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Abstract. The National Ecological Observatory Network (NEON) is designed to facilitate an understand-

ing of the impact of environmental change on ecological systems. Observations of plant diversity—respon-

sive to changes in climate, disturbance, and land use, and ecologically linked to soil, biogeochemistry, and

organisms—result in NEON data products that cross a range of organizational levels. Collections include

samples of plant tissue to enable investigations of genetics, plot-based observations of incidence and cover

of native and non-native species, observations of plant functional traits, archived vouchers of plants, and

remote sensing airborne observations. Spatially integrating many ecological observations allows a descrip-

tion of the relationship of plant diversity to climate, land use, organisms, and substrates. Repeating the

observations over decades and across the United States will iteratively improve our understanding of those

relationships and allow for the testing of system-level hypotheses as well as the development of predic-

tions of future conditions.
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INTRODUCTION

Observations of plant diversity, a multifaceted
concept that considers variation at multiple

organizational levels in a defined space and time
(Heywood 1995, Hubbell 2001, Stohlgren 2007),
contributed to the origins of the theory and prac-
tice of ecology (Darwin 1859, Magurran and
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McGill 2010). Study at multiple resolutions—ge-
netic (Hinchliff et al. 2015), trait (Adler et al.
2014, Enquist et al. 2015), population (Clark
et al. 2004, 2011), community (Vellend 2010,
Clark et al. 2012), region (Zobel 1997, Huston
1999), and globe (Kreft and Jetz 2007)—has
proved critical to understanding dynamic inter-
actions of pattern and process such as species
interactions (Suttle et al. 2007, Adler et al. 2013),
species–environment relationships (ter Braak
1987, Stohlgren et al. 1999), and the relationship
of plant diversity to the structure and function of
ecosystems (Diaz et al. 2004). These interactions
are sensitive to change. Disturbance, land use,
trade and transportation, and changing climate
result in the redistribution of species in novel
environments (Lonsdale 1999), altered abun-
dances (Knapp et al. 2002), and local extirpation
(Sax and Gaines 2003). The examples are numer-
ous and from all parts of the world, yet consider-
able uncertainty regarding the impact of
accelerating changes such as climate change
(Walther et al. 2002, Moritz and Agudo 2013,
Ash et al. 2016), species invasions (Jeschke et al.
2014), and ecological heterogeneity (Stein et al.
2014) on the status and trending patterns of plant
diversity persists.

Disentangling uncertainty to further the under-
standing of changing patterns of plant diversity
will benefit from new approaches to consistent
and comparable ecological information (Keller
et al. 2008, Collins 2016). Traditional funding
cycles do not support long-term observations of
ecological forcing factors and responses across
large spatial extents (Magurran et al. 2010). Cou-
pling the observations of plant diversity with the
measurement of climate, atmosphere, and bio-
geochemistry across the United States would gen-
erate robust understanding of the drivers of plant
diversity (Stohlgren et al. 1999, Peters et al. 2004).
Observation over decades could illuminate pat-
terns of change and facilitate the iterative fore-
casting of future conditions (Clark and Gelfand
2006, Luo et al. 2011a, b). A network with this
capacity faces challenges: (1) The methods must
produce consistent and comparable data, yet be
appropriate to the plant richness and structure
observed in each unique ecological system; (2)
the plant diversity data must be capable of inte-
gration with other data streams produced by the
network as well as other sources of plant

diversity data; and (3) the data must be informa-
tive and made freely available to the ecological
community (Keller et al. 2008).
The National Ecological Observatory Network

(NEON) will collect consistent and comparable
ecological data across the continent for three dec-
ades. The Observatory is designed to enable
understanding and forecasting of the impacts of
climate change, land-use change, and invasive
species on continental-scale ecology by provid-
ing infrastructure and consistent methodologies
to support research and education (Keller et al.
2008). Greater insights into ecological cause and
effect relationships will be facilitated by integrat-
ing ongoing systematic observations of the dri-
vers of change and ecological response at 47 sites
throughout the continental United States, includ-
ing Alaska, Hawaii, and Puerto Rico (Vitousek
1994, Keller et al. 2008, Luo et al. 2011a, b). The
sites encompass wild spaces and cross a variety
of gradients (e.g., land use, species invasion,
nitrogen deposition) to address regional and con-
tinental-scale ecological questions. The NEON
design (Keller et al. 2008, Schimel et al. 2011)
and sampling of terrestrial organisms and soil
(Kao et al. 2012, Thorpe et al. 2016) are described
in greater detail elsewhere.
The NEON objectives provide context for the

observations of plant diversity. The goal of
NEON is to (Schimel et al. 2011):

1. Enable understanding and forecasting of the
impacts of climate change, land-use change,
and invasive species on aspects of continen-
tal-scale ecology such as biodiversity, bio-
geochemistry, infectious diseases, and
ecohydrology.

2. Enable society and the scientific community
to use ecological information and forecasts
to understand and effectively address criti-
cal ecological questions and issues.

