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ABSTRACT: A mathematical expression is derived for the piezoelectric constant of 

a disperse system in which piezoelectric, anisotropic, spherical particles are uniformly 

dispersed in a nonpiezoelectric, isotropic, continuous medium. 

For the case when the sphere has the face-shear-type piezoelectricity and the system 
is inc)mpressible, the piezoelectric strain constant d14 for the disperse system is given as 

II 3 5 
d14=d14 2+ziiJ;i-t=(l-=ziijzl)sb . 2+3GifGII+3(!-GijGII)sb sb 

where sb is the volume fraction of spheres, d{l the piezoelectric strain constant of the 

sphere, z the dielectric constant, G the elastic constant, and the superscripts I and II 

refer to the medium and sphere, respectively. 

For the case when the sphere is extremely rigid and has length-expansion and 

thickness-expansion types of piezoelectricity, the piezoelectric strain constants da1, da2, 

d33 under the approximation sb <f 1 are given as 
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where K 1 is the bulk modulus of the medium and a=4G1f3K1• 
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The piezoelectric constants of polymers depend 

upon the temperature and frequency of meas

urement and are expressed by complex quantities, 

like the elastic and dielectric constants. 1 The 

intrinsic piezoelectricity of polymers is believed 

to be caused by the rotation of dipoles under 

the action of the mechanical or electrical field 

in the oriented or crystallized regions of the 

polymer. These piezoelectric regions are gener

ally imbedded in unoriented nonpiezoelectric 

regions. The origin of the piezoelectric disper

sion is therefore to be explained on the basis of 

the binary structure for the polymer. 

that elucidated the relation between the phase 

angle of the piezoelectric constant and the 

mechanical relaxation of the nonpiezoelectric 

phase surrounding the piezoelectric phase. 

The simplest model for a two phase system 

is a spherical disperse system in which piezo

electric spherical particles are uniformly dispersed 

in a nonpiezoelectric continuous medium. We 

shall derive here an expression for the piezo

electric constant of this spherical dispersion 

model. 

THEORETICAL EQUATIONS 
Mechanical and electrical equivalent models 

that explain the piezoelectric dispersion were 

previously proposed by Fukada and Date. 2 

Hayakawa and Wada3 have recently derived a 

systematic theory for polymer piezoelectricity. 

They presented a mechanical two phase model 
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In the present paper a mathematical expession 

for the piezoelectric constant for a spherical dis

perse system is derived. First, we make the 

following assumptions. 

( 1) The relations between mechanical and elec-
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trical quantities are all linear. 

(2) The non-piezoelectric medium (phase I) 

is isotropic. 

(3) In the elastic deformation, no slip occurs 

on the surface of the spheres, and the strain in 

the dispersed spheres is uniform when the external 

macroscopic strain of the system is uniform. 

(4) The anisotropic axes of the dispersed 

spheres are oriented in the same directions. 

The fundamental piezoelectric equations for 

the disperse system are given as follows. 

( 1 ) 

where X; and xj are the stress and strain respec

tively, D1 the electric displacement, E" the electric 

field, ek; the piezoelectric stress constant, C;i the 

elastic constant, and s1" the dielectric constant. 

In principle, these quantities should be derived 

from a free energy F 0(x, E) of the system, with 

x and E standing for the strain and electric field 

of the system respectively. In order to obtain the 

relations among these elastic and dielectric quan

tities of the medium and the dispersed spheres, 

we will define a characteristic function, F(x, E, 

xu, En), where xu and En are strain and elec

tric field of the dispersed spheres respectively. 

Two virtual parameters, lv and qv, are intro

duced to meet the requirement that xn and En 

are independent variables in this characteristic 

function. lv and qv are the virtual force per 

unit area and the virtual true charge density 

added to the boundary of the dispersed sphere, 

respectively. Since in the actual system, lv and 

qv must be equal to zero, we have 

F 0 (x, E)=F(x, E, xu, EII)JV=o,qv=o ( 2) 

First we shall try to find the functional form 

of F when the virtual force lv and the virtual 

charge qv are present in dispersed spheres. 

Mechanical and electrical work, dW m and dW., 

added to a unit volume of the system by the 

differentials dx and dD are written as follows 

( 3) 

and 

( 4) 

The virtual mechanical work, d W m v, by the 

differential dl is written as follows: 
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dWmv=L: I rdtdSk 

" Js" 
( 5) 

where l is the real displacement on the surface 

of the sphere and S" the surface area of the k-th 

sphere. 

