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THE PLANAR CANTOR SETS OF ZERO ANALYTIC CAPACITY
AND THE LOCAL T (b)-THEOREM

JOAN MATEU, XAVIER TOLSA, AND JOAN VERDERA

1. Introduction

In this paper we characterize the planar Cantor sets of zero analytic capacity.
Our main result answers a question of P. Mattila [Ma] and completes the solution
of a long-standing open problem with a curious history, which goes back to 1972.
We refer the reader to [I2, p. 153] and [Ma] for more details. Moreover, we con-
firm a conjecture of Eiderman [E] concerning the analytic capacity of the N -th
approximation of a Cantor set.

Before formulating our main results, we recall the definition of the basic objects
involved.

The analytic capacity of a compact subset E of the complex plane C is

γ(E) = sup |f ′(∞)|,(1)

where the supremum is taken over all analytic functions f on C\E such that |f | 6 1
onC\E. Although there has recently been important progress on our understanding
of analytic capacity (see the survey papers [D], [V3] and the references given there),
many basic questions about γ remain unanswered. One of the oldest is the semi-
additivity problem, that is, the problem of showing the existence of an absolute
constant C such that

γ(E ∪ F ) 6 C {γ(E) + γ(F )} ,(2)

for all compact sets E and F . If (2) were true, then one would have powerful
geometric criteria for rational approximation, which are otherwise missing (see [V2]
and [Vi2]).

On the other hand, it has recently been established that a close variant of γ,
called positive analytic capacity, is indeed semi-additive. The positive analytic
capacity of a compact set E is

γ+(E) = supµ(E),
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20 JOAN MATEU, XAVIER TOLSA, AND JOAN VERDERA

where the supremum is taken over the positive Borel measures µ supported on E

such that the Cauchy potential f =
1
z
∗ µ is a function in L∞(C) with ‖f‖∞ 6 1.

Since (
1
z
∗ µ)′(∞) = µ(E), we clearly have γ+(E) 6 γ(E).

Since γ+ is semi-additive, as shown in [T1], it is clear that (2) follows from the
inequality

γ(E) 6 Cγ+(E), E compact ⊂ C,(3)

where the positive constant C does not depend on E. We will see below that our
main result provides a proof of (3) for a particular (but significant) class of sets
E. To the best of our knowledge, the first mention of (3) that can be found in the
literature is in [DO]. An equivalent form of (3), which involves Menger curvature,
has recently been conjectured by Melnikov (see [D]).

Now we turn our attention to Cantor sets. Given a sequence λ = (λn)∞n=1,
0 6 λn 6 1/3, we construct a Cantor set by the following algorithm. Consider
the unit square Q0 = [0, 1] × [0, 1]. At the first step we take four closed squares
inside Q0, of side-length λ1, with sides parallel to the coordinate axes, such that
each square contains a vertex of Q0. At step 2 we apply the preceding procedure
to each of the four squares produced at step 1, but now using the proportion factor
λ2. Then we obtain 16 squares of side-length σ2 = λ1λ2. Proceeding inductively,
we have at the n-th step 4n squares Qnj , 1 6 j 6 4n, of side-length σn =

∏n
j=1 λj .

Write

En = E(λ1, . . . , λn) =
4n⋃
j=1

Qnj ,

and define the Cantor set associated with the sequence λ = (λn)∞n=1 by the identity

E = E(λ) =
∞⋂
n=1

En.

Our main result reads as follows.

Theorem 1. The Cantor set E(λ) has zero analytic capacity if and only if
∞∑
n=1

1
(4nσn)2

=∞.

The assumption λn 6 1/3 for the Cantor sets E(λ) is purely technical. Actually
Theorem 1 (as well as Theorem 2 below) holds for any sequence (λn)n with 0 <
λn < 1/2. See Remark 2 at the end of the paper for more details.

