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The distinction between innate and adaptive immunity is one of the basic tenets of

immunology. The co-operation between these two arms of the immune system is a

major determinant of the resistance or susceptibility of the host following pathogen

invasion. Hence, this interactive co-operation between cells of the innate and adaptive

immunity is of significant interest to immunologists. The sub-population of CD4+ T

cells with regulatory phenotype (regulatory T cells; Tregs), which constitute a part of

the adaptive immune system, have been widely implicated in the regulation of the

immune system and maintenance of immune homeostasis. In the last two decades,

there has been an explosion in research describing the role of Tregs and their relevance

in several immunopathologies ranging from inflammation to cancer. The majority of

these studies focus on the role of Tregs on the cells of the adaptive immune system.

Recently, there is significant interest in the role of Tregs on cells of the innate immune

system. In this review, we examine the literature on the role of Tregs in immunology.

Specifically, we focus on the emerging knowledge of Treg interaction with dendritic cells,

macrophages, neutrophils, and γδ T cells. We highlight this interaction as an important

link between innate and adaptive immune systems which also indicate the far-reaching

role of Tregs in the regulation of immune responses and maintenance of self-tolerance

and immune homeostasis.

Keywords: cytokines, dendritic cells, neutrophils, inflammation, lymphocyte, homeostasis, immune tolerance,

monocytes/macrophages

INTRODUCTION

The immune system protects the host against pathogen invasion and is therefore armed with
an arsenal of deadly ammunition (cells and proteins) necessary for the elimination of microbes
or substances determined to pose significant threat to the normal functioning of the host. This
inherent function made it imperative that the evolution of host immunity encompasses important
mechanisms to prohibit the destruction of self. Hence, the maintenance of immune tolerance is
central to the normal functioning of the immune system and breakdown of immune tolerance
results in catastrophic consequences to the host.

Increase in knowledge of the immune system has greatly helped to delineate the important
mechanisms involved in maintenance of immune tolerance. It is now known that a core aspect
of lymphocyte development is the elimination of lymphocytes that are reactive to self-ligands by
the process of negative selection (1). It seems pertinent that the immune system develop fail-safe
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mechanisms to handle self-reactive lymphocytes that were not
eliminated during the process of negative selection. One such
mechanism that has been proposed for decades is the ability of
a subtype of T lymphocytes to suppress the function of other
lymphocytes. This sub-population of T lymphocytes identified
by the expression of CD4, CD25, and FOXP3 has been shown
to be a major player in the maintenance of immune tolerance
and homeostasis (2, 3). These naturally occurring regulatory T
cells (Tregs) comprise 5–10% of peripheral CD4+ T cells in the
circulation, have potent suppressive abilities and were initially
known to suppress CD4+CD25− T cells (4). Recently, Tregs have
been implicated in the regulation of other cells of the adaptive
immune system including CD8+ T cells and B cells (5–7).

It is well-known that the co-operative interaction between
cells of the innate immune system and cells of the adaptive
immune system is crucial for the induction of adequate immune
response. Recent findings that Tregs regulate the function of
cells of the innate immune system like macrophages, dendritic
cells, and neutrophils are intriguing and indicate the significant
overlap between both arms of immunity. In this review, we
discuss the essential role of Tregs (defined by the expression
of CD4, CD25, and FOXP3) in the maintenance of immune
tolerance. In particular, we focus on the emerging role of Tregs
as regulators of cells of the innate immune system. We highlight
the under-explored interaction between Tregs and cells of the
innate immune system and the significance of this interaction in
the maintenance of immune tolerance and in the pathogenesis of
autoimmune diseases.

REGULATORY T CELLS AND IMMUNITY

Several lines of evidence summarized in Table 1, led to the
development of Treg biology. The history of Tregs, the biological
origin and the terms of classification of Treg subtypes have
been well-reviewed elsewhere (3, 29, 30) and highlighted for the
reader’s information.

It is worthy of note that in addition to the naturally occurring
Treg cells, CD4+ T cells with regulatory phenotype can be
induced in vivo and in vitro with antigenic stimulation in the
presence of IL-10. These so called IL-10-producing T regulatory
type 1 (Tr1) cells (31) usually do not express FOXP3 and have
been shown to have potent suppressive ability (21, 32). Notably,
Tr1 cells are able to inhibit CD4+ T cell responses through IL-10
dependent and independent mechanisms (33–37). Importantly,
Tr1 cells are distinct from FOXP3+ Tregs (natural Tregs) because
they do not constitutively express FOXP3. Also, Tr1 cells have
been shown to function separately from FOXP3+ Tregs in certain
conditions (38, 39). The biology and functional characteristics
of Tr1 cells have been recently reviewed exhaustively (40, 41)
and these articles are recommended for readers wanting more
information on these cells.