If the origin of coordinates is taken at the 

center of a sphere k, then lv and l can be written 

as follows 

( 6) 

and 

( 7) 

where xv and xu are the virtual stress and the 

strain in the sphere, respectively, n the unit 

vector normal to the surface of the sphere, and 

rk the radius of the k-th sphere.* When eq 5, 

6, and 7 are combined, one obtains 

dWmv=L: I (Xvn)·(dxiinrk)dSk 

" Js" 
=I: xvdxllvk 

k 

=¢Xvdxii ( 8) 

3 3 

where Xvdxn denotes I; I; XJidxiJ, the 
i j 

volume of k-th sphere, and ¢ the volume frac

tion of the spheres, I: vk. 
k 

The virtural electrical work, dW. v, that is, the 

work done by the virtual charge dqv when being 

transfered from infinity to the surface of the 

sphere, is given as 

dWev=t dqv<j;dSk ( 9) 

where ¢ is the electric potential on the surface 

of the sphere. The virtual electric displacement 

Dv is defined by 

Substituting eq 10 to eq 9, one finds 

dW.v=--1-r; I 
47r " )s" 

=-1-r;r) (dD"n)·(Enn)dS" 

47r " Js" 
* In this paper, the stress and strain are mostly 

expressed by matrix notation. However, in eq 6, 

7, and 8, Xv and xn are expressed in a second rank 

tensor respectively. 
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=-1-</JEIIdDv 
4rr 

( 11) 

Therefore, the differential dU of the internal 

energy, which takes into account both the virtual 

mechanical and electrical work, is given by 

dU= TdS+dW m +dWe+dW m v +dWev 

= TdS +Xdx+-1-EdD+¢Xvdxn 
4rr 

+-1-¢Endnv 
4rr 

(12) 

where S is the entropy and T the temperature. 

Now let us define a characteristic function 

F(x, E, xu, Err) as follows 

F=U-TS--1-ED--1-¢EnDv (13) 
4rr 4rr 

From this definition, one obtains the total dif

ferential of F. 

dF=- Sd T +Xdx--1-DdE + ¢Xv dxu 
4rr 

__ 1_</JDvdEII . 
4rr 

(14) 

Since we consider here an isothermal process, 

SdT is equal to zero. 

From this characteristic function, the follow

ing relations are obtained 

(15) 

(16) 

X v _ 
I- II 

¢ ax; .<,E,Eli 

(17) 

¢ aE; x, E,xii 
(18) 

Differentials dX;, dD;, dX;v, and dD;v can be 

expressed by the independent variables, xj, Ej, 

x/1, and E/1, as in the following example 
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For the differentials dD;, dX/, and dD/, one 

obtains similar equations. For simplicity the 

differential operator d will be omitted, for ex

ample, dX will be written as X. Now, the 

derivatives [aDijaxj]E,xn,En, [aD/ ;axj]E.xn,EII, 

[aX;jaEj]x,xii,EII, and [aXivjaEj]x,xii,EII, are equal 

to zero because the medium is non piezoelectric and 

xu and En are kept constant in evaluating these 

partial derivatives. Similarly, [ax,;aE/ 1],, E,xn 

and [aD;jax/1]x,E,EII are also equal to zero. 

From eq 15, 16, 17, and 18, the following re

ciprocal relations can be obtained 

¢[aviv] (21) 
aE; x,xll,EII aE/ 1 x,E,xll 

[ aviv] = -4rr [aX/] (22) 
ax/1 x,E,Eli aE/ 1 x,E,xli 

with these relations, eq 19 and other similar 

equations are simplified as follows 

where CL and sc are the elastic and dielectric 

constant of the disperse system under the condition 

that the dispersed spheres are rigid and conduc

tive, ctJr and sUe the equivalent elastic and 

dielectric constant of the spheres under the con

dition that the surfaces of the system are clamped 

and shorted, Cfj and sm the mutual elastic and 

dielectric constants between the sphere and the 

whole system, and e}J the piezoelectric constant 

of the dispersed spheres. It is seen from rela

tions such as eq 19, that the subscripts ij in 

sL, cJ]r, and sUe are commutative. The 

subscript ij in Cfj is also commutative, because 

the medium is isotropic. 

