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THE PIECEWISE POLYNOMIAL COLLOCATION METHOD FOR
NONLINEAR WEAKLY SINGULAR VOLTERRA EQUATIONS

HERMANN BRUNNER, ARVET PEDAS, AND GENNADI VAINIKKO

Abstract. Second-kind Volterra integral equations with weakly singular ker-
nels typically have solutions which are nonsmooth near the initial point of the
interval of integration. Using an adaptation of the analysis originally devel-
oped for nonlinear weakly singular Fredholm integral equations, we present
a complete discussion of the optimal (global and local) order of convergence
of piecewise polynomial collocation methods on graded grids for nonlinear
Volterra integral equations with algebraic or logarithmic singularities in their
kernels.

1. Introduction

The solution of a second-kind Fredholm integral equation with weakly singular
kernel is typically nonsmooth near the boundary of the domain of integration (its
derivatives are unbounded). We refer to Richter [28], Pedas [21], [22], Schneider
[30], Pitkäranta [24], [25], Vainikko and Pedas [41], Graham [8], Vainikko, Pedas
and Uba [42], Vainikko [39], [40], Uba [34], Kaneko, Noren and Xu [12], R. Kangro
[14], U. Kangro [15], [16], Pedas and Vainikko [23].

If one wants to obtain a high-order convergence in a numerical method for these
equations one has to take into account, in some way, the singular behaviour of the
exact solution. This can be done by using polynomial splines on special graded
grids. The theory of graded grids in the approximation by polynomial splines goes
back to Rice [27] (for a complete theory see, for example, de Boor [1] or Schumaker
[32]. In the numerical solution of second-kind Fredholm integral equations with
weakly singular kernels, graded grids were used by Chandler [7], Schneider [31],
Vainikko and Uba [43], Graham [9], Vainikko, Pedas and Uba [42], Vainikko [37],
[38], [40], Hackbusch [10], Uba [35], [36], Kaneko, Noren and Xu [13], Tamme [33],
Pedas and Vainikko [24].

A similar situation arises in the case of Volterra integral equations. For second-
kind Volterra equations with weakly singular kernels the nonsmooth behaviour of
solutions occurs near the initial point of integration. We refer to Miller and Feldstein
[20], de Hoog and Weiss [11], Logan [18], Lubich [19], Brunner [2], [4], Brunner
and van der Houwen [6]. Again, if one is interested in finding an approximate
solution which exhibits high-order accuracy, one may resort to approximation with
polynomial splines on graded grids which reflect the singular behaviour of the exact
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solution near the initial point. In the numerical solution of second-kind Volterra
integral equations with weakly singular kernels graded grids were used by Brunner
[4], [3], Brunner and van der Houwen [6], and Brunner [5].

In the previous papers the case of Fredholm equations was considered indepen-
dently of Volterra equations and, vice versa, the results for Volterra equations were
obtained independently of existing results on Fredholm equations.

The purpose of the present paper is to show how in the analysis of the numerical
solution of weakly singular Volterra integral equations by polynomial splines on
graded grids it is possible to use corresponding existing results for Fredholm equa-
tions. More precisely, on the basis of results from [40, pp. 22–23] we shall study
the smoothness of solutions and the piecewise polynomial collocation method for
a rather wide class of nonlinear weakly singular Volterra integral equations. Using
special collocation points in conjunction with graded grids, we derive global con-
vergence estimates and analyze a superconvergence effect at the collocation points.
The main results of the paper considerably extend known ones and are formulated
in Theorems 2.1–2.4 (see Section 2). The proofs of these assertions are given in
Section 4 and are based on the following simple idea: for a given Volterra equation

u(t) =
∫ t

0

K(t, s, u(s))ds + f(t), 0 ≤ t ≤ T,(1.1)

we find the appropriate extensions K̃(t, s, u) and f̃(t) for K(t, s, u) and f(t) so that
from the corresponding results of Section 3 for the Fredholm equation

u(t) =
∫ 2T

0

K̃(t, s, u(s))ds + f̃(t), 0 ≤ t ≤ 2T,

we can derive all results formulated in Theorems 2.1–2.4 for the Volterra equation
(1.1). Finally, in Section 5 we present some numerical illustrations.

2. Volterra equations with weakly singular kernels

2.1. Smoothness of the solution. Consider the nonlinear Volterra equation

u(t) =

t∫
0

K(t, s, u(s))ds + f(t), 0 ≤ t ≤ T.(2.1)

The following assumptions (V1)–(V3) are made.
(V1) The kernel K = K(t, s, u) is m times (m ≥ 1) continuously differentiable

with respect to t, s, u for t ∈ [0, T ], s ∈ [0, t), u ∈ R, and there exists a real
number ν ∈ (−∞, 1) such that for 0 ≤ s < t ≤ T, u ∈ R, and for nonnegative
integers i, j, k with i + j + k ≤ m, the following inequalities hold:

∣∣∣∣∣
(

∂

∂t

)i (
∂

∂t
+

∂

∂s

)j (
∂

∂u

)k

K(t, s, u)

