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The pilot-wave perspective on quantum scattering and tunneling

Travis Norsena)

Smith College, Northampton, Massachusetts 01060

(Received 29 October 2012; accepted 1 February 2013)

The de Broglie-Bohm “pilot-wave” theory replaces the paradoxical wave-particle duality of ordinary

quantum theory with a more mundane and literal kind of duality: each individual photon or electron

comprises a quantum wave (evolving in accordance with the usual quantum mechanical wave

equation) and a particle that, under the influence of the wave, traces out a definite trajectory. The

definite particle trajectory allows the theory to account for the results of experiments without the

usual recourse to additional dynamical axioms about measurements. Instead, one need simply

assume that particle detectors click when particles arrive at them. This alternative understanding of

quantum phenomena is illustrated here for two elementary textbook examples of one-dimensional

scattering and tunneling. We introduce a novel approach to reconcile standard textbook calculations

(made using unphysical plane-wave states) with the need to treat such phenomena in terms of

normalizable wave packets. This approach allows for a simple but illuminating analysis of the pilot-

wave theory’s particle trajectories and an explicit demonstration of the equivalence of the pilot-wave

theory predictions with those of ordinary quantum theory.VC 2013 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4792375]

I. INTRODUCTION

The pilot-wave version of quantum theory was originated
in the 1920s by Louis de Broglie, re-discovered and devel-
oped in 1952 by David Bohm, and championed in more
recent decades especially by John Stewart Bell.1 Usually
described as a “hidden variable” theory, the pilot-wave
account of quantum phenomena supplements the usual
description of quantum systems—in terms of wave func-
tions—with definite particle positions that obey a determinis-
tic evolution law. This description of quantum theory can be
understood as the simplest possible account of “wave-
particle duality:” individual particles (electrons, photons,
etc.) manage to behave sometimes like waves and sometimes
like particles because each one is literally both. In, for exam-
ple, an interference experiment involving a single electron,
the final outcome will be a function of the position of the
particle at the end of the experiment. (In short, detectors
“click” when particles hit them.) But the trajectory of the
particle is not at all classical; it is instead determined by the
structure of the associated quantum wave which guides or
“pilots” the particle along its path.

The main virtue of the theory, however, is not its deter-
ministic character, but rather the fact that it eliminates the
need for ordinary quantum theory’s “unprofessionally vague
and ambiguous” measurement axioms.2 Instead, in the pilot-
wave picture, measurements are just ordinary physical proc-
esses, obeying the same fundamental dynamical laws as
other processes. In particular, nothing like the infamous
“collapse postulate”—and the associated Copenhagen notion
that measurement outcomes are registered in some separately
postulated classical world—are needed. The pointers, for
example, on laboratory measuring devices will end up point-
ing in definite directions because they are made of par-
ticles—and particles, in the pilot-wave picture, always have
definite positions.

In the “minimalist” presentation of the pilot-wave theory
(advocated especially by J. S. Bell), the guiding wave is sim-
ply the usual quantum mechanical wave function W obeying
the usual Schr€odinger equation
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is the usual quantum probability current,

q ¼ jWj2 (4)

is the usual quantum probability density, and as usual these
quantities satisfy the continuity equation

@q

@t
þ

@j

@x
¼ 0: (5)

Here, we consider the simplest possible case of a single spin-
less particle moving in one dimension. The generalizations
for motion in 3D and particles with spin are straightforward:
@=@x and j become vectors and the wave function becomes a
multi-component spinor obeying the appropriate wave equa-
tion. For a system of N particles, labelled i 2 f1;…;Ng, the
generalization is also straightforward, though it should be
noted that W—and consequently ~ji and q—are in this case
functions on the system’s configuration space. The velocity
of particle i at time t is given by the ratio ~ji=q evaluated at
the complete instantaneous configuration; thus, in general
the velocity of each particle depends on the instantaneous
positions of all other particles. The theory is thus explicitly
non-local. Bell, upon noticing this surprising feature of the
pilot-wave theory, was famously led to prove that such non-
locality is a necessary feature of any theory sharing the em-
pirical predictions of ordinary quantum theory.4
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Although the fundamental dynamical laws in the pilot-
wave picture are deterministic, the theory exactly reproduces
the usual stochastic predictions of ordinary quantum
mechanics. This arises from the assumption that, although
the initial wave function can be controlled by the usual ex-
perimental state-preparation techniques, the initial particle
position is random. In particular, for an ensemble of identi-
cally prepared quantum systems having t¼ 0 wave function
Wðx; 0Þ, it is assumed that the initial particle positions X(0)
are distributed according to

P½Xð0Þ ¼ x( ¼ jWðx; 0Þj2: (6)

This is called the “quantum equilibrium hypothesis” or
QEH. It is then a purely mathematical consequence of the
already-postulated dynamical laws forW and X that the parti-
cle positions will be jWj2 distributed for all times

P½XðtÞ ¼ x( ¼ jWðx; tÞj2; (7)

a property that has been dubbed the “equivariance” of the
jWj2 probability distribution.5 To see how this equivariance
comes about, one need simply note that the probability distri-
bution P for an ensemble of particles moving with a velocity
field v(x, t) will evolve according to

@P

@t
þ

@

@x
ðvPÞ ¼ 0: (8)

Because j and q satisfy the continuity equation, it is then im-
mediately clear that, for v ¼ j=q; P ¼ q is a solution.

