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Abstract A new method to the planning of optimal

motions of the non-holonomic systems is presented.

It is based on a non-classical formulation of the Pon-

tryagin Maximum Principle given in variational form,

which handles efficiently various control and/or state-

dependent constraints. They arise naturally due to both

physical limits of the actuators of the non-holonomic

systems and potential existence of obstacles in the

workspace. The method proposed here provides contin-

uous solutions in infinite-dimensional control space. It

seems to be in contrast to majority of known optimiza-

tion algorithms which project infinite-dimensional con-

trol space into finite-dimensional one and then apply

techniques of linear and/or nonlinear programming,

thus resulting only in near-optimal trajectories. More-

over, the offered control schemes do not require com-

putation of inverse or pseudo-inverse of the Jacobian

in the case of classic non-holonomic motion planning

what also results in numerical stability of our approach.

The performance of the proposed control strategies is

illustrated through computer simulations for a chosen

class of non-holonomic structures operating in both

an obstacle-free workspace and a workspace includ-

ing obstacles. Numerical comparison of our control

scheme with the representative algorithms known from

the literature is also given.
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1 Introduction

In recent years, an interest has increased in applying the

non-holonomic systems (mobile robots, tractor-trailer

vehicles, orbiting satellites, space robot manipulators,

etc.) to useful practical positioning tasks such as part

transfer or an assembly. In order to accomplish the

aforementioned tasks, the non-holonomic motion plan-

ning should be involved. It consists in obtaining (gen-

erating) a trajectory which joints a given initial posture

(state) of the system with some desired final position in

a workspace. For many of the repetitious processes, it

is economically desirable to obtain the system motions

that improve the performance of these processes with

respect to some criteria. Reducing the energy required

to transfer a part by the mobile robot from one location

in the workspace to another constitutes a good exam-

ple. In such a case, even a small energy decrease in one

cycle of the process, multiplied by the total number

of cycles in the lifetime of the manufacturing process,

may result in essential savings in manufacturing costs.

During the system motion in the workspace, some con-

straints are usually activated. They result from the exis-

tence of the control limits reflecting the physical abili-

ties of the actuators and the fact that a system should not

collide with obstacles. As is known, [5,57], dynamic

systems with non-holonomic constraints possess some
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peculiar characteristics which make motion planning

for them challenging. Namely, non-holonomic veloc-

ity constraints are not integrable to equivalent con-

straints in configuration (posture) space. Consequently,

the instantaneous velocity of a system subject to non-

holonomic constraints is limited to certain directions.

Constraints of this kind occur for any wheeled vehi-

cle under the no-slip condition. Manoeuvres of a sys-

tem with limited instantaneous velocity directions in

a work space containing, e.g. obstacles, are consider-

ably more complex than those accomplished by holo-

nomic system. Moreover, there exists no continuous

time-invariant stabilizing feedback of a point-to-point

control problem (e.g. a parking task) for drift-less non-

holonomic systems [5,57]. Furthermore, the majority

of the non-holonomic systems is globally controllable.

However, their linearization about an equilibrium point

is not controllable. Due to the aforementioned dif-

ficulties, motion planning techniques for holonomic

systems are not directly applicable to non-holonomic

motion planning. On account of the peculiar character-

istics which possess systems subject to non-holonomic

equality constraints, the solution of the motion planning

problem with control and/or state-dependent inequal-

ity constraints becomes difficult from both theoreti-

cal and computational point of view. In such context,

three representative approaches to the non-holonomic

motion planning problem may be distinguished. The

graph search-based methods including those offered

in [13,28,29,33,42] generally involve some types of

decomposition of the state space into cells (e.g. prob-

abilistic road maps (PRM), rapidly exploring random

trees (RRT) or uniform discrete grid representation).

Then, a graph is constructed whose nodes are config-

urations (postures) and whose arcs are some types of

paths (e.g. shortest, collision-free) connecting two con-

figurations. The graph is searched applying the suitable

algorithms. According to the discrete grid-based artifi-

cial potential field method, a global collision-free path

planning of a cooperative cable parallel robot for mul-

tiple mobile cranes was presented in [58]. However, the

graph search methods based on state space decomposi-

tion can be computationally both time-consuming (due

to preprocessing of the continuous work space into a

suitable graph) and complicated particularly for com-

plex non-holonomic systems such as a tractor pulling

the two or more trailers [11]. The second approach

applying the Jacobian motion planning algorithms is

based on so-called continuation method inspired by

Wazewski [54]. It was introduced to robotics by Suss-

mann [48]. Jacobian algorithms have been developed

theoretically in [8,9] and applied to non-holonomic

systems in [1,11,12,26,37,49–51]. The augmented

motion planning techniques such as the extended Jaco-

bian [2,4] or the configuration control proposed in

[45] were adopted to non-holonomic systems in work

[50]. Although motion planning algorithms based on

the pseudo-inverse of the Jacobian are attractive and

further investigated by many researchers, they pos-

sess some shortcomings. Namely, generated trajec-

tories provide at most sub-optimal solutions. More-

over, pseudo-inverse motion planning strategies are

not, in general, repeatable [43]. (only the extended

Jacobian techniques [2,4] may generate repeatable

state trajectories provided that the corresponding Jaco-

bian matrix is non-singular.) Consequently, an impor-

tant class of cyclic technological operations cannot be

accomplished by the pseudo-inverse approach. Fur-

thermore, almost all those motion planning algorithms

require explicitly pseudo-inverse of the Jacobian which

can potentially contain kinematic singularities. In order

to tackle the singular configurations, the use of damped

least squares has been proposed in works [38] in lieu

of the pseudo-inverses. Nevertheless, this technique

suffers from the tracking errors due to a long-term

numerical integration drift. The non-holonomic plan-

ners applying the inverse of the extended Jacobian,

can potentially introduce algorithmic singularities [2]

which cause the motion planning to stop even though

the non-holonomic system is not in a kinematic sin-

gular configuration. An iterative learning discontinu-

ous controller using the inverse kinematics has been

proposed in [40] to accomplish repetitive tasks. The

third approach of motion planning offered in works

[7,10,15,16,24,30,32,34,36,41,55] is based on appli-

cation of optimal control methods or the calculus of

variations. Nevertheless, application of Pontryagin’s

Maximum Principle in its classical form results in a

two-point boundary value problem which is hard and

sensitive to solve numerically. Moreover, maximizing

the Hamiltonian (instead of directly minimizing the

performance index) may result in stationary solutions

which are not necessarily optimal ones. Using the cal-

culus of variations and different kinds of parameter-

izations of controls, works [7,15,16,24,30,56] con-

vert the infinite-dimensional optimal control formula-

tion into a finite-dimensional nonlinear programming

problem. The result of projection is obtaining only
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near-optimal solutions. The approach in [10] formu-

lates the planning problem as a problem of the cal-

culus of variations and handles state inequality con-

straints as equality ones using slack variables which

significantly increases the number of unknown func-

tions to be found. Optimal trajectory generation using

spline interpolation techniques was offered in works

[21,53] only for a simple class of mobile robots. This

work also addresses the problem of optimal motion

planning for the non-holonomic systems subject to

both control and state-dependent constraints. In the

case considered, it is very difficult to use Pontrya-

gin’s Maximum Principle in its classical form [39],

since it presents only a positive form of control. There-

fore, it is natural to make an attempt to solve the

aforementioned constrained optimal control problem

by resorting to other techniques. A new method based

on a non-classical formulation of the Pontryagin Max-

imum Principle [14,18,23] given in variational form,

which makes it possible to handle state inequality

constraints efficiently, is proposed here to determine

optimal motions of the non-holonomic systems. This

approach, which consists in transforming the state con-

straints into control-dependent ones, in contrast to the

interior penalty function method, does not require an

initial admissible system trajectory (whose determi-

nation may be very troublesome in practice). In con-

trast to optimization algorithms known from the liter-

ature [19,20], which project infinite-dimensional con-

trol space into a finite-dimensional one and then apply

techniques of liner programming problems, thus result-

ing only in near-optimal trajectories generated by dis-

continuous controls, the method proposed herein pro-

vides continuous solutions in an infinite-dimensional

control space. As opposed to the most of the existing

control algorithms, which provide only sub-optimal or

near-optimal solutions and are based on maximizing

the Hamiltonian [44,47], the control schemes offered

in our study directly minimize the performance index.

As is known, the Hamiltonian-based approaches pro-

vide, in fact, only stationary solutions which may not

necessarily be optimal ones. Moreover, in the case of

classic (constraint-free) non-holonomic motion plan-

ning problems analysed and solved in the majority of

works by means of the pseudo-inverses of Jacobian

matrices [1,11,12,26,37,49,50], our control scheme is

significantly simplified in such a way that it does not

require computation of inverse or pseudo-inverse of the

Jacobian what also results in numerical stability of the

approach. The technique of convergence proof for the

proposed algorithms is different from those known in

the literature and is based on searching for limit trajec-

tory whose existence is theoretically ensured. (Opti-

mal control problems with state inequality constraints

may not have limit controls in a class of measurable

Lebesgue mappings [17,25]). The paper is organized as

follows. Section 2 presents the task of non-holonomic

systems in terms of the optimal control problem.