∣∣∣∣∣ ≤ b1(|u|)


1 if ν + i < 0,

1 + | log |t− s|| if ν + i = 0,

|t− s|−ν−i if ν + i > 0,

(2.2)
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and

∣∣∣∣∣
(

∂

∂t

)i (
∂

∂t
+

∂

∂s

)j (
∂

∂u

)k

K(t, s, u1)−
(

∂

∂t

)i (
∂

∂t
+

∂

∂s

)j (
∂

∂u

)k

K(t, s, u2)

∣∣∣∣∣
≤ b2(max{|u1|, |u2|}|u1 − u2|


1 if ν + i < 0,
1 + | log |t− s|| if ν + i = 0,
|t− s|−ν−i if ν + i > 0,

(2.3)

where the functions b1 : [0,∞) → [0,∞) and b2 : [0,∞) → [0,∞) are assumed to be
monotonically increasing.

(V2) f ∈ Cm,ν(0, T ], i.e. f(t) is m times continuously differentiable for 0 < t ≤ T
and the estimate

∣∣∣f (k)(t)
∣∣∣ ≤ constf


1 if k < 1− ν,

1 + | log t| if k = 1− ν,

t1−ν−k if k > 1− ν,

t ∈ (0, T ],(2.4)

holds for k = 0, 1, . . . , m.
(V3) The integral equation (1.1) has a solution u0 ∈ L∞(0, T ).
Notice that conditions (V1) and (V2) guarantee the existence and uniqueness

of the solution to (2.1) on some interval [0, T0], T0 ≤ T . On [0, T ] the existence
and uniqueness of the solution will be guaranteed if we impose the following global
Lipschitz condition on K(t, s, u): for 0 ≤ t ≤ T , 0 ≤ s < t, u1, u2 ∈ R, there holds

|K(t, s, u1)−K(t, s, u2)| ≤ b|u1 − u2|


1 if ν < 0,
1 + | log |t− s|| if ν = 0,
|t− s|−ν if ν > 0 ,

with a constant b independent of u1 and u2 (cf. (2.3), i = j = k = 0). We do not
restrict the problem by this global Lipschitz condition, but assume (V3). Moreover,
assuming (V3) we in fact could replace (V1) by the corresponding local condition
for t ∈ [0, T ], s ∈ [0, t), |u − u0(s)| ≤ δ with some δ > 0. Outside this set, the
kernel K(t, s, u) is involved neither in (2.1) nor in the corresponding collocation
method described in Section 2.2. Nevertheless, we remain with the formulation of
(V1) given above.

It follows from (V1) that the kernel K(t, s, u) may possess a weak singularity
as s → t (i = j = k = 0, 0 ≤ ν < 1). In the case ν < 0, the kernel K(t, s, u) is
bounded for 0 ≤ s ≤ t ≤ T and fixed u ∈ R, but its derivatives may be singular as
s → t. Often the kernel K has the form

K(t, s, u) = a(t, s, u)(t− s)−β , β < 1,

or

K(t, s, u) = a(t, s, u) log(t− s),

where a(t, s, u) is an m-smooth function of its arguments for 0 ≤ s ≤ t ≤ T, u ∈ R.
Clearly, condition (V1) is satisfied in these examples with ν = β and ν = 0,
respectively. Actually, (V1) remains fulfilled even if derivatives of a(t, s, u) have
certain (sufficiently weak) singularities as s → t.

The following result states the regularity properties of solutions of equation (2.1).
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Theorem 2.1. Let the conditions (V1) and (V2) be fulfilled. If equation (2.1) has
a solution u in L∞(0, T ), then u ∈ Cm,ν(0, T ].

The proof of Theorem 2.1 is given in Section 4. We remark that smoothness
properties of solutions to (more special) weakly singular Volterra equations are
analyzed in [19, p. 6].

We note also that u ∈ Cm,ν(0, T ] having an integrable derivative in (0, T ] can
be extended up to a continuous function on [0, T ]. The extended function will be
denoted again by u.

2.2. Piecewise polynomial approximation of the solution. For given N ∈ N
let 0 = t0 < t1 < . . . < tN = T be a partition of the interval [0, T ] with grid points

tj ≡ t
(N)
j = (j/N)rT, j = 0, 1, . . . , N,(2.5)

where r ∈ R, r ≥ 1. For r = 1, the grid points t0, t1, . . . , tN are distributed
uniformly; for r > 1, the grid points are more densely clustered near the left
endpoint of the interval [0, T ]. In every subinterval [tj−1, tj ] (j = 1, . . . , N) we
choose m collocation points

ξji = tj +
ηi + 1

2
(tj+1 − tj), i = 1, . . . , m,(2.6)

where η1, . . . , ηm do not depend on N and satisfy

−1 ≤ η1 < η2 < . . . < ηm ≤ 1.(2.7)

To a continuous function u : [0, T ] → R we assign a piecewise polynomial in-
terpolant PNu : [0, T ] → R as follows: 1) on every subinterval [tj−1, tj ] (j =
1, . . . , N), PNu is a polynomial of degree m − 1; 2) PNu interpolates u at the
points ξj1, . . . , ξjm:

(PNu)(ξji) = u(ξji), i = 1, . . . , m; j = 1, . . . , N.

