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Abstract. A classical problem in query optimization is to find the op-
timal ordering of a set of possibly correlated selections. We provide an
abstraction of this problem as a generalization of set cover called pipelined

set cover, where the sets are applied sequentially to the elements to be
covered and the elements covered at each stage are discarded. We show
that several natural heuristics for this NP-hard problem, such as the
greedy set-cover heuristic and a local-search heuristic, can be analyzed
using a linear-programming framework. These heuristics lead to efficient
algorithms for pipelined set cover that can be applied to order possibly
correlated selections in conventional database systems as well as data-
stream processing systems. We use our linear-programming framework to
show that the greedy and local-search algorithms are 4-approximations
for pipelined set cover. We extend our analysis to minimize the lp-norm
of the costs paid by the sets, where p ≥ 2 is an integer, to examine the
improvement in performance when the total cost has increasing contri-
bution from initial sets in the pipeline. Finally, we consider the online

version of pipelined set cover and present a competitive algorithm with
a logarithmic performance guarantee. Our analysis framework may be
applicable to other problems in query optimization where it is important
to account for correlations.

1 Motivation

A common operation in database query processing is to find the subset of records
in a relation that satisfy a given set of selection conditions. To execute this
operation efficiently, a query processor prefers to determine the optimal order in
which to evaluate the individual selection conditions, so we call this operation
pipelined filters [2, 4, 12, 18]. Optimality in pipelined filters is usually with respect
to minimizing the total processing time [4, 12].

For example, consider a relation packets, where each record contains the
header and an initial part of the payload of network packets logged by a network
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router. Suppose a query needs to compute the subset of packets where each
record r in the result satisfies the following three conditions:

1. p1: destPort = 80, where destPort is the destination port field of r.
2. p2: domain(destAddr) = “yahoo.com”, where destAddr is the destination

address field of r, and domain is a function that returns the Internet domain
name of an address passed as input.

3. p3: The payload of r contains the regular expression “ˆ[ˆ\\n]∗HTTP/1.∗” [9].

A query processor might use three selection operators on packets, denoted Op1
,

Op2
, and Op3

, to evaluate these three conditions respectively. In this case the
query processor might choose to apply Op1

first on each record in packets so
that Op2

and Op3
need only process records that are selected by Op1

. Since both
Op2

and Op3
involve complex functions, applying either of them before Op1

could
increase the total processing time by orders of magnitude. Further, the query
processor may choose to process Op2

before Op3
, since packets selected by Op1

are also likely to be selected by Op3
. As this example shows, it is important to

choose a good, if not the optimal, order for applying the selection operators on
the records of the input relation. Also note that both the expected fraction of
records selected (the selectivity) and the record-processing time of each selection
operator must be taken into account.

Suppose the selection conditions are independent; that is, the selectivity s
of any operator O among the records that O processes is independent of the
operators that appear before O in the order. Under this assumption, computing
the order that minimizes total processing time is easy: We simply order the
operators in nonincreasing ratio of 1 − s and the record-processing time. Most
previous work on the selection-ordering problem and on related problems make
the independence assumption and use this ordering technique [4, 12, 18, 23].

The independence assumption reduces the complexity of finding the optimal
order, but it is often violated in practice [6, 25]. It can be shown that when the
independence assumption does not hold, the total processing time can be O(n)
times worse than optimal when n operators are ordered in nonincreasing ratio
of 1− s and the record-processing time. Without the independence assumption,
the problem is NP-hard. Previous work [17, 22, 23] on ordering of dependent
(correlated) operators either uses exhaustive search—which requires selectivity
estimates for an exponentially large number of operator subsequences—or pro-
poses simple heuristics with no provable performance guarantees for the solution
obtained. As databases are being extended to manage complex data types such
as multimedia and XML, the use of expensive selection conditions are becom-
ing frequent, making the problem of ordering dependent selections even more
important [4, 12]. The pipelined filters problem also captures restricted types of
relational joins and combinations of joins and selections; see [2].