3. Provide physical and information infrastruc-
ture to support research, education, and
land management.

Traceable links between these high-level goals
and the data the Observatory network produces
provide a top-down framework for the develop-
ment of this NEON plant diversity science design.
The scope of the NEON mission is defined by the
Grand Challenges in environmental science
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identified by the National Research Council
(2001, 2003). High-level requirements synthesize
the mission, Grand Challenges, and theoretical
basis for measurements into formalized state-
ments that describe the fundamental aspects and
guiding architecture of the NEON strategy (Schi-
mel et al. 2011). The plant diversity design is part
of this requirements-driven hierarchical structure
that provides both guidance and constraints for
the plant diversity-specific criteria, requirements,
design, and resulting data products.

DESIGN CRITERIA

Design criteria that guide the NEON design for
sampling plant diversity include the following: (1)
The observations must enable an understanding of
changing patterns in plant diversity; (2) observa-
tions must be collocated with other NEON data;
(3) the methodsmust be comparable through time,
across NEON sites, and to other network or

coordinated approaches to measuring plant diver-
sity; and (4) the observations across space and time
must be relevant for the life of the Observatory net-
work. These criteria provide context for plant
diversity-specific requirements that are also specif-
ically linked to the high-level NEON requirements
to ensure traceability and consistency across the
continent for 30 yr (Table 1).

Objectives of the plant diversity sampling
A clear articulation of the objectives and scope

of the plant diversity design will ensure an ongo-
ing contribution of requirement-constrained and
informative data to NEON (Cochran 1977,
Lindenmayer and Likens 2009, Gitzen and
Millspaugh 2012):

1. Plant diversity objective: Observations are
designed to clarify the causes and conse-
quences of changes in spatial and temporal
patterns of plant diversity.

Table 1. Traceability between a subset of the high-level National Ecological Observatory Network (NEON)

requirements that guide the cohesive design of the NEON across all science, engineering, education, and cyber-

infrastructure and the plant diversity requirements that further define the context and parameters of the plant

diversity design and resulting data products.

Plant diversity design requirements Select high-level NEON requirements

NEONmeasurements of plant diversity will include
observations of plant genomics, native and invasive plant
species, and functional traits collocated with other NEON
observations of bird, small mammal and fish species, soil,
and atmosphere

NEON’s measurement strategy will include coordinated and
co-located measurements of drivers of environmental change
(physical and chemical climate, land use, and biological
invaders) and biological responses (matter and energy fluxes,
biomass and plant productivity, diversity and genomics of
key organismal groups, infectious diseases and community,
phenological and population indicators)

Observations of plant diversity will be collocated with local
measures of ecosystem properties and within the same and
other dominant landscape characteristics at the scale of the
site

NEON’s spatial observing design will systematically sample
national variability in ecological characteristics, using an a
priori division of the nation to allow extrapolation from
limited intensive sampling of core wildland sites back to the
continental scale

Observations of plant diversity will facilitate spatial
extrapolation that can be linked to remote sensing and
integrated with other sources of plant diversity data across
the continent

NEON will allow extrapolation from the Observatory’s local
sites to the nation. NEON will integrate continental-scale data
with site-based observations to facilitate extrapolation from
the local measurements to the national Observatory

NEON will sample plant diversity with sufficient intensity to
allow detection of changes over the life of the Observatory

NEON infrastructure and observing system signal-to-noise
characteristics will characteristics will be designed to observe
decadal-scale changes against a background of seasonal-to-
interannual variability over a minimum 30-yr lifetime

Minimally, plant diversity will be observed each year to
enable detection of annual rates of change

NEON observing strategies will be designed to support new
and ongoing ecological forecasting programs, including
requirements for state and parameter data, and a timely and
regular data delivery schedule

NEON shall observe plant diversity with repeatable and
standardized methods that will allow comparison within
and across sites and through time

NEONmeasurements will be standardized and calibrated to
allow comparison across sites and over time to enable
understanding of ecological change in time and space.
Calibration and standardization will also allow new sensors/
measurements to be calibrated against the old
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2. Quantified sampling objectives: Nominally,
sampling must determine annual rates asso-
ciated with the change of plant species com-
position, abundance, and richness at the
spatial scale of a NEON site. Measurements
are required to meet an overall uncertainty
of 10–20% of the mean in the annual time-
scale to allow detection and quantification
of most trends over the 30-yr time span of
NEON (Schimel et al. 2011).

3. Data to be collected: Plant tissue from a sub-
set of species found at each site will be col-
lected and made available for genetic
analyses, plant species presence and abun-
dance will be recorded in multi-scale vegeta-
tion plots, and functional traits will be
assessed using a variety of protocols.

4. Population to be sampled: The target will be
the species in all but the most rare cover
types (>5% of the site) within the extent of
NEON sites. A statistically rigorous sample
design provides a framework for sampling
(Barnett et al., in press).

5. Sampling frame: The spatial extent of
NEON sites bounds the area available to
sample plant species (Bonar et al. 2012).
Most sites were defined by the location of
the tower-based sensor measurements and
the associated management or ownership
boundary. NEON sites range in size from
agriculture sites (e.g., Sterling, CO 3.2 km2)
to wildland sites (e.g., Central Plains Experi-
mental Range, 65 km2). In a few cases, the
area available for sampling was too large to
be reasonably sampled, given budget and
travel constraints. In these cases, primarily
large national parks, a subset of the area
was defined as a sampling frame to address
large-scale NEON science questions (Schi-
mel et al. 2011) and other NEON measure-
ments or atmosphere and soil.