Section 3 offers new trajectory generation schemes

based on negative formulation of the Pontryagin Maxi-

mum Principle to determine the optimal motions of the

non-holonomic system. A numerically efficient pro-

cedure is proposed in Sect. 4 to determine an initial

admissible control which is close (in the L2 norm) to

an optimal one. Section 5 provides computer examples

of planning the optimal motions in a workspace with-

out and with obstacles for both a simple benchmark

non-holonomic structure and the car pulling the two

trailers.

2 Problem formulation

In order to express the task of a non-holonomic system

in terms of an optimal control problem, the state vector

χ = χ(t) = (χ1(t), . . . , χn(t))T ∈ R
n is introduced,

where t ∈ [0, T ]; T a fixed or final moment of perform-

ing the task; n stands for the amount of state variables.

Then, the dynamic equations of the non-holonomic sys-

tem can be written in a general state space form as [3]

χ̇ (t) = f (χ(t), v(t), t), (1)

where v(t) ∈ R
m denotes the vector of controls; m

stands for the number of controls; f : R
n×R

m×R −→
R

n ; f (·, ·, ·) is a smooth mapping with respect to χ , v

and t , respectively. Due to non-holonomic system (1)

considered herein, the following inequality holds true:

m < n. In further analysis, mapping χ(t) is assumed to

be absolutely continuous with respect to time. More-

over, control v(t) = (v1(t), . . . , vm(t))T is an inte-

grable Lebesgue mapping, on which some constraints

resulting from the abilities of the physical actuators of

system (1), are imposed

vl ≤ v(t) ≤ vu, (2)

where vl = (vl,1, . . . , vl,m)T and vu = (vu,1, . . . ,

vu,m)T are lower and upper limits on control v(t),
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respectively. If the kinematic non-holonomic con-

straints are only taken into account when accomplish-

ing the task, then state vector χ in (1) equals χ = q(t),

where q(t) is the posture of the non-holonomic sys-

tem and control vector v(t) corresponds to auxiliary

velocities η(t) [6], i.e. v(t) = η(t). In addition, if

both kinematic non-holonomic constraints and system

dynamic equations (second-order non-holonomic con-

straints) are analysed by the accomplishment of the

task, then state vector χ is equal to χ = (qT (t) ηT (t))T

and v(t) in (1) presents torques acting in the wheels of

the system. The task is to move system (1) from a given

initial state χ(0) = χ0 to a final desired system position

yd in the κ-dimensional task space, where κ ≤ n. For-

mally, the last condition may be described as follows

g(χ(T )) − yd = 0, (3)

where g : R
n −→ R

κ ; g(·) denotes the output equa-

tions of system (1) which are assumed to be at least

twice continuously differentiable; χ(T ) is an unknown

final state to be found. In the particular case, i.e. for

g(·) = id(·), where id(·) denotes the identity map-

ping, χ(t) is assumed to be known. During the system

motion, collision avoidance constraints are induced.

They result from the fact that non-holonomic system

should not collide with the static and/or moving obsta-

cles. The general form of these (inequality) constraints,

in the case of moving obstacles, may be written in the

following way:

{ci (χ(t), t) ≤ 0 : i = 0 : O}, (4)

where ci = γ i
c − ri (χ, t); γ i

c is a small positive num-

ber (a safety margin around the i-th obstacle); ri (·, ·)
denotes either a distance function between the non-

holonomic system and the i-th obstacle [22] or an ana-

lytic description of the obstacle [31] and O stands for

the total number of (moving) obstacles in the work

space, in which the system operates. Functions ri are

assumed to be continuously differentiable. For O = 0,

there are no obstacles in the work space. The motion of

the non-holonomic system should be accomplished in

such a way as to minimize the following performance

index:

J (v) =
∫ T

0

φ(χ, v, t)dt, (5)

where φ(·, ·, ·) is a smooth non-negative function of

vector variables χ , v and time t . The next section will

present an approach that renders it possible to solve

optimization problem (1)–(5) making use of the non-

classical formulation of Pontryagin’s Maximum Prin-

ciple.

3 Generation of optimal trajectory of the

non-holonomic system

In what follows, system (1) is assumed to be com-

pletely controllable for the pair (χ(·), v(·)) [23]. This

assumption means that both matrix
∂g(χ(T ))

∂χ
is non-

singular and the rows of matrix
(

∂ f (χ(t),v(t),t)
∂v

)T

Ψ

are linearly independent as mappings of time t , where

Ψ = Ψ (t) is a solution of the fundamental differential

equations Ψ̇ (t) = −
(

∂ f (χ(t),v(t),t)
∂χ

)T

Ψ ; Ψ (0) = In ;

In denotes the n × n identity matrix. Moreover, from

the Euler–Lagrange equations of non-holonomic sys-

tem [3], we can obtain the following upper estimation

on the norm of the mapping f (·, ·, ·): || f (χ, v, t)|| ≤
c1||χ ||+c2||χ ||2 +c3||v||+c4, where ci denotes some

positive coefficients; i = 1:4; c4 is an upper estima-

tion of the norm of the disturbance signal acting on

the non-holonomic system. On account of the obvious

inequalities d
dt

||χ || ≤ ||χ̇ || and ||v|| ≤ vu , we see that
d(||χ ||)

c5+c1||χ ||+c2||χ ||2 ≤ dt , where c5 = c3||vu || + c4. Let

us assume that Δ = c2
1 − 4c2c5 < 0 (the case in which

Δ ≥ 0 is considered further on). Integrating both sides

of the last differential inequality, we obtain the follow-

ing bound on ||χ ||: ||χ || ≤ A1, where

A1 = max
t∈[0, T ]

{

1

2c2

[

√
−Δ tan

×
(√

−Δ

2
t − arctan

c1√
−Δ

)

− c1

]}

.

Similarly, in the case of Δ ≥ 0, we can obtain the bound

on ||χ || in the form ||χ || ≤ A2, where

A2 = max
t∈[0, T ]

{

|
√

Δ − c1|
c2

exp

×
[

1

2
(c1 +

√
Δ − |

√
Δ − c1|)t

]

+
c1 +

√
Δ

2c2

}

.

Consequently,

||χ || ≤ A, (6)
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where A = max{A1, A2}. In further analysis, penalty

functions are introduced to incorporate inequality con-

straints (2), (4) into our approach. Let ηex
v (vi ) be an

exterior penalty function defined for the i-th control

variable vi , i = 1, 2, . . . , m, in the following way:

ηex
v (vi ) =

⎧

⎨

⎩

wex,i
v (vi − vu,i )

2 for vi ≥ vu,i ,

wex,i
v (vl,i − vi )

2 for vi ≤ vl,i ,

0 otherwise,

(7)

where wex,i
v denotes a constant positive coefficient (the

strength of exterior penalty). Let us observe that appli-

cation of formula (7) does not guarantee maintenance

of control constraints (2). In order to force fulfilment

of strong inequalities (2), interior penalty functions

should be introduced. They take the following form

for the i-th control variable:

ηin
v (vi ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

win,i
v

(

1
vi −vl,i

− 1
γi

)2
for vi ≤ vl,i + γi ,

win,i
v

(

1
vu,i −vi

− 1
γi

)2
for vi ≥ vu,i − γi ,

0 otherwise,

(8)

where γi is a small positive number (a safety margin

for the i-th control variable); win,i
v denotes a constant

positive coefficient (the strength of interior penalty).

Similarly, let ηex
O

(ci ) be an exterior penalty function

corresponding to ηex
v and defined for the i-th obstacle,

i = 0, 1, . . . ,O, as follows

ηex
O

(ci ) =
{

w
ex,i
O

(ci )2 for ci (χ(t), t) ≥ 0,

0 otherwise,
(9)

where w
ex,i
O

> 0 is a constant coefficient (the strength

of the exterior penalty). Besides, we additionally intro-

duce for the numerical computation purposes an exte-

rior penalty function ηex
O,in

corresponding to ηin
v and

defined as

ηex
O,in(ci ) =

{

w
ex,i
O,in

(ci )2 for ci (χ(t), t) ≥ 0,

0 otherwise,
(10)

where w
ex,i
O,in

is a positive constant coefficient. Let

ηv(vi ) denote either the exterior penalty function for vi ,

i.e. ηv(vi ) = ηex
v (vi ) or interior penalty function, i.e.