More exact definitions for these coefficients 

are given in the appendix. Among the seven 

coefficients in eq 23, C", the elastic constant of 

the dispersed system of rigid spheres and se, the 

dielectric constant of the dispersed system of 

conductive spheres have been already analytically 

derived in terms of the elastic and dielectric 

constants of the medium and the sphere, respec-
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tively. 4 •5 Here we shall find the expressions of 

other coefficients, em, eiir, em, and ellc. 

If we assume that xn is equal to x, though 

the elastic constant of the medium is different 

from that of the spheres, we should have 

and 

(24) 

(25) 

These equations imply that the binary system 

cannot be distinguished from a single phase sys

tem of medium only and a virtual force X; v is 

required to balance the excess force on the 

boundary between the sphere and the medium, 

where e 1 and en are the elastic constants of the 

medium and of the dispersed sphere, respectively. 

From eq 23, putting x/1=xi, we obtain 

(26) 

Substituting eq 24 into eq 26, we obtain 

Cfi= (qj-CL) (27) 

From eq 23, putting E/1 =0 and x/1=xi, we 

obtain 

(28) 

Then combining eq 25, 27, and 28 we obtain 

(qj-CL)-CL (29) 

If we assume that En equals to E, though 

the dielectric constant of the medium is different 

from that of the sphere, the following relations 

must be satisfied 

(30) 
and 

{
1 i=j 

o;i= 0 i=Fj 
(31) 

where s1 and en are the dielectric constants of 

the medium and the spheres respectively. From 

eq 23, putting E/1=Ei, 

and 
D; v = -emo;iEi+efJc Ei 

Since the medium is an isotropic body, e0 

em are scalars. From eq 30 and 32, 

m 1 ( c I) e =- e -e 
¢ 

Combining eq 31, 33, and 34, we obtain 
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(32) 

(33) 

and 

(34) 

II II [ 1 ( c I) I] Si/=s;i+ ¢ e -e -c u;j (35) 

Now we shall proceed to obtain more concrete 

expressions for the coefficients in eq 23. The 

elastic tensor for any isotropic body is a func-

tion of two independent components, C and A, 

explicitly, 

c A A 0 0 0 

A c A 0 0 0 

(C;i)= 
A }. c 0 0 0 

(36) 
0 0 0 G 0 0 

0 0 0 0 G 0 

0 0 0 0 0 G 

where the shear modulus G and the bulk modulus 

K are given as G=(C-.:1)/2 and K=(C+22)j3, 

respectively. 

For the isotropic spherical dispersion system, 

G and K have been derived as follows 4 

(Gn-G1)(9K1 +8G1) 

(37) 

K=KI+(KIT-KI) KI+tGI ,-/, (38) 
KII+tGI 'f' 

where superscripts I and II refer to the medium 

and the dispersed phase, respectively. 

Now we consider the case in which the dis

persed spheres are perfectly rigid (Gn=Kn= co). 

Using the relations G=(C-.:1)/2 and K=(C+2A)/ 

3, from eq 37 and 38, the elastic constant of 

the dispersed system of rigid spheres is given as 

C 1+(C1+a)¢ (i=j and i,j=1, 2, 3) 

;.1+( C 1 - )¢ (i=Fj and i,j=1, 2, 3) 

CL= cr_;.I 3 

2 + 4 a¢ (i=j and i,j=4, 5, 6) 

(i=Fj and i,j=4, 5, 6) 

(39) 

where a=(5(C1-J.1)j(1-¢)][C1j(4C1 -l)]. 

Substituting eq 39 into eq 27 and 29, we obtain 

ICI+a (i=j and i,j=1, 2, 3) 

(i=Fj and i,j=1, 2, 3) 

Cfi= 4 2 (40) 

-a (i=j and i,j=4, 5, 6) 
3 

'0 (i=Fj and i,j=4, 5, 6) 
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(i=j and i,j=1, 2, 3) 

(i*j and i,j=1, 2, 3) 

(i=j and i,j=4, 5, 6) 

the piezoelectric constants. From the second, 

third, and fourth rows in eq 23, putting Ei=O, 

Xiv=O, and Div=O, we obtain 

Di=-ifJsmE/1 (47) 

X in= II (48) 

(i*j and i,j=4, 5, 6) Ein=-4rr(crr 0 )i]e}1xkii (49) 

(41) Combining eq 47, 48, and 49, we obtain 

where a=(5(C1 -,\1)/(1-¢)][C1f(4C1 -,\1)]. 

Equation 39, 40, and 41 can also be represented 

in terms of G\ Gn, K\ and Kn, using the rela

tions C=K+(4/3)G, and ..\=K-(2/3)G. 