6. Intended Analyses: Analyses will largely be
carried out by the members of the ecological
research community according to the specific
questions they choose to ask of Observatory-
produced data. Plot-based sampling accord-
ing to a probability-based design allows the
use of variance estimators that allow infer-
ence to the unsampled population (Cochran
1977, Thompson 2012), allows for a variety of
model-based approaches to inference, and

avoids optimization for a particular organism
or analysis (Bonar et al. 2012).

The plant diversity design is informed by these
requirements and objectives. The resulting data
products, tissues, and vouchers result from speci-
fic design components that reflect the multi-
faceted approach to observing plant diversity:
gene expression and phylogenetic differences,
species-level taxonomic classifications, functional
characteristics, and remote sensing.

Collection of material for assessments of plant
species genetic diversity
National Ecological Observatory Network will

collect and curate foliar material for analysis of
genetic diversity. Plant tissue collections are inte-
gral to next-generation phylogenetic and system-
atics studies (Soltis et al. 2013) including
building morphological–genetic relationships
(Hamrick and Godt 1996), identifying species
(Kress et al. 2005), and providing a foundation
for population genetics and phylogenetic studies
(Drew et al. 2013). NEON will make available
plant tissue from select plant species for analysis
by the ecological community.
Material from a subset of species at each site

will be collected; it is beyond the scope of the
NEON effort to collect material on every species
documented in plant diversity observations. To
integrate NEON measures of vegetation, plant
tissue will be collected from species specifically
targeted for phenological observation (see
Elmendorf et al. 2016 for a description of NEON
plant phenology sampling). Initially, the phenol-
ogy effort will focus on three dominant species
of different growth forms that are found near the
NEON flux tower. After several years, twenty
species representing a diversity of functional
groups and relative abundances in the same area
will be observed. Many of these species will also
be targeted for foliar biogeochemistry (Hinckley
et al. 2016) measurements and subjected to bio-
mass and productivity observations (C. L. Meier
et al., in preparation) across NEON sites. In some
cases, the individual from which plant material
is retrieved for the genetic archive will be the
subject of the phenology, foliar biogeochemistry,
and other vegetation protocols.
The plant tissue collection will balance trade-

offs between intra- and interspecific diversity

 ❖ www.esajournals.org 4 February 2019 ❖ Volume 10(2) ❖ Article e02603

SPECIAL FEATURE: NEON DESIGN BARNETT ET AL.



(Gemeinholzer et al. 2010, Neves and Forrest
2011). Tissue from ten individuals of each the
species selected for phenology sampling will be
collected—from the phenology plot near the
tower, Distributed Base Plots (see Thorpe et al.
2016), and, when necessary, opportunistically
across each site—every five years. Tissue will be
flash-dried on silica in the field and archived at
an external facility at �20°C (Neubig et al. 2014).
A minimum of one voucher for each population,
from which tissue will also be collected and
appropriately labeled, will be collected and
archived. Under the assumption that rates of
change will not be sufficient to justify the cost of
annual collections, tissue will be collected every
five years and be made available through an
archive facility for principle investigator-driven
research.

Plot-based sampling of plant species diversity and
abundance

Observations of plant species will be made
within multi-scale plots at NEON sites. Docu-
menting the composition and abundance of native
and non-native plant species satisfies the require-
ments that “NEON’s measurement strategy will
include. . .biological invaders. . .and diversity of
key organismal groups” and “NEON measure-
ments of plant diversity will include. . .native and
invasive plant species.” Critical components of
the design include the following:

1. the multi-scale plot that facilitates repeat-
able observations at a variety of scales,

2. the spatial and temporal sample design to
facilitate detection of trends within and
across NEON sites, and

3. the data products and possible analyses.

Plot design.—NEON will sample plant species
with a multi-scale plot design that borrows from
techniques pioneered by Whittaker (Shmida
1984), adopts modifications of his initial approach
(Stohlgren et al. 1995), and shares scales of mea-
surement as well as subplot and plot shapes with
a standard proposed by Dengler (2009), but most
closely emulates the approach developed by the
Carolina Vegetation Survey (Peet et al. 1998).
Plant taxonomic composition will be recorded in
20 9 20 m square plots comprised of four
10 9 10 m subplots containing nested 10- and

1-m2 subplots (Fig. 1). NEON field staff stationed
at regional offices will be trained and calibrated
annually at both local and Observatory-wide
trainings and by exchange across the Observatory.
These botanists and plant technicians will make
the following observations:

1. The identity of each species according to
naming conventions maintained by the U.S.
Department of Agriculture, Natural
Resources Conservation Service PLANTS
Database (USDA, NRCS 2016) will be
recorded in each subplot—eight 1 m2, eight
10 m2, and four 100 m2. Because the NRCS
database is dynamic, the date data were
accessed will be included on the NEON data
portal.

2. Estimates of taxon-specific abundance will
be made with estimates of cover within the
1-m2 subplots.

3. A detailed description of the collection,
including all variables measured, the cover-
abundance estimates, and treatment of
growth forms, is available in the NEON pro-
tocol for sampling plant diversity (Barnett
2018).