ηv(vi ) = ηin
v (vi ), where i = 1, 2, . . . , m. Similarly, let

ηO(ci ) be either equal to ηex
O

(ci ) or equal to ηex
O,in

(ci ),

i.e. ηO(ci ) = ηex
O

(ci ) or ηO(ci ) = ηex
O,in

(ci ), respec-

tively. In order to maintain control and state-dependent

inequality constraints (2), (4) when operating non-

holonomic system (1) in the work space, we modify

performance index (5) as follows

F0(v) =
∫ T

0

Φ0(χ, v, t)dt, (11)

where Φ0 = φ +
∑m

i=1 ηv(vi (t)) +
∑O

i=0 ηO(ci ). Let

us note that penalty terms (7)–(10) can cause a slight

increase of the value of performance index (5). Nev-

ertheless, application of interior penalty function (8)

leaves a free control space for compensation of mod-

elling uncertainties in the feedback control actions of

the system. Moreover, let us note that equality con-

straints (3) may be equivalently expressed in an inte-

grable form as

∫ T

0

Φ1(χ, v, t)dt = 0, (12)

with Φ1 = ∂g
∂χ

f (χ, v, t)+ g(χ0)−yd

T
. It should be noted

that through Eq. (1), the state vector χ is functionally

dependent on control v. In this way, the left-hand side of

vector equality (12) also depends on v. For further con-

siderations, it will be reformulated in functional form

which is equivalent to the previous one. Thus, constrain

(12) assumes the following (functional) form:

F1(v) = 0, (13)

where F1(v) =
∫ T

0 Φ1(χ, v, t)dt with performance

index (11). To use the negative formulation of Pon-

tryagin’s Maximum Principle [14,18,23], we assume

that a certain admissible control v0 = v0(t), that is,

satisfying relations (2) but not necessarily (3) and (4),

is known. Such a control always exists, e.g. v0(t) ≡ 0.

Moreover, we presume that this control does not min-

imize performance index (5). Next the increments of

functionals given by the left-hand side of relation (13)

and the right-hand side of (11) must be determined.

Therefore, it is assumed that the control v0 = v0(t),

where t ∈ [0, T ], is perturbed by a small func-

tion (variation) δv(t) = (δv1(t), . . . , δvm(t))T , where

||δv|| = maxt∈[0, T ]{max1≤i≤m{|δvi (t)|}} ≤ O(ρ0);

O(ρ0) → 0 as ρ0 → 0; ρ0 is a given small number

that guarantees the correctness of the presented method.
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According to the theory of small perturbations [39], it

results in a small perturbation of state trajectory; that is,

the trajectory χ0(t) (which corresponds to the admis-

sible control v0(t) with initial condition χ0(0) = χ0)

is replaced by χ0(t) + δχ(t), where

δχ̇ = fχ (t)δχ + fv(t)δv, (14)

with δχ(0) = 0; fχ (t) =
(

∂ f
∂χ

)

|(χ0(t), v0(t)); fv(t) =
(

∂ f
∂v

)

|(χ0(t), v0(t)). More precisely, Eq. (14) should be

written in the form δχ̇ = fχ (t)δχ + fv(t)δv + o(δv),

where
||o(δv)||
||δv|| → 0 as ||δv|| → 0 and δχ(t) should be

treated as the exact difference between the perturbed

and unperturbed trajectory. For simplicity, in further

analysis, we neglect the term o(δv), bearing in mind

that in this case, variation δχ differs from the exact dif-

ference by o(δv). The value of the functional F0(·) for

control v0 + δv can thus be expressed as (its derivation

is presented in “Appendix A” section)

F0(v
0 + δv) = F0(v

0) + δF0(v
0, δv) + o(δv), (15)

where δF0(v
0, δv) =

∫ T

0

〈

∂ F0
∂v

, δv

〉

dt is the Frechet

differential of functional F0(·); 〈·, ·〉 means the scalar

product of vectors in the Euclidean space; ∂ F0
∂v

denotes

the Frechet derivative of F0(·) equal to

∂ F0

∂v
=
(

( fv(t))
T ψ0 +

(

∂Φ0

∂v

)T
)

∣

∣

∣

(χ0(t), v0(t))
;

ψ0(·) stands for the conjugate mapping computed by

solution of the following differential equation:

ψ̇0 + ( fχ (t))T ψ0 = −
(

∂Φ0

∂χ

)T ∣
∣

∣

(χ0(t), v0(t))

with boundary condition ψ0(T ) = 0. Similarly, the

value of the vector functional determined by the left-

hand side of Eq. (13) for control v0 + δv becomes (its

derivation is also presented in “Appendix A” section)

F1(v
0 + δv) = F1(v

0) + δF1(v
0, δv) + o(δv), (16)

where δF1(v
0, δv) =

∫ T

0
∂ F1
∂v

δvdt is the Frechet dif-

ferential of F1(·); ∂ F1
∂v

denotes the Frechet matrix func-

tional derivative of F1(·) equal to

∂ F1

∂v
=
(

(ψ1)
T fv(t) +

∂Φ1

∂v

)

∣

∣

∣

(χ0(t), v0(t))
;

ψ1(·) stands for the conjugate mapping obtained by

solving the following differential equation:

ψ̇1 + ( fχ (t))T ψ1 = −
(

∂Φ1

∂χ

)T ∣
∣

∣

(χ0(t), v0(t))

with boundary condition ψ1(T ) = 0. For properly

selected variation δv, Frechet’s differentials of func-

tionals (11), (13) can approximate the exact increments

of these functionals with any accuracy. Hence, the neg-

ative formulation of Pontryagin’s Maximum Principle

(when neglecting the higher-order terms o(δv)) has the

form

F0(v
0 + δv) = F0(v

0) + δF0(v
0, δv) −→ min

δv
(17)

subject to the vector equality constraint F1(v
0) +

δF1(v
0, δv) = 0. On account of the fact that v0 does

not necessarily satisfy (13), the norm ||F1(v
0)|| ≥ 0

can be large. Hence, in order to ensure required accu-

racy of the linear approximation, the aforementioned

equality constraint is modified as follows (δF1(v
0, δv)

is a linear mapping with respect to δv)

g0 · F1(v
0) + δF1(v

0, δv0) = 0, (18)

where 0 < g0 << 1; δv0 is now “a small” (alge-

braically) variation equal to δv0 = g0δv. Minimiza-

tion of (17) results in variation δv0 = −g0
∂ F0
∂v

, where

g0 denotes a positive small number, which does not

necessarily satisfy equality constrain (18). Therefore,

we have to solve the following auxiliary control prob-

lem (projection of variation δv0 onto linear functional

constrains (18)):

min
δv0

{

1

2

∫ T

0

||δv0 − δv0||2dt

}

, (19)

subject to constraint (18)

∫ T

0

∂ F1

∂v
δv0dt = −g0 F1(v

0). (20)

Relations (19), (20) constitute the problem of the rela-

tive minima from the calculus of variations whose solu-

tion may be expressed as follows
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δv0 = δv0 −
(

∂ F1

∂v

)T
[

∫ T

0

∂ F1

∂v

(

∂ F1

∂v

)T

dt

]−1

×
(∫ T

0

∂ F1

∂v
δv0dt + g0 F1(v

0)

)

. (21)

Taking into account (21), we obtain the new control

v1(t) = v0(t)+ δv0(t), where t ∈ [0, T ]. The process

of minimization is then repeated for v1. The sequence

of controls vk+1 = vk + δvk , where k = 0, 1, 2, . . .;

δvk = δvk −
(

∂ F1

∂v

)T
[

∫ T

0

∂ F1

∂v

(

∂ F1

∂v

)T

dt

]−1

×
(∫ T

0

∂ F1

∂v
δvkdt + gk F1(v

k)

)

; (22)

δvk = −gk
∂ F0
∂v

; gk , gk are positive coefficients which

fulfil the following inequalities: 0 < gk, gk << 1,

and the corresponding (according to Eq. (1)) state tra-

jectories χk+1 are obtained as a result of solving itera-

tive scheme (17)–(22). On account of the obvious rela-

tions δF1(v
k, δvk) = −gk F1(v

k), we obtain inequal-

ities ||F1(v
k)|| > ||F1(v

k+1)|| ≥ 0 and consequently

F1(v
k) → 0 as k → ∞. If this is the case, from (22)

we have

δvk → δvk
∗ = δvk −

(

∂ F1

∂v

)T

×
[

∫ T

0

∂ F1

∂v

(

∂ F1

∂v

)T

dt

]−1
∫ T

0

∂ F1

∂v
δvkdt.

Observe that δF1(v
k, δvk

∗) =
∫ T

0
∂ F1
∂v

δvk
∗dt = 0.

