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The Pinocchio C++ library

A fast and flexible implementation of rigid body dynamics algorithms

and their analytical derivatives

Justin Carpentier, Guilhem Saurel, Gabriele Buondonno, Joseph Mirabel, Florent Lamiraux,

Olivier Stasse and Nicolas Mansard

Abstract— We introduce Pinocchio, an open-source software
framework that implements rigid body dynamics algorithms
and their analytical derivatives. Pinocchio does not only include
standard algorithms employed in robotics (e.g., forward and
inverse dynamics) but provides additional features essential for
the control, the planning and the simulation of robots. In this
paper, we describe these features and detail the programming
patterns and design which make Pinocchio efficient. We
evaluate the performances against RBDL, another framework
with broad dissemination inside the robotics community. We
also demonstrate how the source code generation embedded in
Pinocchio outperforms other approaches of state of the art.

I. INTRODUCTION

Rigid Body Dynamics is a very useful tool in robotics.

Although the theory dates back to the 18th century [1],

current algorithms have been revisited recently [2]. They

allow to compute in an efficient way both the inverse

and forward dynamics of rigid body systems. These two

functions are indeed fundamental for both the control and the

simulation of robotic systems. Being able to compute them

in a fast and accurate manner is of paramount importance in

order to correctly plan and control the motion of complex

systems such as humanoid robots or quadruped robots.

Starting from the late 80’s, the first implementations

were mostly based on code-generation: a meta-program first

generates some source code dedicated to a specific robot

model given in input. The source code is then compiled

into an object code where model parameters are hard

coded. Many open and closed source frameworks follow

this philosophy: SD/Fast [3], ROBOTRAN [4], HuMAnS [5],

Symoro [6], METAPOD [7], RobCoGen [8] just to name

a few. This approach has the advantages of allowing

simplifications of math expressions therefore avoiding

unnecessary memory allocations or use of temporary

variables. But at the same time, this approach suffers from a

lack of flexibility: the code must be regenerated from scratch

if any slight modification of the robot model occurs.

As more computational resources have been made

available on desktop computers, another paradigm has

emerged which consists in generating once for all a compiled

library able to load at runtime a description file of the

robot model (kinematic chain, mass distribution, etc.). Many

The authors are with the Gepetto Team, Robotics Department, Laboratoire
d’Analyse et d’Architecture des Systèmes, CNRS and the Université de
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recent frameworks implement this paradigm: RBDL [9],

OpenHRP [10], SymBody [11], RigidBodyDynamics.jl [12],

Drake [13], Bullet [14], DART [15], etc. This second

approach is more versatile, allowing for instance to modify

at runtime the dynamical properties of the model or to

populate the model with new features. But it implies a

loss in computational efficiency, even though some of

these frameworks show execution times close to code

generation [7], [9].

In this paper, we introduce a new rigid body dynamics

framework called Pinocchio. Unlike all other existing

frameworks, Pinocchio follows the two aforementioned

paradigms all at once. Pinocchio is a dynamic library able

to load at runtime any robot model. The efficiency is then

comparable to other dynamic frameworks [7], [9] and nearly

matches code-generation frameworks. It is able to generate

robot-specific source code (also at runtime). In that case, it

outperforms any other existing frameworks.

In Section II, we give a global overview of the framework.

The details of the code implementation are provided

in Section III. An introductory tutorial to get started

with Pinocchio is given in Section IV. The performances

of Pinocchio against similar frameworks are reported in

Section V. In Section VI, a summary of projects which

are based or make use of Pinocchio is provided. Finally,

Section VII concludes the paper.

II. MAIN FEATURES OF PINOCCHIO

Pinocchio has been written in C++ for efficiency reasons

and uses the Eigen library [16] for linear algebra routines.

It comes with Python bindings for easy code prototyping.

In the rest of this section, we introduce the main features

implemented in Pinocchio.