Mattila showed in [Ma] that the above condition is necessary and our contribu-
tion in this paper is to prove the sufficiency. The special case λn = 1/4, n > 1, was
obtained independently by Garnett [G1] and Ivanov [I1] in the 1970’s and, since
then, the “corner quarters” Cantor set has become the favorite example of a set
of zero analytic capacity and positive length. P. Jones gave in [J] an alternative
proof of Garnett’s result, based on harmonic measure. Recently Jones’ approach
has been used to establish the vanishing of the analytic capacity of E(λ) for some
special classes of sequences λ = (λn)∞n=1 with 4nσn tending to infinity [GY].

Theorem 1 follows from a more precise result on the analytic capacity of the
set EN = E(λ1, . . . , λN ). The asymptotic behaviour of γ+(EN ) is completely
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ANALYTIC CAPACITY OF CANTOR SETS 21

understood: for some constant C > 1 and all N = 1, 2, . . . one has

C−1
( N∑
n=1

1
(4nσn)2

)−1/2

6 γ+(EN ) 6 C
( N∑
n=1

1
(4nσn)2

)−1/2

.(4)

The upper estimate is due to Eiderman [E] and a different proof has been given in
[T2]. The lower estimate was proved by Mattila in [Ma]. However, the result was
not explicitly stated in [Ma], presumably because at that time the main object of
interest was γ rather than γ+. An indication of how one proves the lower estimate
in (4) will be provided at the end of Section 2. See also [E, p. 821].

Theorem 1 follows from the upper estimate in (4) and the next result.

Theorem 2. There exists a positive constant C0 such that

γ(EN ) 6 C0γ
+(EN ), N = 1, 2, . . . .(5)

If λn = 1/4, n > 1, then combining Theorem 2 with (4), we get

γ(EN ) 6 C√
N
, N = 1, 2, . . . ,

which improves considerably Murai’s inequality [Mu]

γ(EN ) 6 C

logN
, N = 2, 3, . . . ,

the best estimate known up to now.
The main tool used in our proof of Theorem 2 is the local T (b)-Theorem of

M. Christ [CH2], a particular version of which will be discussed and stated in
Section 2. Section 2 also contains some basic facts on the Cauchy transform and
the Plemelj formulae. The proof of Theorem 2 is presented in Section 3.

Our notation and terminology are standard. For example D(z, r) is the open
disk centered at z and of radius r, ds is the arclength measure on a rectifiable arc
and P ' Q means that C−1Q 6 P 6 CQ for some absolute constant C > 1.

The symbols C,C′, C′′, C0, C1, . . . stand for absolute constants with a definite
value. We will also use the symbol A to denote an absolute constant that may vary
at different occurrences.

Remark 1. The second author [T3] has recently proved that Theorem 2 also holds
for a general compact set. In particular, this implies the semi-additivity of analytic
capacity. The proof in [T3] also involves an induction argument and an appropriate
T (b)-Theorem as in the present paper.

2. Background results

2.1. Cauchy integrals. Fix an integer M > 0 and let EM = E(λ1, . . . , λM ) be
the M -th approximation of the Cantor set associated with the sequence (λn)∞n=1.
Then EM is the union of 4M closed squares QMj , 1 6 j 6 4M , and ∂EM is the union
of the 4M closed piecewise linear curves ∂QMj . For a Borel measure µ supported
on ∂EM set

C(µ)(z) =
∫
dµ(ζ)
ζ − z , z /∈ ∂EM ,

and

C(µ)(z) = lim
ε→0

∫
|ζ−z|>ε

dµ(ζ)
ζ − z , z ∈ ∂EM ,
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22 JOAN MATEU, XAVIER TOLSA, AND JOAN VERDERA

whenever the principal value integral exists. Let C+(µ)(z) (respectively, C−(µ)(z))
stand for the non-tangential limit of C(µ)(w) as w tends to z from the interior of
EM (respectively, from the complement of EM ). It follows from standard classical
results that Cµ(z), C+µ(z) and C−µ(z) exist for almost all z with respect to
arclength measure ds on ∂EM . Moreover one has the Plemelj formulae (see [V3]){

C+µ(z) = Cµ(z) + πif(z),
C−µ(z) = Cµ(z)− πif(z),

(6)

where the identities hold for ds-almost all z ∈ ∂EM and µ = f(z)dz + µs, f being
integrable and µs being singular with respect to ds.