Moreover, for δṽ = 0, one also obtains the equality

δF1(v
k, δṽ) =

∫ T

0
∂ F1
∂v

δṽdt = 0. Consequently, from

the obvious inequality (δvk
∗ is the solution of optimal

control problem (19), (20) for sufficiently large k)

1

2

∫ T

0

||δvk
∗ − δvk ||2dt ≤

1

2

∫ T

0

||δṽ − δvk ||2dt

=
1

2

∫ T

0

||δvk ||2dt

and the definition of δvk , we have

δF0(v
k, δvk

∗) =
∫ T

0

〈

∂ F0

∂v
, δvk

∗

〉

dt ≤

−
1

2gk

∫ T

0

||δvk
∗||2dt ≤ 0.

Finally, we obtain that δF0(v
k, δvk

∗) ≤ 0 what implies

decrease (not monotonous for algebraically small val-

ues of k) of sequence F0(v
k). The natural question

arises, under which conditions there exists a limit con-

trol for the sequence of vk as k → ∞. Based on the

work [17], we can establish the following result for

Φ0 = φ.

Lemma 1 If
⎧

⎨

⎩

⎛

⎝

f (χ, v, t)

φ(χ, v, t)

Φ1(χ, v, t)

⎞

⎠ : vl ≤ v ≤ vu

⎫

⎬

⎭

= conv

⎧

⎨

⎩

⎛

⎝

f (χ, v, t)

φ(χ, v, t)

Φ1(χ, v, t)

⎞

⎠ : vl ≤ v ≤ vu

⎫

⎬

⎭

, (23)

where conv{·} denotes the convex hull of the set {·}; then

there exists Lebesgue measurable limit control being

the solution of successive minimization problems (17)–

(22).

Proof The proof of Lemma 1 is similar to that given in

[14]. Therefore, it is omitted. ⊓⊔

However, in the applications of the control of non-

holonomic systems, it is difficult to fulfil equality (23).

Moreover, from the practical point of view, it is not

essential to know a limit control (which may not exist

theoretically for control problem (1)–(5) in a class of

Lebesgue measurable mappings), and only the conver-

gence of the trajectories χk , k = 0, 1, 2, . . . is of great

importance. We are now ready to offer the following

Theorem.

Theorem 1 The sequence of trajectories χk , k =
0, 1, 2, . . ., generated by iterative scheme (17)–(22),

has a convergent subsequence to an optimal (limit) tra-

jectory.

Proof The proof of Theorem 1 will be limited to the

key moments of argumentations. First, observe that

inequality (6) expresses the fact of the boundedness of

χ . By solving successive minimization problems (17)–

(22), the sequence of pairs (vk, χk), k = 0, 1, 2, . . . is

generated. Note that

||χk || ≤ A (24)

and

||χ̇k || = || f (χk, vk, t)|| ≤ B, (25)

where B = max||χ ||≤A, ul≤v≤uu , t∈[0, T ]{|| f (χ, v,

t)||}. Inequality (24) means that the set {χk : k =
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0, 1, 2, . . .} is uniformly bounded, whereas inequal-

ity (25) implies that this set is equi-continuous. Thus,

the Arzela–Ascoli theorem [35] holds for χk . A con-

vergent subsequence χkn , n = 1, 2, . . ., for which

limn→∞ χkn = χ∗, may be chosen from the sequence

χk . From Filippov’s theorem [17], it follows that χ∗

is an absolutely continuous mapping. Furthermore, the

continuity of expression g(χ(T )) − yd with respect to

χ yields the following relation: g(χ∗(T )) − yd = 0.

We also know that for sufficiently large n, sequence

F0(v
kn ) monotonous decreases what implies (in gen-

eral, local) optimality of χ∗. ⊓⊔

In practice, however, the fact of satisfying Cauchy’s

condition with a given accuracy by the components of

sequence (χk, F0(v
k)) may be taken as a solution to

optimal control problem (1)–(5). Consequently, itera-

tive scheme (17)–(22) may be stopped provided that the

following inequalities are fulfilled: ||g(χk(T ))−yd || ≤
ǫ and

|F0(v
k+1)−F0(v

k)|
F0(v

k)
≤ ǫc, where ǫ, ǫc are small num-

bers (accuracy of iterative solution). A few remarks

may be made regarding successive minimization pro-

cess (17)–(22) and Theorem 1.

– Remark 1 Observe that iterative scheme (17)–(22)

provides continuous solutions to variations δvk ,

k = 0, 1, 2, . . . which result in continuous controls

vk . The optimization processes known from the lit-

erature [19,20] project infinite-dimensional control

space into a finite-dimensional one and then apply

techniques of a linear programming problem to find

δvk what causes a drastic increase of the amount of

numerical computations and results only in near-

optimal solutions. Furthermore, the algorithms

from [19,20] search for the solution of control prob-

lem (1)–(5) in a class of quasi-constant (discon-

tinuous) controls. Consequently, they are not suit-

able for non-holonomic systems particularly of the

first order, in which the controls (system velocities)

have to be continuous. Moreover, by transform-

ing state inequality constraints (4) to equivalent

scalar integral form
∫ T

0

∑O
i=0 ηO(ci (χ, t))dt , con-

trol scheme (17)–(22) avoids the troublesome pro-

cess of computing the Gateaux differentials which

were used in works [14,19,20]. To numerically

find Gateaux differentials, one has to solve a num-

ber of Cauchy’s problems. This number depends

on amount of time instances activating the state

inequality constraints.

– Remark 2 Let us note that in the particular case

Φ0 = 0 and the lack of control and state-dependent

inequality constraints (2), (4), we obtain a classic

non-holonomic motion planning problem whose

solution may be significantly simplified compared

with formulas (22). For this purpose, equality con-

straint (3) is transformed into the scalar functional

form as follows

F(v0) = h(χ0(T )) ≥ 0, (26)

where h = 1
2
||g(χ0(T )) − yd ||2. The value for

functional F(v0 + δv) can be expressed as (its

derivation is presented in “Appendix B” section)

F(v0 + δv) = F(v0) + δF(v0, δv), (27)

where δF(v0, δv) is the Frechet differential of

functional F ; δF(v0, δv) =
∫ T

0

〈

∂ F
∂v

, δv
〉

dt ; ∂ F
∂v

denotes the Frechet derivative; ∂ F
∂v

= ( fv(t))
T ψ ; ψ

stands for the conjugate mapping determined by the

solution of differential equation ψ̇ + ( fχ (t))T ψ =

0 with boundary condition ψ(T ) =
(

∂h
∂χ

∣

∣

χ0(T )

)T

.

Minimization of (27) results in variation δv0 =
−g0 ∂ F

∂v
. Taking into account δv0, we obtain new

control v1 = v0 + δv0. The process of minimiza-

tion is then iterated for v1. The sequence of controls

vk+1 = vk + δvk with

δvk = −gk ∂ F

∂v

∣

∣

vk . (28)

where k = 0, 1, 2, . . . is obtained as a result of solv-

ing iterative scheme (28). On account of obvious

relation δF(vk, δvk) ≤ 0, we obtain a sequence of

inequalities F(vk) ≥ F(vk+1) ≥ 0 what implies

convergence of F(vk) to 0 as k → ∞. Observe

that expression (28) does not require computa-

tion of undesirable Jacobian pseudo-inverse what

results also in numerical stability of our control

scheme in neighbourhoods of singular configura-

tions. The unconstrained non-holonomic motion

planning with Φ0 = 0 has been also analysed

in works [1,11,12,49]. Although studies [26,37]

involve the performance index in trajectory plan-

ning, the gradient of the Hamiltonian in [26,37]

is projected onto the null-subspace of the Jaco-

bian what does not even guarantee an instanta-

neous sub-optimal solution in the case of the con-
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flict of the kinematic tasks. The non-holonomic

motion planning algorithms proposed in works

[1,11,12,26,37,49] require a pseudo-inverse of the

Jacobian which can potentially contain kinematic

and/or algorithmic singularities (in the case of an

extended Jacobian).

