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We have generated an improved assembly and gene annotation of the pig X Chromosome, and a first draft assembly of the

pig Y Chromosome, by sequencing BAC and fosmid clones fromDuroc animals and incorporating information from optical

mapping and fiber-FISH. The X Chromosome carries 1033 annotated genes, 690 of which are protein coding. Gene order

closely matches that found in primates (including humans) and carnivores (including cats and dogs), which is inferred to be

ancestral. Nevertheless, several protein-coding genes present on the human X Chromosome were absent from the pig, and

38 pig-specific X-chromosomal genes were annotated, 22 of which were olfactory receptors. The pig Y-specific

Chromosome sequence generated here comprises 30 megabases (Mb). A 15-Mb subset of this sequence was assembled, re-

vealing two clusters of male-specific low copy number genes, separated by an ampliconic region including the HSFY gene

family, which together make up most of the short arm. Both clusters contain palindromes with high sequence identity, pre-

sumably maintained by gene conversion. Many of the ancestral X-related genes previously reported in at least one mam-

malian Y Chromosome are represented either as active genes or partial sequences. This sequencing project has allowed us to

identify genes—both single copy and amplified—on the pig Y Chromosome, to compare the pig X and Y Chromosomes for

homologous sequences, and thereby to reveal mechanisms underlying pig X and Y Chromosome evolution.

[Supplemental material is available for this article.]

The therian (marsupial and eutherian) sex chromosomes evolved

originally from a homologous pair of autosomes (Ohno 1967a)

∼170–180 million years ago (Livernois et al. 2012; Cortez et al.

2014) and have become extensively differentiated in terms of

structure and sequence content. The gene content and organiza-

tion of the emergent X Chromosome have been subject to strong

conservation across differentmammalian specieswith retention of

much of the ancestral X (Ross et al. 2005; Bellott and Page 2009). In

contrast, the acquisition of a dominant male sex-determining

function and accumulation of male benefit genes (e.g., genes in-

volved in regulating male germ cell differentiation) on the Y

Chromosome has been accompanied by the genetic isolation of

much of the Y through suppression of recombination with the

emergent X, subsequent degenerationwith loss of much of the an-

cestral Y gene content, and dosage compensation of genes on the

X Chromosome to restore equivalence of gene expression between

males and females (Graves 2010; Bachtrog 2013). Selection has

also acted to retain a strictly X-Y homologous pseudoautosomal re-

gion (PAR) that permits X-Y pairing during meiosis and within

which there is obligate recombination between the sex chromo-

somes. The gene and sequence content of the PAR varies between

species, reflecting processes of expansion and pruning of the PAR

in different mammalian lineages (Otto et al. 2011).

Comparisons of X Chromosome sequences from several

mammalian species have confirmed strong conservation of gene

sequence and order (Chinwalla et al. 2002; Sandstedt and Tucker

2004). Groenen et al. (2012) published the first assembly of the

porcine X Chromosome as part of the initial description of the
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pig genome sequence, and again this demonstrated conservation

of synteny across the chromosome. Nonetheless, sequence gaps

and ambiguities remainedwithin this first assembly, complicating

genomic studies within pigs and comparative studies between

mammals.

In contrast to the broadly conserved X Chromosomes, the

hemizygous nature of the Y Chromosome and suppression of re-

combination, in combination with normal processes of genome

evolution, have led to a gradual degeneration of the chromosome

over time, chromosomal rearrangements, and colonization by se-

quences from the X Chromosome and autosomes. Newly intro-

duced genes will either drift or degenerate, or selection may act

on variants to fix new genetic functions on the Y, particularly

where these confer a male benefit. The haploid state of the sex

chromosomes in males has led to the accumulation of male game-

togenesis genes on both X and Y Chromosomes (Vallender and

Lahn 2004). A further consequence of the nonrecombining status

of the male-specific region of the Y is the relaxation of restraint on

sequence amplification, leading to generation of ampliconic re-

gions containing amplified gene and sequence families (Bellott

and Page 2009).

The highly repetitive nature of many regions of mammalian

YChromosomes has impeded the generation of complete chromo-

some sequences; while there are tens of mammalian genomes

sequenced, only a small fraction have a Y assembly. These few

assemblies, and several partial sequence assemblies, have permit-

ted the elucidation of chromosome topology and gene order in

human (Skaletsky et al. 2003), chimpanzee (Hughes et al. 2010),

rhesus macaque (Hughes et al. 2012), wallaby (Murtagh et al.

2012), mouse (Soh et al. 2014), marmoset, rat, and opossum

(Bellott et al. 2014), cattle (Elsik et al. 2009), horse (Paria et al.

2011), and cat and dog (Li et al. 2013a). These works show diver-

gence in gene content, order, structure, and sequence between Y

Chromosomes from different mammalian species. However, few

data are available on the porcine Y Chromosome sequence or

gene order, and their relationship to the X, despite the recent se-

quencing project for the pig genome (Groenen et al. 2012), re-

mains unclear. Much of our knowledge of Y gene order comes

from Quilter et al. (2002), who combined radiation hybrid map-

ping data with physical mapping of BAC clones to generate an or-

dered gene framework.