A. Spatial algebra

Spatial algebra [2] is a mathematical notation commonly

employed in rigid body dynamics to represent and

manipulate physical quantities such as velocities,

accelerations and forces. Pinocchio is based on this

mathematical notation. Dedicated classes are provided to

represent coordinate transformations in the 3D Euclidean

space (named SE3), spatial motion vectors (Motion), spatial

force vectors (Force), and spatial inertias (Inertia). Along

with the available methods, this endows Pinocchio with an

efficient software library for spatial algebra calculations.

mailto:justin.carpentier@laas.fr


B. Model and data

A fundamental paradigm of Pinocchio is the strict

separation between model and data. By model, we mean

the physical description of the robot, including kinematic

and possibly inertial parameters defining its structure. This

information is held by a dedicated class which, once created,

is never modified by the algorithms of Pinocchio. By data,

we mean all values which are the result of a computation.

Data vary according to the joint configuration, velocity,

etc... of the system. It contains for instance the velocity

and the acceleration of each link. It also stores intermediate

computations and final results of the algorithms in order to

prevent dynamic memory allocation. With this splitting, all

the algorithms in Pinocchio follow the signature:

algorithm(model, data, arg1, arg2, ...)

where arg1, arg2, ... are the arguments of the

function (e.g. configuration or velocity vectors). Keeping

model and data separated reduces memory footprint when

performing several different tasks on the same robot, notably

when this involves parallel computation. Each process can

employ its own data object, while sharing the same model

object. The fact that a model object never changes within

an algorithm of Pinocchio enhances the predictability of the

code.

A model can be created using the C++ API or loaded from

an external file, which can be either URDF, Lua (following

the RBDL standard) or Python.

C. Supported kinematic models

Within a model, a robot is represented as a kinematic tree,

containing a collection of all the joints, information about

their connectivity, and, optionally, the inertial quantities

associated to each link. In Pinocchio a joint can have one

or several degrees of freedom, and it belongs to one of the

following categories: Revolute joints, rotating around a fixed

axis, either one of X,Y, Z or a custom one; Prismatic joints,

translating along any fixed axis, as in the revolute case;

Spherical joints, free rotations in the 3D space; Translation

joint, for free translations in the 3D space; Planar joints,

for free movements in the 2D space; Free-floating joints,

for free movements in the 3D space. Planar and free-floating

joints are meant to be employed as the basis of kinematic

tree of mobile robots (humanoids, automated vehicles, or

objects in manipulation planning). More complex joints can

be created as a collection of ordinary ones through the

concept of Composite joint.

D. Dealing with Lie group geometry

Each type of joints is characterized by its own

specific configuration and tangent spaces. For instance, the

configuration and tangent spaces of a revolute joint are

both the real axis line R, while for a Spherical joint

the configuration space corresponds to the set of rotation

matrices of dimension 3 and its tangent space is the space

of 3-dimensional real vectors R3. Some configuration spaces

might not behave as a vector space, but have to be endowed

with the corresponding integration (exp) and differentiation

(log) operators. Pinocchio implements all these specific

integration and differentiation operators.

E. Geometric models

Aside the kinematic model, Pinocchio defines a geometric

model, i.e. the volumes attached to the kinematic tree. This

model can be used for displaying the robot and computing

quantities associated to collisions. Like the kinematic model,

the fixed quantities (placement and shape of the volumes)

are stored in a GeometricModel object, while buffers and

quantities used by associated algorithms are defined in a

GeometricData object. The volumes are represented using

the FCL library [17]1. Bodies of the robot are attached to

each joint, while obstacles of the environment are defined in

the world frame. Collision and distance algorithms for the

kinematic trees are implemented, based on FCL methods.