Tregs were originally identified as a subset of immune cells
critical for the maintenance of self-tolerance and prevention of
autoimmune diseases (19). However, since their discovery, Tregs
have been ascribed the eminent role of an omnipotent wonder
regulatory cell that is paramount in nearly all immunological

TABLE 1 | Summary of findings leading to discovery of Tregs.

Year Discovery References

1970,

1972

Ability of thymocytes to induce lymphocyte

Suppression was reported.

(8, 9)

1972,

1973

Introduction of the concept of suppressor T cells

(Tsups).

(10–12)

1976 Identification of the phenotype of Tsups based on

cell surface antigens.

(13, 14)

1976 Report that the I-J region of the MHC is responsible

for Tsups activity.

(15, 16)

1983,

1986

RNA and DNA screening fails to identify the I-J

region of the MHC responsible for Tsups activity

leading to the demise of Tsups.

(17, 18)

1995 Identification of CD4+ CD25+ T cells as regulatory

T cells (Tregs).

(19, 20)

1997 Identification of T regulatory type 1 (Tr1) cells. (21)

1998 CD4+CD25+ Tregs shown to be a distinct lineage

of suppressor cells.

(22, 23)

2001 Identification of Tregs function as the cause of

Scurfy and IPEX syndromes in mice and humans,

respectively.

(24, 25)

2003 Identification of the transcription factor forkhead box

P3 (FOXP3) as essential for Treg function.

(26–28)

responses such as oral tolerance (42), fetal-maternal tolerance
(43), infectious tolerance (44), transplantation tolerance (45),
allergen-induced hypersensitivities (46), and even immune
memory (47).

In their landmark paper, Sakaguchi et al. initially showed
that Tregs protect the host from autoimmune diseases (19).
They showed that transfer of CD4+ cells depleted of CD25+

population into athymic syngeneic nude mice resulted in
autoimmune pathologies in several organs. Additionally, they
demonstrated the significant role of Tregs in maintenance of
transplantation tolerance by showing that depletion of Tregs
leads to heightened rejection of allogeneic skin grafts (19). Since
then, several studies have associated defective Treg function
with the development of several autoimmune diseases. In mice,
a mutation in the FOXP3 gene leads to a lethal wasting
disease characterized by exaggerated CD4+ T cell activity
(25). An analogous autoimmune disease in humans known
as immune dysregulation, polyendocrinopathy, enteropathy X-
linked (IPEX) syndrome is associated with the dysfunction of
FOXP3 gene (24). In animal studies, depletion of Tregs leads
to rapid and severe onset of arthritis and adoptive transfer of
Tregs rescues the animals from the disease (48). In humans,
reduced Treg populations are associated with the exacerbated
form of juvenile idiopathic arthritis and rheumatoid arthritis
(49, 50). Similarly, a mutation in FOXP3 gene is associated with
spontaneous development of inflammatory bowel disease (IBD)
(26) and a phase 1 clinical trial of Treg therapy in patients with
refractory Crohn’s disease was found to be effective (51). Also
defective Treg function has been implicated in the development
of type 1 diabetes (52), multiple sclerosis (53), and atopic
dermatitis (54). Indeed, there is overwhelming experimental
evidence of the significance of Tregs in the prevention of
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autoimmune diseases and the current challenge is the translation
of this knowledge to effective clinical therapy for patients with
autoimmune diseases.

The role of Tregs in maintenance of host immunity
during infection is controversial. While some studies indicate
that the suppressive nature of Tregs limit the immune
response to infection and is detrimental to the host, other
studies have shown that Tregs are essential for the successful
elimination of pathogens and the prevention of pathogen-
induced immunopathologies. For example, in the case of sepsis
(systemic inflammatory response to infection), Venet et al.
showed that increased numbers of Tregs is associated with
poor outcome (55). In contrast, Heuer et al. reported that
adoptive transfer of in vitro stimulated Tregs increased bacterial
clearance and improved survival in murine model of sepsis
(56). Also, Cambos et al. showed that Tregs suppress excessive
inflammation in lethal plasmodium chabaudi adami infection
in which mortality is associated with systemic inflammatory
response (57). Tregs have also been shown to be protective in
viral infections. Lund et al. demonstrated that Tregs facilitated
the recruitment of immune cells for protection against herpes
simplex virus in mice (58).