Thus, the interpolation function (PNu)(t) is independently defined in every subin-
terval [tj−1, tj ] (j = 1, . . . , N) and may be discontinuous at the interior grid points
t = tj (j = 1, . . . , N − 1). We may treat PNu as a two-valued function at these
points. Note that in the case η1 = −1 and ηm = 1, PNu is a continuous function
on [0, T ].

Let EN denote the range of the interpolatory projection PN , that is, the set of
all piecewise polynomial functions on [0, T ] which are polynomials of degree not
exceeding m − 1 on every subinterval [tj−1, tj ] (j = 1, . . . , N). We introduce also
the notation

h = T/N.

We look for an approximate solution uN ∈ EN to the integral equation (2.1) which
satisfies this equation at the collocation points (2.6):

[uN (t)−
t∫

0

K(t, s, uN(s))ds− f(t)]t=ξji = 0, i = 1, . . . , m; j = 1, . . . , N.

(2.8)

Conditions (2.8) form a system of equations whose exact form is determined by
the choice of a basis of EN . For instance, in the interval [tj−1, tj] (j = 1, . . . , N)
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we may use the representation

uN(s) =
m∑

i=1

cjiϕji(s), s ∈ [tj−1, tj ],(2.9)

where ϕji(s) (s ∈ [tj−1, tj ]) is the polynomial of degree m− 1 such that

ϕji(ξjk) =

{
1 if k = i,

0 if k 6= i,
k = 1, . . . , m.

The collocation conditions (2.8) then lead to the following (nonlinear) system of
algebraic equations for the coefficients {cji}:

cji = f(ξji) +
j−1∑
l=1

tl∫
tl−1

K(ξji, s,

m∑
k=1

clkϕlk(s))ds(2.10)

+

ξji∫
tj−1

K(ξji, s,

m∑
k=1

cjkϕjk(s))ds, i = 1, . . . , m; j = 1, . . . , N.

This represents a recursive process: First, the coefficients c11, . . . , c1m can be found
by solving the system

c1i = f(ξ1i) +

ξ1i∫
0

K(ξ1i, s,

m∑
k=1

c1kϕ1k(s))ds, i = 1, . . . , m.(2.11)

Using c11, . . . , c1m, one can then find c21, . . . , c2m from the system

c2i = f(ξ2i) +
∫ t1

0

K(ξ2i, s,

m∑
k=1

c1kϕ1k(s))ds

+

ξ2i∫
t1

K(ξ2i, s,

m∑
k=1

c2kϕ2k(s))ds, i = 1, . . . , m.

Generally, using c11, . . . , c1m, . . . , cj−1,1, . . . , cj−1,m, the coefficients cj1, . . . , cjm

can be found from the m equations (2.10) with corresponding j. Thus at every step
(on every subinterval [tj−1, tj ]) one has to solve a system of m nonlinear equations;
the initial guess can be chosen by using the solution on the previous subinterval.
For the first block system (2.11) a suitable initial guess is c1i = f(ξ1i), i = 1, . . . , m.

The following theorem states the global convergence rate for the collocation
method (2.8).

Theorem 2.2. Let assumptions (V1)–(V3) be fulfilled and let the collocation points
(2.6) corresponding to the gridpoints (2.5) be used.

Then there exist an N0 ∈ N and a real number δ0 > 0 such that, for N > N0, the
collocation method (2.8) defines a unique approximation uN ∈ EN to the solution u0

of equation (2.1) satisfying ||uN − u0||L∞(0,T ) ≤ δ0. The following error estimates
hold:

1) if m < 1− ν then

max
0≤t≤T

|uN(t)− u0(t)| ≤ chm for r ≥ 1;(2.12)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1084 HERMANN BRUNNER, ARVET PEDAS, AND GENNADI VAINIKKO

2) if m = 1− ν then

max
0≤t≤T

|uN(t)− u0(t)| ≤ c

{
hm(1 + | log h|) for r = 1,

hm for r > 1,
(2.13)

and

||uN − u0||Lp(0,T ) ≤ chm for r ≥ 1, 1 ≤ p < ∞;(2.14)

3) if m > 1− ν then

max
0≤t≤T

|uN(t)− u0(t)| ≤ c

{
hr(1−ν) for 1 ≤ r ≤ m

1−ν ,

hm for r ≥ m
1−ν .