Properly understood, the QEH can actually be derived
from the basic dynamical laws of the theory, much as the ex-
pectation that complex systems should typically be found in
thermal equilibrium can be derived in classical statistical
mechanics.5,6 For our purposes, though, it will be sufficient
to simply take the QEH as an additional assumption, from
which it follows that the pilot-wave theory will make the
same predictions as ordinary quantum theory for any experi-
ment in which the outcome is registered by the final position
of the particle. That the pilot-wave theory makes the same
predictions as ordinary QM for arbitrary measurements then
follows from the fact that, at the end of the day, such mea-
surement outcomes are also registered in the position of
something: think, for example, of the flash on a screen some-
where behind a Stern-Gerlach magnet, the position of a
pointer on a laboratory measuring device, or the distribution
of ink droplets in Physical Review.2

In the present paper, our goal is to illustrate all of these
ideas by showing in concrete detail how the pilot-wave
theory deals with some standard introductory textbook exam-
ples of one-dimensional quantum scattering and tunneling.
This alternative perspective should be of interest to students
and teachers of this material because it provides an illumi-
nating and compelling intuitive picture of these phenomena.
In addition, since the pilot-wave theory (for reasons we shall
discuss) forces us to remember that real particles should
always be described in terms of finite-length wave packets—
rather than unphysical plane-waves—the methods to be
developed provide a novel perspective on ordinary textbook
scattering theory as well. In particular, we describe a certain
limit of the usual rigorous approach to scattering3 in
which the specifically conceptual advantages of working
with normalizable wave packets can be had without any

computational overhead: the relevant details about the
packet shapes can be worked out, in this limit, exclusively
via intuitive reasoning involving the group velocity.
The remainder of the paper is organized as follows. In

Sec. II, we review the standard textbook example of reflec-
tion and transmission at a step potential, explaining in partic-
ular why the use of plane-waves is particularly problematic
in the pilot-wave picture and then indicating how the usual
plane-wave calculations can be salvaged by thinking about
wave packets with a certain special shape. Section III
explores the pilot-wave particle trajectories in detail, show-
ing in particular how the reflection and transmission proba-
bilities can be computed from the properties of a certain
“critical trajectory”11 that divides the possible trajectories
into two classes: those that transmit and those that reflect. In
Sec. IV, we turn to an analysis of quantum tunneling through
a rectangular barrier from the pilot-wave perspective. Lastly,
a brief final section summarizes the results and situates the
pilot-wave theory in the context of other interpretations of
the quantum formalism.

II. SCHR€ODINGER WAVE SCATTERING AT A

POTENTIAL STEP

Let us consider the case of a particle of mass m incident
from the left on the step potential

VðxÞ ¼
0 if x < 0

V0 if x > 0 ;

$

(9)

where V0 > 0. The usual approach is to assume that we are
dealing with a particle of definite energy E (which we
assume here is >V0) in which case we can immediately write
down an appropriate general solution to the time-
independent Schr€odinger equation as

VðxÞ ¼
Aeik0x þ Be"ik0x if x < 0

Ceij0x if x > 0 ;

$

(10)

where k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mE="h2
q

and j0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðE" V0Þ="h
2

q

. The
A-term represents the incident wave propagating to the right
toward the barrier, the B-term represents a reflected wave
propagating back out to the left, and the C-term represents a
transmitted wave. Note that, by assumption, there is no
incoming (i.e., leftward-propagating) wave to the right of the
barrier.
The transmission and reflection probabilities depend on

the relative amplitudes (A, B, and C) of the incident,
reflected, and transmitted waves. By imposing continuity of
wðxÞ and its derivative at x¼ 0 (these conditions being
required in order that the above wðxÞ satisfy the Schr€odinger
equation at x¼ 0) one finds that

B

A
¼

k0 " j0

k0 þ j0
(11)

and

C

A
¼

2k0

k0 þ j0
: (12)

A typical textbook approach is then to calculate the probabil-
ity current in each region. Plugging Eq. (10) into Eq. (3)
gives
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j ¼

"hk0

m
ðjAj2 " jBj2Þ if x < 0

"hj0

m
jCj2 if x > 0 ;

8

>

<

>

:

(13)

which can be interpreted as follows. For x < 0 there is both
an incoming (incident) probability flux proportional to
k0 jAj2 and an outgoing (reflected) flux proportional to
k0 jBj2. The reflection probability R can be defined as the ra-
tio of these, giving