Little exists in the way of a standardized proto-
col for sampling plant species diversity that is
suitable for a continental-scale Observatory. Bio-
diversity Observatories in Africa developed a
multi-scale plot that is very similar to the Whit-
taker plot (Shmida 1984) for sampling and scal-
ing across diverse land cover (J€urgens et al.
2012). However, GEO BON (Scholes et al. 2017),
for example, stresses the importance of docu-
menting key variables, but does not go beyond
discussion of a diversity of methods for in situ
collection due to site-specific requirements
(Pereira et al. 2017). A protocol typically reflects
specific questions or objectives, and the various
options have trade-offs (Stohlgren 2007). How-
ever, NEON plant diversity sampling must suit
the countless questions directly related to NEON
high-level questions that consumers of the data
will ask. The requirements framework provides
direction (Table 1). NEON requirements specify
“. . .the co-location of data, detection of trends,
and comparability through time and space,” and
resulting plant diversity-specific requirements
state that sampling be “. . .implemented in a
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design that facilitates the intersection of plant
diversity data and other ecological responses
with factors that drive ecological pattern. . .” A
plot-based method is repeatable, allows colloca-
tion of protocols, and is capable of describing
species–environment relationships (Stohlgren
2007).

Plot-based efforts have demonstrated the
capacity to compare dynamic species–environ-
ment relationships across time and space. In an
effort to elucidate species–environment relation-
ships, the large, multi-scale plot design borrows
from a method Whittaker developed for gradient
analysis and ordination techniques (Whittaker
1960). Revisiting some of Whittaker’s plots,
Damschen et al. (2010) documented changes in

species abundance and richness. With many
plots—a modified version of Whittaker’s plot—
across multiple U.S. states, Stohlgren et al. (1998,
1999, 2003) contributed to a general understand-
ing of environmental plant species controls of
invasion.
The method must be precise, accurate, and

efficient to contribute to an understanding of
changes in plant species composition through
time (Stohlgren 2007). These attributes can be
antithetical. Consideration of the advantages
and disadvantages of available designs in the
context of NEON requirements resulted in the
selection of the square, 400-m2 plot design.
Considerations and design trade-offs included
the following:

Fig. 1. A schematic of the multi-scale plot for sampling plant species diversity and abundance (Peet et al.

1998). The plot is nested within a larger plot designed to accommodate other NEON protocols such as soils, bee-

tles, and plant biomass and productivity; the corner points and associated subplot identifiers are numbered to

correspond to this larger plot (Thorpe et al. 2016).
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1. Plot size.—Larger plots detect a greater num-
ber of species at local, plot scales. Highly lin-
ear transects (Parker 1951) and point-
intercept methods (Barbour et al. 1999) tend
to miss locally rare and highly aggregated
species because they are vulnerable to spa-
tial autocorrelation, are biased toward
broad-leaved species, and are only suitable
for sampling understory or grass/herba-
ceous species (Stohlgren 2007). Small plots
(Daubenmire 1959, Whittaker 1960) increase
detection rates but tend to capture fewer
species than large plots due to the small
total area sampled (Gilliam 2007). However,
accurate and repeatable estimates of cover
can be difficult in large plots and recording
all species across hundreds of square meters
takes considerably more time than smaller
plots (Stohlgren 2007). At 400 m2, the
NEON plot is large relative to transect and
small-plot methods (Parker 1951, Dauben-
mire 1959), but smaller than both the 1000-
m2 plots commonly used to intensively doc-
ument local species composition (Whittaker
1960, Stohlgren et al. 1995, Peet et al. 1998)
and plots designed for mapping and track-
ing the location and identity of tree species
(Condit 1996). The NEON plot represents a
compromise designed to capture species
across a diversity of systems with replica-
tion within each site.

2. Multi-scale sampling.—A multi-scale plot
provides a data-rich product, but each plot
is time-consuming. Observing and record-
ing plant diversity at numerous subplots
across multiple scales within a single plot
requires more time than single-scale obser-
vations. The resources associated with this
sampling time could be spent on a larger
sample size or other components of NEON.
However, the capacity of the design to meet
NEON requirements justifies the expense.
The multi-scale approach allows for a con-
sistent, baseline plot size within and across
sites that is well suited for describing the
composition and cover-abundance (direct
estimates of cover, e.g., Walter et al. 2015) of
herbaceous species at small 1-m2 scales and
capturing diversity of large-stature, well-
spaced tree species at 100- and 400-m2 scales
(Peet et al. 1998, Gilliam 2007), satisfying

the NEON requirement that measurements
be “standardized and calibrated to allow
comparison across sites and over time to
enable understanding of ecological change
in time and space.” The multi-scale plot will
enable detection of these spatio-temporal
changes, addressing the requirement that
NEON “. . .establish the link between envi-
ronmental cause and effect” by allowing
description of patterns of within-plot hetero-
geneity, species overlap, and the detection of
trends at a variety of spatial scales where
different forcing factors might operate.
Finally, collecting data at a variety of scales
facilitates comparison to other networks
recording plant diversity data. Scales of
observation coincide in some cases; the 1-m2

plots observed by the Nutrient Network
(Adler et al. 2011, Dengler et al. 2011) are
directly comparable to the NEON 1-m2 sub-
plots. In cases where scales of observation
do not coincide, the multi-scale NEON data
enable the development of plot-specific
species–area curves—a description of the
relationship between area and number of
species (Rosenzweig 1995)—that allow com-
parison to other methods (Stohlgren 2007).
When other observations efforts also include
multi-scale observations such as the U.S.
Forest Service Inventory and Analysis Pro-
gram (Stolte 1997, Gray et al. 2012) and the
National Park Service Inventory and Moni-
toring Program (Fancy and Bennetts 2012),
plot-scale species-accumulation curves offer
an additional metric for the comparison of
plant diversity (Fridley et al. 2005, Stohlgren
2007). Comparability of data is essential to
continental-scale ecology and addresses the
requirement that “NEON will allow extrap-
olation from the Observatory’s local sites to
the nation. . .”