We recently showed that immunological or genetic inhibition
of Tregs function by using an anti-CD25 monoclonal antibody
(anti-CD25 mAb) treatment or mice lacking functional Tregs
(CD25 KO mice), respectively, was detrimental in a sepsis
model of bacterial infection or LPS-induced acute inflammatory
response (59). This was associated with exaggerated production
of pro-inflammatory cytokines including IL-1β, IL-6, IL-12, TNF,
and CCL2. Strikingly, adoptive transfer of Tregs from wild-type
mice into CD25KOmice before LPS challenge rescues them from
an otherwise acute death (59).

The initial work of Sakaguchi et al. indicated that
Tregs regulate CD4+CD25− Th cells since their depletion
leads to exaggerated CD4+ Th cell response resulting in
immunopathology (19). This role of Tregs in regulating CD4+

Th cell function has also been reported in several studies
(52, 53, 60). We recently showed that Tregs regulate CD4+ Th
cells in a murine model of sepsis (61). Following Treg depletion,
CD4+ Th cells exhibit increased cellular activity in response
to LPS which leads to exuberant activation of other immune
cells such as macrophages resulting in excessive inflammatory
response, organ damage, and mortality (61). In addition to
regulation of CD4+ Th cells, Tregs have also been shown to
regulate other cells of the adaptive immune system like CD8+ T
cells and B cells (5, 6). However, a limited number of studies have
examined the role of Tregs in the regulation of innate immune
cells. We will focus on the essential interaction between Tregs
and cells of the innate immune system in the maintenance of
immune homeostasis in the remainder of this review.

TREGS AND DENDRITIC CELLS

The role of a specialized group of immune cells, aptly called
antigen presenting cells (APCs), in providing the necessary
second signal for lymphocyte activation is highly appreciated.

Dendritic cells (DCs) were first identified as Langerhans cells
in the skin in 1868 but their primary role in immune response
was not recognized until the 1970s (62). Although their primary
role in immune response was only recently discovered, DCs
are the most potent APCs in vitro and in vivo (63). Currently,
DCs are appreciated as the sentinels of the immune system.
They are present in tissues and in the peripheral circulation,
surveying the host immune system for the presence of antigens
and upon antigen encounter rapidly upregulate co-stimulatory
molecules and migrate to the lymph node where they present
antigens to T cells (63). Additionally, DCs secrete cytokines like
IL-12 that can activate T cells. The role of DCs in the immune
response has been well-reviewed (63–65), hence we will focus
on the crosstalk between DCs and Tregs in the regulation of the
immune response.

Paradoxically, DCs that are essential for the activation of the
immune response have also been implicated in the induction of
immune tolerance. Finkelman et al. showed that DCs can induce
both immune activation and immune tolerance. They showed
that in the absence of additional stimuli, injection of mice with
a rat IgG2b anti-DC mAb leads to T cell specific tolerance to
rat IgG (66). Also, Hawiger et al. showed that targeted delivery
of antigen via DC-restricted endocytic receptor, DEC-205, leads
to T cell unresponsiveness or anergy (67). However, in the
presence of a second signal such as may be provided by co-
injection of anti-CD40 agonistic antibody, immune activation
is observed instead of tolerance (67). Hence, DCs can tilt the
immune response to tolerance or activation if insufficient signal
is received. This is understandable as unwarranted immune
activation can result in autoimmune pathologies. It is thought
that the induction of tolerance by DCs is dependent on the degree
of DCmaturation. Immature or semi-mature DCs that encounter
antigen that does not result in full maturation induce immune
tolerance while full antigenic maturation of DCs leads to immune
activation (68).

One way by which DCs help in the maintenance of immune
tolerance is by induction of Tregs. Compared to B cells and
macrophages, DCs are more efficient in the induction of Tregs
(69) and DC-depleted APCs show a significant reduction in
the ability to induce Tregs (70). Studies have shown that,
double positive thymocytes are selected for commitment to Treg
lineage depending on the intensity of their response to self-
antigens presented by thymic DCs (71). It appears that the
underlying factor which determines Treg induction by DCs is
the strength of the antigenic stimuli. For example, Kretschmer
et al. demonstrated that subimmunogenic antigen delivery to
DCs resulted in the generation of Tregs from naïve CD4+ T
cells in the periphery (72). This observation is supported by
other reports which show that strong activation of DCs leads to
production of cytokines which inhibit Treg induction (73, 74).
Thus, it appears that there is an immunogenic threshold observed
by DCs below which DCs help to maintain immune tolerance
through the induction of Tregs.