PR ¼
jref

jinc
¼

k0jBj2

k0jAj2
¼

jBj2

jAj2
¼

ðk0 " j0Þ
2

ðk0 þ j0Þ
2
: (14)

Similarly, for x > 0, there is an outgoing (transmitted) prob-
ability flux proportional to j0 jCj2. The transmission proba-
bility PT can be defined as the ratio of this flux to the
incident flux, giving

PT ¼
jtr

jinc
¼

j0jCj2

k0jAj2
¼

2k0j0

ðk0 þ j0Þ
2
: (15)

This approach to calculating PR and PT is, however, some-
what unintuitive insofar as the wave function involved is a
stationary state. This makes it far from obvious how to
understand the mathematics as describing an actual physical
process, unfolding in time, in which a particle, initially inci-
dent toward the barrier, either transmits or reflects. The situa-
tion is even more problematic, though, from the point of
view of the pilot-wave theory. Here, the particle is supposed
to have some definite position at all times with a velocity
given by Eq. (2). But with the wave function given by Eq.
(10), the probability current j for x < 0 is positive (because
jAj > jBj), and of course q is necessarily positive. So it fol-
lows immediately that, in the pilot-wave picture, the particle
velocity is positive. Thus, if the particle is in the region
x < 0, it will be moving to the right toward the barrier—it
cannot possibly reflect!

It is easy to see, however, that this is an artifact of the use
of unphysical (unnormalizable) plane-wave states. Many in-
troductory textbooks mention in passing the possibility of
instead using finite wave packets to analyze scattering.7 Grif-
fiths, for example, makes the following characteristically el-
oquent remarks:8

“This is all very tidy, but there is a sticky matter of
principle that we cannot altogether ignore: These
scattering wave functions are not normalizable, so
they don’t actually represent possible particle
states. But we know what the resolution to this
problem is: We must form normalizable linear
combinations of the stationary states just as we did
for the free particle—true physical particles are
represented by the resulting wave packets. Though
straightforward in principle, this is a messy
business in practice, and at this point it is best to
turn the problem over to a computer.”

Griffiths goes on to characterize the “peculiar” fact “that
we were able to analyse a quintessentially time-dependent
problem…using stationary states” as a “mathematical
miracle.” Some texts go a little further into this “messy busi-
ness” and treat the problem of an incident (typically, Gaus-
sian) packet in some analytic detail.9

The need to examine scattering in terms of (finite, normaliz-
able) wave packets has long been recognized in the pilot-wave
literature, which has included, for example, numerical studies
of trajectories for Gaussian packets incident on various bar-
riers.10–12 The use of Gaussian packets, however, tends to
obscure the relationship to the standard textbook plane-wave
calculation. There is no way to express the probabilities PR and
PT, for a narrow Gaussian packet, in anything like the simple
form of Eqs. (14) and (15). Furthermore, in the pilot-wave pic-
ture the complicated structure of the wave function during the
scattering of the packet gives rise to equally complicated parti-
cle trajectories. So although one of course knows that, based on
Eq. (7), the ensemble of possible particle trajectories will
“follow” q ¼ jwj2, it is impossible to independently verify this
fact without turning the problem over to a computer.
In Sec. III, we will develop a method to verify that,

indeed, just the right fraction of the possible particle trajecto-
ries end up in the reflected and transmitted packets. To lay
the groundwork for this, let us turn to setting up a simple
approach to reconciling the plane-wave and wave-packet
approaches; this should be of pedagogical interest even to
those with no particular interest in the pilot-wave theory. To
be clear, what follows is in no sense intended as a replace-
ment for ordinary scattering theory.3 The point is merely to
show how, by considering incident packets with a particular
shape, the reflection and transmission probabilities can be
read off from the packet amplitudes and widths.
Consider an incident wave packet

wðxÞ ¼ /ðxÞeik0x (16)

with a reasonably sharply defined wave number k0 but with a
special, non-Gaussian envelope profile /ðxÞ. In particular,
we imagine /ðxÞ to be nearly constant over a spatial region
of length L and zero outside this region. Then as long as the
(central) wavelength k0 ¼ 2p=k0 is very small compared to
L—actually, it should also be small compared to the length
scale over which / transitions to zero at the edges of the
packet—the envelope function / will maintain its shape and
simply drift at the appropriate group velocity. Let us call this
type of packet a “plane-wave packet;” its conceptual and an-
alytical merit lies in the fact that, where it doesn’t vanish, it
is well-approximated by a plane wave.13

In terms of such plane-wave packets, the scattering process
can be understood as shown in Fig. 1. Let us choose t¼ 0 to
be the time when the leading edge of the incident packet
arrives at x¼ 0. The incident packet has length L and moves
with the group velocity v

<
g ¼ "hk0=m. Thus, the packet’s trail-

ing edge arrives at the origin at t ¼ T ¼ L=v<g ¼ Lm="hk0. The
whole scattering process then naturally breaks up into the fol-
lowing three time periods:

1. For t < 0 the incident packet is propagating toward the
barrier at x¼ 0.

2. For 0 < t < T the wave function in some (initially small,
then bigger, then small again) region around x¼ 0 is well-
approximated by the plane-wave expressions of Eq. (10).