Assume that one has µs = 0 and

|f(z)| 6 A, for ds-almost all z ∈ ∂EM ,
and that one wants to show

|C(µ)(z)| 6 A, for ds-almost all z ∈ ∂EM .(7)

Then one only has to check that

|C(µ)(z)| 6 A, for z /∈ EM ,
because then

|C−(µ)(z)| 6 A, for ds-almost all z ∈ ∂EM ,
and thus the second identity in (6) gives (7).

2.2. The local T (b)-Theorem. The local T (b)-Theorem is a criterion for the L2

boundedness of a singular integral that was proved originally by M. Christ in the
setting of homogeneous spaces [CH2]. We state below a very particular version
of Christ’s result, which is adapted to the principal value Cauchy integral and to
a measure µ supported on ∂EM . The reader may think that µ is of the form
µ = cds|∂EM for some (small) positive constant c. However, one should keep in
mind that, for 4nσn ↗ ∞, ds|∂EM does not satisfy condition (i) in the statement
below with a constant independent of M . As will become clear later, an appropriate
choice of c is required to get (i) and (iii) with absolute constants.

Theorem (Christ). Let µ be a positive Borel measure supported on ∂EM satisfying,
for some absolute constant C, the following conditions:

(i) µ(D(z, r)) 6 Cr, z ∈ ∂EM , r > 0.
(ii) µ(D(z, 2r)) 6 Cµ(D(z, r)), z ∈ ∂EM , r > 0.
(iii) For each disc D centered at a point in ∂EM there exists a function bD in

L∞(µ), bD supported on D, satisfying |bD| 6 1 and |C(bDµ)| 6 1 µ-almost
everywhere on ∂EM , and µ(D) 6 C

∣∣∫ bDdµ∣∣.
Then ∫

|C(fµ)|2 dµ 6 C′
∫
|f |2dµ, f ∈ L2(µ),(8)

for some absolute constant C′ (depending only on C).

The relevance of inequality (8) for our problem lies in the fact that it implies

µ(K) 6 C′′γ+(K), K compact ⊂ ∂EM ,(9)

for some absolute constant C′′ (depending only on C′).
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The derivation of (9) from (8) goes through a well-known path: first, by classi-
cal Calderón-Zygmund theory one gets a weak (1, 1) inequality from (8); then, a
surprisingly simple method to dualize a weak (1, 1) inequality leads immediately to
(9). The original argument is in [DO]. Some years before [DO] Uy found a slightly
different way of dualizing a weak (1, 1) inequality, which, however, does not yield
(9) (see [Uy]). The interested reader will find additional information in [CH1], [T1]
and [V1].

Inequality (9) also explains why the lower estimate in (4) follows from Mattila’s
arguments in [Ma]; see Theorem 3.7 on p. 202 and the first paragraph after it.

3. Proof of Theorem 2

We first give a sketch of the argument. Assume that one can find a positive Borel
measure µ supported on ∂EN , EN = E(λ1, . . . , λN ), which satisfies (i) and (ii) with
M replaced by N , such that ‖µ‖ = γ(EN ) and the Cauchy integral is bounded on
L2(µ). Then we get (9) with M replaced by N , as we explained in Section 2. For
K = ∂EN (9) yields

γ(EN ) = ‖µ‖ 6 Aγ+(EN ),

as desired. In the actual argument we do not construct µ on EN . For reasons that
will become clear later, we are forced to work in EM with M smaller than N . On
the other hand, M cannot be much smaller than N , because in the course of the
subsequent reasoning one needs to have γ+(EM ) 6 Aγ+(EN ). Hence M has to be
chosen carefully, in such a way that the local T (b)-Theorem can be applied to get
the boundedness of the Cauchy integral on L2(µ), with an absolute constant.