(2.15)

and for 1 ≤ p < ∞,

||uN − u0||Lp(0,T ) ≤ c


hr(1−ν+ 1

p ) if 1 ≤ r < m
1−ν+ 1

p

, m > 1− ν + 1
p ,

hm(1 + | log h|) 1
p if r = m

1−ν+ 1
p

, m ≥ 1− ν + 1
p ,

hm if r > m
1−ν+ 1

p

, r ≥ 1;

(2.16)

4) if r = r(m, ν) ≥ 1 is restricted by conditions

r > m
2(1−ν) for 0 ≤ ν < 1,

r > m
2−ν for ν < 0,

r ≥ 1 for ν < 0, ν < −(m− 2),
(2.17)

then

εN ≤ chm,(2.18)

where

εN = max
i=1,... ,m; j=1,... ,N

|uN(ξji)− u0(ξji)|(2.19)

is the maximal error of the approximate solution uN ∈ EN at the collocation
points (2.6). The constants c in (2.12)–(2.18) are independent of h = T/N .

The proof of Theorem 2.2 is given in Section 4.

2.3. Superconvergence at the collocation points. We now assume that the
points η1, . . . , ηm in (2.6) (the points (2.7)) are the knots of the quadrature formula

1∫
−1

ϕ(ξ)dξ ≈
m∑

i=1

wiϕ(ηi), −1 ≤ η1 < . . . < ηm ≤ 1,(2.20)

which is exact for polynomials of degree m + µ, µ ∈ Z, 0 ≤ µ ≤ m− 1. Actually,
the weights w1, . . . , wm of the quadrature formula (2.20) will not be used in our
analysis. The case µ = m− 1 corresponds to the Gauss quadrature formula and is
of the greatest interest in the following theorem.

Theorem 2.3. Let the following conditions be fulfilled:
(V1′) The kernel K(t, s, u) and ∂K(t, s, u)/∂u are m + µ + 1 times (m, µ ∈ Z,

m ≥ 1, 0 ≤ µ ≤ m− 1) continuously differentiable with respect to t, s, u for
t ∈ [0, T ], s ∈ [0, t), u ∈ R, and satisfy (2.2) and (2.3) with i + j + k ≤
m + µ + 1, ν ∈ (−∞, 1).
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(V2′) f ∈ Cm+µ+1,ν(0, T ].
(V3) The integral equation (2.1) has a solution u0 ∈ L∞(0, T ).
(V4) The collocation points (2.6) are generated by the knots (2.7) of a quadrature

formula (2.20) which is exact for all polynomials of degree m + µ, 0 ≤ µ ≤
m− 1.

(V5) The scaling parameter r = r(m, ν, µ) ≥ 1 is subject to the restrictions

r > m
1−ν , r ≥ m+1−ν

2−ν if 1− ν < µ + 1,

r > m
1−ν , r > m+µ+1

2−ν if µ + 1 ≤ 1− ν < m,

r ≥ m+µ+1
2−ν , r > 1 if 1− ν = m,

r ≥ m+µ+1
2−ν if 1− ν > m.

(2.21)

Then

εN ≤ chm


h if ν < 0,

h(1 + | log h|) if ν = 0,

h1−ν if ν > 0,

(2.22)

where εN is defined in (2.19) and c is a positive constant which is independent of
h = T/N .

The proof of Theorem 2.3 is given in Section 4.

Theorem 2.4. Let the conditions of Theorem 2.3 hold. Assume additionally that:
(V6) ν < 0, µ ≥ 1, and for 0 ≤ j ≤ min{µ− 1,−ν}, 0 ≤ k ≤ min{µ− 1,−ν}, the

derivatives (
∂

∂s

)j (
∂

∂u

)k+1

K(t, s, u)(2.23)

are bounded and continuous for 0 ≤ t ≤ T, 0 ≤ s ≤ t, |u| ≤ τ with any
τ > 0, and

(
∂
∂s

)j (
∂
∂u

)k+1
K(t, s, u)→ 0 as s → t− 0.

Then

εN ≤ chm


hµ+1 if 1− ν > µ + 1,
hµ+1(1 + | log h|) if 1− ν = µ + 1,
h1−ν if 1− ν < µ + 1,

(2.24)

where εN is defined in (2.19) and the constant c is independent of h = T/N .

The proof of Theorem 2.4 is given in Section 4.

Remark 2.1 (comment on the additional condition (V6)). Assumption (V1′) of
Theorem 2.3 guarantees the boundedness and continuity of the derivatives (2.23) for
j < min{µ−1,−ν}, j+k ≤ m+µ+1, on any set 0 ≤ s < t ≤ T, −τ < u < τ, τ > 0;
for j = −ν with ν ∈ Z, −ν < µ−1, a logarithmic singularity may occur. Condition
(V6) bans this possible singularity.

Remark 2.2. The estimate max0≤t≤T |uN (t) − u0(t)| ≤ chm is of optimal order
even for a function u ∈ C∞[0, T ]. Theorem 2.2 shows that, using sufficiently great
values of the scaling parameters r, the optimal accuracy O(hm) can be achieved for
the collocation method (2.8). Theorems 2.3 and 2.4 show that superconvergence
occurs at the collocation points.
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Remark 2.3. Under the conditions of Theorem 2.3

max
0≤t≤T

|ũN (t)− u0(t)| ≤ chm


h if ν < 0,

h(1 + | log h|) if ν = 0,

h1−ν if ν > 0,

where

ũN(t) =
∫ t

0

K(t, s, uN(s))ds + f(t).