3. For t > T the incident packet has completely disappeared
and there are now reflected and transmitted packets propa-
gating away from the barrier on either side.

It is now possible to understand the usual reflection and
transmission probabilities in a remarkably simple way. To
begin with, the incident packet should be properly normalized;
because it goes as Aeik0x over a region of length L, we have
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jAj ¼ 1
ffiffiffi

L
p : (17)

The total probability associated with the reflected packet can
be found by multiplying its probability density qR ¼ jBj2 by
its length. Now, since the leading and trailing edges of the
reflected packet are produced when the leading and trailing
edges of the incident packet arrive at the barrier, and since
the reflected packet propagates in the same region as the
incident packet (so their group velocities are the same), we
deduce that the reflected packet has the same length, L, as
the incident packet. Hence

PR ¼ jBj2L ¼
jBj2

jAj2
¼

ðk0 " j0Þ
2

ðk0 þ j0Þ
2
; (18)

where in the last step we have used Eq. (11) to relate the am-
plitude B of the reflected packet to the amplitude A of the
incident one. The result here is of course in agreement with
Eq. (14).
The transmission probability can be calculated in a similar

way. But here it is crucial to recognize that the group veloc-
ity for the x > 0 region, v

>
g ¼ "hj0=m, is smaller than the

group velocity in the x < 0 region. Thus, the position of the
leading edge of the transmitted packet when the trailing edge
is created at x¼ 0, i.e., the length of the transmitted packet,
is only

LT ¼ v
>
g ) T ¼ v

>
g )

L

v
<
g

¼ L
j0

k0
: (19)

That is, the transmitted packet is shorter, by a factor j0=k0,
than the incident and reflected packets. The total probability
carried by the transmitted packet is then seen to be

PT ¼ LT jCj2 ¼ L
j0

k0
jCj2 ¼ j0

k0

jCj2

jAj2
¼

4k0j0

ðk0 þ j0Þ
2
; (20)

again in agreement with the earlier result. Note, however,
that in this analysis the perhaps puzzling factor of j0=k0 in
Eq. (15) admits an intuitively clear origin in the relative
lengths of the incident and transmitted packets.
Even in the context of conventional, textbook quantum

theory the “plane-wave packet” approach has several peda-
gogical merits. First, it allows the scattering process to be
understood and visualized as a genuine, time-dependent pro-
cess. Second, the reflection and transmission probabilities
can be calculated without recourse to the somewhat cryptic
and hand-waving device of taking ratios of certain hand-
picked terms from the probability currents on each side. And
finally, the explicit discussion of wave packets helps make
clear that the results of the calculation—in particular the
expressions for PR and PT—can be expected to be accurate
only under the conditions (e.g., L * k0) assumed in the deri-
vation. And of course the overarching point is that all of this
is accomplished while still using the mathematically simple
plane-wave calculations—there is no particularly “messy
business” and no need “to turn the problem over to a
computer.”
In Sec. III, we will see the particular utility of the “plane-

wave packet” approach in the context of the alternative pilot-
wave picture.

III. PARTICLE TRAJECTORIES IN THE

PILOT-WAVE THEORY

In the pilot-wave theory, the particle velocity is deter-
mined by the structure of the wave function in the vicinity of
the particle according to Eq. (2). By considering a plane-
wave packet as discussed in Sec. II, we can see that there are
several possible regions in which the particle may find itself.
Let us consider these in turn.
Initially, the particle will be at some (random) location in

the incident packet. Since, by assumption, the packet length
L is very large compared to the length scale associated with
the packet’s leading and trailing edges, the particle is over-
whelmingly likely to be at a location where the wave func-
tion in its immediate vicinity is given by

Fig. 1. Visualization of a “plane-wave packet” interacting with the step

potential shown in the top frame. The “t < 0” frame shows a plane-wave

packet of length L and (central) wavelength k0 incident from the left. (Note

that, strictly speaking, a plane-wave packet by definition has L * k0; the

two length scales are inappropriately similar in the figure so that several

other features will be more readily visible.) At t¼ 0 the leading edge of the

incident packet arrives at the origin and leading edges for the reflected and

transmitted packets are produced. At t¼T the trailing edge of the incident

packet arrives at the origin and trailing edges for the reflected and transmit-

ted packets are produced. For 0 < t < T the incident and reflected packets

overlap in some (initially small, then bigger, then small again) region to the

left of the origin. This is depicted in the “0 < t < T” frame. Note that the

amplitudes of the reflected and transmitted waves are determined by the

usual boundary-matching conditions imposed at x¼ 0. Finally, for t > T the

reflected and transmitted packets propagate away from the origin. Note that

while the wavelength and packet length of the reflected wave matches those

of the incident wave, the wavelength and packet length of the transmitted

wave are respectively greater than and smaller than those of the incident

wave, owing to the different value of the potential energy to the right of the

origin.
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wIðxÞ ¼ Aeik0x: (21)