3. Plot shape.—Linear or rectangular methods
for observing plant diversity tend to observe
more species than circular or square plots of
similar size. The larger perimeter-to-area
ratio of rectangles is likely to cross a larger
environmental gradient and encounter dif-
ferent species that exploit that habitat diver-
sity. Whittaker’s 20 9 50 m multi-scale plot
(Shmida 1984) contained nested subplots
that changed shape with scale, confounding
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the perimeter-to-area ratio across scales and
resulting species–area curves (Fig. 2). The
Carolina Vegetation Project plot (Peet et al.
1998) partially resolved this issue by nesting
square plots within square 100-m2 modules,
maintaining a square until the ten modules
(2 9 5) result in the 1000-m2 rectangular
plot. The NEON plot, composed of four Car-
olina Vegetation Project modules (2 9 2), is
square. It takes less time to sample than lar-
ger rectangles (Barnett and Stohlgren 2003,

Stohlgren 2007), and integrates with other
NEON protocols and data streams. For
example, the square plot and nested sub-
plots will be more comparable to the square
pixels of NEON’s high-resolution remote
sensing data. Pixels and plots may not align,
but the multi-scale diversity, vegetation
structure, and foliar chemistry data collected
will be better integrated when plots and pix-
els are the same shape (Carlson et al. 2007),
satisfying the requirement that “NEON’s
measurement strategy will include coordi-
nated and co-located measurements of dri-
vers of environmental change and biological
responses. . .”

Spatial sampling design.—The sample design—
the mechanism for distributing plots across sites
—addresses multiple design requirements and
constraints. It must be sufficiently general to
direct a diversity of organism and soil observa-
tions within sites from Puerto Rico to Alaska.
The resulting data must support a diversity of
questions and analytical approaches and must
facilitate integration of data across other NEON
collections of biogeochemistry, atmosphere, and
ecohydrology (Schimel et al. 2011) to address the
high-level requirement of enabling the link
between ecological cause and effect.
The unbiased sample associated with random-

ization (Cochran 1977, Thompson 2012) is the
foundation of the NEON sample design (Barnett
et al., in press). It eliminates the potential for bias
and allows design-based inference of population
parameters from points to the unsampled land-
scape with design-based estimators (Sarndal
1978, Stehman 2000). Model-based or gradient
designs might better optimize for other
approaches to inference, but data collected
according to a random design can be assimilated
into numerous model-based approaches (Cressie
et al. 2009).
Plant diversity observations will be made at

three of the 20–30 plots randomly placed near
(250–1400 m radius) the NEON tower (Tower
Base Plots; Thorpe et al. 2016). These measures
allow within-plot collocation with observations
of vegetation biomass, productivity, structure,
and soil (Hinckley et al. 2016) and nearby obser-
vations of plant phenology (Elmendorf et al.
2016). The three plots also quantify the

Fig. 2. Plot-specific species–area curves in log–log

space (Rosenzweig 1995) provide a means to compare

plot-specific species richness and heterogeneity.

 ❖ www.esajournals.org 8 February 2019 ❖ Volume 10(2) ❖ Article e02603

SPECIAL FEATURE: NEON DESIGN BARNETT ET AL.



variability of plant diversity in the landscape
reflected in sensor-based measures of soil and
atmosphere to allow direct and rigorous quantifi-
cation of how plant diversity might impact—or
be impacted by—those physical and chemical
dynamics (Kao et al. 2012, Thorpe et al. 2016).
These plots satisfy the requirement that “NEON’s
measurement strategy will include coordinated
and co-located measurements of drivers of envi-
ronmental change. . .”

The majority of the plant species diversity
sampling effort will focus on describing variation
across the larger areas (Distributed Base Plots
across sites ranging 5–214 km2; Thorpe et al.
2016). The capacity of observations to describe
trends depends on space–time variation in the
response as well as logistical and financial con-
straints that govern sample sizes. Previous stud-
ies (Stohlgren 2007) and early input from the
ecological community resulted in initial baseline
funding for a sample size of 30–40 plots that will
be distributed across each site. Additional power
analysis (Thompson 2012) described sample sizes
necessary for differentiating magnitude of trends
between two sites as an initial case study. The
test prescribed a sample size (about 20 plots/site
depending on variability in space and time)
robust to a variety of questions that might be
asked of the data (see Barnett et al., in press). The
obligation to insure the data provide tangible
contributions to elucidating the drivers of space–
time trends (Legg and Nagy 2006, Keller et al.
2008, Schimel et al. 2011) and to address the
requirement that “NEON infrastructure and
observing system signal-to-noise characteristics
will be designed to observe decadal-scale
changes against a background of seasonal-to-
interannual variability over a minimum 30-yr
lifetime” resulted in several additional compo-
nents of the sample design.