– Remark 3 Observe that the trajectory from Theo-

rem 1 maximizes (locally, in general) the Hamilto-

nian for an arbitrary Φ0. However, for the specific

tasks encountered in practice and determined by

state equality constraint (3), convex set (2) and per-

formance index with cost function Φ0 = ||v||2, the

Hamiltonian becomes a quadratic form in control

v (strictly concave) provided that non-holonomic

system equations (1) are affine with respect to

v. Hence, it does not have local maxima in (2),

which are different from the global maximum of

the Hamiltonian. In other words, the approach pro-

posed here finds the optimal control v∗ globally

maximizing the Hamiltonian. In general, it is dif-

ficult to find globally optimal trajectory χ∗ for the

control problem with state inequality constraints

(4). This is due to the fact that the optimal con-

trol may not exist at all for such problems, or there

may be many local minima of functional (11). One

way to overcome this difficulty is a suitable choice

of the initial control v0 and then a search for an

optimal trajectory whose existence is guaranteed

by Theorem 1. The control v0 could be chosen

applying trials and errors technique by e.g. ran-

dom generation of constant admissible values with

condition v0 �= 0. As is easy to see, for many

non-holonomic wheeled mobile robots (unicycle,

differential drives, car-like wheeled mobile robots,

cars with trailers), their corresponding Jacobian

matrices become trivially singular for v(t) = 0,

i.e. control v(t) = 0 is singular configuration for

the aforementioned non-holonomic systems. Nev-

ertheless, calculation by trial and error techniques

of a nonzero admissible initial control which is rel-

atively close to an optimal one seems to be both

hard and time-consuming. Alternatively, it would

be reasonable to take v0,0(t) = 0, t ∈ [0, T ], as

the initial control (v0,0 = 0 is admissible) particu-

larly when applying motion planner (17)–(22) in a

model predictive control mode and/or in a complex

work spaces including many obstacles. Moreover,

as the numerical simulations carried out in Sect. 5

show, optimal solutions corresponding to v0,0 = 0

seem to be more energy-saving than those starting

with v0,0 �= 0. As we know, iterative optimiza-

tion scheme (17)–(22) converges relatively fast to

an optimal solution provided that both initial con-

trol does not equal zero and it is in a sufficiently

small neighbourhood of the optimal solution. The

next section offers a numerically efficient algorithm

providing an initial nonzero admissible control for

iterative scheme (17)–(22). Moreover, this initial

control is shown to be close (in the L2
m[0, T ] norm)

to the optimal solution.

4 Computation of an initial admissible control

Determination of the initial control for iterative pro-

cedure (17)–(22) will also be based herein on a suit-

able modification of the negative formulation of the

Pontryagin Maximum Principle. For this purpose, we

modify performance index (5) as follows

F3(v) =
∫ T

0

Φ3(χ, v, t)dt, (29)

where Φ3 = φ +
∑m

i=1 ηv(vi (t)). Moreover, equal-

ity constraint (3) and collision avoidance conditions

(4) may be equivalently expressed as a scalar equality

constrain of the form 1
2
||g(χ(T )) − yd ||2 +

∫ T

0

∑O
i=0

ηO(ci (χ, t))dt = 0, or finally in an equivalent inte-

grable form

∫ T

0

Φ4(χ, v, t)dt = 0, (30)

with Φ4 =
〈

(

∂g
∂χ

)T

(g(χ) − yd) , f (χ, v, t)

〉

+
∑O

i=0

ηO(ci (χ, t)) +
1
2 ||g(χ0)−yd ||2

T
. For further considera-

tions, the left-hand side of (30) will be reformulated

in functional scalar form as follows

F4(v) = 0, (31)

where F4(v) =
∫ T

0 Φ4(χ, v, t)dt . Similarly as in the

previous section, we take an arbitrary admissible con-

trol v0,0(t) (including also v0,0(t) = 0) as an initial

guess for optimal control problem (1)–(5). Let χ0,0(·)
denote the trajectory corresponding to control v0,0 with
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initial condition χ0,0(0) = χ0. The value of the func-

tional F3 for control v0,0 + δv can thus be expressed as

(its derivation is presented in “Appendix A” section)

F3(v
0,0 + δv) = F3(v

0,0) + δF3(v
0,0, δv) + o(δv),

(32)

where δF3(v
0,0, δv) =

∫ T

0

〈

∂ F3
∂v

, δv

〉

dt ; ∂ F3
∂v

=
(

( fv(t))
T ψ3 +

(

∂Φ3
∂v

)T
)

|(χ0,0, v0,0); ψ̇3 + ( fχ (t))T

ψ3 = −
(

∂Φ3
∂χ

)T

|(χ0,0, v0,0); ψ3(T ) = 0. Similarly, the

value of the functional determined by the left-hand side

of Eq. (31) for control v0,0 +δv becomes (its derivation

is also presented in “Appendix A” section)

F4(v
0,0 + δv) = F4(v

0,0) + δF4(v
0,0, δv) + o(δv),

(33)

where δF4(v
0,0, δv) =

∫ T

0

〈

∂ F4
∂v

, δv

〉

dt ; ∂ F4
∂v

=
(

( fv(t))
T ψ4 +

(

∂Φ4
∂v

)T
)

|(χ0,0, v0,0); ψ̇4 + ( fχ (t))T

ψ4 = −
(

∂Φ4
∂χ

)T

|(χ0,0, v0,0); ψ4(T ) = 0. Hence, the

modified version of the negative formulation of Pon-

tryagin’s Maximum Principle takes the following form:

F3(v
0,0 + δv) = F3(v

0,0) + δF3(v
0,0, δv) −→ min

δv

(34)

subject to the scalar linear constraint

g0,0 F4(v
0,0) + δF4(v

0,0, δv0) = 0, (35)

where 0 < g0,0 << 1; δv0 = g0,0δv. Minimization of

(34) results in variation δv0 = −g0,0
∂ F3
∂v

, where g0,0 is

a small positive coefficient, which does not necessarily

satisfy equality constrain (35). Therefore, we have to

solve the following auxiliary control problem (projec-

tion of variation δv0 onto linear functional constrain

(35)):

min
δv0

{

1

2

∫ T

0

||δv0 − δv0||2dt

}

, (36)

subject to constraint (35)

∫ T

0

〈

∂ F4

∂v
, δv0

〉

dt = −g0,0 F4(v
0,0). (37)

Relations (36), (37) constitute the problem of the rela-

tive minima from the calculus of variations whose solu-

tion may be expressed as follows

δv0 = δv0 −
∂ F4

∂v

∫ T

0

〈

∂ F4
∂v

, δv0

〉

dt + g0,0 F4(v
0,0)

∫ T

0

〈

∂ F4
∂v

, ∂ F4
∂v

〉

dt
.

(38)

Taking into account (38), we obtain new control

v0,1(t) = v0,0(t) + δv0(t), where t ∈ [0, T ]. The

process of minimization is then repeated for v0,1. The

sequence of controls v0,k+1 = v0,k + δvk , where

k = 0, 1, 2, . . .;

δvk = δvk −
∂ F4

∂v

∫ T

0

〈

∂ F4
∂v

, δvk

〉

dt + g0,k F4(v
0,k)

∫ T

0

〈

∂ F4
∂v

, ∂ F4
∂v

〉

dt
;

(39)

δvk = −g0,k
∂ F3
∂v

; g0,k , g0,k are positive coeffi-

cients which fulfil the following inequalities: 0 <

g0,k, g0,k << 1, and the corresponding (accord-

ing to Eq. (1)) state trajectories χ0,k+1 are obtained

as a result of solving iterative scheme (34)–(39). On

account of the obvious relation δF4(v
0,k, δvk) =

−g0,k F(v
0,k) ≤ 0, we obtain inequalities F4(v

0,k) >

F4(v
0,k+1) ≥ 0 and consequently F4(v

0,k) → 0

as k → ∞. If this is the case, from (39) we have

δvk → δvk−
∫ T

0

〈

∂ F4
∂v

, δvk

〉

dt

∫ T
0

〈

∂ F4
∂v

,
∂ F4
∂v

〉

dt

∂ F4
∂v

. Using definition of δvk

and the integral Schwartz inequality, it is easy to show

that δF3

(

v0,k, δvk −
∫ T

0

〈

∂ F4
∂v

, δvk

〉

dt

∫ T
0

〈

∂ F4
∂v

,
∂ F4
∂v

〉

dt

∂ F4
∂v

)

≤ 0 what

implies decrease (not monotonous for algebraically

small values of k) of sequence F3(v
0,k). Based on iter-

ative minimization scheme (34)–(39), we can propose

the following theorem.

Theorem 2 The sequence of trajectories χ0,k , k =
0, 1, 2, . . ., generated by iterative scheme (34)–(39),

has a convergent subsequence to an optimal (limit) tra-

jectory.

Proof Since functionals F3(·) and F4(·) are expressed

in scalar forms, the proof of Theorem 2 becomes the

particular case of the proof of Theorem 1, in which

functional F2(·) was given in the vector form. Conse-

quently, the proof of Theorem 2 may be omitted. ⊓⊔
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In practice, it suffices to take control v0,k for k

equal to several hundreds (two or three hundred)

as the initial admissible solution v0(t) for optimiza-

tion scheme (17)–(22). Let us note that the scalar

form of functional F4 makes it possible for many

non-holonomic structures (unicycle, differential drives,

car-like wheeled mobile robots, cars with trailers) to

assume v0,0 = 0 as the initial control for itera-

tive procedure (34)–(39). If this is the case, we have

∂ F4
∂v

=
(

∂g
∂χ

fv(t)
)T

(g(χ) − yd) and assuming that

g(χ)− yd /∈ ker

(

(

∂g
∂χ

fv(t)
)T
)

, one obtains ∂ F4
∂v

�= 0.