Pipelined filters can be formulated as a generalization of the classical set cover
problem [13, 15]: The relation represents the elements to be covered, and each
selection operator is a set which drops (or covers) a certain number of records
(or elements). The sets are applied sequentially to the elements to be covered,
with each set removing the elements that it covers from further processing; the



cost of applying a set depends linearly on the number of elements that are still
not covered when the set is applied. The solution desired is an ordering of the
sets that minimizes the total cost of applying the sets sequentially. We call this
problem pipelined set cover, the key difference with classical set cover being
the cost function. The mapping from pipelined filters to pipelined set cover is
straightforward: the operators map to the sets, and the operator ordering, or
pipeline, maps to the ordering of the sets.

2 Our Contribution

Pipelined set cover has been considered previously in a non-database context by
Feige et al. [11] and by Cohen and Kaplan [7]. They show that the uniform cost
version of this problem is MAX-SNP hard and develop a greedy 4-approximation
algorithm for the uniform cost version. In addition to showing the application
of pipelined set cover to classical optimization problems in database and data-
stream processing, we extend previous work significantly in this paper, as follows.

2.1 Approximation Algorithms for Pipelined Set Cover

We provide two approximation algorithms for pipelined set cover, one based on
the greedy heuristic for classical set cover and another based on an intuitive
local-search heuristic. (In separate work we have implemented both algorithms
efficiently in a data-stream processing system [2].) Using a different and more
general analysis technique from previous work, we show that both these algo-
rithms are 4-approximations, even when the linear cost function depends on the
set. This relatively new analysis technique is based on formulating the worst-
case performance of the algorithms as linear programs. (This technique was first
used by Jain, Mahdian, and Saberi to analyze the performance of a dual-fitting
algorithm for facility location [14].) This technique has several advantages. In
addition to bounding the approximation ratio, the linear program can be used
to analyze running time, e.g., the rate of convergence of the local search heuris-
tic. The linear program gives new insights about the approximation algorithms,
with strong implications for query optimization: The bound on approximation
depends on the number of sets (operators) n; for n ≤ 20, this bound ≤ 2.35. Fur-
thermore, this technique can be used to analyze other algorithms for pipelined
set cover, including a simple move-to-front algorithm which can be implemented
very efficiently.

We can view our problem as minimizing the l1-norm of the vector of the
number of elements processed (or the cost paid) by each set. The classical set
cover problem can be viewed as minimizing the l0-norm1—it gives a cost to any
set that is independent of the number of elements it processes, so long as that set
processes at least one element. For set cover, the performance of the greedy al-
gorithm is logarithmic [13, 15, 24], and this approximation factor is optimal [10],
assuming P 6= NP. The approximation ratio improves to 4 for our l1-norm for-
mulation, where the cost of each set is weighted by the number of elements it

1 Of course, technically speaking, there is no such norm. However, we can adopt the
view that the set cover objective function is minimizing a Hamming measure, which
is sometimes treated as a substitute for the l0-norm [8].



processes. A natural question to ask is what happens to the approximation ra-
tio when the goal is to minimize the lp-norm of the costs paid by the sets, for
integers p ≥ 2. As p increases, this formulation gives increasing weight to sets at
the start of the pipeline that process more elements. The intuition is that the
performance of the greedy algorithm should improve with increasing p, and it
should reach the optimal solution when we are minimizing the l∞-norm. Since
the objective function is nonlinear, linear programming techniques fail to apply.
We develop a Lagrangian-relaxation analysis technique for p ≥ 2 to show that

the approximation ratio of the greedy algorithm is 9
1

p when the processing costs

are uniform (independent of the set), and that local search is a 4
1

p -approximation
when the processing costs are nonuniform. The improvement in performance of
greedy confirms the intuition that as we skew the total cost in favor of the initial
sets chosen, greedy’s performance should improve for uniform processing costs.

2.2 Online Pipelined Set Cover

Our original motivation for defining and analyzing pipelined set cover came from
our work on processing pipelined filters in a data-stream query processor [2]. A
stream, as opposed to a relation, is a continuous unbounded flow of records arriv-
ing at a stream-processing system [1]. Example streams include network packets,
stock tickers, and sensor observations. Pipelined filters are common in stream
processing, e.g., packets may be a stream in our example query introduced at
the beginning of this section. Another common example of pipelined filters in
stream processing is a join of a stream S with a set of relations R1, R2, . . . , Rk:
For each record s arriving in S, we need to find R