The current work presents a second-generation, much im-

proved assembly and gene annotation of the porcine X

Chromosome based on the Duroc X Chromosome. We also pre-

sent the Y Chromosome sequence derived predominantly from

Duroc, with someMeishan, which has permitted a first-generation

assessment of the Y Chromosome short-arm gene content and or-

der, and analysis of how this compares to other mammalian Y

Chromosomes, the evolutionary processes leading to the current

Y organization, and the structural relationships between the por-

cine sex chromosomes.

Results

A second-generation porcine Chromosome X assembly

Sequence statistics

The Chromosome X assembly (http://vega.sanger.ac.uk/Sus_

scrofa/Location/Chromosome?r=X-WTSI) comprises 129,927,919

bp of sequence in five contigs, with 13 gaps and an N50 length

of 4,824,757 bp. Compared with the previous 10.2 build, many

gaps have been filled and the order of sequences on the chromo-

some has been updated. Much of this improvement was informed

by the use of optical mapping techniques, which helped resolve

some of the more repetitive regions of the chromosome; an exam-

ple can be seen in the short-arm clone CH242-202P13 (see

Supplemental Methods Fig. OM7 for details on how the optical

mapping approach was used here). Supplemental Figure S3 shows

a dot-plot alignment of the 10.2 Xwith our X assembly, highlight-

ing the regions of the chromosome for which the sequence order

has been corrected.

The pseudoautosomal region in pig is of a similar size to the

PAR in other closely related mammals (e.g., cattle) and has been

discussed previously (Skinner et al. 2013). The precise location of

the PAR boundary was recently confirmed to be within the gene

SHROOM2 (Das et al. 2013). A 33-kb region containing a lincRNA

with homology to the PAR (X-WTSI: 1,840,693–1,874,130)

can be found on Xq (X-WTSI: 114,853,327–114,886,764), and

most likely arose via duplication and transposition from the PAR

onto Xq.

Comparative X alignments

We aligned the X (and available Y) Chromosome sequences of

nine mammalian species (Fig. 1). The previously documented

high level of conservation of synteny is more apparent with the

new pig X, as many of the reported breakpoints from cross-species

comparisons to the build 10.2 X were due to errors that have been

resolved. Li et al. (2013b) produced a genome assembly of a female

Tibetan wild boar and reported regions of the genome with appar-

ent inversions with respect to the Duroc assembly. We compared

the X inversions with our new assembly and found that they lie

outside the regions that have been resolved from the 10.2

X. That is, these remain as potential inversions between Duroc

and Tibetan wild boar that require further investigation.

Gene content of the X

ChromosomeXcontains complex duplicated gene families such as

olfactory receptors (OR) alongwithpseudogenes,whicharehard to

discriminate usingonlyautomatic pipelines. Since the reference as-

semblywas high quality, the sequence underwentmanual annota-

tion to allow resolution of these gene families. Table 1 shows the

updated annotation compared to themanual annotation available

on the 10.2X build and comparable statistics for themanual anno-

tation of the Y Chromosome. The full gene annotation is provided

in Supplemental Table S5 and is available through the Vega web-

site. Themajority (76%)of annotated loci inpig are sharedwithhu-

man. Many genes from the previous build that were disrupted by

gaps have now been completed, and the number of long noncod-

ing RNA loci has increased from 33 to 100.

Some genes with updated annotation from build 10.2 stand

out as being of particular biological interest. Comparing the hu-

man and pig X Chromosomes, 38 coding loci in pig are not found

in human. Twenty-two of these coding genes and five novel pseu-

dogenes are in olfactory gene clusters. Pigs are known to have a

large olfactory receptor repertoire (Nguyen et al. 2012), and this

adds to the reported collection. Supplemental Figure S4 shows

the improved assembly and annotation around one of the olfacto-

ry region clusters on Xq. The region lies within an inversion in the

10.2 assembly, corrected here andmatching the gene order on the

humanX. The full list of genes present on pig ChromosomeX, but

not on the human X, is provided in Supplemental Table S7.

Sequences of the pig X and Y Chromosomes
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A first-generation porcine Chromosome Y sequence assembly

Successfully assembled repetitive portions of Y Chromosomes

have been generated only for a limited number of species (see,

for example, the human, mouse, or chimpanzee Y) (Skaletsky

et al. 2003; Hughes et al. 2010; Soh et al. 2014). Given the highly

repetitive nature of the long arm of the pig Y Chromosome, we tar-

geted the short arm, which contains most, if not all, of the sin-

gle-copy material. The details of sequenced clones are given

in Supplemental Table S1; the total sequence produced, including

finished and unfinished clones, without overlaps covers

29,953,871 bp, with 15,592,828 bp annotated and placed in the

Vega assembly (http://vega.sanger.ac.uk/Sus_scrofa/Location/

Chromosome?r=Y-WTSI). Here, we focus on the assembled and

ordered contigs within that sequence.