Now we start the proof of Theorem 2.
Set an = 4nσn and

Sn =
1
a2

1

+
1
a2

2

+ · · ·+ 1
a2
n

.

We can assume, without loss of generality, that for each N > 1, there exists M ,
1 6M < N , such that

SM 6
SN
2

< SM+1.(10)

Otherwise
SN
2

< S1 and thus, by (4), γ+(EN ) > A−1λ1. On the other hand, taking
into account the obvious estimate of analytic capacity by length, we clearly have

γ(EN ) 6 γ(E1) 6 1
2π

length(∂E1) =
8
π
λ1.

Therefore (5) is trivial in the present case, provided C0 is chosen to satisfy C0 >
8
π
A.

Assume, then, that (10) holds and let us proceed to prove (5) by induction on
N . The case N = 1 is obviously true. The induction hypothesis is

γ(En) 6 C0γ
+(En), 0 < n < N,

where the precise value of the absolute constant C0 will be determined later.
We distinguish two cases.
Case 1: For some absolute constant C1, to be determined later,

aMγ(E(λM+1, . . . , λN )) 6 C1γ(EN ).(11)
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Case 2: (11) does not hold.

We deal first with Case 2. By the induction hypothesis applied to the sequence
λM+1, . . . , λN and by (4) we have

γ(EN ) 6 C−1
1 aMγ(E(λM+1, . . . , λN ))

6 C−1
1 C0aMγ

+(E(λM+1, . . . , λN ))

6 C−1
1 C0A

aM( N∑
n=M+1

1
(4λM+1 · · · 4λn)2

)1/2

= C−1
1 C0A

1( N∑
n=M+1

1
a2
n

)1/2
.

Clearly, the inequality SM 6
SN
2

is equivalent to

1( N∑
n=M+1

1
a2
n

)1/2
6

√
2( N∑

n=1

1
a2
n

)1/2
,

and so, again by (4),

γ(EN ) 6 C−1
1 C0Aγ

+(EN ).

If C1 = A, where A is the constant in the preceding inequality, we get (5), as
desired.

Now let us now consider Case 1. Set

µ =
γ(EN )

length(∂EM )
ds|∂EM ,

so that ‖µ‖ = γ(EN ). To check condition (i) in the local T (b)-Theorem of Section
2, we consider two cases. If r 6 σM , then

µ(D) 6 γ(EN )
length(∂EM )

2r 6 Cr,

because γ(EN ) 6 γ(EM ) 6 length(∂EM ).
For r > σM we can replace arbitrary discs centered at points in ∂EM by the

squares Qnj , 0 6 n 6M , 0 6 j 6 4n. In other words, it suffices to prove

µ(Qnj ) 6 C`(Qnj ), 0 6 n 6M, 1 6 j 6 4n.(12)

To show this, given a disc D of radius r centered at z ∈ ∂EM , one considers a
square Qnj ⊃ D, where n is chosen so that `(Qnj ) is comparable to r. Then,

µ(Qnj ) = γ(EN )
1
4n

=
4γ(EN)

length(∂En)
`(Qnj ) 6 4γ(En)

length(∂En)
`(Qnj ) 6 2

π
`(Qnj ),

and so (12) is proved.
It is also a simple matter to ascertain that (ii) holds.
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Now our goal is to prove that hypothesis (iii) of the local T (b)-Theorem is sat-
isfied. Once this has been verified, (9) applied to K = ∂EM yields

γ(EN ) = ‖µ‖ 6 Aγ+(EM ) 6 A

S
1/2
M

.(13)

Assuming that (13) holds, to complete the proof we again distinguish two cases,
according to whether 1/a2

M+1 is greater than SM or not.
If 1/a2

M+1 > SM , then

SM+1 = SM +
1

a2
M+1

' 1
a2
M+1

,

and so

γ+(EM+1) ' 1

S
1/2
M+1

' aM+1 =
1
4

length(∂EM+1).