How does DCs promote Treg induction? Studies have shown
that DCs promote Treg induction through cytokine and non-
cytokine mediators. For example, the induction of Tregs by
DCs has been shown to be mediated through the inhibitory

Frontiers in Immunology | www.frontiersin.org 3 April 2019 | Volume 10 | Article 680

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Okeke and Uzonna Regulatory T Cells in Innate Immunity

molecule programmed death-ligand 1 (PD-L1) expressed on
DCs. Hence, genetic or immunological inhibition of PD-L1
on DCs leads to their inability to induce FOXP3+ Tregs even
in the presence of the necessary cytokine signals (75). Treg
expansion and differentiation by DCs is highly favored in the
presence of certain cytokines. In particular, the cytokines IL-10
and TGF-β are important in the induction of Tregs by DCs. The
regulatory function of IL-10 has been well-studied in the context
of several immunopathologies. IL-10 is a potent inhibitor of the
immune response (76) and deficiency of IL-10 has been shown
to result in exaggerated immune responses to pathogens leading
to immunopathology (77–79). Indeed, it is well-established that
IL-10 induces the class of Tr1 cells which are functionally
similar to naturally occurring Tregs (32). Importantly, Tr1 cells
have been shown to mediate their regulatory function through
the production of IL-10 (38, 80, 81). In vitro, activation of
effector T cells (Teff) with IL-10-treated DCs leads to anergy
and generation of Tr1 cells (31, 82, 83). IL-10-treated DCs
have potent suppressive ability and have been shown to be
effective in experimental treatment of allergic asthma (84), graft-
vs.-host disease (85) and inflammatory bowel disease (86). In
addition to induction of Tr1 cells through exogenous IL-10,
DCs also induce Tr1 cells by the secretion of IL-10 (87, 88).
Hence, there is a positive feedback mechanism by which IL-10
induces tolerogenic DCs which then acquire the ability to secrete
IL-10 and in turn induce tolerance through induction of Tr1
cells. Since Tregs produce IL-10, it follows that Tregs can also
induce tolerogenic DCs and this two-way relationship between
Tregs and DCs via IL-10 is a critical mechanism of maintaining
immune tolerance (Figure 1).

In addition to mediating tolerance through IL-10, DCs
have also been shown to mediate tolerance through the
immunoregulatory cytokine TGF-β. The essential role of TGF-
β in the maintenance of immune tolerance has been well-
established. TGF-β is important for the development and
function of FOXP3+ T cells (89, 90) and Tregs also mediate
tolerance through the secretion of TGF-β (91). Mice lacking
TGF-β signaling develop a fatal lymphoproliferative disease
similar to scurfy mice (92, 93). Interestingly, DCs have been
shown to induce FOXP3+ Tregs from FOXP3− precursors in the
presence of exogenous and endogenous TGF-β (70). Evidence of
the role of DCs in the maintenance of immunological tolerance
through TGF-β is compelling. Laouar et al. demonstrated that
targeted functional inactivation of TGF-β receptor signaling in
DCs resulted in enhanced T cell responses in experimental
autoimmune encephalomyelitis (EAE) (94). Yamazaki et al.
showed that CD8+CD205+ DCs induce Tregs via the production
of TGF-β (95). In line with this, antibody neutralization of TGF-
β abrogates the ability of CD8+CD205+ DCs to induce Tregs
(95). Travis et al. showed that the induction of Tregs by DCs
via TGF-β is mediated by the cytokine activating αvβ8 integrin
on DCs (96). They showed that targeted disruption of αvβ8 on
DCs leads to autoimmune disease. In contrast disruption of αvβ8
on T cells does not lead to autoimmune disease indicating that
TGF-β signaling through DCs is paramount for the maintenance
of immune tolerance. Furthermore, mice with DCs lacking αvβ8
have reduced Tregs in the colon. Additionally, DCs lacking

αvβ8 lose the ability to induce Tregs in vitro (96). On the
other hand, Worthington et al. showed that Tregs also express
high amounts of αvβ8, which enables them to activate latent
TGF-β for the suppression of T cell-mediated inflammation
(97). In line with this, recent studies show that Tregs mediate
their suppressive function by activating latent TGF-β1 presented
by GARP (glycoprotein A repetitions predominant) to integrin
αVβ8 on their surface (98–100). Collectively, these studies
demonstrate the essential role of TGF-β1 in Treg function.