The dielectric constant of the dispersed system 

has been given as5 

·-sr[1 3(cn-cr)¢ J 
c- + 2cl+cii-(cii-ci)¢ 

(42) 

If the spheres are electrically conductive (en= oo ), 

we have 

(43) 

Substituting eq 43 into eq 34 and 35, we obtain 

m 3 I 
c =--c 

1-¢ 
(44) 

and 

Using eq 39, 40, 41, 44, and 45, all components 

of the matrix of eq 23 can be represented by 

the material constants of the medium and the 

dispersed spheres, i.e., CL, en, sf], and en. 
Replacing the independent variables x/1 and 

E/1 in eq 23 by X/ and D/, setting Xiv and 

Div equal to zero, which is the case for the 

actual system, we obtain 

(46) 

When we compare eq 1 with eq 46, the sub

matrix M 1 is equal to the matrix of eq 1. Since 

the components of M, are given in terms of 

CI}, and si}, we can calculate expressions 

for Cij• elk> and eki in eq 1 as functions Of these 

quantities. 

Now we are ready to derive the equations for 

64 

Di =4rr¢sm[i5im +4rr(siic)i]e}1( 

(50) 

where i5i;={ 1 Then the piezoelectric stress 
0 l*J 

and strain constants of the system are given by 

eij = Dif4rr X;= ¢em[ Oin + 4rr( cii0 )ik1 eU( 

(51) 

and 

di;=ei;( C)J;} 

=¢em[ Oio +4rr( CIIc)ik'dU cue c,I.;.]t,1 

x (52) 

where d1i is piezolectric strain constant of the 

sphere. If the second term in brackets in eq 

51 and 52, which is the piezoelectric secondary 

effect, can be neglected, we obtain the following 

simpler relations 

(53) 

di;=¢sm(cn°)tk'd1i CU( C);;-} (54) 

In these formulas the coefficients em, cnr, sm, 

and snc can be expressed by material constants 

of phases I and II by eq 40, 41, 44, and 45, re

spectively. 

EXPRESSIONS OF PIEZOELECTRIC 

CONSTANTS 

In a previous section, we have derived general 

formulas eq 51 and 52 for the piezoelectric 

stress constant ei; and the piezoelectric strain 

constant, di;• for a general spherical dispersion 

system. If all components of the piezoelectric 

constant, en and dn, the elastic constants, C 1 

and en, and the dielectric constants, s1 and sn, 

are known, the piezoelectric constants of the 

system, e and d, can be calculated by means of 

eq 51 and 52. For the present, we are concerned 
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with the effect on the piezoelectric constant of 

the elastic and dielectric relaxations of the sphere 

and the medium. Therefore we shall ignore 

the anisotropy in the piezoelectric, elastic, and 

dielectric constants and derive some concrete 

expressions for the piezoelectric constants for 

three representative examples. 

Case I (when the symmetry is D= ( oo22) 

and the piezoelectricity of the face-shear type 

only exists in the sphere): This case includes 

most biopolymers and synthetic polypeptides. 

For simplicity, we assume that CJ}=O (i=F j, 

i,j=4, 5, 6) and dJ=O (i=Fj), and that the only 

nonzero components of eii are ±ei!, that is, 

0 0 en 0 

g l 14 

0 0 0 -eU (55) 

0 0 0 0 

The calculation according to eq 51 le::tds to the 

following formula 

3cr5Gr Kr +i-Gr 

II K 1+2G 1 

e14 =9e14 ------- (56) 

[2c1 +cn+(c1-cii)9) [ 3G1 +2Gn + 2(G1-Gn)9 ]+8rr(l-9)2(erJ) 2 

where 9 is the volume fraction of the dispersed 

spheres and following changes of notation are 

made: C!i-->Gnandci1-->cn. Theterm8rr(l-9)2 • 

(eii) 2 expresses the piezoelectric secondary effect. 

If the medium and the sphere are incompressible 

and the piezoelectric secondary effect is ignored, 

eq 56 can be simplified as follows 

II 3 
et4=9e14 II n 

2+:_+(1-:_)9 c! c! 