Organization of the porcine Y Chromosome

The genes on Chromosome Y are organized into two main blocks

of low copy number sequences (Fig. 2). These blocks are separated

by a region containing highly amplified sequences including∼100

copies of the HSFY gene family (Skinner et al. 2015). Our final

mapped sequence comprises seven contigs each in the distal and

proximal blocks (Supplemental Fig. S5). Contigs that were assem-

bled, but could not be assigned to the physical map, are included

in a separate assembly (U_Y) in Vega. Two of these contigs appear

to lie on Yp close to the centromere (Supplemental Figs. S6, S7).

Few low-copy loci have been identified on the Y long arm,

which seems mostly composed of repetitive sequences (e.g.,

Quilter et al. 2002). Althoughwe attempted to sequence one repet-

itive clone, it was not possible to assemble a framework physical or

sequence map. The sequences we obtained belong to previously

published male-specific pig repeat families (McGraw et al. 1988;

Mileham et al. 1988; Thomsen et al. 1992; Pérez-Pérez and

Barragán 1998). Metaphase FISH did, however, reveal a small

low-copy region at the q terminus (Supplemental Fig. S13).

Gene-related content of the Y Chromosome

As with the X Chromosome, the Y-chromosomal sequence was

run through the Otterlace/Zmap analysis pipeline, which per-

forms homology searches, de novo sequence analysis, and gene

predictions (Loveland et al. 2012). Repeat masking proved chal-

lenging due to the paucity of known pig-specific repeats. Manual

annotation resolved this, as homology analysis is routinely run

on-the-fly within the annotation tools, without repeat masking,

to more accurately elucidate gene structures, especially using

known Y-chromosomal genes from other species as targets and

Figure 1. Comparative X and Y map. Sequenced X Chromosomes from
nine mammals, plus available Y Chromosomes, aligned to our pig X and Y
assemblies. In each dotplot, the pig chromosome is on the horizontal axis,
and the subject chromosome is on the vertical axis. The cattle X sequence
is plotted in reverse orientation. High-stringency alignments are shown in
blue with less stringent alignments in yellow. Human, chimpanzee, cat,
and dog retain the ancestral X arrangement. Sheep and cattle show a small
number of rearrangements, while rodents and rabbit have a greater rate of
chromosomal change. Chromosomes derived from shotgun assemblies
aremore prone to showing rearrangement and reflect the need for contin-
uous assembly improvement. The Y alignments show highly variable orga-
nization, and different ancestral genes have amplified in different lineages
(note that the sizes of the Y assemblies are not to scale here; see
Supplemental Fig. S8 for larger versions).

Table 1. Comparison of the HAVANAmanually annotated gene con-
tent between porcine build 10.2 X, our updated build of the X (X-17),
and the new Y annotation (Y-13)

10.2X
X-17

(WTSI-X)
Y-13

(WTSI-Y)

Total number of genes 632 1033 193
Total number of protein-coding 422 690 75
Known protein-coding 211 437 18
Novel protein-coding 210 245 57
Putative protein-coding 1 8 0

Noncoding genes
LincRNA 20 77 12
Antisense 11 22 0
Sense intronic 0 1 1

Pseudogenes
Processed pseudogenes 140 204 29
Unprocessed pseudogenes 2 23 73
Unitary pseudogenes 3 11 0
Transcribed unprocessed

pseudogenes
1 4 3

Polymorphic pseudogenes 0 1 0

The number of identified coding genes has been substantially increased
and brings the porcine X closer in gene content to other well-sequenced
mammalian X Chromosomes (e.g., human and mouse).

Skinner et al.
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identifying those pig homologs present. Many of the ancestral X-

related genes previously reported in other mammalian Y

Chromosomes are represented either as active genes or partial se-

quences, some of the latter with supporting ESTs. There is also

evidence for rearrangement of a number of Y-linked genes,

which may have rendered them nonfunctional or modified their

transcription products. An overview of Y gene loci is given in

Table 2, and the full Y gene annotation table is provided as

Supplemental Table S6. The contigs here show no evidence for

novel pig genes, though these may yet be found in the ampliconic

regions of the chromosome.

Ampliconic gene sequences

Although our sequence contigs are limited to the low-copy regions

of the chromosome, the FISH data show regions where gene se-

quence-containing clones are present inmultiple copies. An exam-

ple is the CUL4BY gene, which has a partial copy in fosmid

WTSI_1061-13A5. Probes detecting this sequence bind multiple

targets proximal to SRY (and likely proximal to RBMY), as well as

additional sites toward the centromeric end of the Y short arm

(Supplemental Fig. S13F). The sequence supports gene expres-

sion from a “full-length” version of the sequence centromeric to

SRY, and RT-PCR shows expression in testis, kidney, and brain

(Supplemental Fig. S2). A similar pattern of amplification exists

for fosmid clones containing TSPY.