Studies have also shown that DCs produce the vitamin A
metabolite—retinoic acid (RA) and that RA-producing DCs are
important for Treg induction (101). Interestingly, Tregs can be
generated de novo from peripheral T cells in human or murine
blood by RA (102–104). Also incubation of Tregs with TGF-β
and RA increases their suppressive ability (105). Additionally,
intestinal DCs treated with an antagonist against RA receptor
lose their ability to induce Tregs (105). The mechanism by
which RA leads to the induction of tolerogenic DCs is not
completely understood. Studies have shown that RA-producing
enzyme retinal dehydrogenase 2 (RALDH2), which is encoded by
Aldh1a2 gene, is highly expressed by DCs in mesenteric lymph
node (MLN) and peyer’s patches compared to DCs from other
lymphoid organs (101, 106). Recent work by Ohoka et al. showed
that RA and granulocyte-macrophage colony-stimulating factor
(GM-CSF) induced the expression of Aldh1a2 in DCs through
the interaction of RA receptor and retinoid X receptor complex
and subsequent activation of the transcription factor sp1 (107).
Indeed, accumulating evidence suggests that RA-producing DCs
play an essential role in the maintenance of oral tolerance (108).
T or B cells activated in the presence of RA are “imprinted” to
express gut-homing receptors (106). Also, Siewert et al. showed
that Tregs preferentially migrate to the gut following treatment
with RA (109). It has been proposed that RA produced by DCs
increase TGF-β-dependent induction of Tregs from naïve T cells
by inhibiting their differentiation into inflammatory T cells. In
line with this, Balmer and Blomhoff found that RA increases
TGF-β receptor subunit signaling (110). The role of RA in the
maintenance of oral tolerance is understandable since the gut
is constantly barraged by exposure to foreign and commensal
antigens and maintenance of tolerance without compromising
immunity is a priority. Previous studies identified CD103+ DCs
in the gut-associated lymphoid tissue (GALT) as the subset of
DCs that produce RA necessary for Treg induction in the gut
(105). However, recent findings indicate that RA production by
DCs is not restricted to the CD103+ DCs in the GALT. Guilliams
et al. found CD103− RA-producing DCs in the skin and lung
draining lymph nodes (111). These observations highlight the
essential role of different subsets of DCs in the maintenance of
immune tolerance via production of RA.

TREGS AND MACROPHAGES

Macrophages have long been appreciated as important immune
cells that help to maintain immune homeostasis via phagocytosis
of foreign matter, apoptotic or necrotic cells (112). As an
important part of the innate immune system, they possess several
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FIGURE 1 | Cross-talk between Tregs and innate immune cells. Tregs through the secretion of IL-10 and TGF-β are able to modulate the response of innate immune

cells toward an anti-inflammatory phenotype. Likewise, innate immune cells in the presence of IL-10 can induce Tr1 cells that can suppress effector T cell response.

PDL1, Programmed death-ligand 1; RA, Retinoic acid.

pathogen recognition receptors (PRRs) and are quicklymobilized
to the infection site preceded only by neutrophils. Macrophages
play an important role in shaping the adaptive immune response.
For example, macrophages present antigens to T and B cells and
also secrete several cytokines which directs the responses of T and
B cells (113).

It is now well-known that macrophages assume distinct
phenotype and function based on their microenvironment.
Hence, macrophages are broadly classified into two—the
proinflammatory M1 macrophages which arise in the presence
of cytokines like IFN-γ and IL-12, and the anti-inflammatory
M2 macrophages (114). M2 macrophages are further subdivided
based on the cytokine signals that give rise to them: M2a (IL-
4 or IL-13), M2b (IL-1β, LPS, and immune complexes), and
M2c (IL-10, TGF-β, or glucocorticoids) (115). Unlike the M1,
M2 macrophages especially the M2c subset have a regulatory
phenotype (116) and the regulatory role of macrophages have
been of significant interest in recent years.

The relationship between Tregs and macrophages and the role
of macrophages in the maintenance of immune tolerance has
been severely under-explored compared to Treg/DC interaction.
However, there is evidence that Treg/macrophage interaction
significantly modulates host immune response. For example, co-
culture of macrophages and Tregs leads to reduced expression

of HLA-DR on macrophages and reduced production of
proinflammatory cytokines in response to LPS stimulation (117).
Recently, our group showed that depletion of Tregs leads to
exaggerated macrophage activation that results in mortality to
endotoxic shock (61).