Hence,
∫ T

0

〈

∂ F4
∂v

, ∂ F4
∂v

〉

∣

∣

v0,0=0
dt > 0 and formula (38)

may be applied to determine δv0. From definition of

F4(v), it follows that iterative scheme (34)–(39) seem

to converge slower than that given by expressions (17)–

(22). The reason is that F4(v) < ||g(χ(T )) − yd || for

small norms ||g(χ(T ))−yd || provided that there are no

collisions between system (1) and the obstacles. On the

other hand, procedure (34)–(39) of determining the ini-

tial admissible solution should converge faster than that

given by (17)–(22) for larger norms ||g(χ(T )) − yd ||
(>2).

5 Numerical examples

The aim of this section is to illustrate the efficiency

of planning strategies (17)–(22), (28), (34)–(39) in

the case of existence or non-existence of both con-

trol and/or state-dependent inequality constraints on

a suitably chosen number of motion planning tasks.

The two non-holonomic dynamic systems are assumed

in this section to accomplish the corresponding point-

to-point tasks. The first one is a simple benchmark

non-holonomic system (unicycle or differential drive

wheeled mobile robot [46,52]) moving without slip on

a horizontal plane. This non-holonomic system is used

as a basis for many types of non-holonomic wheeled

mobile robots. For this reason, this model has attracted

much theoretical attention by nonlinear systems work-

ers. Moreover, this simple non-holonomic structure

was chosen herein to compare performance of control

strategy (28) with representative motion planning algo-

rithms known from the literature. The second plant,

assumed in the simulations, is a car pulling the two

trailers without slip which constitutes a complex non-

holonomic dynamic system subject to control and state-

dependent inequality constraints. As is known, both

non-holonomic dynamic systems considered herein are

controllable. Nevertheless, a collision-free manoeu-

vring of the car with trailers in a work space including

obstacles does not even seem to be intuitively obvi-

ous due to both limited instantaneous velocity direc-

tions of the car and a strongly non-convex shape of the

plant structure. Consequently, a point-to-point task to

be accomplished by the car with two trailers makes a

challenge for control strategies (17)–(22), (28), (34)–

(39). In all the simulations, SI units are used. The output

equation g(·) from (3) is assumed in the whole section

to be identity mapping, i.e. g(χ(T )) = χ(T ), (κ = n).

Moreover, accuracy of iterative solutions is assumed to

be less or equal to 10−4, i.e. ǫ ≤ 10−4 and ǫc ≤ 10−4,

respectively.

5.1 Numerical comparisons of the proposed control

scheme with the Newton algorithm

Due to some analogies between our control strategy

(28) which incorporates functional derivatives into iter-

ative process and the Newton algorithms involving the

Jacobian pseudo-inverse matrices, it seems natural to

numerically compare these two different approaches on

a chosen non-holonomic motion planning task. This

task is assumed to be accomplished by the simple

benchmark non-holonomic system represented herein

by either unicycle or differential drive [46,52]. On

account of the fact that state constraints of the motion

planning problem are directly expressed in task coor-

dinates, the posture χ of this system will also be repre-

sented in the same coordinates. As is known, the uni-

cycle in the strict sense is a mobile robot with seri-

ous problem of balance in static conditions. (It can

fall over.) However, there exist vehicles that are kine-

matically equivalent in the task coordinates to the uni-

cycle but more stable from a mechanical viewpoint.

Among these, the most important is the differential

drive [46,52]. This drive consists of two actuated fixed

wheels mounted on the left and right side of the vehicle

platform. Actuated fixed wheels are driven by motors

mounted on fixed positions of the vehicle. Their axis of

rotation has a fixed direction with respect to the plat-

form’s coordinate frame. The two wheels of radiuses

equal to R are independently driven. For the differen-

tial drive, denote (χ1, χ2)
T ∈ R

2 the Cartesian coor-

dinates of the midpoint of the segment of the length d
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joining the two wheel centres and by χ3 ∈ R the com-

mon orientation of the actuated fixed wheels (hence,

of the platform). Then, motion equations of the differ-

ential drive expressed in the task coordinates present

an analytic drift-less dynamic system of the form [46]

χ̇ =

⎡

⎣

cos(χ3) 0

sin(χ3) 0

0 1

⎤

⎦ v, (40)

where χ = (χ1, χ2, χ3)
T denotes the posture of the

differential drive; n = 3; v = (v1, v2)
T ; v1 denotes

linear velocity of the vehicle; and v2 is its angular

velocity (m = 2). If the wheels rotate at the same

angular speed, the differential drive moves straightfor-

ward or backward (v2 = 0). If one wheel is rotating

faster than the other, the vehicle follows a curved path

(v1 �= 0 and v2 �= 0). If both wheels are rotating at

the same velocity in opposite direction, the differen-

tial drive turns about the midpoint of the two driving

wheels, i.e. v1 = 0. The linear and angular velocities

v1, v2 in (40) are expressed as functions of the physical

inputs, i.e. the angular speeds ω1, ω2 of the actuated

fixed wheels. As is known, there is a one-to-one corre-

spondence between v in (40) and ω = (ω1, ω2)
T given

by the following expression:

v =
[

R
2

R
2

R
d

− R
d

]

ω. (41)

From linear Eq. (41), it follows that the upper and

lower wheel speed limits vu , vl are determined based

on the physical upper and lower angular speed lim-

its ωu , ωl , respectively, which depend on the physi-

cal abilities of the motors driving the both wheels of

the differential drive. Motion equations (40) of the

differential drive are most often used as a basis for

many types of non-holonomic wheeled mobile robots.

Hence, the numerical comparison of the motion plan-

ning algorithms will also be carried out in this section

for the differential drive. There are many representa-

tive Newton algorithms of non-holonomic motion plan-

ning [1,11,12,26,37,49]. Among them, we chose an

improved version of the algorithm (originated in [11])

recently proposed in the work [49]. The control law

offered in [49] is given by the following iterative for-

mulas:

δvk = −γ R−1(t)( fv(χ
k, vk))T ψk,22(t)

(

ψk,22(T ) + (Dk(T ))−1ψk,32(T )
)−1

(Dk(T ))−1(χk(T ) − yd),

(42)

where

ψk(t) =

⎡

⎣

ψk,11 ψk,12 ψk,13

ψk,21 ψk,22 ψk,23

ψk,31 ψk,32 ψk,33

⎤

⎦ with ψk(0) = I3×n; n = 3;

ψ̇k(t) =

⎡

⎣

fχ (χk, vk) − fv(χ
k, vk)R−1(t)( fv(χ

k, vk))T 03×3

−Qk(t) −( fχ (χk, vk))T 03×3

Dk(t)Qk(t) 03×3 fχ (χk, vk)

⎤

⎦ψk(t);

Ḋk(t) = fv(χ
k, vk)R−1(t)( fv(χ

k, vk))T + fχ (χk, vk)Dk(t) + Dk(t)( fχ (χk, vk))T

with Dk(0) = 0; R(t) = I2; Qk(t) = 10 · V · V T ;

V = Ŵ(− 1√
2
, 1√

2
, 0)T ; Ŵ =

[

I2 0

0 0

]

; γ = 0.1 and

03×3 denotes the 3×3 zero matrix; k = 0, 1, 2, . . .. The

first task also analysed in [49] is to move the differential

drive from initial posture χ(0) = (0, 0, 0)T to the

final location yd = (1, 1, 0)T in the time horizon T

equal to T = 2. The initial control v0 assumed in work

[49] equals v0 =
(

1, sin( 2π t
T

)
)T

. Our iterative scheme

(28) with the same initial control and constant gain

coefficients gk equal to gk = 0.3, k = 0, 1, 2, . . . , has

been applied to solve the aforementioned positioning

task. The results of application of iterative schemes

(28) and (42) are depicted in Figs. 1 and 2 which show

accurate positioning of both schemes.

Nevertheless, energy E lost during the differential

drive movement equals E = 4.81 for control scheme

(42) and E = 4.1 for our iterative procedure, respec-

tively, where E =
∫ T

0 ||v||2dt . Inverse-free trajectory

generator (28) has also been started with gk = 0.3 and

initial control v0 = 0 which is singular for iterative pro-

cedure (42). The convergence result for this simulation

is given in Fig. 3.

Moreover, the lost energy by the differential drive

equals E = 3.81 in this case. Consequently, iterative

scheme (28) seems to be more energy-saving than that
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Fig. 2 Convergence to yd corresponding to generator (42) with

v0 �= 0
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Fig. 3 Convergence to yd corresponding to generator (28) with

v0 = 0

given by formula (42). In the last simulation of this sec-

tion, we tried to find the most energy-saving solution for

the analysed positioning task. For this purpose, itera-

tive optimization scheme (17)–(22) has been applied
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Fig. 4 Convergence to yd corresponding to generator (17)–(22)

with v0 �= 0 and Φ0 = ||v||2
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Fig. 5 Convergence of F0(v) corresponding to generator (17)–

(22) with v0 �= 0 and Φ0 = ||v||2

with performance index (11) equal to Φ0 = ||v||2.