Regions of X-Y homology

Weexamined all sequencedY clones for homologywith theX. The

overview X-Y comparison for the short arm of the Y is shown in

Figure 3. Besides the X-Y homologous genes, a region of 90.25 kb

on the distal block encompassing the genes (or gene fragments)

TRAPPC2-OFD1Y-GPM6B has high sequence identity to the X,

even in intronic and intergenic regions (Supplemental Fig. S1).

OFD1Y is expressed highly in testis with lower expression in kid-

ney and brain (Supplemental Fig. S2), but there is no evidence

for expression of the Y copies of TRAPPC2 or GPM6B. Previous

work suggested that three X BAC clones around the olfactory re-

ceptor genes contain a sequence amplified on Yq; we did not

find matches to these clones within our Y sequence data beyond

repetitive elements; the potential for olfactory receptor-related se-

quences on the Y nevertheless remains.

Evolution of the porcine Chromosome Y

Inverted and duplicated blocks of sequence

Inversion and duplication to form palindromes has occurred

around both SRY and the CUL4BY fragments (Fig. 4). The SRY

gene itself is present in twohead-to-head copies. There are unlikely

to be more than two SRY copies on the chromosome (qPCR)

(Supplemental Fig. S10). The pattern of markers at the breakpoint

regions reveals that the SRYduplication preceded theCUL4Bdupli-

cation (see Fig. 4; Supplemental Fig. S9). Transposable elements at

both inversion boundaries are annotated as specific to the Sus lin-

eage, suggesting these are relatively recent duplications; two copies

of SRY could also be present in closely related suid species. The

arms of the palindrome have high levels of sequence identity;

we found no difference in the SRY sequence from clones on one

arm versus the other arm. Our sequence contigs do not cover the

centers of the palindromes (∼20 kb is missing in each), so we do

not know if the arms abut—it remains possible that there is a short

stretch of unique sequence between them. Prior sequencing of the

SRY gene has given no evidence for polymorphisms in the recov-

ered SRY sequence from any individual, despite there being

breed-specific differences—i.e., there are no heterozygous males

identified (more than 300 SRY sequences are currently deposited

in NCBI for S. scrofa alone). A further palindromic region lies at

the proximal end of USP9Y, covering 56 kb, including the final ex-

ons 18–43 of the gene (Supplemental Fig. S11). Compared to SRY

and CUL4BY, the breakpoints are less well defined, with sequence

identity decreasing over some tens of base pairs.

Structural rearrangements compared to other species

We generated likely pathways of gene-only rearrangements from

the ancestral Y Chromosome to pig, using data from Li et al.

(2013a) updated with pig and cattle (Elsik et al. 2009) Y

Chromosomes (Supplemental Fig. S12). Global alignments of

chromosome content with other available Y Chromosome assem-

blies shown in Figure 1 are presented as larger versions in

Supplemental Figure S8. Although little of the Y sequences align

outside genic regions, the comparison highlights which ancestral

gene families have become amplified in different lineages, e.g.,

HSFY in pigs and TSPY in species including dogs, horses, and hu-

mans (Paria et al. 2011; Xue and Tyler-Smith 2011; Li et al. 2013a).

Figure 2. The organization of the pig Y Chromosome. All identified
male-specific single-copy genes are on the short arm and split into two
blocks by the ampliconic HSFY region. Genes (blue) and pseudogenes
(gray) are shown within each block. The long and short arms toward the
centromere appear to contain ampliconic or other repetitive sequences.

Sequences of the pig X and Y Chromosomes
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Discussion

We present here an updated and substantially improved assembly

of the pig Chromosome X and a first-generation assembly of se-

quence from the pig ChromosomeY. These sequences have also al-

lowed us to confirm the strong conservation of the X and recover

information on the evolution of the Y Chromosome and how this

relates to sex chromosome evolution in other mammals.

An updated assembly and annotation of the

porcine Chromosome X

The picture ofmammalianXChromosomes is one of general struc-

tural stability (see Fig. 1). Specific lineages, such as rodents, have

many more X rearrangements than others, but these species are

characterized by a globally higher number of chromosomal rear-

rangements (Stanyon et al. 1999). Apparent inversions and trans-

locations in the pig X, relative to the ancestral X, detected in

previous builds, are corrected here to an order more reflective of

the inferred ancestral X Chromosome. Similar findings may be

seen with other mammalian X Chromosomes as the quality of

the assemblies improves. It paints a stark contrast to the dynamic

and ever-changing mammalian Y Chromosomes that we discuss

below.

Improved gene annotation of the porcine Chromosome X

The revised gene annotation increases the number of protein-cod-

ing genes identified on the pig X to 690, bringing the reported

gene content closer to that identified in the X Chromosomes of

well-studied species (i.e., humans andmice, with 813 and 940 pro-

tein-coding genes, respectively). The majority of X Chromosome

genes are shared between species (76% of annotated pig genes

shared with human), in accordance with Ohno’s law (Ohno

1967b). We have highlighted some specific genes of interest

with an updated status from build 10.2 X.