Currently, there is significant interest in the role of regulatory
macrophages (Mregs) in inflammation and cancer and the cross-
talk between Tregs and Mregs. As described above, macrophages
(M2c) assume a regulatory phenotype in the presence of TGF-
β and IL-10, two cytokines that are widely associated with
Treg function. This is in addition to the induction of anti-
inflammatory phenotype in macrophages following treatment
with glucocorticoids (118). Interestingly, the secretion of IL-10
is a characteristic feature of Mregs (119) and IL-10 plays a major
role in the function of Mregs. For example, targeted disruption of
IL-10 receptor signaling inmacrophages leads to the spontaneous
development of severe colitis (120). Since Tregs are also major
producers of IL-10, it is conceivable that macrophage/Treg cross-
talk via IL-10 plays a significant role in maintenance of tolerance.
Indeed, Tregs are able to direct macrophage differentiation to the
M2 regulatory phenotype in a mechanism that has been shown
to be dependent on IL-10 and TGF-β (117, 121–123). Tregs have
also been shown to induce macrophage regulatory phenotype
through other mechanisms. Miwa et al showed that Tregs play
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a role in the maintenance of fetal-maternal tolerance through
the upregulation of the enzyme indoleamine 2,3-dioxygenase
(IDO) in monocytes (124). Venet et al. showed that Tregs play
a major role in regulation of monocyte survival by promoting
monocyte apoptosis in a mechanism dependent on the Fas/Fas
ligand pathway (125).

These studies indicate that Mreg/Treg cross-talk is central to
the maintenance of immune tolerance. Indeed, M2 macrophages
have also been shown to induce Tregs (126, 127) and similar to
Tregs, Mregs have shown therapeutic efficacy in the experimental
treatment of inflammatory diseases like allergy and type 1
diabetes (128, 129) highlighting the role of Mregs in immune
tolerance. In addition to the induction of Tregs by IL-10 and
TGF-β activity, the ability of Mregs to induce Tregs has been
shown to involve the production of reactive oxygen species
(ROS). Disruption of the NAPDH-oxidase complex which is
involved in ROS production impairs induction of Tregs by
macrophages (130). Also, mice with reduced ROS production
ability is more susceptible to autoimmune diseases compared to
their wild type litter mates highlighting the role of macrophage
ROS in immune tolerance (131). Hence, Mreg/Treg cross-talk
is a major mechanism of immune tolerance that needs to be
further explored.

TREGS AND NEUTROPHILS

Neutrophils are one of the first responder cells of the innate
immune system during bacterial infection and inflammation and
constitute a hallmark of innate immunity (132, 133). They are
the most abundant type of leukocytes in humans and express all
known TLRs except TLR3. Hence, neutrophils are critical for the
activation of innate immune defenses and defective neutrophil
function leads to increased susceptibility to infections (134). The
role of neutrophils in shaping the innate and adaptive immune
responses has been extensively reviewed (135, 136). Here, we will
focus on Treg/neutrophil interaction and the regulatory role of
neutrophils in immunity.

There is accumulating evidence that neutrophils can be
polarized to attain unique phenotypes in response to the
microenvironment. For example, Fridlender et al. described the
characterization of anti-tumorigenic neutrophil (N1 phenotype)
and pro-tumorigenic neutrophil (N2 phenotype) in mice (137).
The presence of TGF-β in the tumor microenvironment
induces N2 neutrophils while blockade of TGF-β favors the
N1 phenotype. There is also evidence that neutrophils which
are renowned for their pro-inflammatory activity can exhibit
regulatory and immuno-suppressive functions through various
mechanisms. For example, Schmielau et al. demonstrated
that neutrophil-derived hydrogen peroxide suppresses T cell
responses in patients with cancer (138). This finding was
confirmed by the work of Pillay et al. which showed
that neutrophil-derived hydrogen peroxide suppresses T cell
responses in sepsis through the expression of Mac-1 (139).
These immuno-suppressive neutrophils were characterized as
CD16+CD54high cells in contrast to the classical CD16+CD54lo

neutrophils (139). The suppressive function of neutrophils

has also been demonstrated in viral infections. Bowers et al.
demonstrated that neutrophils purified from the blood of HIV-
1-infected patients suppress T cell function through PD-L1/PD-1
interaction and production of ROS (140).

In addition to ROS production, studies have shown that
the regulatory function of neutrophils can be associated with
cytokine production. Again, the cytokine IL-10 has been
implicated in this regard. Doz et al. demonstrated that IL-
10-producing neutrophils inhibit Th17 cell responses during
mycobacterial infection (141). This was supported by the work
of Zhang et al. which showed that co-activation of Syk kinase
and MyD88 adaptor protein pathways leads to IL-10 production
by murine neutrophils which dampen immune response in
mycobacterial infection (142).