Hence

γ(EN ) 6 γ(EM+1) 6 1
2π

length(∂EM+1) ' γ+(EM+1) ' γ+(EN ),

and thus (5) holds for a sufficiently big constant C0.
If 1/a2

M+1 6 SM , then SM+1 ' SM and so

γ+(EN ) ' 1

S
1/2
N

' 1

S
1/2
M

,

which gives (5), with a big enough C0, by (13).
Summing up, we have reduced the proof of Theorem 2 to checking that hypothesis

(iii) of the local T (b)-Theorem is satisfied. As we already remarked when dealing
with hypothesis (i), in proving (iii) we can replace discs centered at points in ∂EM
by squares Qnj , 1 6 j 6 4n, 0 6 n 6M . In other words, it is enough to show that,
given a square Qnj , 0 6 n 6 M , 1 6 j 6 4n, there exists a function bnj in L∞(µ),
supported on Qnj , satisfying |bnj | 6 1 and |C(bnj µ)| 6 1 dµ-almost everywhere on
∂EM and such that

µ(Qnj ) 6 C
∣∣∣∣∫ bnj dµ

∣∣∣∣ .
Let f be the Ahlfors function of EN . Then f is analytic on C\EN , |f(z)| 6 1,

z /∈ EN , f(∞) = 0 and f ′(∞) = γ(EN ). The non-tangential boundary value of
f at ζ ∈ ∂EN , which exists for ds-almost all ζ ∈ ∂EN , is denoted by f(ζ). Set

ν =
1

2πi
f(ζ)dζ|∂EN , so that

f(z) =
∫

1
z − ζ dν(ζ), z /∈ EN .

Fix a generation n, 0 6 n 6M . Then, for some index k, 1 6 k 6 4n,

γ(EN ) =
4n∑
j=1

ν(Qnj ) 6 4n|ν(Qnk )|,

or, equivalently, µ(Qnk ) 6 |ν(Qnk )|.
To define the function bnk associated with Qnk , we need to describe a simple

preliminary construction.
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Take a compactly supported C∞ function ϕ on C, 0 6 ϕ 6 1,
∫
∂Q0 ϕds > 1,

such that ϕ vanishes on
⋃4
j=1 D(zj , 1/4), where the zj are the vertices of Q0. Then

|C(ϕds|∂Q0)| 6 A, as one checks easily. Set

ϕMj (z) = ϕ
(z − vMj

σM

)
χQMj ,

where vMj is the left lower vertex of QMj . Hence |C(ϕMj dµ)| 6 A and∫
ϕMj dµ =

1
length(∂QMj )

∫
ϕMj ds, µ(QMj ) > 1

4
µ(QMj ).

Define

b = bnk =
∑

QMj ⊂Qnk

ν(QMj )
ϕMj∫
ϕMj dµ

.

For j 6= k we construct bnj by simply translating bnk . We have Qnj = wnj + Qnk , for
some complex number wnj . Set

bnj (z) = bnk (z − wnj ), z ∈ C.
Now we will prove that bnk satisfies condition (iii). Clearly,∣∣∣∣∫ bdµ

∣∣∣∣ = |ν(Qnk )| > µ(Qnk ).

To show that b is bounded, it suffices to prove

|ν(QMj )| 6 Aµ(QMj ), 1 6 j 6 4M ,(14)

and for this we first remark that |C(χQMj ν)(z)| 6 A, z /∈ EN . This is proved in [G2,
Lemma 2.3 (a), p. 90]. Since C(χQMj ν) is analytic outside QMj ∩ EN , we conclude
that

|ν(QMj )| 6 Aγ(QMj ∩ EN ).