Under the conditions of Theorem 2.4,

max
0≤t≤T

|ũN(t)− u0(t)| ≤ chm


hµ+1 if 1− ν > µ + 1,
hµ+1(1 + | log h|) if 1− ν = µ + 1,
h1−ν if 1− ν < µ + 1.

3. Fredholm equations with weakly singular kernels

In this section we formulate some results from [39, pp. 22–23] about Fredholm
integral equations which give a basis for the proofs of the results presented in Section
2.

Consider the nonlinear Fredholm integral equation

u(t) =

2T∫
0

K(t, s, u(s))ds + f(t), 0 ≤ t ≤ 2T.(3.1)

We make the following assumptions (F1) and (F2).
(F1) The kernel K = K(t, s, u) is m times (m ≥ 1) continuously differentiable

with respect to t, s, u for t, s ∈ [0, 2T ], t 6= s, u ∈ R, and there exists a real number
ν ∈ (−∞, 1) such that for nonnegative integers i, j, k with i+ j +k ≤ m inequalites
(2.2) and (2.3) hold.

(F2) f ∈ Cm,ν(0, 2T ), i.e. f(t) is m times continuously differentiable for 0 < t <
2T , and the estimate

∣∣∣f (k)(t)
∣∣∣ ≤ constf


1 if k < 1− ν,

1 + | log %(t)| if k = 1− ν,

%(t)1−ν−k if k > 1− ν,

t ∈ (0, 2T ),(3.2)

holds for k = 0, 1, . . . , m, where %(t) = min{t, 2T − t}.
Theorem 3.1 ([23], [39, p. 137]). Let conditions (F1) and (F2) be fulfilled. If the
integral equation (3.1) has a solution u ∈ L∞(0, 2T ), then u ∈ Cm,ν(0, 2T ).

In the sequel we shall assume that:
(F3) The integral equation (3.1) has a solution u0 ∈ L∞(0, 2T ) and the linearized

equation

v(t) =

2T∫
0

K0(t, s)v(s)ds, K0(t, s) = ∂K(t, s, u)/∂u
∣∣∣
u=u0(s)

,(3.3)

has in L∞(0, 2T ) only the trivial solution v ≡ 0.
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For given N ⊂ N, let 0 = t0 < t1 < . . . < t2N = 2T be a partition of the interval
[0, 2T ] with gridpoints (2.5) and gridpoints tN+1, . . . , t2N which are obtained by
reflecting tN−1, . . . , t0 with respect to tN = T :

tj = (j/N)rT, j = 0, 1, . . . , N ; tj+N = 2T − tN−j, j = 1, . . . , N.

(3.4)

In every subinterval [tj−1, tj ] (j = 1, . . . , 2N) we choose m collocation points (2.6)
determined by the points (2.7). We denote by ẼN the set of all piecewise polynomial
functions on [0, 2T ] which are polynomials of degree not exceeding m− 1 on every
interval [tj−1, tj ] (j = 1, . . . , 2N). We look for an approximate solution uN ∈ ẼN

to the integral equation (3.1) which satisfies this equation at the collocation points
(2.6) corresponding to the gridpoints (3.4):

[
uN (t)−

2T∫
0

K(t, s, uN(s))ds− f(t)
]

t=ξji

= 0,(3.5)

i = 1, . . . , m; j = 1, . . . , 2N.

Theorem 3.2 (see [39, p. 143], cf. also [43], [42]). Let conditions (F1)–(F3) be ful-
filled and let the collocation points (2.6) with gridpoints given by (3.4) be used.

Then there exist an N0 ∈ N and a real number δ0 > 0 such that for N > N0, the
collocation method (3.5) defines a unique approximation uN ∈ ẼN to the solution u0

of equation (3.1) satisfying ||uN − u0||L∞(0,2T ) ≤ δ0. The following error estimates
hold:

1) if m < 1− ν then

max
0≤t≤2T

|uN (t)− u0(t)| ≤ chm for r ≥ 1;(3.6)

2) if m = 1− ν then

max
0≤t≤2T

|uN(t)− u0(t)| ≤ c

{
hm(1 + log h|) for r = 1,

hm for r > 1,
(3.7)

and

||uN − u0||Lp(0,2T ) ≤ chm for r ≥ 1, 1 ≤ p < ∞;(3.8)

3) if m > 1− ν then

max
0≤t≤2T

|uN(t)− u0(t)| ≤ c

{
hr(1−ν) for 1 ≤ r ≤ m

1−ν ,

hm for r ≥ m
1−ν ,

(3.9)

and

||uN − u0||LP (0,2T ) ≤ c


hr(1−ν+ 1

p ) if 1 ≤ r < m
1−ν+ 1

p

, m > 1− ν + 1
p ,

hm(1 + | log h|) 1
p if r = m

1−ν+ 1
p

, m ≥ 1− ν + 1
p ,

hm if r > m
1−ν+ 1

p

, r ≥ 1,

(3.10)

for 1 ≤ p < ∞;
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4) if r = r(m, ν) ≥ 1 satisfies (2.4), then