From Remark 3, it follows that our control scheme finds

global solution in such a case. Gain coefficients gk , gk ,

k = 0, 1, 2, . . . , are assumed to be constant for all k

and equal to gk = 0.01 and gk = 0.1, respectively.

Initial control v0 is the same as that given in work [49],

i.e. v0 =
(

1, sin( 2π t
T

)
)T

. The results of the simulation

are presented in Figs. 4 and 5 which indicate accurate

positioning of the differential drive (Fig. 4) and con-

vergence to the global minimum (Fig. 5) which equals

E = 3.6.

5.2 Non-holonomic motion planning for a car pulling

the two trailers

The dynamic structure considered in this section is a

car pulling the two trailers. The whole system is subject

to the rolling of the wheels without sliding of both the
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Fig. 6 Kinematic scheme

of the car pulling the two

trailers and the positioning

task to be accomplished

car and the trailers. The car will be represented by two

driving wheels connected by an axle. The posture of

the system is given by two position coordinates of the

last (second) trailer and three angles with respect to an

absolute coordinate system. There are only two inputs,

namely one linear velocity and one angular velocity

which represent the actions of the car. The posture χ

of the whole non-holonomic system (shown schemat-

ically in Fig. 6) is expressed by five task coordinates

(n = 5) χ = (χ1, . . . , χ5)
T , where (χ1, χ2) are the

coordinates of the centre of the axle between the two

wheels of the second trailer; χ5 is the orientation angle

with respect to the Oχ1 axis of the pulling car; χi for

3 ≤ i ≤ 4 denotes the orientation angle of the trailer

5 − i with respect to the Oχ1 axis.

The motion equations of a car pulling the two trailers

present dynamic system of the form [27]

χ̇ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

cos(χ5 − χ4) cos(χ4 − χ3) cos(χ3) 0

cos(χ5 − χ4) cos(χ4 − χ3) sin(χ3) 0
1
l1

cos(χ5 − χ4) sin(χ4 − χ3) 0
1
l2

sin(χ5 − χ4) 0

0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

v,

(43)

where l1 is the distance from the wheels of the last

trailer to the wheels of the first trailer; l2 denotes the

distance from the wheels of the first trailer to the

wheels of the pulling car, 2w stands for the distance

between the wheels of the car; l is the length of the car;

v = (v1, v2)
T ; v1 denotes the linear velocity of the

pulling car, and v2 is its angular velocity (m = 2). Dis-

tances between the two wheels of the first and second

trailers are assumed also to be equal to 2w. Let us note

that the pulling car represents physically a differential

drive with one or two passive castor wheels which are

attached in the front of the car for balance and stability.

Castor wheels are not actuated but they can also rotate

freely about an axis perpendicular to their axis of rota-

tion. The linear and angular velocities v1, v2 in Eq. (43)

of the pulling car may be expressed as linear functions

of the physical velocity inputs, i.e. angular speeds ω1,

ω2 of the both actuated fixed wheels of the differen-

tial drive. The one-to-one correspondence between v

in (43) and ω = (ω1, ω2)
T is given by the following

formula:

v =
[

R
2

R
2

R
2w

− R
2w

]

ω. (44)

The drawbar of the first trailer is for simplicity attached

to the midpoint of the segment joining the two wheel

centres of the car. Similarly, the drawbar of the second

trailer is attached to the midpoint of the segment joining

the two wheel centres of the first trailer. All the wheels

of the trailers are passive (not actuated). Moreover, the
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drawbars of the trailers are rigidly fixed to the trailer

platforms.

5.2.1 Constraint-free singular motion of the car with

two trailers

The second task is to move the car pulling the two

trailers from its initial posture χ(0) = (−4, −2, 0,

0, π/2)T to desired location yd = (−4, −2, 0, π/2,

π)T . The final moment T of accomplishing the task

equals T = 12. As is known [27], postures χ(0) and

yd are singular for non-holonomic system (43). The ini-

tial control v0 equals v0 = 0. Our control scheme (28)

has been applied to solve the third task with gain coef-

ficients gk equal to gk = 0.05, k = 0, 1, . . . The results

of the simulation are presented in Figs. 7, 8, 9 and 10

which indicate that accurate positioning of the car with

trailers is achieved (Fig. 9). Moreover, as is seen from
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Fig. 7 Control v1 corresponding to generator (28) with v0 = 0

and non-trivial singular motion
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Fig. 8 Algebraic difference of controls v1 − v2 corresponding

to generator (28) with v0 = 0 and non-trivial singular motion

Figs. 7 and 8, controls generating the system movement

schematically shown in Fig. 10, are both continuous

and non-trivially singular (v1 = v2) according to the

results of the work [27]. Consequently, iterative scheme

(28) is also able to tackle non-trivial singular controls.

5.2.2 Constraint optimal motions of the car pulling

the trailers

The third task is to move non-holonomic system

(43) from initial posture χ(0) = (−4, −2, π/4,

π/4, π/4)T to desired (singular) location yd =
(0, 0, 0, 0, π/2)T . The final time of task accom-

plishment equals T = 16. During the movement of the

car with trailers, control and state-dependent inequality

constraints (2), (4) have to be maintained. The lower

and upper limits on controls vi are assumed to be

equal to vu,i = 1 and vl,i = −1, i = 1, 2, respec-

tively. The purpose of the third task is also to min-
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Fig. 9 Convergence to yd corresponding to generator (28) with

v0 = 0 and non-trivial singular motion
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Fig. 10 The singular motion of the car with two trailers corre-

sponding to generator (28) for v0 = 0
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imize performance index (11). There are two obsta-

cles in the work space schematically shown in Fig. 6.

The threshold values γ 1
c and γ 2

c taken for computations

are equal to γ 1
c = 0.14 and γ 2

c = 0.2, respectively.

Let us note that both initial and desired postures of

non-holonomic system (43) are located in neighbour-

hoods of obstacles to make difficult the collision-free

manoeuvring of the car pulling two trailers. In order

to calculate the values of ri which are the distance

functions, both the length l of the car and its width

(represented by the length 2w of the axle connecting

the two driving wheels) have been discretized into 8

points. Analogous discretization process was carried

out for the trailers. For simplicity of computations, all

the wheels of non-holonomic system (43) are not taken

into account in the collision avoidance. Depending on

the initial control (nonzero or zero) and performance

index Φ0, we have carried out two simulations with

Φ0 =
∑m

i=1 ηv(vi ) +
∑O

j=0 ηO(c j ) (φ = 0) and the

third one with Φ0 = φ+
∑m

i=1 ηv(vi )+
∑O

j=0 ηO(c j ),

where φ = ||v||2, respectively. In this subsection, exte-

rior penalty functions (7), (9) are assumed to be incor-

porated in iterative optimization schemes (17)–(22),

(34)–(39). The following values for the exterior penalty

function parameters wex,i
v , w

ex,i
O

are taken in the first

two simulations: wex,i
v = 1.5, w

ex,i
O

= 7.5, i = 1, 2,

respectively. The first two simulations depend on ini-

tial control. In the first simulation, initial control v0,0

is equal to zero, i.e. v0,0 = 0, t ∈ [0, 16]. Conse-

quently, iterative scheme (34)–(39) from Sect. 4 has

to be applied to determine nonzero initial admissible

control (close to the optimal one) for optimization pro-

cedure (17)–(22). Gain coefficients g0,k , g0,k , gk gk ,

k = 0, 1, 2, . . . are assumed to be constant for all

k, i.e. g0,k = g0,k = 0.015 and gk = gk = 0.15,

respectively. In order to find nonzero initial control for

optimization process (17)–(22), five hundred iterations

of the algorithm given by expressions (34)–(39) were

executed. Then, proper optimization process (17)–(22)

has been started. The results of the first simulation

are presented in Figs. 11, 12, 13, 14 and 15 which

show accurate positioning of dynamic system (43) (Fig.

13).

As is seen from Figs. 11 and 12, control constraints

(2) are not violated. Figure 14 presents convergence

of performance index F0(v) to the (global) minimum

which guarantees collision-free movement of the car

with two trailers (Fig. 15). The energy E lost dur-
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Fig. 11 Control v1 corresponding to combined generators (17)–

(22) and (34)–(39) with exterior penalty functions (7), (9)
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Fig. 12 Control v2 corresponding to combined generators (17)–

(22) and (34)–(39) with exterior penalty functions (7), (9)
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Fig. 13 Convergence to yd corresponding to combined genera-

tors (17)–(22) and (34)–(39) with exterior penalty functions (7),

(9)

ing the movement equals E = 8.76. By applying the

trial and error technique, we have found a nonzero ini-

tial admissible control for the second simulation. It
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Fig. 14 Convergence of F0(v) corresponding to combined gen-

erators (17)–(22) and (34)–(39) with exterior penalty functions

(7), (9)
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Fig. 15 Optimal motion of the car with two trailers correspond-

ing to combined generators (17)–(22) and (34)–(39) with exterior

penalty functions (7), (9)

equals v0 =
(

0.4, −0.2 sin( 2π t
T

)
)T

. Figure 16 shows

the movement of non-holonomic system (43) corre-

sponding to control v0.