5 

X 3+ 2Gn + 2(1- Gn 
GI or 'f' 

(57) 

Similarly, from eq 54, we can also obtain 

d d i! 3 
14=9 14 II II 

2+ cc! + ( 1- eel )9 
5 

(58) 

In the above expressions, e14 and d 14 are com

plex quantities, i.e., 

a.) (59) 

d14=di4 tan ad) (60) 

-because s\ sn, Gl, and an are all complex quan-

dil p+4 

di2 4 G1 p-1 
1+--

di3 
=9 

3 3 K 1 p-1 

di4 
II 

2+ 4Gr 0 2-'-!_i__ 
dis 

I I KI 0 c 

di6 0 
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tities, which are given as 

s=s' -io" =e 1 (1-i tan a,) (61) 

G=G' +iG" =G' (1 +i tan aa) (62) 

From eq 57 and 58, the influence of the elastic 

and dielectric loss on the phase angle of the 

piezoelectric constants is expressed as 

1 I II 
tan a.= I (tan a, -tan a, ) 

sn 

+ 2
301 (tan aan-tan a/) (63) 

2+ an 

1 (tan a 1-tan a II) 
2s1 ' ' 

1+---u 
6 

3 I II 64 +---1y(tan aa -tan oa ) ( ) 

GI 

Case II (when the elastic constants of the 

piezoelectric spheres are much larger than those 

of the medium): This case includes a polarized 

mixture of piezoelectric ceramic powders, such 

as PZT, and adhesive polymers. We assume 

that sU=O (i=Fj), Gn=Kn=oo, 9« 1 and that 

the piezoelectric secondary effect can be ignored. 

From eq 52 we obtain 

p-1 p-1 0 0 0 d!I il 

p+4 p-1 0 0 0 dg 

p-1 p+4 0 0 0 dii 
i3 

0 0 5 0 0 d!I i4 
(65) 

0 0 0 5 0 d!I i5 
0 0 0 0 5 dl! 

i6 

65 



M. DATE 

where i= 1, 2, 3, f3=(4/3)(G 1jK1) and s1, G\ and 

K1 are the dielectric constant, the shear modulus, 

and the bulk modulus of the medium, respec

tively, and s/1 the i-th component of the di

electric constant of the sphere. 

Case III (when the medium and sphere are 

both incompressible): This case includes semi-

2 

-1 

-1 

where i = 1, 2, 3 and s1 and G1 are the dielectric 

constant and the shear modulus of the medium, 

respectively, and Grr and s/1 are the shear 

modulus and the i-th component of the dielectric 

constant of the sphere, respectively. Equation 66 

includes the expression for d14 which has been 

already given in case I. 
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APPENDIX 

Definitions of notations 

X=stress of the system 

xv =virtual stress on the sphere 

fv =virtual force on the sphere 

x=strain of the system 

xii=strain of the sphere 

0 

0 

0 

!=displacement of the surface of the sphere 

£=electric field in the system 

EII=electric field in the sphere 

¢=electric potential on the surface of the 

sphere 

D=electric displacement in the system 

Dv =virtual electric displacement in the sphere 

q v =virtual true charge on the surface of the 

sphere 

C=elastic constant of the system 

C 1=elastic constant of the medium 
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crystalline polymers, where piezoelectricity exists 

in the crystalline phase. One example is poly

vinylidene fluoride. We assume that sU=O (i=Fj), 

K 1 = K II= co, eft « 1, the piezoelectric secondary 

effect is negligibly small, and the sphere is elasti

cally isotropic. From eq 52, we obtain 

-1 

2 

-1 

0 

0 

0 

-1 

-1 

2 

0 

0 

0 

0 

0 

0 

3 

0 

0 

0 

0 

0 

0 

3 

0 

0 

0 

0 

0 

0 

3 

CII=elastic constant of the sphere 

(66)> 

cr=elastic constant of the system when the· 

sphere is rigid (xii=O) 

cm=elastic coefficient between X and XII when 

the system is clamped (x=O) or between 

xv and x when the sphere is rigid (xrr=O) 

CIIr=elastic coefficient between xv and xii when 

the system is clamped (x=O) 

e=dielectric constant of the system 

s1=dielectric constant of the medium 

eii=dielectric constant of the sphere 

sc=dielectric constant of the system when 

the sphere is conductive (EII=O) 

sm=dielectric coefficient between Dv and E 

when the sphere is conductive (EII=O) 

and xii=O, or between D and Ell when 

the system is shorted (E=O) 

ellc=dielectric coefficient between Dv and Ell 

when the system is shorted (E=O) and 

XII=0 

e=piezoelectric stress constant of the system 

eii=piezoelectric stress constant of the sphere 
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