There is evidence of cross-talk between Tregs and neutrophils
and there is significant interest in the role of Treg/neutrophil
interaction in the maintenance of immune homeostasis. The
work of Himmel et al. showed that Tregs are able to induce
neutrophil recruitment through the production of CXCL8
(143). It is also conceivable that IL-10 production by Tregs
can modulate neutrophil function and vice versa. Lewkowicz
et al. showed that activated Tregs upregulate the expression of
suppressor of cytokine signaling 3 (SOCS 3) in neutrophils and
induce IL-10 and TGF-β production (144).

Overall, it is important to note that the relationship between
Tregs and neutrophils has been severely underexplored. An
important area of interest is Treg/neutrophil interaction in
inflammatory and autoimmune diseases. The pro-inflammatory
function of neutrophils in the promotion and pathogenesis of
several autoimmune diseases like vasculitis (145), rheumatoid
arthritis (146), and systemic lupus erythematosus (147) has
been well-described. Interestingly, defective Treg function has
been demonstrated in all these diseases and Treg therapy has
proven to be useful in their management (148). Therefore,
one can speculate that defective Treg function is associated
with exaggerated neutrophil activity. Indeed, we and others
have found this to be the case. Richards et al. showed that
Tregs limit inflammation in the skin by inhibiting neutrophil
accumulation and survival (149). We recently showed that
reduced Treg numbers in mice leads to exaggerated neutrophil
activity resulting in mortality in endotoxic shock (150). We also
found that Tregs regulate survival and activity of human and
murine neutrophils and co-culture of Tregs and neutrophils
increases neutrophil apoptosis (150). This is in line with the
work of Lewkowicz et al. which showed that LPS-activated Tregs
inhibit neutrophil function and promote their apoptosis (151).
More work is required to delineate the role of Treg/neutrophil
interaction in autoimmune and inflammatory diseases and this
remains an active area of investigation in our laboratory.

TREGS AND GAMMA DELTA (γδ) T CELLS

Majority of T cells develop in the thymus, have T cell receptor
(TCR) composed of αβ chains, and aremostly found in peripheral
lymphoid organs. In contrast, there are a sub-population of T
cells that develop within and outside the thymus, have TCR
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composed of γδ chains and are very few in peripheral lymphoid
organs but abundant in intra-epithelial compartments. This
population of T cells are called γδ T cells (152). γδ T cells
are considered innate immune cells due to their innate-like
characteristics. Notably, unlike conventional T cells, they can be
activated without the help of APCs and do not requireMHC class
I or II peptide presentation (153). Also, similar to innate immune
cells, γδ T cells have been shown to carry out phagocytosis
(154). The biology and role of γδ T cells in immunity has been
comprehensively reviewed by others (155–157) and the reader
is referred to these excellent reviews for detailed information on
these aspects of γδ T cells.

There is evidence that γδ T cells possess both inflammatory
and regulatory properties. Proinflammatory γδ T cells are
classified according to their production of either IFN-γ or IL-
17 (158–160) and have been implicated in the pathogenesis of
several autoimmune diseases (161) including EAE (162, 163)
and collagen-induced arthritis (164). In contrast, stimulation
of γδ T cells in the presence of TGF-β leads to the induction
of FOXP3 expressing γδ T cells with suppressive phenotype
(165, 166). These appropriately called regulatory γδ T cells have
been shown to exert their suppressive function through the
production of IL-10 and TGF-β to inhibit T cell activation and
proliferation (165–168).

Few studies have examined the bilateral relationship between
Tregs and γδ T cells and there is evidence of cross-talk
between these two populations. Since, γδ T cells with regulatory
phenotype are induced in the presence of IL-10 and TGF-
β and Tregs secrete these cytokines, it follows that Tregs
can induce γδ T cells with regulatory phenotype. Indeed,
this has been demonstrated recently. Park et al. showed that
Tregs maintain intestinal homeostasis by suppressing γδ T cells
(169). They showed that CD4+ T cell specific deletion of the
phosphoinositide dependent protein kinase 1 (Pdk1) gene leads
to defective Treg function and the constitutive activation of
colitis-inducing γδ T cells which is inhibited by adoptive transfer
of wild-type Tregs (169). The findings of Park et al. was confirmed
by Yurchenko et al. who unequivocally demonstrated the role of
Tregs in regulating pathogenic γδ T cells in the intestines (170).

Other studies have also demonstrated the ability of Tregs to
regulate the function of γδ T cells. Li et al. showed that Tregs
inhibited cytokine production by γδ T cells in response to M
tuberculosis antigen (171). Xu et al. showed that in pediatric
epilepsy associated with inflammation of the central nervous
system, there is increase in the number of γδ T cells and this
corresponds to a decrease in Tregs numbers in the epileptogenic
lesions (172). Additionally, they demonstrated that seizures were
significantly decreased following inhibition of γδ T cells activity
or adoptive transfer of Tregs into these mice. Overall, these
findings highlight the ability of Tregs to regulate the function of
another innate immune cell—γδ T cells.