Eleven protein-coding genes present on the human X have

been annotated as unitary pseudogenes (also known as loss-of-

function genes) on the pig X (Supplemental Table S10). These in-

clude: GUCY2F, a possible candidate for involvement in X-linked

retinitis pigmentosa (Yang et al. 1996); AWAT1, an acyl-CoA wax

alcohol acyltransferase involved in sebum production (Turkish

et al. 2005); ITIH6, a trypsin inhibitor; and RAB41, a member of

the RAS oncogene family (Supplemental Results, section 3).

Other regionsof difference lie in thecancer/testis (CT) antigen

clusters found in humans and other primates, which are signifi-

cantly smaller in pig. This is in line with evidence that enlarged

CT antigen clusters arose due to a recent amplification in primates

(Zhang and Su 2014), perhaps driven by a retrotransposition event.

Their potential functions remainunknown, though theymayhave

been involved in primate speciation (Zhang and Su 2014).

Apart from the olfactory receptor gene clusters, we have not

found evidence for widespread ampliconic gene families on the

pig X. This contrasts with the X Chromosomes of human and

mouse, which contain independently amplified gene families,

with little overlap between the species (Mueller et al. 2013).

Human X Chromosomes contain multiple inverted repeats with

high sequence identity, enriched for testis-expressed genes

(Warburton et al. 2004). Mice have a greater number of X-ampli-

conic genes thanhumans, apparently driven by a genomic conflict

between X and Y sequences; the gene Sly on mouse Yq represses

gene expression from sex chromosomes in spermatids, and the

copy number of X genes has increased in response to maintain ex-

pression of key genes (Ellis et al. 2011). These examples led to an

expectation that this might be a general feature of mammalian X

Chromosomes and that the pig X would also contain unique

ampliconic testis-expressed genes. However, we have no evidence

supporting this—either due to a lack of such genes, the paucity of

pig-derived evidence (e.g., ESTs, cDNAs, RNA-seq data), or because

ampliconic genes lie within the remaining gaps within the

assembly.

Table 2. Genes on pig Chromosome Ypwith expression status and supporting evidence from expressed sequence tag (EST) and Sequence Read
Archive (SRA) libraries

Gene (Alias) Accession Expression Copy number

DDX3Y (DBY) OTTSUSG00000005192 Not restricted 1
EIF1AY OTTSUSG00000005597 Not restricted 1
EIF2S3Y OTTSUSG00000005598 Not restricted 1
UTY (KDM6A) OTTSUSG00000002750 Not restricted 1
OFD1Y OTTSUSG00000005612 Not restricted 1
TMSB4Y OTTSUSG00000005246 Not restricted 1
TXLNGY OTTSUSG00000005200 Not restricted 1
USP9Y (DFFRY) OTTSUSG00000005756 Not restricted 1
ZFY OTTSUSG00000002751 Not restricted 1
AMELY OTTSUSG0000000517 Restricted: teeth (Hu et al. 1996) 1
CUL4BY OTTSUSG00000005721 Restricted: predominantly testis (SRA and EST

data)
One known intact expressed copy;

potentially multicopy
HSFY Multicopy Restricted: predominantly testis (Skinner et al.

2015)
∼100

PRSS55L OTTSUSG00000005712 Restricted: testis (SRA data) 1
RBMY OTTSUSG00000005714 Restricted: testis (SRA and EST data) One known intact expressed copy;

potentially multicopy
SRY OTTSUSG00000002747

OTTSUSG00000005707
Restricted: testis (SRA and EST data),

genital ridge (Daneau et al. 1996)
2

TSPY OTTSUSG00000005701 Restricted: testis (SRA and EST data) One known intact expressed copy;
potentially multicopy

UBA1Y (UBE1Y) OTTSUSG00000005209 Restricted: testis (SRA and EST data) 1

Genes are grouped by pattern of expression. A more comprehensive table may be found in Supplemental Table S4.
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The porcine Chromosome Y

A striking aspect of the Chromosome Y organization is that the

known single-copy male-specific genes are found in tight clusters

of contigs spanning only 2 or 3 Mb of sequence. This is a pattern

observed in some other mammalian Y Chromosomes—for exam-

ple, mice (Soh et al. 2014), cattle (Elsik et al. 2009), and cats and

dogs (Li et al. 2013a). Each lineage appears to have preserved a

small region of key ancestral X genes, while the remainder of the

chromosomehas evolved in a species-specificmanner. In contrast,

in human and chimpanzee Y Chromosomes (Skaletsky et al. 2003;

Hughes et al. 2010), the single-copy material is more widely dis-

tributed along the chromosome. Patterns of hybridization from

FISH suggest to us that there is additional single-copy sequence

on Yq, including near/at the Yq terminus, but we were unable to

elucidate the sequences involved.

Organization of the pig Y

Palindromic sequences

A recurring feature of the Y sequences we have assembled is the

presence of palindromic regions, each on the order of 120 kb

end to end, and reminiscent of ampliconic structures found on

the mouse (Soh et al. 2014), human (Skaletsky et al. 2003), and

chimpanzee (Hughes et al. 2010) Y Chromosomes. The palin-

dromes on the pig Y have resulted from duplication and inversion

of sequences, and at least three such palindromes are present. Two

have very high levels of sequence identity; the inverted structure

may facilitate the process of gene conversion by allowing the for-

mation of stem–loop structures, as seen in the palindromes on

the human Y Chromosome (e.g., Rozen et al. 2003; Hallast et al.