Observe that v0 violates both state equality and

inequality constraints (3), (4). Gain coefficients gk , gk

taken in this (second) simulation equal gk = gk =
0.04, k = 0, 1, 2, . . . Iterative optimization scheme

(17)–(22) has been applied to find optimal solution.

Figures 17, 18, 19, 20 and 21 present the results of the

second simulation. As is seen from Figs. 17, 18, 20 and

21, control and state-dependent inequality constraints

are maintained in the whole time horizon of the sys-

tem movement. Furthermore, Fig. 19 presents conver-

gence of system (43) to desired location yd . The energy

E required to move the car in the second simulation

equals E = 9.47. Similarly as in the case of the differ-
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Fig. 16 The motion of the car with trailers corresponding to

initial control v0 �= 0

0 5 10 15
−1

−0.5

0

0.5

1

t  [s]

v
1
  
[m

/s
]

Fig. 17 Control v1 corresponding to generator (17)–(22) with

exterior penalty functions (7), (9) and v0 �= 0
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Fig. 18 Control v2 corresponding to generator (17)–(22) with

exterior penalty functions (7), (9) and v0 �= 0

ential drive, nonzero initial admissible control provides

more time-consuming optimal motion than that equal

to zero.
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Fig. 19 Convergence to yd corresponding to generator (17)–(22)

with exterior penalty functions (7), (9) and v0 �= 0
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Fig. 20 Convergence of F0(v) corresponding to generator (17)–

(22) with exterior penalty functions (7), (9) and v0 �= 0
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Fig. 21 Optimal motion of the car with two trailers correspond-

ing to generator (17)–(22) with exterior penalty functions (7), (9)

and v0 �= 0

In the third simulation, exterior penalty functions

(7), (9) are applied with Φ0 = φ +
∑m

i=1 ηv(vi ) +
∑O

j=0 ηO(c j ), where φ = ||v||2 and initial control v0

0 2000 4000 6000 8000 10000
10

−6

10
−4

10
−2

10
0

10
2

k number of iterations

lo
g

(|
|χ

(T
)−

y
d
||
)

Fig. 22 Convergence to yd corresponding to generator (17)–(22)

with exterior penalty functions (7), (9), v0 �= 0 and φ �= 0
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Fig. 23 Convergence of F0(v) − J (v) corresponding to gener-

ator (17)–(22) with exterior penalty functions (7), (9), v0 �= 0

and φ �= 0

is equal to that from the previous simulation. The fol-

lowing values for the exterior penalty function param-

eters wex,i
v , w

ex,i
O

were taken in the current simulation:

wex,i
v = 150, w

ex,i
O

= 1500, respectively. Gain coef-

ficients gk , gk are assumed to be constant for all k,

k = 0, 1, . . . , and equal to gk = 0.0005, gk = 0.2,

respectively. The results of the current simulation are

presented in Figs. 22, 23 and 24 which indicate accurate

positioning of the car with trailers (Fig. 22). As is seen

from Fig. 23, performance index F0(v) − J (v) reflect-

ing fulfilment of control and state inequality constraints

(2), (4), converges to the (global) minimum what guar-

antees the collision-free movement of the car pulling

the two trailers. Figure 24 presents the convergence of

J (v) to the (global) minimum equal to J (v) = 7.2.

Observe that energy E required to move the car with

trailers in the first simulation for initial guess v0,0 = 0

123



The planning of optimal motions 2181

0 2000 4000 6000 8000 10000
2

3

4

5

6

7

8

k number of iterations

J
(v

)

Fig. 24 Convergence of J (v) corresponding to generator (17)–

(22) with exterior penalty functions (7), (9) and v0 �= 0

differs slightly from that obtained in the current simu-

lation and equals to E = 7.2.

6 Conclusions

A new method based on the non-classical (negative)

formulation of the Pontryagin Maximum Principle to

find optimal trajectories of non-holonomic systems

is proposed in the paper. An important factor which

affects the speed and accuracy of determining the min-

imizing sequence of controls, compared with works

[19,20] , is elimination of both the time-consuming

linear programming problem and discontinuity of the

controls. Moreover, proposed iterative control scheme

(28) does not require explicit computing any inverse or

pseudo-inverse of the (general) Jacobian matrix. This

important feature of the offered generator for the classic

(constraint-free) non-holonomic motion planning tasks

does not cause to stop the algorithm if singular con-

figurations appear when operating the non-holonomic

system in the workspace, as the computer simulations

carried out in Sect. 5 have shown. A case of state-

dependent control constraints can be tackled by intro-

ducing a new control vector ω such that v̇ = ω for

vl(χ) ≤ v ≤ vu(χ), where vl(χ) and vu(χ) are state-

dependent lower and upper limits imposed on vector

v, respectively. Thus, a modified control problem is

obtained with a new trajectory (χ, v) and control ω.

It is important to note that the method presented here

does not call for the knowledge of an initial solution sat-

isfying constraints (3) and (4). It is only required that

admissible control should satisfy relations (2). Numeri-

cal simulations confirm the theoretical results obtained

in Sects. 3 and 4. The problem formulation and given

approach may be directly applicable to complex multi-

ple non-holonomic systems interacting in a workspace

with obstacles. This method is also useful in finding

admissible trajectories (in the sense of satisfying state

constraints (3) and (4)), which is often encountered in

practice.
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Appendix A

While deriving the increments of functionals (11),

(13), the term of higher order of δv is neglected for

simplicity. Expanding functional F j (v + δv), where

j ∈ {0, 1, 3, 4}, with respect to δv results in the fol-

lowing equality:

F j (v + δv) = F j (v) + δF j (v, δv),

where

δF j (v, δv) =
∫ T

0

∂Φ j

∂χ
δχdt +

∫ T

0

∂Φ j

∂v
δvdt.

Next, by the Lagrange vector/scalar identity for the case

considered with δχ(0) = 0,
∫ T

0

(

Ψ T
j

(

d

dt
− fχ

)

δχ + (Ψ̇ T
j + Ψ T

j fχ )δχ

)

dt

= Ψ T
j (T )δχ(T )

and by equation,

δχ̇ − fχ (t)δχ = fv(t)δv(t)

the following relation holds:
∫ T

0

(

Ψ T
j fvδv+(Ψ̇ T

j +Ψ T
j fχ )δχ

)

dt =Ψ T
j (T )δχ(T ).

Making the conjugate mapping Ψ j (t) specific as a solu-

tion of differential equation

Ψ̇ j + ( fχ (t))T Ψ j = −
(

∂Φ j

∂χ

)T

with boundary condition

Ψ j (T ) = 0,
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we obtain
∫ T

0

∂Φ j

∂χ
δχdt =

∫ T

0

Ψ T
j fvδvdt

and finally

δF j (v, δv) =
∫ T

0

∂ F j

∂v
δvdt,

where
∂ F j

∂v
= Ψ T

j fv + ∂Φ j

∂v
. Let us note that for the

scalar form of F j , we obtain
∂ F j

∂v
= ( fv(t))

T ψ j +
(

∂Φ j

∂χ

)T

(
∂ F j

∂v
is the m-dimensional column vector).

Appendix B

Expanding functional F(v + δv) with respect to δv

results in the following equality:

F(v + δv) = F(v) +
〈

∂h

∂χ

∣

∣

∣

χ(T )
, δχ(T )

〉

.

Next, based on the Lagrange scalar identity

∫ T

0

(

〈

Ψ,

(

d

dτ
− fχ

)

δχ

〉

+
〈

δχ,

(

d

dt
+ fχ

)T

Ψ

〉)

dt

= 〈Ψ (T ), δχ(T )〉

and the equation δχ̇ − fχ (t)δχ = fv(t)δv(t), the fol-

lowing relation holds:

∫ T

0

(

〈Ψ, fv(t)δv(t)〉 +
〈

δχ,

(

d

dt
+ fχ

)T

Ψ

〉)

dt

= 〈Ψ (T ), δχ(T )〉.

Making the conjugate mapping Ψ specific as a solution

of differential equation

Ψ̇ + ( fχ (t))T Ψ = 0

with boundary condition

Ψ (T ) =
∂h

∂χ

∣

∣

∣

χ(T )

we obtain
∫ T

0

〈Ψ, fv(t)δv(t)〉 dt =
〈

∂h

∂χ

∣

∣

∣

χ(T )
, δχ(T )

〉

and finally

δF(v, δv) =
∫ T

0

〈

∂ F

∂v
, δv

〉

dt,

where ∂ F
∂v

= ( fv(t))
T Ψ .
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