′

i ⊆ Ri, 1 ≤ i ≤ k, such

that each record ri ∈ R
′

i satisfies ri.A = s.A where A is a field that is common
among S, R1, R2, . . . , Rk. (We have defined a restricted version of the problem
for succinctness [2].) The join output for s is the set of concatenated records
s ·r1 ·r2 · · · rk for each combination of r1 ∈ R

′

1, r2 ∈ R
′

2, . . . , rk ∈ R
′

k. If any of

the R
′

i’s are empty, then s produces no join output and we say that s is dropped.
For processing the join efficiently, we must order R1, R2, . . . , Rk for computing
R

′

1, R
′

2, . . . , R
′

k such that records in S that get dropped eventually consume min-
imal processing time. Note that the processing required for records that are not
dropped is independent of the ordering.

Pipelined filters over data streams motivate the online version of pipelined
set cover. In online pipelined set cover, some number of elements arrive at each
time step. Our online algorithm has to choose an ordering of the sets in advance
at every time step, and process the incoming elements according to this ordering.
The performance of our online algorithm is compared against the performance
of the best possible offline algorithm that does not change its ordering for the
entire course of the request sequence. For online pipelined set cover, we present an
O(log n) competitive algorithm for the uniform cost case, where n is the number
of sets. This algorithm can be extended to an O(log n + log cmax

cmin

) competitive
algorithm for the nonuniform cost case, where cmax is the largest per-element
processing cost among all sets, and cmin is the smallest such cost.



2.3 Implementation

In a companion paper [2], we describe our implementation of some of the approx-
imation algorithms for pipelined set cover proposed in this paper for optimizing
pipelined filters in a Data Stream Management System [20]. We propose and
evaluate techniques to compute selectivity estimates of operator subsequences
needed by our approximation algorithms with minimal overhead, as part of query
processing itself. While previous work [22, 23] on provably good algorithms for
dependent pipelined filters required selectivity estimates for an exponentially
large number of operator subsequences, our algorithms require only O(n2) esti-
mates. (In a conventional database setting, a sample of records from the input
relation can be used to estimate these selectivities with low overhead [3, 19].)
Furthermore, because data and arrival characteristics of streams can change
over time, in [2] we introduce adaptive versions of the algorithms that modify
orderings as statistics change, converging on the static solution when statistics
do not change. The need to adapt forces us to optimize the pipeline continu-
ously, which motivates the low-overhead heuristics we consider such as greedy
and local search.

2.4 Organization

The rest of the paper is organized as follows:

– Section 3 presents the formal problem statement. In Section 4, we introduce
and use our linear-programming framework to analyze the greedy set cover
algorithm applied to pipelined set cover.

– We move on to local search heuristics in Section 5, showing that our analysis
technique carries over to this case, leading to bounds not only on the approx-
imation ratio, but also on the rate of convergence. In the full version [21] we
describe simpler implementations of the local search algorithm using limited
amount of state, and analyze the resulting performance degradation.

– In Section 6, we present a Lagrangian-relaxation method for analyzing the
performance of the greedy and local search algorithms when we optimize
the lp-norm of the cost paid by the sets. The detailed analysis of the local

search heuristic, showing that it is a 4
1

p -approximation, is relegated to the
full version [21].

– We finally present the online algorithm and its analysis in Section 7.

We omit a separate section on related work because of space constraints. How-
ever, related work is referenced appropriately in all sections in the paper.

3 Preliminaries

We are given a set cover instance with n elements denoted U = {e1, e2, . . . , en},
and a collection of sets A = {S1, S2, . . . , Sk}. Set Si has a processing cost per



unit element of ci. Let π(A) denote the set of all possible orderings (permuta-
tions) of the sets S1, S2, . . . , Sk. The goal is to choose an ordering of the sets,
(Sp1

, Sp2
, . . . , Spk

) ∈ π(A) , so as to minimize the pipelined cost:
k
∑

i=1

cpi
|U − ∪i−1

j=1Spj
|

This cost reflects the cost of a sequence of selection operations in a relational
schema, and the goal is to find the optimal such sequence of operations. If the
ci’s are equal, we call the instance uniform. Note that in this formulation, each
element can have a weight associated with it, so that the size of a set is simply
the sum of the weights of the elements. We call this problem the Pipelined Set
Cover problem. Feige et al [11] show that this problem does not admit to better
than a 4 approximation unless P = NP .