2013). These palindromic sequences are also reminiscent of the

“core duplicons” found in humans and great apes (Marques-

Bonet and Eichler 2009). In the case of pig, however, there is no ev-

idence for novel gene structures and functional innovation as a re-

sult of the duplications.

The first two of these palindromes are in the proximal gene

block. One encompasses the two copies of the male-determining

gene SRY. Multiple SRY copies are found in dog (Li et al. 2013a)

and some rodent species (e.g., Lundrigan and Tucker 1997;

Murata et al. 2010; Prokop et al. 2013), but there has previously

been no suggestion of this being the case in the pig. While most

other species with multiple SRY copies have identifiable sequence

differences between the copies in a single individual, there is also a

known example in rabbits of a palindrome encompassing SRY,

with gene conversion maintaining sequence identity (Geraldes

et al. 2010). A similar mechanism may maintain the sequence

identity between the palindrome arms in pig.

The third palindrome is found in the distal gene cluster.

Unlike the previous two palindromes, both breakpoint ends lie

within complete transposable elements (TEs). Sequence identity

between the palindrome arms is lower around the breakpoints,

perhaps indicating that the duplication results from an older event

or that homogenizing mechanisms such as gene conversion have

been less active. In all three palindromes, the TEs at boundaries are

annotated as deriving from within the pig lineage—these are not

ancient repeat elements and show the ongoing impact of repetitive

content in the genome. Extant suids diverged after ∼10–15 Mya,

and the copy number of the genes involved across these lineages

remains to be identified.

Ampliconic sequences

Most mapped mammalian Y Chromosomes have been found to

contain multicopy gene families (e.g., Li et al. 2013a), and

the pig is no exception. Outside the palindromes, other sequences

have amplified to a much greater extent. There are three gene

families of note here, all involved in amplifications in other species

and with functions suggesting involvement in spermatogenesis.

TheCUL4B fragments: Cullin fragments are found proximal to SRY

and the active CUL4B gene and appear to form part of an ampli-

conic region located toward the centromere. Ubiquitinylation

pathways are an important part of gamete development.

CUL4BX gene defects lead to reduced oocyte survival (Yu et al.

2013) and reduced testis volume in human males (Tarpey et al.

2007).

The TSPY fragments: These appear to be interspersed in the region

closer to the centromere, but it is not clear how they are ar-

ranged. TSPY is an ampliconic gene in many mammalian

species, from artiodactyls to primates (Xue and Tyler-Smith

2011); the genes are involved in spermatogenesis (Xue and

Tyler-Smith 2011) and, in cattle, copy number variation of this

gene has been linked with fertility in bulls (Hamilton et al.

2012).

Figure 3. Homology between the X and Y. Outline of X-Y homology re-
gions detected between the pig X and Yp sequences. Centromeres are
black dots; the PAR is yellow. Lines for genes are blue, repetitive content
is gray, and sequences as yet unplaced on the Y are red. The 50-kb region
at X-114 Mb is an X-X transposition from the PAR. The amplified HSFY re-
gion is shown in dark gray. Regions of repetitive content correlate well with
CGH patterns we found previously (Skinner et al. 2013).
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The HSFY family: These genes are predominantly found in a block

between the proximal and distal low-copy gene clusters and

show evidence for recent amplification in the Sus lineage to

∼100 copies, with independent amplification in other suid spe-

cies (Skinner et al. 2015) and further independent amplification

in cattle (Chang et al. 2013). HSFY is expressed in pig testis and

may have a role in spermatogenesis, though biological function

remains to be established.

Other amplified sequences

Yq is dominated by repeat sequences (as demonstrated by the

painting pattern from FISH using several BAC and fosmid clones).

These clones are composed almost entirely of sequences related to

male-specific (or enriched) repeats described previously for pig

(e.g., Mileham et al. 1988), and thus more detailed study is needed

to understand the organization of this arm of the chromosome.

There is some evidence that related sequences are expressed in tes-

tis-derived transcripts; however, expression is not exclusive to this

tissue, or to males, with sequence homologies also detected in

transcripts from pig uterus. FISH experiments suggest that there

is single-copy sequence on Yq, including at or near the Yq termi-

nus, but we were unable to isolate these sequences.

We did not find evidence for exclusively testis-expressed

ampliconic sequences. However, ampliconic sequences cause diffi-

culties for assembly that our physical mapping approach was not

able to overcome. It is likely that other amplified sequences of bi-

ological interest remain to be discovered on the pig Y Chromo-

some, both on the short and long arms.