F. Main algorithms

The implementation of the basic algorithms, including

all those listed in this section, is recursive. The

recursive formulation allows the software to avoid repeated

computations and to exploit the sparsity induced by the

kinematic tree. For the dynamics algorithms, we largely drew

inspiration from [2], with slight improvements.

a) Forward kinematics: Pinocchio implements direct

kinematic computations up to the second order. When a

robot configuration is given, a forward pass is performed

to compute the spatial placements of each joint and to store

them as coordinate transformations. If the velocity is given, it

also computes the spatial velocities of each joint (expressed

in local frame), and similarly for accelerations.

b) Kinematic Jacobian: the spatial Jacobian of each

joint can be easily computed with a single forward pass,

either expressed locally or in the world frame.

c) Inverse dynamics: the Recursive Newton-Euler

Algorithm (RNEA) [18] computes the inverse dynamics:

given a desired robot configuration, velocity and acceleration,

the torques required to execute this motion are computed

and stored. The algorithm first performs a forward pass

(equivalent to second-order kinematics). It then performs a

backward pass, computing the wrenches transmitted along

the structure and extracting the joint torques needed to obtain

the computed link motions. With the appropriate inputs, this

algorithm can also be employed to compute specific terms

of the dynamic model, such as the gravity effects.

d) Joint space inertia matrix: the Composite Rigid

Body Algorithm (CRBA) [19] is employed to compute the

joint space inertia matrix of the robot. We have implemented

some slight modifications of the original algorithm that

improve the computational efficiency.

e) Forward dynamics: the Articulated Body Algorithm

(ABA) [20] computes the unconstrained forward dynamics:

given a robot configuration, velocity, torque and external

forces, the resulting joint accelerations are computed.

1Pinocchio indeed uses a fork of FCL 0.3.1 version.



f) Additional algorithms: beside the algorithms above,

other methods are provided, most notably for constrained

forward dynamics, impulse dynamics, inverse of the joint

space inertia [21] and centroidal dynamics.

G. Analytical derivatives

Beside proposing standard forward and inverse

dynamics algorithms, Pinocchio also provides efficient

implementations of their analytical derivatives [22]. These

derivatives are for instance of primary importance in the

context of whole-body trajectory optimization or more

largely, for numerical optimal control. To the best of our

knowledge, Pinocchio is the first rigid body framework

which implements this feature natively.

H. Automatic differentiation and source code generation

In addition to analytical derivatives, Pinocchio supports

automatic differentiation. This is made possible through the

full scalar templatization of the whole C++ code and the use

of any external library that does automatic differentiation:

ADOL-C [23], CasADi [24], CppAD [25] and others. It is

important to keep in mind that these automatic derivatives

are often much slower than the analytical ones.

Another unique but central feature of Pinocchio is its

ability to generate code both at compile time and at

runtime. This is achieved by using another external toolbox

called CppADCodeGen2 built on top of CppAD [25]. From

any function using Pinocchio, CppADCodeGen is able to

generate on the fly its code in various languages: C,

Latex, etc. and to make some simplifications of the math

expressions. Thanks to this procedure, a code tailored for a

specific robot model can be generated and used externally to

Pinocchio.

III. WHAT MAKES PINOCCHIO FAST

In this section, we detail the programming paradigms that

we have implemented in Pinocchio, to make the framework

both efficient and versatile.

A. Handling the sparsity

Each joint by definition constrains the motion between

two bodies to be restricted to some particular directions

of movement. This particularly means that each joint can

be endowed with its own specific operators and state

representations, in order to achieve minimal memory print

and number of computations. For instance, the joint Revolute

transformation is represented by a single scalar value,

the rotation around its axis, while the joint Spherical

transformation is encoded as a rotation matrix. A similar

observation can be made for the other spatial quantities

that characterize the joint state, such as spatial velocities

or accelerations, joint constraint, etc. Hence, each joint in

Pinocchio is endowed with its own sparse description of the

spatial quantities. In combination with an overloading of the

spatial operators, this allows us to adequately exploit the

sparsity inherent to each joint at the computational level.