4 Greedy Algorithm

We now analyze the greedy set cover algorithm for this problem. At step i,
let n denote the total number (weight) of uncovered elements. Let nj be the
number (respectively weight) of uncovered elements that get covered by set j.
We choose the set that minimizes the cost ratio

cjn

nj
. The uniform cost version

of this algorithm was analyzed in [11] and in [7]. We provide a different analysis
that handles nonuniform costs which are important in databases since different
operators in a pipeline can have different costs.

We can formulate the worst-case performance of greedy as a linear program.
Consider any optimal solution whose sets are pipelined {O1, O2, . . . , Ok}. Sup-
pose we scale down the problem size by scaling down the weights of the elements
so that the pipelined cost of the optimal solution is 1. Without loss of generality,
assume that the sets in the optimal solution are disjoint, else Oi denotes the
residual part of the set after the application of O1, . . . , Oi−1. We denote |Oi| by
ai, and the processing cost of Oi by coi. The cost of the optimal solution is:

OPT =

k
∑

i=1

(

ai ·
i
∑

s=1

cos

)

Let us denote the sets chosen by greedy as {G1, G2, . . . , Gk}. Again, assume
without loss of generality that they are disjoint, else Gi denotes the residual
part of the set after application of G1, . . . , Gi−1. Let bij = |Oi ∩ Gj |, so that

ai =
∑k

j=1 bij . Let the processing cost of Gj be cgj . The cost of greedy is:

GREEDY =
k
∑

j=1

(

j
∑

r=1

cgr ·
k
∑

s=1

bsj

)

Since greedy maximizes the weight of uncovered elements at each time, we
have for every stage j of greedy and every set Oi of OPT, the cost ratio of the
residual part of Oi after j − 1 stages of greedy must be at least the cost ratio of
Gj . This gives us:

∑k

s=1 bsj

cgj

≥
∑k

r=j bir

coi



We can now formulate the worst possible approximation ratio that greedy
can achieve as the following linear program:

maximize

k
∑

j=1

(

j
∑

r=1

cgr ·
k
∑

s=1

bsj

)

, subject to:

∑k

i=1(
∑i

s=1 cos ·
∑k

r=1 bir) ≤ 1

cgj ·
∑k

r=j bir ≤ coi ·
∑k

s=1 bsj ∀i, j

bij ≥ 0 ∀i, j

For all the processing costs being uniform, we can compute the precise worst-
case ratios. For k = 20, the worst-case ratio is 2.35. For k = 100, this climbs to
2.61, and for k = 200, this is around 2.80.

The upper bound on this approximation ratio for any possible value of the
processing costs would be an upper bound on the worst-case performance of the
greedy algorithm. For this purpose, we take the dual of this linear program:

minimize γ, subject to:

γ
∑i

s=1 cos +
∑j

r=1 αircgr ≥∑k

s=1 αsjcos +
∑j

r=1 cgr ∀i, j
αij ≥ 0 ∀i, j

By linear programming duality, for any choice of the processing costs, the
objective function value for any feasible solution for the dual problem would
be an upper bound on the optimal solution to the primal problem for those
processing costs. The maximum of this value over all possible choices of the
processing costs would therefore be a bound on the worst-case approximation
ratio for the greedy algorithm.

Fix a choice of the processing costs. We show that there is a feasible solution
to the dual with γ = 4. Let Pi =

∑i

s=1 cos and Qj =
∑j

r=1 cgr. We set αij = 2

if Pi ≤ Qj

2 and 0 otherwise. For any i, j, if Pi ≤ Qj

2 , then
∑j

r=1 αircgr ≥ 2(Qj −
2Pi) = 2Qj −4Pi. This implies 4

∑i

s=1 cos +
∑j

r=1 αir ≥ 4Pi +2Qj −4Pi = 2Qj .