ε̃N ≤ chm(3.11)

where

ε̃N = max
i=1,... ,m;j=1,... ,2N

|uN(ξji)− u0(ξji)|.(3.12)

Theorem 3.3 ([24]). Let the following conditions be fulfilled:

(F1′) The kernel K(t, s, u) and ∂K(t, s, u)/∂u are m+µ+1 times (m, µ ∈ Z, m ≥
1, 0 ≤ µ ≤ m − 1) continuously differentiable with respect to t, s, u for
t, s ∈ [0, 2T ], t 6= s, u ∈ R, and satisfy (2.2) and (2.3) with i + j + k ≤
m + µ + 1,−∞ < ν < 1.

(F2′) f ∈ Cm+µ+1,ν(0, 2T ).
(F3) The integral equation (3.1) has a solution u0 ∈ L∞(0, 2T ), and the linearized

equation (3.3) has in L∞(0, 2T ) only the trivial solution v ≡ 0.
(F4) The collocation points (2.6) are generated by the knots (2.7) of a quadrature

formula (2.20) which is exact for all polynomials of degree m + µ, 0 ≤ µ ≤
m− 1.

(F5) The scaling parameter r = r(m, ν, µ) ≥ 1 satisfies the conditions (2.18).

Then

ε̃N ≤ chm


h if ν < 0,

h(1 + | log h|) if ν = 0,

h1−ν if ν > 0,

where ε̃N is defined in (3.12).
If, in addition, we assume

(F6) ν < 0, µ ≥ 1, and for 0 ≤ j ≤ min{µ− 1,−ν}, 0 ≤ k ≤ min{µ− 1,−ν}, the
derivatives (2.23) are bounded and continuous on [0, 2T ] × [0, 2T ] × [−τ, τ ]
with any τ > 0,

then

ε̃N ≤ chm


hµ+1 if 1− ν > µ + 1,
hµ+1(1 + | log h|) if 1− ν = µ + 1,
h1−ν if 1− ν < µ + 1.

4. Proof of Theorems 2.1–2.4

Assume that the kernel K(t, s, u) of equation (2.1) satisfies (V1) for 0 ≤ s < t ≤
T, −∞ < u < ∞. Assume also that the forcing function f(t) of equation (2.1)
satisfies (V2) for 0 < t ≤ T , and let u0 ∈ L∞(0, T ) be a solution of equation (2.1).
First of all we extend K(t, s, u) up to a K̃(t, s, u) which will satisfy condition (F1)
for 0 ≤ t ≤ 2T, 0 ≤ s ≤ 2T, t 6= s, u ∈ R.

We shall use an extension method based on reflecting (see, for example [17]): for
a given function v ∈ Cm[a− τ, a], m ∈ N, a, τ ∈ R, τ > 0, put

ṽ(s) =

v(s) for s ∈ [a− τ, a],
m∑

j=0

cjv(a− j(s− a)) for s ∈ (a, a + τ
m ],(4.1)
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where

m∑
j=0

(−j)kcj = 1, k = 0, 1. . . . , m.(4.2)

From (4.1) and (4.2) one obtains that

ṽ ∈ Cm
[
a− τ, a +

τ

m

]
.

We now construct an extension for the kernel K(t, s, u) of equation (1.1). First,
for any u ∈ R, 2

3T ≤ t ≤ T , we extend K(t, s, u) with respect to s for s < 0
(denoting this extension again by K(t, s, u)):

K(t, s, u) = e(−s)
m∑

j=0

cjK(t,−js, u), − 2T

3m
≤ s < 0.

Here (c0, c1, . . . , cm) is the (unique) solution of the system (4.2) and e ∈ C∞(R+)
is a smooth function such that

e(s) =

{
1 for 0 ≤ s ≤ 2T

9m ,

0 for 2T
6m ≤ s ≤ T .

(4.3)

Second, for any u ∈ R, we extend K(t, s, u) with respect to t (T ≤ t ≤ 2T ) along
the lines s = t− γ (0 < γ ≤ 2T ):

K1(t, s, u) =


K(t, s, u) for 0 ≤ s < t ≤ T,

e(t− T )
m∑

j=0

cjK(T − j(t− T ), T − j(s + γ − T )− γ, u)

for T ≤ s < t ≤ 2T, t− s = γ.

Finally, in the third step we put

K̃(t, s, u) =

{
K1(t, s, u)e1(u) for 0 ≤ s < t ≤ 2T,

0 for 0 ≤ t < s ≤ 2T,
(4.4)

with an e1 ∈ C∞0 (R), e1(u) = 1 for |u| ≤ 2M , e1(u) = 0 for |u| ≥ 3M , where
M = max0≤t≤T |u0(t)|. It is easy to check that the function K̃(t, s, u) satisfies
(F1).