2https://github.com/joaoleal/CppADCodeGen

B. Static polymorphism

The concept of polymorphism then enables us to

adequately exploit the sparsity induced by the joints.

Pinocchio classes make extensive use of inheritance and

polymorphism. For instance, all different joint models are

implemented as subclasses of JointModelBase, which

defines the common API for all the joints. Methods and data

structures are then specialized in each joint model class.

In Pinocchio, we chose to implement this behavior

through static polymorphism, in contrast with dynamic

polymorphism, the traditional way of implementing

polymorphism in C++, by means of virtual methods. In

dynamic polymorphism, when a method is called, the

object class is deduced at runtime, and the appropriate

method is then executed. This has the main drawback of

breaking the prediction mechanisms of modern CPUs. In

static polymorphism, instead, the appropriate function is

selected directly at compile time. The adoption of this

paradigm improves efficiency in many ways. In the first

place, the double redirection which is typical of dynamic

polymorphism is avoided, as well as the runtime class

deduction. In the second place, since class information is

known at compile time, the compiler is allowed to optimize

the code to make it more efficient.

Static polymorphism is implemented through the so-called

Curiously Recurring Template Pattern (CRTP), which is

at the core of our framework. This is also the design

pattern employed in the Eigen library, greatly contributing

to its performances and versatility. We now introduce

the concept of CRTP with a simple example which

depicts the architecture of the joint classes in Pinocchio.

According to this design pattern, the joint model base class

JointModelBase that defines the common methods and

attributes for all the joints, is templated by its child class:

template<typename Derived>

struct JointModelBase<Derived> {
void calc(q,v)

{
〈call calc method of Derived class〉
static cast<Derived*>(this)->calc();

}
};

Then all the joint model classes inherit this base class, as

follows:

struct JointModelRevolute

: JointModelBase<JointModelRevolute> {
void calc(q,v)

{ 〈do specific computations〉 }
};

In this way, JointModelBase is employed to define

the prototypes of all joint model-specific operators, which

are then implemented in the child classes. In turn, this

allows developers to write generic code which works for

all subclasses, by simply writing templated functions. For

instance, all algorithms in Pinocchio are written as a

sequence of steps to execute over the joint models contained

in the model. A single step may be implemented as

https://github.com/joaoleal/CppADCodeGen


template<typename Derived>

void step(JointModelBase<Derived> joint, arg1, ...)

{
joint.calc(arg1,arg2); // Calling Derived::calc

...

}

where function step calls the method calc defined in

JointModelBase<Derived> which directly redirects

to the method calc of the Derived class performing the

computations. Since the value of Derived is known at

compile time, modern compilers are able to remove this

level of indirection and directly call the method in the

Derived class. The same happens with all other similarly

implemented methods employed within step. A different

version of step is then compiled for each joint class, each

statically linked to the joint-specific methods and avoiding

the use of dynamic redirection.

This enhanced performance comes with a loss of

flexibility. From a conceptual point of view, when using

this coding paradigm, two different derived classes do

not inherit from the same base class. For instance,

JointModelBase<JointModelRevolute> is

a base class of JointModelRevolute, while

JointModelBase<JointModelPlanar> is a

base class of JointModelPlanar. This means that

JointModelRevolute and JointModelPlanar

cannot be cast to a same parent class, as usually done with

dynamic polymorphism. Therefore, it is neither possible to

create a vector of JointModelBase objects, nor possible

to have joints whose type is unknown at compile time.

To recover the flexibility allowed by dynamic

polymorphism, we resort to the concept of variant.

A variant is a class which can be used to represent

any type of a finite predetermined set of types. Most

importantly, a variant keeps runtime information about the

represented type. In Pinocchio, we define a variant called

JointModelVariant, able to represent any joint. Joints

are stored within a Pinocchio model as a collection of

variant objects. In this way, when an algorithm is executed,

the appropriate steps are selected at runtime, depending on

the type of each joint. However, as explained above, each

individual step is fully optimized for the specific joint type

at hand.