Stratification—the division of the landscape
into non-overlapping subareas from which sam-
ple locations are identified (Cochran 1977)—in-
creases sampling efficiency (Cochran 1977) and
provides a framework for describing the variabil-
ity of landscape characteristics targeted by the
NEON design. The National Land Cover Data-
base (Fry et al. 2011) provides a continuous land
cover classification across the United States
including Puerto Rico, Alaska, and Hawaii that
can be consistently applied across sites. Sampling

within site strata as described by these cover
classes promotes the description of local
landscape characteristics essential to the conti-
nental-scale Observatory. NEON domains—a
stratification of the continent—were derived
from eco-climatic factors (Hargrove and Hoff-
man 2004) that contribute to large-scale patterns
of vegetation. Within each domain, NEON sites
are selected to represent the dominant vegetation
type in the domain (Schimel et al. 2011). At each
NEON site, the tower-based sensors were posi-
tioned to measure these dominant vegetation
types. Placing plant diversity plots in the airshed
of tower-based sensors will quantify relation-
ships between state factors—variables that con-
trol characteristics of soil and ecosystems
(Chapin et al. 2012, Clark et al. 2012, Sala et al.
2012)—and ecological responses. Sampling these
same dominant cover classes across the scale of
the site will help quantify the variation in plant
diversity across larger areas and facilitate extrap-
olation to larger scales (Urquhart et al. 1998), sat-
isfying the requirement that “NEON shall
address ecological processes at the continental
scale and the integration of local behavior to the
continent. . .” Initial sampling will exclude the
rarest NLCD cover types (<5%) within each
NEON site. Focusing available effort extends the
guiding principle that the data must be meaning-
ful in the context of NEON objectives. However,
by excluding rare cover types, species and trends
associated with a component of native and non-
native flora will go undetected (Stohlgren et al.
1999). A continental-scale observatory targeting
complete censuses of rare species would require
many more plots and sites.
Comparability across strata and sites is crucial

to enabling the function of the continental Obser-
vatory: describing how variability in forcing fac-
tors at sites across the United States drives
different patterns in plant diversity or distribu-
tions of specific species within each site. How-
ever, comparison of diversity data is challenged
by site size and environmental heterogeneity
(Rosenzweig 1995, Gotelli et al. 2009), level of
expertise, and effort (Gotelli and Colwell 2001,
Chao et al. 2009). The design controls for these
sources of variability with a diversity-based
approach to sample intensity, attempting to
sample to the inflection point of sample species-
accumulation curves in each stratum targeted for
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sampling (Fig. 3). Because the number of plots
required to reach this inflection point is not
known a priori, it is initially assumed that area
can serve as a proxy for the heterogeneity
(Kotliar and Wiens 1990, O’Neill et al. 1991, Pick-
ett and Cadenasso 1995) that typically promotes
diversity (Collins 1992, Harrison et al. 2003).
Within each site, placing more plots in vegetation
types with a greater footprint on the landscape is

a means to that end and avoids, for example, a
distribution of fifteen plots in 10 km2 of decidu-
ous forest and the same number of plots in
100 km2 of evergreen forest. The design recog-
nizes that disproportionate levels of plant diver-
sity can be found in relatively rare vegetation
types (Myers 1990, Debinski et al. 1999, Stohlg-
ren et al. 1999) by allocating samples proportion-
ate to the square root of the area of each stratum
targeted for sampling. This results in a greater
absolute number of plots in large cover types,
but a larger number of plots in smaller cover
types than would have resulted from an alloca-
tion directly proportional to the area of cover
types. While this design will not be valid for all
sites and vegetation cover types, the approach
increases the likelihood of sampling beyond the
steepest part of the species-accumulation curve
while protecting against reaching the plateau
(i.e., oversampling). The diversity-based stan-
dard satisfies the requirements that “NEONmea-
surements will be standardized and calibrated to
allow comparison across sites and over time,” to
ultimately ensure that NEON “. . .observe the
causes and consequences of environmental
change in order to establish the link between
ecological cause and effect.”
Temporal sampling design.—The design must

ensure that observations detect patterns of plant
species diversity through time. The frequency
and timing of sampling will be guided by the
requirement to enable the documentation of
annual rates of change that coincide with sum-
maries of climate data and the requirement of
documenting the dynamics of dominant cover
types in the vicinity of the tower and across the
site. Implementing the protocol at each plot at
least one time each year will enable the quantifi-
cation of annual rates of change. These sampling
bouts will occur during a one- to two-month
period when the majority of species flower or
possess other parts conducive to identification.
This period will generally be targeted by annual
peaks in greenness as measured by MODIS,
input from local ecologists, and by the flowering
of those species observed as part of the NEON
phenology observations. Ephemeral and cryptic
species that do not flower or are not present dur-
ing this sampling might be missed (Magurran
et al. 2010). The multiple bouts required to detect
these species are prohibitively expensive and not