(Here and subsequently we omit for simplicity the time-
dependent phase of the wave function, which plays no role.)
Using Eqs. (2)–(4), it follows immediately that the particle’s
velocity is

vI ¼
jI

qI
¼

ð"hk0=mÞjAj2

jAj2
¼

"hk0

m
: (22)

Note that this is the same as the group velocity of the inci-
dent packet. Thus, the particle will approach the barrier with
the incident packet—indeed, keeping its same position rela-
tive to the front and rear of the packet—as both the wave and
the particle move.

At some point—the exact time and place depending on its
random initial position within the incident packet—the parti-
cle will encounter the leading edge of the reflected packet. It
will then begin to move through the “overlap region” where
both the incident and reflected waves are present:

wOðxÞ ¼ Aeik0x þ Be"ik0x: (23)

Its velocity in this overlap region will be given by

vO ¼
jO

qO
¼

ð"hk0=mÞðjAj2 " jBj2Þ
jAj2 þ jBj2 þ 2jAjjBjcosð2k0x" /Þ

; (24)

where / is the complex phase of B relative to A—zero in the
case at hand. Here the right hand side is to be evaluated at
each moment at the instantaneous location of the particle.
This first-order differential equation for X(t) is easily
solved—more precisely, we can find an exact expression for
t(X)—but it is already clear from the above expression that
the particle’s velocity will oscillate around an average “drift”
value given by

"vO ¼
"hk0

m

jAj2 " jBj2

jAj2 þ jBj2
: (25)

Because we are assuming that the packet length
L * k0 ¼ 2p=k0, the particle’s velocity will (with over-
whelming probability) oscillate above and below this aver-
age value many, many times while it moves through the
overlap region. It is thus an excellent approximation to sim-
ply ignore the oscillations and treat the particle as moving
through the overlap region with a constant velocity "vO.

There are two possible ways for the particle to escape
from the overlap region. First, if the particle arrives at the or-
igin it will cross over into the region where only the trans-
mitted wave

wTðxÞ ¼ Ceij0x (26)

is present. It will then continue to move to the right with a
velocity

vT ¼
jT

qT
¼

"hj0

m
(27)

matching the group velocity of the transmitted packet.
The second possibility is that, while still in the overlap

region, the trailing edge of the incident packet catches and

surpasses the particle. It will then subsequently be guided
exclusively by the reflected wave

wRðxÞ ¼ Be"ik0x (28)

with a velocity

vR ¼
jR

qR
¼ "

"hk0

m
(29)

matching the group velocity of the reflected wave packet
with which it propagates back out to the left.
It is helpful to visualize the family of possible particle tra-

jectories on a space-time diagram (see Fig. 2). Notice that a
particle which happens to begin near the leading edge of the
incident packet will definitely transmit, while particles be-
ginning nearer the trailing edge of the incident packet will
definitely reflect.
Although the dynamics here is completely deterministic,

the theory makes statistical predictions because the initial
position of a particular particle within its guiding wave is
uncontrollable and unpredictable. Recall the quantum equi-
librium hypothesis (QEH) according to which, for an ensem-
ble of identically prepared systems with initial wave
function Wðx; 0Þ, the initial particle positions will be random,
with distribution given by Eq. (6). It then follows from the
equivariance property (described in the introduction) that
q ¼ jwj2 will continue to describe the particles’ probability

Fig. 2. Space-time diagram showing a representative sample of possible par-

ticle trajectories for the case of a plane-wave packet incident from the left

on a step potential at x¼ 0. The leading and trailing edges of the various

packets are indicated by dashed grey lines while particle trajectories are

shown in black. In general, the particle simply moves at the group velocity

along with the packet that is guiding it. In the (triangular) overlap region,

however, the particle moves more slowly; this gives rise to a bifurcation of

the possible trajectories between those that arrive at the origin before being

caught by the incident packet’s trailing edge (and thus end up moving away

with the transmitted packet), and those that are caught by the incident pack-

et’s trailing edge (and thus end up moving away with the reflected packet).
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distribution for all t. The pilot-wave theory thus reproduces
the exact statistical predictions of ordinary QM without any
further axioms about measurement. Whereas in ordinary
QM, for example, the transmission probability PT (equal to
the integral of q across the transmitted packet) represents
only the probability that the particle will appear there if a
measurement is made, in the pilot-wave theory PT instead
represents the probability that the particle really is there in
the transmitted packet, ready to trigger a “click” in a detector
should such a device happen to be present.