In the other case, if Pi >
Qj

2 , then
∑j

r=1 αircgr = 0, implying 4
∑i

s=1 cos +
∑j

s=1 αis = 4Pi ≥ 2Qj . We also have for all j,
∑k

s=1 αsjcos ≤ 2
Qj

2 = Qj ,

implying
∑j

r=1 cgr +
∑k

s=1 αsjcos ≤ 2Qj . We have for all i, j:

4

i
∑

s=1

cos +

j
∑

r=1

αircgr ≥
k
∑

s=1

αsjcos +

j
∑

r=1

cgr

Our choice of αij forms a feasible solution for the dual with an objective value
of γ = 4 for every choice of values for the processing costs. Therefore, the greedy
algorithm always has an approximation ratio of at most 4.

Theorem 1. The greedy algorithm is a 4-approximation to the pipelined set
cover problem.



4.1 Approximate Greedy Algorithm

At every step, suppose the greedy algorithm does not pick the best set, but any
set that covers a fraction σ ≤ 1 times as many elements covered by the best
possible set (for the case with uniform processing costs). We can express the
worst case of this algorithm as a similar linear program, and derive an approxi-
mation ratio of 4

σ
. The argument generalizes naturally to the case with arbitrary

processing costs and yields the same approximation ratio. The parameter σ was
useful in our implementation [2] to avoid pipeline thrashing: we do not want to
change the current ordering unless we detect a set (operator) that covers a sig-
nificant fraction more of the elements at some earlier stage in the pipeline than
the current set (operator) at that position.

5 Local Search

We will now analyze the following local search heuristic: We start with an arbi-
trary complete pipeline. We insert a set into the pipeline (in other words, move
it up the pipeline) if it improves the cost of the solution. We repeat till no insert
operation improves the cost of the solution. As before, we denote the residual
part of the ith set in the optimal solution by Oi, and the residual part of the jth

set in the current solution by Lj .
Let the processing cost of set Oi be coi and the cost of set Lj be clj . Let

Qj =
∑j

r=1 clr and Pi =
∑i

s=1 cos. Define Q0 = 0.
We will show that local search is a (4 + ε)-approximation. As before, we can

formulate the problem as a linear program. The constraint to enforce is that
inserting Oi at position j does not help the current solution:

k
∑

r=1

(

Qr

k
∑

s=1

bsr

)

≤
j−1
∑

r=1

(

Qr

k
∑

s=1

bsr

)

+
k
∑

r=j






(coi + Qj−1)bir + (coi + Qr)

k
∑

s=1
s6=i

bsr







This simplifies to:

k
∑

r=j

(Qr − Qj−1)bir ≤ coi

k
∑

r=j

k
∑

s=1

bsr

We can now write the linear program as:

maximize

k
∑

j=1

(

Qj

k
∑

i=1

bij

)

subject to:

∑k

r=j(Qr − Qj−1)bir ≤ coi

∑k

r=j

∑k

s=1 bsr ∀i, j
∑k

i=1(Pi

∑k

j=1 bij) ≤ 1

bij ≥ 0 ∀i, j



We now take the dual of this program:

minimize γ

subject to:

γPi +
∑j

r=1(Qj − Qr−1)αir ≥ Qj +
∑j

r=1

∑k

s=1 αsrcos ∀i, j
αij , γ ≥ 0 ∀i, j

For every i, let z(i) denote the first value j such that Qj ≥ 2Pi. We set

αiz(i) = 2. For every other j, we set αij = 0. Therefore,
∑j

r=1(Qj −Qr−1)αir ≥
2(Qj − 2Pi) for all j. In addition,

∑j

r=1

∑k

s=1 αsrcos ≤ Qj for all j. Therefore,
γ = 4 is feasible for the dual.

5.1 Convergence Analysis

We now examine the number of iterations required by local search. Suppose the
current solution is an M -approximation to the optimal solution. We will compute
the smallest amount by which the approximation factor improves with the best
possible local move. This can be formulated as the following linear program (note
that M is not a variable):

minimize A

subject to:

∑k
r=j(Qr − Qj−1)bir ≤ A + coi

∑k
r=j

∑k
s=1 bsr ∀i, j

∑k

j=1(
∑k

j=1 Qj

∑k

i=1 bij) ≥ M
∑k

i=1(Pi

∑k

j=1 bij) ≤ 1

bij ≥ 0 ∀i, j

We take the dual as before, and set αiz(i) = 1
k
. This yields a dual value of

M−4
2k

. Therefore, the reduction in approximation ratio is M−4
2k

.
Fix any ε > 0. Suppose we stop when we achieve an approximation ratio of

(4 + ε). It is easy to start with a solution of cost at most nk · OPT . Therefore,
the number of iterations is at most 2k log nk

ε
. We have therefore shown:

Theorem 2. The local search heuristic produces a (4 + ε)-approximation in
O(k log nk

ε
) operations.