CONCLUDING REMARKS

There is unequivocal experimental evidence of the role of Tregs
in the maintenance of immune tolerance (20). Initial studies

focused on the role of Tregs in the regulation of CD4+ Th
cells (52, 53, 60). However, as the knowledge of Tregs biology
increased, they were shown to be able to regulate other cells of
the adaptive immune system including CD8+ T cells and B cells
(5, 6). In this review, we highlighted the burgeoning function
of Tregs in the regulation of cells of the innate immune system
including dendritic cells, macrophages, neutrophils, and γδ T
cells. In addition to these cell types, Tregs have also been shown
to regulate the function of other innate immune cells including
natural killer (NK) (173) and innate lymphoid (ILC) cells (174).
Indeed, as shown in Figure 1, this cross-talk between Tregs and
innate immune cells is important for maintenance of immune
tolerance and regulating the pathogenesis of inflammatory
diseases. Hence, Tregs appear to be the master-regulatory cell
type necessary for immune tolerance involving both the innate
and adaptive immunity (175).

Previous studies have highlighted the role of Tregs in
regulating pathogenic CD4+ T cells (52, 53, 60). In this review,
we emphasize the significance of Tregs in regulating innate
immune cells and that defective Treg function is associated
with aggravated inflammatory response by innate immune
cells. We postulate that defective Treg function simultaneously
affects adaptive immune cells and innate immune cells in
different disease models. For example, we previously showed that
depletion of Tregs leads to exaggerated CD4+ T cell response
in bacteria and LPS-induced acute inflammation models (61).
In another study, we demonstrated that reduced Treg numbers
also leads to enhanced neutrophil activity in LPS-induced
inflammation (150). Hence, it follows that reduced Treg numbers
simultaneously affects CD4+ T cells and neutrophils. It is worthy
of note that defective Treg function can lead to exaggerated
activity of adaptive immune cells like CD4+ T cells, which in turn
will lead to the aggravated immune response of innate immune
cells like macrophages (61). Likewise, defective Treg function
can also lead to exaggerated activity of innate immune cells
whose cytokine secretion will aggravate the immune response of
adaptive immune cells. This highlights the master regulatory role
of Tregs in the maintenance of immune homeostasis.

A possible explanation of the simultaneous effect of Treg
function on innate and adaptive immune cells is the ability of
Treg cells to extract ligands from APCs by trogocytosis (176).
For example, previous studies have shown that Tregs exert their
suppression through the inhibitory receptor CTLA-4 (177, 178).
It is worthy of note that CTLA-4 shares its ligands (CD80 and
CD86) with the co-stimulatory receptor CD28. Interestingly,
Qureshi et al. showed that Tregs suppress T cell response by using
CTLA-4 to extract CD80 or CD86 fromAPCs leading to impaired
co-stimulation of T cells through CD28 (179). This implies
that decrease in number of Tregs relative to APCs will limit
trogocytosis of CD80 and CD86 by CTLA-4+ Tregs leading to
higher CD28 costimulation and more aggressive T cell response
(180). Another study showed that Tregs that acquired CD86 from
DCs have enhanced ability to suppress T cell responses (176).
Overall, these studies indicate that co-operation between Tregs
and APCs shapes immune homeostasis.

The regulation of innate immunity by Tregs is not surprising.
The immune system is made up of a complex network of
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cells that are intricately involved in the immune network.
Hence, as shown in Figure 1, it is understandable that IL-10-
producing innate immune cells induce Tregs and vice versa.
Indeed, cellular cytokine activity is a proven way of recruiting
responder cells for immune function. Delineating the complex
interaction among different cell types is a daunting task and
remains the subject of investigation in several laboratories
around the world. Although the distinction between innate and
adaptive immunity is one of the basic tenets of immunology,
there is general agreement that the co-operation between these
two arms of the immune system is a major determinant of
resistance or susceptibility of the host to pathogen invasion.
Recently, accumulating evidence suggests that there is a fine line
separating the two arms of the immune system. As highlighted
in this review, Treg/DC, Treg/macrophage Treg/neutrophil, and
Treg/γδ T cell cross-talks are critical for the maintenance of

immune tolerance and prevention of autoimmune diseases. Thus,

the immune system is a highly integrated network and although
stratifying immune function can be beneficial, immunity is
better understood in the context of cooperative functionality
of cells.
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