Comparative chromosome organization and gene order between mammals

Previous work fromprimates, mouse, cat, and dog has reconstruct-

ed a putative ancestral eutherian Y Chromosome (Li et al. 2013a)

based on gene order. We incorporated our pig gene order into

this and added information from the cattle Y sequence assembly

(Supplemental Fig. S12; Elsik et al. 2009). One group of genes

stands out from the comparison: USP9Y-DDX3Y-UTY is the only

ancestral cluster of genes that have retained their proximity to

each other in all the studied species. There may be a selective

Figure 4. The pig SRY region. The Yp proximal block of genes contains two overlapping palindromes of ∼120 kb each. These surround the duplicated
sequences CUL4BY exons 1–2 and SRY. (A) FISH results from Y fosmid clones and probes for the SRY gene are shown with the BAC and fosmid clone se-
quences found mapping to the region. The inversion boundaries are both identifiable; the CUL4BY inversion runs from the last 3 kb of 43B21 to within
72J17; the SRY inversion begins also within 72J17 and runs to 13A15. A schematic view is also shown of the regions surrounding the SRY (B) and the
CUL4B duplications (C). The SRY duplication disrupts an ERV element, revealing the proximal copy to be ancestral. The CUL4B duplication copies part
of a LINE element, again revealing the proximal copy to be ancestral. The sequence alignments across the inversion breakpoints are shown in more detail
for SRY (D) and CUL4B (E). The order of events was therefore a duplication of SRY, including the first two exons of CUL4B, followed by duplication of the
region around the CUL4B copy.
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disadvantage to disrupting this organization, as has been proposed

for other conserved syntenic blocks in general (Larkin et al.

2009) and for these genes in particular. Both USP9Y and DDX3Y

have been implicated as important in human spermatogenesis,

though they may not be essential in all great apes (Tyler-Smith

2008).

TRAPPC2P-OFD1Y-GPM6B: a potential transposition from the X

Outside the PAR, there are regions of homologous sequence be-

tween the X and Y Chromosomes. Most of the X-Y homologies

could be attributed to known X-Y homologous genes or to repeti-

tive sequences, such as endogenous retroviral (ERV) families en-

riched on the sex chromosomes. An exception was the 90.25-kb

region TRAPPC2-OFD1-GPM6B, which retains 87% sequence iden-

tity across the region and is interrupted only by recent insertion of

transposable elements in the Y. The orthologous region has been

subject to transposition onto the Y from the X Chromosome in

dogs (Li et al. 2013a), and a similar transposition affecting the

RAB9A–SEDL–OFD1Y genes has occurred in the primate lineage

(Chang et al. 2011). Such a large region of homology, including

the introns and intergenic regions, argues against mechanisms

such as gene conversion, and the proximal end of the region

lies within a transposon; consequently, we consider this as evi-

dence suggesting a transposition of this region in the pig (see

Supplemental Fig. S1).

OFD1 is involved in cilia formation, with gene defects affect-

ingmultiple tissues (Thauvin-Robinet et al. 2013), and ciliopathies

have been implicated in fertility issues (Fry et al. 2014). It is likely

that the testis-expressedOFD1Yhas repeatedly acquired a function

in sperm development in different mammalian lineages. Notably,

the X copies of OFD1 and also CUL4B have been found to be sub-

stantially down-regulated in teratozoospermic men (Platts et al.

2007).

Conclusion

This work presents an improvement to the pig Chromosome X as-

sembly and gene annotation, and the first assembly of sequence

for the pig Chromosome Y. The assemblies we have generated

have allowed new insights into the content and evolution of the

pig sex chromosomes and provide an important resource for the

pig genomics community.

Methods

Library construction and sequencing

Chromosome X clones (BAC clones from CHORI 242 library) were

sequenced previously under the auspices of the Swine Genome

Sequencing Consortium (Groenen et al. 2012).

Phytohaemagglutinin-stimulated peripheral blood culture

from a Duroc boar was used to prepare chromosomes for flow

sorting. Flow-sorted Y Chromosomes were purified, and 30- to

50-kb-sized fragments were cloned into the pCC1Fos vector

(library WTSI_1061: http://www.ncbi.nlm.nih.gov/clone/library/

genomic/330/) (Supplemental Methods, sections 1–3). Clones for

sequencing were targeted by minimal overlapping clones on a fin-

gerprint contig (FPC) map. The targeted 897 clones for the Y

Chromosomewere sequenced using a combination of three differ-

ent sequencing platforms: capillary, Illumina, and 454 (Roche).

Clones were assembled using a combination of four assembly

scripts to produce de novo assemblies. Manual alignment of clone

sequenceswas used to build the clonemap, expanding fromclones

containing known genes. These contigs were oriented and ordered

using fiber-FISH on single DNA-molecule fibers (Supplemental

Methods, sections 4, 5).

Molecular combing and FISH

Single-molecule DNA fibers were prepared by molecular combing

(Michalet et al. 1997). Purified fosmid DNA was amplified and la-

beled as described previously (Gribble et al. 2013). Fluorescence in-

situ hybridization followed standard protocols (Supplemental

Methods, section 6). Probes were detected with fluorescently

conjugated antibodies. Slides were mounted with SlowFade

Gold mounting solution containing 4′,6-diamidino-2-phenylin-

dole (Molecular Probes/Invitrogen) and visualized on a Zeiss

AxioImager D1 microscope. Digital image capture and processing

were carried out using the SmartCapture software (Digital

Scientific UK).