Thanks to the combination of CRTP and of the variant

paradigm, the code flexibility is recovered, while for

each algorithm the overall runtime overhead due to class

redirection is reduced to the minimum.

IV. GETTING STARTED WITH PINOCCHIO

Pinocchio [26] is currently supported for most Linux

distributions and also Mac OS X, with plans to release

Windows versions soon. The project is fully open-source

under the BSD-2-Clause license and is currently hosted on

the following GitHub repository:

https://github.com/stack-of-tasks/pinocchio

A. Documentation and tutorials

Documentation for Pinocchio is available within the

package, as well as on the GitHub project page; the Python

interface is fully documented, while the C++ documentation

is still work in progress. Benchmark and unit tests are all

available within the package. Tutorials for Pinocchio can be

found in a dedicated GitHub repository

github.com/stack-of-tasks/pinocchio-tutorials

The tutorials are mostly in Python and are especially suited

as a support to educators in robotics classes.

B. Installation

Pinocchio releases are managed by robotpkg, a package

manager tailored for robotics software, available on most

Unix and BSD platforms. Details on the installation

procedure can be found on the GitHub project page. Here,

we only provide a sketch.

On Ubuntu, the software binaries of the packages managed

by robotpkg are directly available through the robotpkg apt

repository. After adding the repository to the list of available

sources, Pinocchio, its Python bindings and all the required

dependencies can be simply installed with

apt-get install robotpkg-py27-pinocchio

The tutorials include details about the installation procedure,

as well as a script which automatically performs all the

installation steps.

On Mac OS X, installation of Pinocchio through the

Homebrew package manager is supported. It is sufficient to

issue the following commands

brew tap gepetto/homebrew-gepetto

brew install pinocchio

Another option is to install the framework directly from

the source code, which can be downloaded from the official

GitHub repository of Pinocchio.

C. Small example: running RNEA on the ATLAS robot

In the following, we demostrate how Pinocchio can be

used in Python to compute the inverse dynamics of the

humanoid robot Atlas on random input values.

import pinocchio as se3, numpy as np

root = se3.JointModelFreeFlyer()

model = se3.buildModelFromUrdf(‘atlas.urdf’,root)

data = model.createData()

qmax = np.matrix(np.full([model.nq, 1], np.pi))

q = se3.randomConfiguration(model,-qmax,qmax)

v = np.matrix(np.random.rand(model.nv,1))

a = np.matrix(np.random.rand(model.nv,1))

tau = se3.rnea(model,data,q,v,a)

V. RESULTS

A. Setup

We first evaluate the performances of Pinocchio over 8

different robot models3 and for the main used algorithms,

namely RNEA (inverse dynamics), ABA (forward dynamics)

3 Tests are run with the 7-DoF manipulator KUKA LWR
4+ [27], a simple 22-DoF legged humanoid model, the humanoids
Nao (www.softbankrobotics.com/emea/en/robots/nao), Poppy
(www.poppy-project.org), Atlas (www.bostondynamics.com/atlas) and
TALOS [28], the quadruped HyQ [29], and the mobile manipulator TIAGo
(www.tiago.pal-robotics.com).

https://github.com/stack-of-tasks/pinocchio
https://github.com/stack-of-tasks/pinocchio-tutorials
https://www.softbankrobotics.com/emea/en/robots/nao
https://www.poppy-project.org
https://www.bostondynamics.com/atlas
http://tiago.pal-robotics.com


RNEA CRBA ABA

10
0

10
1

m
e

a
n

 c
o

m
p

u
ta

ti
o

n
 t
im

e
 [

s
]

LWR

HyQ

TIAGo

Nao

Poppy

human

Atlas

TALOS

Fig. 1. Performance of Pinocchio RNEA, ABA and CRBA on various
robots.
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Fig. 2. Comparison of performances of Pinocchio against RBDL for the
LWR robot (top) and the ATLAS robot (bottom) models.

and CRBA (mass matrix). The performances of Pinocchio

are also compared against RBDL [9], another popular and

efficient C++ framework. Each test case is run 100 000 times

with randomized input values on a standard laptop equipped

with an Intel Core I7 CPU @2.4 GHz.