Fig. 3. A biodiversity-based approach to standardiz-

ing effort may facilitate comparability of trends and

patterns across sites (A) and across National Land

Cover Database cover types within a site (B), as shown

with data from NEON sampling efforts at the Tal-

ladega National Forest in Alabama. Species richness at

sites and within cover types might be best compared

at the inflection point on species-accumulation curves

that may have been reached at the Jornada Experimen-

tal Range and the Central Plains Experimental Range

with extant sample sizes, but remains elusive at the

Talladega National Forest.
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warranted given the requirement to track domi-
nant cover types and species. Some NEON sites
experience multiple distinct phenological peaks
populated by different species. For example, the
Sonoran Desert (represented by the NEON site at
the Santa Rita Experimental Range) experiences
a bimodal precipitation regime with rain in late
winter and a monsoonal moisture pulse late in
the summer. Plant species particularly adapted
to the intersection of temperature and timing and
amount of precipitation flower and can be identi-
fied during each event (Ogle and Reynolds 2004).
Such sites may require more than one sampling
event per year to adequately characterize annual
plant species composition and abundance.

Data and opportunities for analysis.—The data
from the plot-based sampling will result in low-
level NEON data products that will be available
for download from the NEON data portal:

1. Quality-controlled data on the presence and
cover of species at 1-m2 subplots.

2. The presence of species at 10- and 100-m2

subplots.
3. The complete species list in each 400-m2 plot

for each plot.
4. The nativity of species to the United States

according to the U.S. Department of Agri-
culture PLANTS Database.

5. Additional cover of other features (e.g.,
rock, litter, wood, water) in each 1-m2

subplot.

Analysis will largely be carried out by the eco-
logical community. A goal is to collect data
according to a design robust to a variety of esti-
mation and modeling techniques (Sarndal 1978,
Cressie et al. 2009). Design-based inference
requires data collected according to a probabilis-
tic design (Bonar et al. 2012). Various modeling
approaches might benefit from the collection of
data according to an alternative stratification or
gradient or a random sample, but most can also
ingest data based on principles of randomiza-
tion. The design-based estimators associated
with the NEON design were developed but are
discussed elsewhere (Barnett et al., in press).

Diversity of plant functional traits
Because the contribution to ecological pro-

cesses can be redundant across plant species,

plant traits may describe ecosystem function bet-
ter than plant species identity and abundance
(Loreau 2010). Functional traits—specific charac-
teristics such as leaf size, seed size, and canopy
height—drive processes such as net ecosystem
exchange (Diaz and Cabido 1997, McGill et al.
2006). Further abstraction is obtained by group-
ing species with similar effects on ecosystem
function—functional types or functional groups
—such as evergreen shrubs and C3 and C4

grasses (Diaz and Cabido 1997, 2001, Hooper
et al. 2005). The functional concept provides a
framework for understanding the causes and
consequences of changes in plant diversity by
focusing on the mechanistic links between plants
and ecosystem processes and environmental
change (Diaz and Cabido 1997, Ustin and
Gamon 2010, Chapin et al. 2012, Hooper et al.
2012).
This component of plant diversity is not a

primary focus of NEON’s collection efforts,
but several protocols result in data products
or subproducts that can be found in plant
functional trait libraries (Appendix S1, Cor-
nelissen et al. 2003, Kattge et al. 2011). NEON
will select a mix of dominant and rare species
for phenology observations (Elmendorf et al.
2016) and foliar biogeochemistry (Hinckley
et al. 2016), which will also be a subset of
those species documented in the plant bio-
mass, structure, and diversity protocols. The
diversity of protocols collocated at sites,
focused on specific species, and often mea-
sured from the same individuals provides a
cohesive set of observations that could better
describe how and why vegetation and func-
tional diversity are changing in response to a
variety of forcing factors.
The frequency of sampling will vary by trait,

but the complete suite of traits targeted for obser-
vation will be collected within the first five years
of sampling at each site (Appendix S1). Phenol-
ogy will be measured many times throughout
the growing season. Traits associated plant bio-
mass and structure will be measured annually,
and foliar biogeochemistry will be sampled
every five years. Future efforts could collate these
data and supplemental data into a functional
trait library capable of furthering the NEON con-
tribution to understanding the cause and conse-
quences of ecological change.
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Sample design for airborne observations of plant
species diversity and abundance

The estimation of patterns of plant diversity
from remote sensing information across large
spatial extents is an active area of research (Asner
and Youngsteadt 2012, Asner et al. 2012, Schimel
et al. 2013). Approaches involve the direct detec-
tion of species by isolating unique hyperspectral
signatures (Asner and Martin 2009, Kokaly et al.
2009), calibrating sensor returns and algorithm-
derived estimates of ecosystem properties (foliar
nitrogen, leaf area index, lignin content) with
plot-based measures of diversity (Carlson et al.
2007), and relying on the principal components
of the hyperspectral imagery (Rocchini et al.
2011, Schimel et al. 2013) as a proxy for plant
species diversity. While NEON will generally
rely on the ecological community to derive plant
diversity estimates from remote sensing data,
several airborne and ground-based NEON data
products will facilitate these efforts:

1. The NEON remote sensing platform will fly
at each NEON site annually, producing
LiDAR and hyperspectral products at reso-
lutions <3 m (Kampe et al. 2010). These
data, particularly when combined with
ground-based observations, are useful for
mapping and extrapolating patterns of func-
tional traits, functional groups, and multiple
metrics of plant diversity.