We provide simpler implementations of the local search algorithm using lim-
ited amount of state, and show the degradation in performance in the full version.

6 Extensions to Higher lp Norms

Consider the problem of finding a pipeline St1 , St2 , . . . , Stk
which minimizes the

lp-norm (p ≥ 1):



(

k
∑

i=1

(cti
|U − ∪i−1

j=1Stj
|)p

)

1

p

We will analyze the greedy and local search algorithms for this cost function.
Note that the greedy algorithm gives a O(log n)-approximation for classical set
cover which be viewed as seeking to minimize an l0-norm (see Footnote 1), as the
cost of a set is independent of the number of elements it processes, as long as it is
nonzero. When p = 1, the cost of a set is weighted by the number of elements it
processes (so that initial sets in the ordering are more important), and this ratio
goes down to 4. Clearly, the greedy algorithm could have an approximation ratio
as bad as cmax

cmin
for the l∞-norm, as the cost of the first set chosen dominates.

We will consider the uniform case where ci = 1 for all i, and show that for

integers p ≥ 2 the approximation ratio for the greedy algorithm is at most 9
1

p ,
using a Lagrangian-relaxation analysis. This proves the intuitive claim that the
performance of the greedy algorithm improves as we skew the objective function
more and more in favor of the initial sets in the ordering. The analysis can be
tightened by a better choice of constants; our only goal here is to show that the
performance ratio improves dramatically with increasing p. We leave the problem
of computing the approximation ratio for arbitrary monotone cost functions as
an interesting open problem.

We will analyze the local search heuristic in the full version and show that

it is a 4
1

p -approximation minimizing the lp-norm for the nonuniform case when
p ≥ 1 is an integer.

Consider the objective function of the form
∑k

i=1 |U − ∪i−1
j=1Stj

|p. For this
case, the worst-case performance of greedy can be formulated as a nonlinear
program:

maximize

k
∑

j=1





k
∑

i=1

k
∑

r=j

bir





p

subject to:
∑k

i=1(
∑k

s=i

∑k
r=1 bsr)

p = 1
∑k

r=j bir ≤∑k
s=1 bsj ∀i, j

bij ≥ 0 ∀i, j

We now write the Lagrangian relaxation of this formulation, using nonnegative
αij and γ:

k
∑

j=1





k
∑

i=1

k
∑

r=j

bir





p

+ γ

(

1 −
k
∑

i=1

(

k
∑

s=i

k
∑

r=1

bsr

)p)

+
∑

i,j

αij





k
∑

s=1

bsj −
k
∑

r=j

bir





Given any setting of the bij , we will find a setting for the αij and γ so that the
Lagrangian is at most 9. We will use a simple method for setting the variables –
we will ensure that the coefficients for all the bij variables in the Lagrangian are
negative or zero. If this were true for γ = 9, we would be able to easily establish



a 9-approximation. Let Lij =
∑k

r=j+1

∑k
s=i bsr. We set αij = 3pLp−1

ij if i ≤ j
3 ,

and 0 otherwise.
We will now compute the coefficient of a general term of the form bp1

i1j1
bp2

i2j2
. . . bpt

itjt
,

where p1+p2 + . . .+pt = p. Let i = min(i1, i2, . . . , it) and j = min(j1, j2, . . . , jt).
Let bimi

and bmjj be the relevant terms. The relevant nonzero terms are present
in the following sum; note that there are more terms, but these would make the
sum only smaller.

k
∑

j=1





k
∑

i=1

k
∑

r=j

bir





p

− γ

(

k
∑

i=1

(

k
∑

s=i

k
∑

r=1

bsr

)p)

−
j
∑

r=1

αirbimi
+

k
∑

s=1

αsjbmjj

Let H = p!
p1!p2!···pt!