B. Results

Absolute performances are plotted in Fig. 1 over the 8

robot models. Pinocchio requires about 1 µs for evaluating

the dynamics on manipulator robots and about 3 µs on

legged robots. Performances versus RBDL are reported in

Fig. 2 for 2 representative models. Pinocchio RNEA is

similar to RBDL but its ABA and CRBA implementations

outperform RBDL. This first set of results was obtained using

the dynamic loading of models.

We then compare these scores with the performances

when a dedicated source code is generated for a given input

model, as depicted in Fig. 3. The code generation divides the

computation time by 3 for complex robots such as humanoids

or quadruped up to 8 for simpler robots like the LWR arm

robot. The difference in execution timings is likely due to the

caching effects and the necessity of prediction. As a result,

it is possible to evaluate the dynamics of complex legged

robots in slightly more than 1µs. Another important can be

raised between the theory and the practice. Indeed, from a

theoretical point of view, it is known that ABA has a larger

complexity in terms of number of operations than RNEA [2].

Nonetheless, it appears that in practice and thanks to the
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Fig. 3. Performances of code generated by Pinocchio (compared to the
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Fig. 4. Performances of the derivatives of RNEA and ABA, for 4 robot
models, versus evaluation by finite differences.

code generation, RNEA, ABA and also CRBA have similar

computational costs.

Finally, Pinocchio also provides the implementation of the

derivatives of RNEA and ABA among others. We report in

Fig. 4 the performances of these algorithms when the model

is loaded dynamically.

VI. FRAMEWORK DISSEMINATION

Pinocchio was used in [30] and later in [31], [32] to

generate the whole body motion of the HRP-2 robot. This

experiment of climbing stairs with multiple contacts has been

run on the real hardware about 100 times with a rate of

success around 80 %. Thanks to its versatility, it is currently

used on the humanoid robot Pyrene (TALOS-01) [28] to

perform kinematic and dynamical tasks. It also has been

used in [33] to perform 150 RNEA runs in less than

1ms to implement a dynamical filter. This has been a key

point in order to improve the capabilities of the reactive

walking pattern generator. Pinocchio has been exploited

to generate whole-body optimal control both for codesign

approaches [34] and for fast walking motions [35]. It is also

used to perform manipulation planning in the Humanoid Path

Planner (HPP) software [36] on various robots: UR5, PR-2,

and Romeo. It has also been recently used inside the HPP

framework to plan dynamically feasible contact sequences

on HRP-2 [37], [38].

VII. CONCLUSIONS

We have introduced Pinocchio, a new, fast and flexible

framework that implements rigid body dynamics algorithms

and their analytical derivatives. Pinocchio demonstrates

equivalent or even better performances than all other similar

libraries when used dynamically. The gap is even increased



with the support of code generation, where the timings

outperforms the state of art.

As next milestones, we plan to integrate in Pinocchio both

the model of transmissions (gear, pulley, tendons, etc.) and

actuations (pneumatic muscles, biological muscles, electrical

motors, etc.) in order, for instance, to take into account

their physical effects in the dynamic equations of motion.

This will make Pinocchio not only able to deal with robotic

systems but also with the simulation of biological systems,

that is of primary importance to understand for instance the

foundations of anthropomorphic locomotion [39].
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[1] J.-L. Lagrange, Mécanique analytique. Académie Royale des Sciences,
1788.