Indeed, using (V1) we obtain that K̃(t, s, u) is m times continuously differentiable
with respect to t, s, u for t ∈ [0, 2T ], s ∈ [0, 2T ], t 6= s, u ∈ R. Furthermore, it
follows from the above construction that:

1) if 0 ≤ s < t ≤ T, u ∈ R, then(
∂

∂t

)i(
∂

∂t
+

∂

∂s

)j(
∂

∂u

)k

K̃(t, s, u)

=
(

∂

∂t

)i(
∂

∂t
+

∂

∂s

)j (
∂

∂u

)k

[K(t, s, u)e1(u)] ;
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2) if T ≤ s < t ≤ 2T, u ∈ R, then

(
∂

∂t

)i (
∂

∂t
+

∂

∂s

)j (
∂

∂u

)k

K̃(t, s, u)

=

[(
∂

∂t

)i (
∂

∂t
+

∂

∂s

)j (
∂

∂u

)k

e(t− T )

]

×
m∑

p=0

cpK
(
T − p(t), T − p(s + γ − T )− γ, u

)
e1(u)

+ e(t− T )
m∑

p=0

cp

(
∂

∂t

)i (
∂

∂t
+

∂

∂s

)j (
∂

∂u

)k

× [
K

(
T − p(t− T ), T − p(s + γ − T )− γ, u

)
e1(u)

]
;

(4.5)

3) if 0 ≤ t < s ≤ 2T then(
∂

∂t

)i (
∂

∂t
+

∂

∂s

)j (
∂

∂u

)k

K̃(t, s, u) = 0.

In case 1) we obtain the estimates (2.2) and (2.3) for K̃(t, s, u) using Assumption
(V1). In case 3) statements (2.2) and (2.3) with respect to K̃(t, s, u) are trivially
fulfilled.

Now consider case 2). Using (4.3), (4.5) and (V1), we are led to∣∣∣∣∣
(

∂

∂t

)i (
∂

∂t
+

∂

∂s

)j (
∂

∂u

)k

K̃(t, s, u)

∣∣∣∣∣
≤ cb1(3M)

 1 if ν < 0
1 + | log |t− s|| if ν = 0
|t− s|−ν if ν > 0

 +


1 if ν + i < 0
1 + | log |t− s|| if ν + i = 0
|t− s|−ν−i if ν + i > 0



≤ c′b1(3M)


1 if ν + i < 0,
1 + | log |t− s|| if ν + i = 0,
|t− s|−ν−i if ν + i > 0.

In a similar way we verify that condition (2.3) is also satisfied.
So, we have shown that the function K̃(t, s, u) is m times continously differen-

tiable with respect to t, s, u for t, s, u ∈ [0, 2T ], t 6= s, u ∈ R, and satisfies conditions
(2.2) and (2.3) with some b1 and b2 independent of |u| and max{|u1|, |u2|}, respec-
tively. Thus, K̃(t, s, u) also satisfies the global Lipschitz condition: for t ∈ [0, 2T ],
s ∈ [0, t), u1, u2 ∈ R,

|K̃(t, s, u1)− K̃(t, s, u2)| ≤ b̃


1 if ν < 0,

1 + | log |t− s|| if ν = 0,

|t− s|−ν if ν > 0,

(4.6)

with a constant b̃ not depending on u1 and u2.
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We now define

f̃(t) =

f(t) for 0 < t ≤ T ,

e(t− T )
m∑

j=0

cjf(T − j(t− T )) for T < t ≤ 2T ,
(4.7)

where (c0, c1, . . . , cm) is the solution of the system (4.2) and e ∈ C∞(R+) is defined
in (4.3). It is clear that f̃ ∈ Cm,ν(0, 2T ) ⊂ C[0, 2T ].

Consider the equation

u(t) =
∫ 2T

0

K̃(t, s, u(s))ds + f̃(t), 0 ≤ t ≤ 2T,(4.8)

where K̃ and f̃ are defined by (4.4) and (4.7). Equation (4.8) is actually a Volterra
integral equation, since K̃(t, s, u) = 0 for 0 ≤ t < s ≤ 2T . Due to the weak
singularity of the kernel K̃(t, s, u) and the global Lipschitz condition (4.6), (4.8) is
uniquely solvable in C[0, 2T ]; let ũ0 ∈ C[0, 2T ] denote the solution. It follows from
the above construction that ũ0(t) = u0(t) for 0 ≤ t ≤ T . According to Theorem
3.1, ũ0 ∈ Cm,ν(0, 2T ); therefore u0 ∈ Cm,ν(0, T ]. Theorem 2.1 is thus proved.