X and Y gene annotation, sequence content, and

chromosomal evolution

Manual annotation on the pig X and Y Chromosomes was per-

formed using the Otterlace/Zmap suite of annotation tools

(Loveland et al. 2012) following previously established annotation

protocols (Harrow et al. 2012; Dawson et al. 2013). The assembled

chromosomes were run through an annotation pipeline (Searle

et al. 2004), aligning EST, mRNA, and protein libraries against

the chromosomes with all annotated gene structures (transcripts)

supported by at least one form of this transcriptional evidence.

The HUGO Gene Nomenclature Committee (HGNC) (Seal et al.

2011) naming convention was used whenever possible for all pig

genes; otherwise, HAVANA naming conventions (http://www.

sanger.ac.uk/research/projects/vertebrategenome/havana) were

followed.

RepeatMasker (Smit et al. 1996) was used to identify repetitive

elements within Y contigs. Targeted resequencing was performed

across specific genes to confirm their structure (primers given in

Supplemental Table S4). Regions of X-Y homology were identified

by comparing the repeat-masked X assembly to all sequenced re-

peat-masked Y clones (mapped and unmapped) using LASTZ

(Harris 2007) with default parameters. Evolutionary analyses be-

tween X and Y gene pairs were conducted using the Nei-

Gojobori model (Nei and Gojobori 1986) in MEGA5 (Tamura

et al. 2011). For each pair, positions containing gaps and missing

data were eliminated. Reconstruction of ancestral Y Chromosome

organizations was performed using the Multiple Genomes

Rearrangement (MGR) program (Bourque and Pevzner 2002) to

calculate optimal rearrangement pathways between each species,

as previously described (Skinner and Griffin 2012). Full informa-

tion is given in Supplemental Methods, section 7.

Gene expression

RT-PCR was used to confirm expression status of selected genes in

five tissues (brain, liver, kidney, side muscle, testis), obtained from

the same boar from which blood cultures were derived. Samples

were taken from tissues stored in RNAlater (Qiagen) and homoge-

nized in TRIzol. Nucleic acids were extracted with phenol-chloro-

form and DNase I treated. RNA was precipitated with isopropanol

and stored at 1µg/µl in ddH2O at −80°C. RT–PCR was carried out

using a OneStep RT–PCR kit (Qiagen) on 25 ng of total RNA

(Supplemental Methods, section 8). Primer sequences are given

in Supplemental Table S13.
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Copy-number estimation of SRY by qPCR

Primers were designed to amplify a 1447-bp region across the ma-

jority of the SRY ORF and UTRs (F:TAATGGCCGAAAGGAAAGG;

R:TGGCTAATCACGGGAACAAC), and products were generated

using a MyTaq Red kit (Bioline) using the following profile: 95°C

for 3 min, 35 cycles of 95°C/53°C/72°C for 15 sec/15 sec/2 min,

with a final extension of 72°C for 10 min. Two female Duroc

gDNAs were spiked with dilutions of the purified SRY product to

give a standard curve of four copies SRY per genome to 0.25 copies

per genome (assuming diploid genome size of 6 Gb) (Animal

Genome Size Database; Gregory 2006). qPCRwas performed using

a SYBR-FASTqPCRkit (Kapa Biosystems) on the spiked females and

on fivemale Duroc gDNAswith primers for SRY and the autosomal

(SSC10) gene NEK7 (Supplemental Table S6). Annealing tempera-

ture was optimized at 57°C. Cycling conditions were 95°C for

3 min, followed by 40 cycles of 95°C/57°C/72°C for 10 sec/20 sec/

30 sec. The fluorescent signal threshold crossingpoint (Ct)wasnor-

malized to the average signal from NEK7 to produce a normalized

ΔCt. Thedatafromspiked femalegDNAwasusedtoconstructa stan-

dard curve relating SRY signal toNEK7 signal; fromthis, an estimate

of the absolute SRY copy number in the male gDNA samples was

produced (see Supplemental Methods, section 9).

Data access

All sequence and annotation is available via the Vega Genome

Browser (http://vega.sanger.ac.uk/index.html), and the complete

chromosomal assemblies can be accessed by FTP (ftp://ftp.sanger.

ac.uk/pub/vega/pig/). The pseudoautosomal region of X/Y homol-

ogy between the X and Y Chromosomes is represented on the X

Chromosome only in Vega and Ensembl. It is marked as an assem-

bly exception in both chromosomes, but the underlying genomic

sequence and annotation is that of Chromosome X. Only the

unique regions of Chromosome Y are stored and annotated. The

complete Y Chromosome is represented by filling the “gaps” with

the PAR regions from the X Chromosome. Raw sequence data

have been submitted to the European Nucleotide Archive (ENA;

http://www.ebi.ac.uk/ena/) under accession number ERP001277.
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