crossed product) of the group II of order 2 over  Z[z], or  Z^uJ respectively, where

i   = - 1, and where the generator 77 of II acts by i H - z.   If Y is the quaternion

group, then E is the standard quaternion algebra over Z, or over Z    respectively,

with basis 1, z, j, k where i   = j   = k   = — 1, ij = — ji — k.   In all cases  g. and g

are residue class maps  mod 2.

The hypotheses of Lemma D are now seen to hold in all cases.   We shall

show that

(14.3) Outcent (R(D) ^ Outcent (E, gx) ,

if  R = Z   , or if R = Z and Y is the quaternion group.   In the case  R = Z   , the

map g    induces a surjection of the groups of units, as  F  (0) is the quotient of
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the semilocal ring  Z  ($) modulo an ideal inside the radical.   Thus (14.3) holds

by Lemma D.   If  R = Z and Y is the quaternion group then the only units of E are

±1, ±z, ±7 and ±k and these are mapped onto $ C g2((/(Z(<I>))) by g,.   Hence again

(14.3) holds.
We shall first complete the quaternion case.   Now E will stand for the global

quaternion ring  Z[z, j, kl, and we shall write  H =E ®z 2-  Let   P2  be the maxi-

mal ideal in the unique maximal order  AL of H?  (the subscript denotes completion

at 2).   Both   P2 and AL  are normalised by the whole of  U(HA, hence so is  E   =

Z    + P2   (sum of submodules of  AL).   Every element of   U(H2) has a representa-

tion in the form

vuil + i)s,        s = 0  or   1,    u £ i/(Al2),   v £ b'(Q2),

and the automorphism it induces only depends on u and s, and the corresponding

element of Outcent(£?2) only on zz mod U(E  ) and s.   Now  U(MA/U(E  ) =

U(M2/P J is of order 3.   Thus   Outcent(£2) is of order 6, while, by (14.3) and
Theorem 14(ii), Outcent(£  , g.) has 2-power order, and thus is of order 1 or 2.

In other words any automorphism a whose class falls into  Outcent(£2, g.) is

given by an element  zz(l + i)s,  s = 0 or 1,  u £ U(E J.   But as   (1 + i)jfk j(l + i)

(mod 2) we must have s = 0.   Thus in fact Outcent(B2, g,)= 1, hence by (14.3) we

have (14.1) in this case.
Still keeping to the quaternion case, let Al be the unique maximal order of H,

containing E, with local components   Al   = E   when p / 2.   By Theorem 12,

Picent(Al) is of order 2.   As  (1 + i) £ U(M  ), all p £ 2, and  (1 + t) £ N(M2), it
follows that  (1 + z) induces an automorphism of Al, which is not inner.   As

Outcent(Al) C Picent(Al) is of order at most 2, this is essentially the only outer

automorphism of Al.   On the other hand any normaliser of E also normalises Al,

hence is of form

vuil + i)s,       s = 0orl,    u £ (/(Al),     v£U(0).

Now one proceeds just as in the local case, or appeals to what has been proved

in the local case to deduce that  Outcent(E, g A = 1.   By (14.3), Outcent(Z(r)) = 1.

From now let Y be the dihedral group and let now E be the twisted group ring,

of û over Z[z'].   View E as embedded in the matrix rings  End_(Z[z']) andEndo(2(0)

defined with respect to the basis 1, z.   A basis of E over Z is given by the identity

matrix  ttz. ,

■i-(-i° ¿}    -*-(í  -î)

and ttz. • ttz  .   Moreover under g     these four matrices are mapped precisely into

$.   Now
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2    1
-1     0

is a unit of E, whose image in F J$>) does not lie in í>, hence by Higman's Theo-

rem (cf. [GH]) does not lie in  g2((/(Z(rJ>))).   By Lemma D, Ker T / 1, hence

(14.4) Outcent (Z(D) ^ 1,        T dihedral.

Now complete at p = 2.   Then  E     is contained in precisely two maximal or-

ders, namely the  Z2-endomorphism rings of Z2'[z] and of its ideal  (1 + z), and

these two orders are interchanged by conjugation by  ttz. + ttz..   Thus modulo

central elements any normaliser of E2  can be written in the form  zz(ttz, + ttz.)s,

s = 0 or 1, and  u = (fl, .) an invertible matrix over  Z  .   Now the matrices  (b, .)   in

E    are characterised by

bxx + b22 be bX2 + b2X =0       (mod 2).

Applying this criterion to the conjugate

ttz'. = iuim.  + m )s) • m . ■ íuím, + m )s)~i ii i ii

oí ttz., we get, as condition for  ttz. to lie in E     that  X,     a      =0  (mod 2).   As

öj jfl22 - flj 2«2I £ U(Z2) this implies that a     + a2    = a2   + a2    =0   (mod 2),

i.e. that  u £ U(E  ).   But  ttz    s (zz(ttz, + ttz.)s) • ttz    • (zz(ttz. + ttz.)'*)""1    (mod 2) im-

plies s = 0.   Thus in fact  Outcent(B2, g,) = 1, hence by (14.3) Outcent(Z2(D) = 1
as was required.   Thus   Picent (Z(D) is of order 2, and hence by (14.4)

Outcent(Z(D) is of order 2.
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