[2] R. Featherstone, Rigid Body Dynamics Algorithms. Springer, 2008.
[3] M. G. Hollars, D. E. Rosenthal, and M. A. Sherman, “SD/FAST user’s

manual,” 1991.
[4] N. Docquier, A. Poncelet, and P. Fisette, “Robotran: a powerful

symbolic gnerator of multibody models,” Mechanical Sciences, vol. 4,
no. 1, pp. 199–219, 2013.

[5] P.-B. Wieber, F. Billet, L. Boissieux, and R. Pissard-Gibollet, “The
HuMAnS toolbox, a homogenous framework for motion capture,
analysis and simulation,” in International Symposium on the 3D

Analysis of Human Movement, 2006.
[6] W. Khalil, A. Vijayalingam, B. Khomutenko, I. Mukhanov,

P. Lemoine, and G. Ecorchard, “Opensymoro: An open-source
software package for symbolic modelling of robots,” in IEEE/ASME

International Conference on Advanced Intelligent Mechatronics,
pp. 1206–1211, 2014.

[7] M. Naveau, J. Carpentier, S. Barthelemy, O. Stasse, and P. Souères,
“METAPOD — Template META-PrOgramming applied to dynamics:
CoP-CoM trajectories filtering,” in IEEE-RAS International

Conference on Humanoid Robots (Humanoids), 2014.
[8] M. Frigerio, J. Buchli, D. G. Caldwell, and C. Semini, “RobCoGen:

a code generator for efficient kinematics and dynamics of articulated
robots, based on Domain Specific Languages,” Journal of Software

Engineering for Robotics (JOSER), vol. 7, no. 1, pp. 36–54, 2016.
[9] M. L. Felis, “RBDL: an efficient rigid-body dynamics library using

recursive algorithms,” Autonomous Robots, 2017.
[10] F. Kanehiro, H. Hirukawa, and S. Kajita, “Openhrp: Open architecture

humanoid robotics platform,” The International Journal of Robotics

Research, vol. 23, no. 2, pp. 155–165, 2004.
[11] M. A. Sherman, A. Seth, and S. L. Delp, “Simbody: multibody

dynamics for biomedical research,” Procedia Iutam, vol. 2,
pp. 241–261, 2011.

[12] T. Koolen and contributors, “RigidBodyDynamics.jl,” 2016.
[13] R. Tedrake and the Drake Development Team, “Drake: A planning,

control, and analysis toolbox for nonlinear dynamical systems,” 2016.
[14] E. Coumans, “Bullet Physics Simulation,” in ACM SIGGRAPH 2015

Courses, 2015.
[15] J. Lee, M. X. Grey, S. Ha, T. Kunz, S. Jain, Y. Ye, S. S. Srinivasa,

M. Stilman, and C. K. Liu, “Dart: Dynamic animation and robotics
toolkit,” The Journal of Open Source Software, vol. 3, no. 22, p. 500,
2018.

[16] G. Guennebaud, B. Jacob, et al., “Eigen v3,” 2010.
[17] J. Pan, S. Chitta, and D. Manocha, “Fcl: A general purpose library for

collision and proximity queries,” in Robotics and Automation (ICRA),

2012 IEEE International Conference on, pp. 3859–3866, IEEE, 2012.

[18] J. Y. Luh, M. W. Walker, and R. P. Paul, “On-line computational
scheme for mechanical manipulators,” Journal of Dynamic Systems,

Measurement, and Control, vol. 102, no. 2, pp. 69–76, 1980.
[19] M. W. Walker and D. E. Orin, “Efficient dynamic computer simulation

of robotic mechanisms,” Journal of Dynamic Systems, Measurement,

and Control, 1982.
[20] R. Featherstone, “The calculation of robot dynamics using

articulated-body inertias,” The International Journal of Robotics

Research, 1983.
[21] J. Carpentier, “Analytical inverse of the joint space inertia matrix,”

tech. rep., Laboratoire d’Analyse et d’Architecture des Systèmes,
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