As a concrete illustration of the equivariance property that
guarantees the equivalence between the pilot-wave theory’s
statistical predictions and those of ordinary quantum theory,
let us derive the reflection and transmission probabilities
directly from the particle trajectories and show that we get
the same expressions we found earlier when considering
only the quantum wave. The key here is to examine the
“critical trajectory” that divides those trajectories resulting
in transmission from those resulting in reflection. This criti-
cal trajectory, by definition, arrives just at the apex of the
triangular overlap region of Fig. 2—particles on the leading-
edge side of the critical trajectory will necessarily transmit,
while particles on the trailing-edge side of the critical trajec-
tory will necessarily reflect.

A zoomed-in image of the overlap region from Fig. 2 is
shown in Fig. 3. As explained in the caption, the critical tra-
jectory moves through the overlap region across a distance
PT ) L=2, where PT is the transmission probability. This
movement through the overlap region occurs over a time
T " s, where T ¼ Lm="hk0 and s ¼ ðPT ) L=2Þ=ð"hk0=mÞ. It
follows that the (average) velocity through the overlap
region is

"vO ¼
PTL=2

ðLm="hk0Þ " ðPTLm=2"hk0Þ
¼

"hk0

m

PT

2" PT

: (30)

Equating this with the expression for the velocity in the over-
lap region worked out in Eq. (25) gives

"hk0

m

PT

2" PT

¼
"hk0

m

jAj2 " jBj2

jAj2 þ jBj2
; (31)

which can be solved for PT to give

PT ¼
jAj2 " jBj2

jAj2
: (32)

Using Eq. (11) to put this in terms of the wave numbers k0
and j0 gives back precisely Eq. (15) for the transmission
probability. And because PR ¼ 1" PT , Eq. (14) is also
implied again from the properties of the critical trajectory.
It is of course no surprise that we arrive at the same

expressions for the transmission and reflection probabilities
by considering the pilot-wave expression for the particle ve-
locity in the crucial overlap region. But it is a clarifying con-
firmation of the sense in which the wave and particle
evolutions are consistent, as expressed in the equivariance
property.

IV. TUNNELING THROUGH A RECTANGULAR

BARRIER

To illustrate the more general applicability of the methods
developed in the previous sections, let us analyze another
standard textbook example, the tunneling of a particle
through a classically forbidden region, from the pilot-wave
perspective. Let the potential be given by

VðxÞ ¼
V0 if 0 < x < a

0 otherwise

$

(33)

and let the particle be incident from the left with a reason-
ably sharply defined energy E < V0. As before, we take the
initial wave function Wðx; 0Þ to be a plane-wave packet with

(central) wavelength k0 ¼ 2p=k0 (with k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mE="h2
q

) and

length L * k0. In addition, we assume here that the packet
length L is much greater than the width a of the potential

energy barrier. Then, with j0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðV0 " EÞ="h2
q

, the wave

function in the vicinity of the barrier will be given by

wðxÞ ¼
Aeik0x þ Be"ik0x if x < 0

Ce"jox þ Dej0x if 0 < x < a

Feik0x if x > a

8

<

:

(34)

for the overwhelming majority of the time when wðxÞ near
the barrier is nonzero. (In particular, wðxÞ will differ substan-
tially from the above expressions just when the leading edge
of the incident packet first arrives at the barrier, and again
when the trailing edge arrives there. But this will have negli-
gible effect on our analysis because the probability for the
particle to be too near the leading or trailing edges will be,
for very large L, very small.)
Imposing the usual continuity conditions on wðxÞ and its

first derivative at x¼ 0 and x¼ a gives a set of four algebraic

Fig. 3. The critical trajectory, which arrives at the apex of the triangular

overlap region on this space-time diagram, divides trajectories that transmit

from those that reflect. The possible trajectories are distributed with uniform

probability density throughout the incident packet, so the fraction of the total

length L of the packet that is in front of the critical trajectory represents the

transmission probability PT. Equivalently, the critical trajectory is a distance

PTL behind the incident packet’s leading edge. From t¼ 0 exactly half this

distance is covered before encountering the leading edge of the reflected

packet; this occurs at time s ¼ ðPTL=2Þ=ð"hk0=mÞ. In traversing the overlap

region, the critical trajectory then moves through the remaining distance

PTL=2 in a time T " s, where T ¼ L=ð"hk=mÞ is the time needed for the trail-

ing edge of the incident packet to arrive at the origin. Equation (30) then fol-

lows by dividing this distance by this time.
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conditions on the amplitudes A, B, C, D, and F. Eliminating
C and D allows the amplitudes of the reflected (B) and trans-
mitted (F) packets to be written in terms of the amplitude A
of the incident packet:

B

A
¼

"ðj20 þ k20Þsinhðj0aÞ

ðj20 " k20Þsinhðj0aÞ " 2ik0j0 coshðj0aÞ
(35)

and

F

A
¼

"2ik0j0

ðj20 " k20Þsinhðj0aÞ " 2ik0j0 coshðj0aÞ
e"ik0a:

(36)

Since the packet that develops on the downstream side of the
barrier moves with the same group velocity as the incident
packet, the transmitted packet length matches the incident
packet length. The total probability associated with the trans-
mitted packet—the “tunneling probability”—is thus

PT ¼
jFj2

jAj2
¼

4k20j
2
0

ðj20 þ k20Þ
2
sinh2ðj0aÞ þ 4k20j

2
0

(37)

with the corresponding reflection probability being

PR ¼
jBj2

jAj2
¼

ðj20 þ k20Þ
2
sinh2ðj0aÞ

ðj20 þ k20Þ
2
sinh2ðj0aÞ þ 4k20j

2
0

: (38)

As before, these results can be understood in terms of the
particle trajectories as well. In general, the trajectories are
very similar to those from the earlier example. While the
incident and reflected packets are both present to the left of
the barrier, an overlap region is set up in which the motion
of the incoming particle is slowed. The particle velocity in
this region is again described by Eq. (24), although now
there is a nontrivial complex phase between the amplitudes
B and A:

/ ¼ tan"1 2k0j0 coshðj0aÞ

ðj20 " k20Þ sinhðj0aÞ

" #

: (39)

The average drift velocity through the overlap region, how-
ever, remains as in Eq. (25), so the analysis surrounding Fig.
3 still applies and we have again that the transmission (or
here, tunneling) probability as determined by the critical tra-
jectory is

PT ¼
jAj2 " jBj2

jAj2
; (40)

in agreement with the result arrived at by considering just
the waves. This again confirms that the distribution of possi-
ble particle trajectories evolves in concert with the wave in-
tensity q such that Eq. (7) remains true at all times.

The nature of the pilot-wave theory particle trajectories in
the classically forbidden region (CFR) is of some interest.
The wave function in the CFR goes as

wCFRðxÞ ¼ Ce"j0x þ Dej0x; (41)

where the four algebraic conditions mentioned just prior to
Eq. (35) imply that

D

C
¼

ðj0 þ ik0Þ
2

j20 þ k20
e"2j0a ¼ eihe"2j0a; (42)

where the relative phase h is given by

h ¼ 2 tan"1 k0

j0

" #

: (43)

The fact that the relative complex phase of D and C is not
zero is crucial: if it were zero the probability current j (and
hence the particle velocity) would vanish and it would be
impossible for the particles to tunnel across the barrier.
Instead, we have that

jCFRðxÞ ¼
2"hj0

m
jCj2 sinðhÞe"2j0a (44)

and

qCFRðxÞ

jCj2
¼ e"2j0x þ e"4j0ae2j0x þ 2e"2j0a cosðhÞ (45)

so that the particle velocity is given by

vCFRðxÞ ¼
"hj0

m

sinðhÞ

cosðhÞ þ cosh ½2j0ða" xÞ(
: (46)

Thus, particles speed up as they cross (from x¼ 0 to x¼ a)
over the CFR.
Figure 4 displays the behavior of a representative sample

of particle trajectories for this problem. The overall pattern

Fig. 4. Space-time diagram showing a representative sample of possible par-

ticle trajectories for the case of a plane-wave packet incident from the left

on a rectangular potential barrier. Particles beginning near the leading edge

of the incident packet will tunnel through the barrier and emerge on the far

side. The unusual accelerating character of the trajectories in the (gray

shaded) classically forbidden region—indeed the mere presence of trajecto-

ries here—reflects the highly non-classical nature of the law of motion for

the particle. (Note that the analysis in the main text assumes that the incident

packet length L is very large compared to the barrier width a. This separa-

tion of length scales is not accurately depicted in this figure so that the quali-

tative nature of the trajectories in all relevant regions can be visualized

simultaneously.)
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is similar to the case of scattering from the step potential—
particles that begin near the trailing edge of the incident
packet will be swept up by the reflected packet before reach-
ing x¼ 0, while those that begin nearer the leading edge of
the incident packet will reach the barrier, tunnel across it,
and emerge with the transmitted packet.

V. DISCUSSION

We have analyzed two standard textbook cases of one-
dimensional quantum mechanical scattering and tunneling
from the point of view of the de Broglie-Bohm pilot-wave
theory. In particular, we have shown how the standard text-
book expressions for the reflection and transmission/tunnel-
ing probabilities—calculated using infinitely-extended
plane-wave states—can instead be understood as arising
from a certain type of idealized, non-Gaussian incident wave
packet. We then took advantage of this “plane-wave packet”
approach to generate a tractable, indeed quite simple, picture
of how the particle trajectories in the pilot-wave theory
develop.