Further, for 0 ≤ t ≤ 2T , the linear homogenous Fredholm equation

v(t) =
∫ 2T

0

K̃0(t, s)v(s)ds, K̃0(t, s) =
∂K̃(t, s, u)

∂u

∣∣∣∣∣
u=ũ0(s)

,

actually takes the form of a linear homogeneous Volterra equation,

v(t) =
∫ t

0

K̃0(t, s)v(s)ds,

and therefore has in L∞(0, 2T ) only the trivial solution v ≡ 0. Thus condition (F3)
is fulfilled with respect to the equation (4.8). Finally, assume that the gridpoints
(3.4) are used. Then the assertions of Theorem 2.2 follow immediately from the
corresponding statements of Theorem 3.2 about equation (4.8).

Thus, Theorem 2.2 is proved.
In a similar way we obtain that the function K̃(t, s, u) in (4.4) satisfies the con-

ditions (F1′) and (F6) whenever the kernel K(t, s, u) of the equation (2.1) satisfies
the conditions (V1′) and (V6), respectively. Finally we obtain that the function
f̃(t) in (4.6) satisfies (F2′) as long as the forcing function f(t) obeys (V2′), and
condition (F3) will be fulfilled with respect to (4.8) as long as equation (2.1) is
solvable in L∞(0, T ). Therefore, assuming that the conditions of Theorem 2.3 and
Theorem 2.4, respectively, are fulfilled, the statements of Theorems 2.3 and 2.4
follow immediately from Theorem 3.3.

Hence, Theorems 2.3 and 2.4 are proved.

5. Numerical example

Let m = 2, and let η1 = − 1√
3

and η2 = 1√
3

be the knots of the Gauss quadrature

formula
1∫
−1

ϕ(ξ)dξ ≈ ϕ(η1)+ϕ(η2). In this case the approximate solution uN ∈ EN

to equation (2.1) in the interval [tj−1, tj] (j = 1, . . . , N) can be represented in the
form

uN (t) = cj1
ξj2 − t

ξj2 − ξj1
+ cj2

t− ξj1

ξj2 − ξj1
, tj−1 ≤ t ≤ tj ,(5.1)
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where ξj1, ξj2 are the knots (2.6) and the coefficients cjk = uN (ξjk) (k = 1, 2; j =
1, . . . , N) are determined from the system (2.10) (m = 2). From Theorem 2.2 we
obtain for the approximate solution (5.1) the estimate

εN ≤ ch2 for

{
r > 1

1−ν if ν ≥ 0,
r ≥ 1 if ν < 0,

(5.2)

where h = T/N and

εN = max
i=1,2;j=1,... ,N

|uN (ξji)− u0(ξji)|.(5.3)

From Theorems 2.3 and 2.4, we obtain the following estimates for the error (5.3)
(see (2.22), (2.24), m = 2 with µ = 1):

εN ≤ ch2


h if ν < 0,

h(1 + | log h|) if ν = 0,

h1−ν if ν > 0,

(5.4)

or (under the conditions of Theorem 2.4)

ε ≤ ch2


h2 if ν < −1,
h2(1 + | log h|) if ν = −1,
h1−ν if ν > −1,

(5.5)

provided that 
r ≥ 1 if ν < −2,
r > 4

2−ν if −2 ≤ ν ≤ −1,
r ≥ 3−ν

2−ν if −1 < ν < 1−√2,

r > 2
1−ν if 1−√2 ≤ ν < 1.

(5.6)

Now we present the following example. Consider the integral equation

u(t) =

t∫
0

(t− s)−1/2u2(s)ds + t1/2(1 − 4
3
t), 0 ≤ t ≤ T.(5.7)

It is easy check that u0(t) = t1/2 is the exact solution to equation (5.7) and As-
sumptions (V1′) and (V2′) of Theorem 2.3 are fulfilled with ν = 1/2, m = 2,
µ = 1.

The equation (5.7) was solved numerically by the collocation method (2.10)
(m = 2), where the Gauss points η2 = −η1 = 1/

√
3 were used for determining the

collocation points (2.6), and we chose r = 41/10 > 2/(1− ν) (see (5.6)). At every
step (on every subinterval [tj−1, tj ]) the coefficients cji = uN(ξji) (i = 1, 2) were
calculated from (2.10) (m = 2) by the Newton method. All the integrals which are
needed for the construction of the system (2.10) were found analytically. Some of
the numerical results for T = 3/4 are presented in the following Table 1, where εN

is defined in (5.3). The experiments were carried out on an IBM 4381 (in double
precision).

From Table 1 we can see that the numerical results are consistent with the
theoretical estimate, which is εN = O(h5/2), h = 0.75/N . Notice that the number
of collocation points (the number of unknowns) is 2N .
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Table 1

N εN (r = 41/10) εN/2/25/2

4 0.55 E - 01
8 0.80 E - 02 0.97 E - 02

16 0.12 E - 02 0.14 E - 02
32 0.19 E - 03 0.21 E - 03
64 0.32 E - 04 0.33 E - 04

128 0.20 E - 05 0.57 E - 05

In the same example on longer intervals (e.g. T = 4), some instability of the
approximate solution was observed. The numerical stability of the scheme is worth
examining independently.
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