. The coefficient from the first two terms in the summation

is H(j − 9i). Let n(j) denote the sum of the exponents of the terms in the
product bp1

i1j1
bp2

i2j2
. . . bpt

itjt
of the form bsj . The coefficient of the product depends

on whether nj = 1 or not. Let n(i) ≥ 1 denote the total power of terms in the
product of the form bir. We consider four cases:

Case 1: If n(j) = 1 and i ≤ j/3, the coefficient is: −3H × n(i) × max(j − 3i−
1, 0) + 3H × j

3 ≤ H(9i − 2j + 3) ≤ H(9i − j), as j ≥ 3 in this case.

Case 2: If n(j) = 1 and i > j/3, the coefficient is: 3H× j
3 ≤ H(3i) ≤ H(9i−j).

Case 3: If n(j) > 1 and i ≤ j/3, the coefficient is: −3H × n(i) × max(j − 3i−
1, 0) ≤ H(9i + 3 − 3j) ≤ H(9i − j) since j ≥ 3 for this case.

Case 4: If n(j) > 1 and i > j/3, the coefficient is 0 ≤ H(9i − j).

Therefore, in all cases, the net coefficient of bp1

i1j1
bp2

i2j2
. . . bpt

itjt
is negative or

zero, showing that the primal problem has objective value at most 9. We have
therefore proved the following theorem:

Theorem 3. The greedy algorithm is a 9
1

p -approximation for minimizing the
lp-norm (for integer p ≥ 1) of the costs in the uniform cost model.

7 Online Problem

We now consider the pipelined set cover problem in the online setting which arises
in data-stream processing [1]. At each time step, the algorithm is presented with
a collection of elements. The algorithm has to choose an ordering of the sets
without knowledge of these newly-arriving elements, and use this ordering to
process the elements. The goal is to be competitive against the best possible
algorithm that does not change its ordering for the entire request sequence.

We will begin by assuming that the incoming elements are chosen from a do-
main containing a relatively small number of distinct elements {e1, e2, . . . , ed}.
This assumption will be dropped in Section 7.3. Each element ei ∈ {e1, e2, . . . , ed}
is dropped by zero or more sets, not dropped by the others, and this behavior
does not change over time. In the rest of this section, we will use the phrase
“count of elements till time t” to refer to the vector {se1

, se2
, . . . , sed

} where sei



is the number of times the element ei has arrived till t time steps. “Count of
elements at time t” is defined similarly.

We give an O(log n) competitive algorithm for the uniform cost version of
online pipelined set cover, where n is the number of sets. Our algorithm uses a
technique introduced by Kalai and Vempala in [16]. (Our algorithm and proof ex-
tend to the case with arbitrary processing costs; we omit the discussion because
of space constraints.) The basic idea behind this technique is the observation
that if we knew the counts of the elements at time t in advance, then using the
optimal solution for the counts till time t to process the elements at time t, for
all t, gives the optimal solution for the online case. Since we do not know the
counts at time t in advance, we use the counts till time t − 1. To prevent the
adversary from being malicious, we add a large random value to these counts.
The first argument is that adding randomness does not affect the cost of the
solution too much, provided the randomness is “small”. The second argument
is that for any choice of the counts at time t, the expected cost of the solution
we pick will be good, since the distribution of the counts till t− 1 with random-
ness and till time t with randomness are almost identical, if the randomness is
sufficiently “large”. The analysis framework from [16] can be used to find the
optimal amount of randomness to add. The only catch is that for approximation
algorithms, this analysis works only for algorithms that provide a lower bound
on the cost of the optimal solution, and provide approximation guarantees on
the cost of processing every element against the fractional cost of processing the
same element. (The reason for this condition can be found in [16].) The greedy
and local search algorithms from Sections 4 and 5 respectively, do not provide
per element guarantees, so they cannot be used here.

As a first step, we need a technique to lower bound the optimal solution for a
certain set of counts. We do this by writing a linear program. Suppose the count
for element e is se. We have a variable xij which is set to 1 if set Si is placed in
position j. We also have a variable yej which is 1 if element e passes through j
stages of the pipeline. We have the following integer programming constraints:

∑

j xij = 1 ∀ Si
∑

i xij = 1 ∀ j
yej ≥ 1 −

∑

j′≤j

∑

e∈Si
xij′ ∀ e, j

xij , yej ∈ {0, 1} ∀ Si, j, e

The optimal solution minimizes the objective function:

Objective Function =
∑

e,j

seyej

7.1 Offline Solution

We first present an offline randomized rounding algorithm for the problem, and
then show how to convert it to an online algorithm. We solve the linear relaxation
of the integer program described above. For each position j, we pick 2 logn sets
independently at random, the probability of picking set Si at each trial being
equal to xij . We repeat this for every j. If a set gets picked more than once,



we place it at the earliest position at which it got picked. Note that we pick
2 logn sets for each position, which implies the solution is “stretched” by the
same factor. We therefore pay a cost of 2 logn per element (instead of unit cost)
for each position j.