It is hoped that the plane-wave packet approach might
prove clarifying for students learning standard textbook
quantum mechanics. It is also hoped that introducing the
pilot-wave theory through standard textbook examples will
make it easier for teachers to present the range of available
interpretive options clearly and effectively to students.
Recent work has shown that modern physics students have
particular difficulty with conceptual questions involving
issues of interpretation,14 a finding that is hardly surprising
given that physics teachers themselves have divergent views
on interpretive questions and their place in the curriculum.15

These questions deserve to be discussed more explicitly and
more carefully, and it seems natural to do so in the context
of the kinds of example problems that students encounter in
such courses anyway.

Despite its not being suggested as an option in the text-
book or lectures, several of the students interviewed in Ref.
15 seem to have independently developed a pilot-wave type
understanding of single-particle interference phenomena.
Many eminent physicists have also found a pilot-wave ontol-
ogy to be the natural way to account for puzzling quantum
effects. Here, for example, is Bell on single-particle interfer-
ence experiments:

“While the founding fathers agonized over the question”

‘particle’ or ‘wave’

de Broglie in 1925 proposed the obvious answer

‘particle’ and ‘wave’.

“Is it not clear from the smallness of the scintillation
on the screen that we have to do with a particle?
And is it not clear, from the diffraction and
interference patterns, that the motion of the particle
is directed by a wave? De Broglie showed in detail
how the motion of a particle, passing through just
one of two holes in [the] screen, could be influenced
by waves propagating through both holes. And so
influenced that the particle does not go where the
waves cancel out, but is attracted to where they
cooperate. This idea seems to me so natural and
simple, to resolve the wave-particle dilemma in

such a clear and ordinary way, that it is a great mys-
tery to me that it was so generally ignored.”16

In an earlier paper, Bell asked:

“Why is the pilot wave picture ignored in text
books? Should it not be taught, not as the only way,
but as an antidote to the prevailing complacency? To
show that vagueness, subjectivity, and indeterminism
are not forced on us by experimental facts, but by
deliberate theoretical choice?”17

If current physicists answered these questions, the majority
would probably cite two factors, both of which involve some
confusion and mis-information. First, there is the oft-repeated
charge that the pilot-wave theory involves an ad hoc and cum-
bersome additional field—the so-called “quantum potential”—
to guide the particle. The theory has indeed been presented in
such a form by Bohm and others.11,12 But as the examples in
the body of the present work should help make clear, this is an
entirely unnecessary addition to the “minimalist” pilot-wave
theory, in which the field guiding the particle is none other
than the usual quantum mechanical wave function obeying the
usual Schr€odinger equation.
The second factor typically cited by critics of the pilot-

wave theory is its non-local character and the associated
alleged incompatibility with relativity. It is true, as discussed
just after Eq. (5), that the pilot-wave theory is explicitly non-
local. What the critics forget, however, is that ordinary quan-
tum mechanics is also a non-local theory: already in its
account of the simple one-particle scattering phenomena dis-
cussed here, orthodox quantum theory needs additional pos-
tulates—in particular the infamous and manifestly non-local
collapse postulate—to explain what is empirically observed.
The truth is that, as we know from Bell, no local theory can
be empirically adequate.4 So rejecting candidate interpreta-
tions on the basis of their non-local character is hardly
appropriate. Nevertheless, it is interesting that the conven-
tional wisdom on this point is completely backwards: the
pilot-wave theory is actually less non-local than ordinary
quantum theory in the sense that it (unlike the orthodox
theory) can at least account for the results of one-particle
scattering/tunneling/interference experiments in a com-
pletely local way.
It is thus hoped not only that the examples presented here

will provide a simple concrete way for the alternative pilot-
wave picture to be introduced to students but also that the
examples will help to overturn some unfortunate and widely
held misconceptions about the theory. And of course it
should be noted that the pilot-wave theory is just one of sev-
eral alternatives to the usual Copenhagen-inspired theory
that appears in most textbooks. There is, for example, also
the many-worlds (“Everettian”) theory, the spontaneous col-
lapse (“GRW”) theory, the consistent (or decoherent) histor-
ies approach, and many others. As someone who thinks that
these questions—about the physics behind the quantum for-
malism—are meaningful, important, fascinating, controver-
sial, and too-often hidden under a shroud of unspeakability, I
would like to see all of these interpretations more widely
understood and discussed by physicists, both in and out of
the classroom. (Some suggestions for introducing the issues
and options to students can be found in Ref. 18.) At the end
of the day, though, I cannot help but agree with Bell, who,
after reviewing “Six possible worlds [i.e., interpretations] of
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quantum mechanics,” concluded that “the pilot wave picture
undoubtedly shows the best craftsmanship.”16 Hopefully, the
examples discussed above will help others appreciate why.
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