Now notice that the set QMj ∩ EN can be obtained from E(λM+1, . . . , λN ) by a
dilation of factor σM and a translation. Hence, recalling (11),

γ(QMj ∩ EN ) = σMγ(E(λM+1, . . . , λN )) 6 C1
1

4M
γ(EN ) = C1µ(QMj ),

which gives (14). It is worth noting at this point that the above inequality explains
why M cannot be taken to be N .

Thanks to the discussion in Section 2 on Cauchy integrals and the Plemelj for-
mulae, it becomes clear that we are only left with the task of proving

|C(bdµ)(z)| 6 A, z /∈ EM ∩Qnk .
Since |C(χQnk ν)(z)| 6 A, z /∈ EN ∩Qnk , we only need to estimate, for z /∈ EM ∩Qnk ,
the difference

C(bdµ)(z)− C(χQnk ν)(z) =
∑

QMj ⊂Qnk

C(αMj )(z),(15)

where

αMj = ν(QMj )
ϕMj dµ∫
ϕMj dµ

− χQMj ν.
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We have
∫
dαMj = 0 and |C(αMj )(z)| 6 A, z /∈ QMj , 1 6 j 6 4M , again using [G2,

Lemma 2.3 (a), p. 90].
Thus, if zMj is the center of QMj ,

|C(αMj )(z)| 6 A σ2
M

dist(z,QMj )2
, |z − zMj | > σM .(16)

By the maximum principle, in estimating (15), we can assume that |z − zMj | 6 σM
for some j with QMj ⊂ Qnk . Hence (15) is not greater than

A+A
∑
l 6=j

σ2
M

dist(z,QMl )2
.(17)

For 0 6 n 6M let Qn be the square in the n-th generation that contains QMj . We
can estimate (17) by

A+A

M−1∑
n=0

∑
QMl ⊂Qn\Qn+1

σ2
M

dist(z,QMl )2

6 A+A

M−1∑
n=0

σ2
M

σ2
n

4M−n 6 A+A

M−1∑
n=0

(4
9

)M−n
6 A,

because σM = σnλn+1 · · ·λM 6
σn

3M−n
, 0 6 n 6M .

This completes the construction of the function bnk associated with the square
Qnk as required by hypothesis (iii) in the local T (b)-Theorem.

Now, by translation invariance it is clear that bnj for j 6 k also satisfies (iii).
This shows that the local T (b)-Theorem can be applied to µ and thus completes

the proof of Theorem 2. �

Remark 2. For simplicity, we assumed above that λn 6 1/3 for all n. However,
both Theorem 1 and Theorem 2 hold for 0 < λn < 1/2. Let us sketch the changes
needed in the proof.

First it should be noticed that the estimate (4) for γ+(EN ) holds for 0 < λn <
1/2. Indeed, the arguments for the left inequality in (4) in [Ma] are valid in this
case. On the other hand, the right inequality in (4) is also true for 0 < λn < 1/2.
For example, arguing as in [T2], one can easily check that

γ+(EN ) 6 A
(

1 +
∑

1 6 n 6 N,
λn 6 1/3

1
(4nσn)2

)−1/2

≈
( ∑

16n6N

1
(4nσn)2

)−1/2

.

The other places where the assumption λn 6 1/3 has been used are (14) and
(15). The inequality (14) also holds for 0 < λn < 1/2. It follows from Vitushkin’s
estimates for the integral

∫
Γ
f(z) dz for piecewise Lyapunov curves Γ [Vi1] (in our

case Γ = ∂QMj ). To prove (15), one can use the sharper estimate

|C(αMj )(z)| 6 A
σM γ(QMj ∩ EN )

dist(z,QMj )2
6 AC1

σM µ(QMj )
dist(z,QMj )2

, |z − zMj | > σM ,

instead of (16) (see [G2, pp. 12–13], for example). We leave the details for the
reader.
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