Lemma 1. For any element e, let zej denote the indicator variable showing
element e “survived” until position j. If yej < 0.25, then:

Pr[zej = 1] ≤ 1

n1.5

Proof. An element survives if none of the sets containing it are picked at that or
the previous positions. We divide the picking of the sets into 3 log n independent
trials, in each of which we pick one set per position. Consider element e and
position j. For one of the trials, the probability that no set containing it was
picked is at most (1− 1−yej

j
)j ≤ exp(yej−1). If this experiment is repeated 2 logn

times, the probability that no set was picked is at most exp(−2(1− yej) log n) ≤
1

n1.5 assuming yej < 0.25.

It is easy to bound the cost of the solution now. In expectation, if yej > 0.25,
we pay a cost of 2 log n for that stage with probability 1. Otherwise, we pay a
cost of 2 logn with probability 1

n1.5 . Since an element can pass through at most
n sets, the contribution to the expected cost from the second set of terms is
negligible. Therefore, we have a O(log n) approximation algorithm. Note that
the guarantee holds for the processing cost of every element versus its fractional
processing cost.

7.2 Online Solution

We convert this offline algorithm to an online algorithm exactly as in [16]. Let set

denote the count for element e given the input at time t. Let pet denote a number

chosen uniformly at random in [0,
√

t
δ

], where δ is a function of the input [16].

Set Set :=
∑t−1

t′=0 set′ + pet. Note that we do not know set, and therefore can
only compute the sum till time t − 1. We find the solution using Set as the
counts in the above integer program, and use this solution at time t. Using the
same proof idea as in [16], it is easy to show that since this algorithm provides
a O(log n) approximation to the fractional cost of every element, it converges to
within O(log n) of optimal fixed offline solution with an additive error of O(

√
T )

at time T . In other words, in the limit as T → ∞, the cost of this algorithm
converges to within O(log n) of the cost of the optimal offline solution.

7.3 Incomplete Information Model

So far we assumed that the incoming elements are chosen from a small domain
so that we can keep track of the counts of the arrived elements. We now drop
this assumption and show that our algorithm from above can be used unchanged
in this case except now we use sampling-based estimates instead of the actual



counts of the elements. We sample the incoming elements with probability 1
n2 .

For each element e in the sample, we pass e through all n sets to categorize e
such that elements that are dropped by exactly the same sets belong to a specific
category. This sampling process gives us an estimate of the counts of elements till
time t. We use this estimate to find the optimal online solution for the remaining
elements using the algorithm described previously. The sampled elements, which
are processed by all the sets, usually add little extra overhead to the overall cost;
see [2]. Furthermore, by Chernoff bounds, if T � n, the estimates of the large
counts converge to the true values, and therefore, the error due to sampling is
negligible. Details are omitted for lack of space.

8 Conclusions and Future Work

We identified the relevance of pipelined set cover to query optimization and pre-
sented efficient approximation algorithms for this NP-Hard problem. We also
considered the online version of pipelined set cover and presented a competi-
tive algorithm with a logarithmic performance guarantee. An interesting open
problem is to incorporate precedence constraints on the sets that are required to
handle non-commutative operators. Natural extensions of the algorithms men-
tioned in this paper do not yield constant factor approximations to this variant.
While we focused on a single pipeline, an interesting avenue for future work is
to consider approximation algorithms for optimizing a set of pipelines, which,
e.g., is applicable in a publish-subscribe setting [5]. If the pipelines are optimized
independently in such a setting, e.g., using the greedy algorithm from Section 4,
then the resulting overall plan may be far from optimal because it misses op-
portunities for sharing computation using operator sequences that are common
among the pipelines.
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