2. Dominant species will be mapped in plots
near the tower and across NEON sites to
track changes in biomass and calibrate the
airborne observations. Species-specific end-
members of the hyperspectral data can also
be identified by intersecting the spatially
explicit, plot-based stem maps with high-
resolution imagery (Asner and Youngsteadt
2012, Asner et al. 2012). In the instance that
the ratio of individual plant size to pixel
grain does not result in a pure pixel, unmix-
ing techniques based on species-specific end-
member bundles can be used to estimate
species cover fractions on a per-pixel basis
(Feret et al. 2008, Asner and Martin 2009).

3. Species richness, derived from either the
mapped distributions of dominant species
and/or the plot-based plant diversity obser-
vations, can be spatially linked to the diver-
sity of principal components of the

hyperspectral imagery to calibrate estimates
of diversity that can be extrapolated to the
airborne footprint (Rocchini et al. 2011, Schi-
mel et al. 2013).

Linking ground and airborne data facilitates
the scaling of plant diversity data. In the absence
of the airborne data, site-scale plant diversity
metrics must be based on diversity indices (Hill
1973), model-based approaches (Kreft and Jetz
2007), or design-based estimators (Thompson
2012). Calibrating and then directly mapping
patterns of species distributions and diversity
with airborne imagery leverage what is other-
wise a ground-based sample from multiple plots
to produce a census of diversity at NEON sites.
Developed across time, these spatial representa-
tions have the potential to describe otherwise
undetected and divergent patterns, rates of spe-
cies turnover, and invasive plants species. The
airborne data can also facilitate scaling the spa-
tial extent of patterns of plant diversity as well.
The plot data and airborne imagery might be
linked with other fixed-wing and satellite remote
sensing platforms to scale diversity data to even
larger areas, furthering the NEON effort to
understand and forecast ecological change at
large scales.

Voucher specimens
NEON will create a physical record of species

recorded in plots and individuals sampled for
the genetic archive. Herbarium specimens will be
stored at NEON offices for training and valida-
tion purposes and sent to museums or other
facilities as part of the NEON Bioarchive pro-
gram (Kao et al. 2012, Thorpe et al. 2016). The
archive provides a physical record of NEON tax-
onomic definitions and will support a variety of
alternative research questions over the life of the
Observatory (Vellend et al. 2011, Kao et al.
2012).

Logistics and adaptability
There is little precedent for an integrated eco-

logical observatory at the scale of the United
States over decades. Implementation of the
design will be an iterative procedure. The first
several years of data will test the design by con-
fronting the assumptions, logic, and logistics
used in the design and development phase with
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real data and feedback from the user community.
For example, the time required to sample and
travel to plots will inform the accuracy of bud-
gets to complete these tasks over the life of the
Observatory. Similarly, species richness and com-
position data from plot sampling will describe
spatial and temporal patterns of variability that
can be used to re-evaluate sample size, timing,
and frequency. Spatial patterns of variability will
also be informed by the airborne observations
that will also provide a novel, quantitative per-
spective on how well site-specific heterogeneity
is sampled by the design. Optimization of the
design in the first years of the Observatory will
establish a system for the collection of local plant
diversity data capable of informing understand-
ing at the scale of the continent.

FUTURE DIRECTIONS

The plant diversity data that NEON will pro-
vide will allow the ecological community to ask
numerous questions across spatial and temporal
scales and disciplines. The consistent collection
of plant diversity data linked with physical and
chemical dynamics of atmosphere, biogeochem-
istry, ecohydrology, and various organisms, pop-
ulations, and communities will result in new and
robust patterns and through time will facilitate
the evaluation and development theory. Some
examples of the questions that might be asked of
the data include the following:

1. How do patterns and rates of plant species
invasion respond to changing climate and
land use? Repeated, plot-based measure-
ment of plant species over decades at sites
exposed to divergent patterns of land use
and climate trajectories will provide the
opportunity to tease apart the relative
importance and interactions of changing cli-
mate and land use on invasion and estab-
lishment of non-native plant species.

2. How does plant diversity/species richness
respond to short- and long-term climatic
variability within and across spatial and
ecological cover-type strata?

3. To what extent can aerial observations accu-
rately measure (and predict) attributes of
terrestrial ecosystems such as species rich-
ness or dominant cover type?

4. Are there detectable trends in diversity over
time? Is variation across adjacent regions
synchronized, that is, what are the spatio-
temporal dynamics?

5. How synchronous are temporal variations
among spatial scales? Do different scales
show more or less noise or trend?

6. Are variations in diversity among years
responsive to variations in summary climate
characteristics (e.g., mean annual tempera-
ture, maximum temperature, mean annual
precipitation, drought intensity)?

7. How stable is community productivity over
time? Is there a link to fluctuations in
diversity?

8. Can trends in species composition over time
be linked to diversity and productivity
dynamics?

9. Will warming increase plant diversity where
plant growth is temperature limited, or will
warming and reduced moisture availability
result in decreased plant diversity?

Iteration of the design
Collection of data provides the opportunity to

test and evaluate the design. The comparability
of species across sites based on the sample alloca-
tion, and the capacity of the data resulting to
detect spatio-temporal trends will be evaluated
during the first several years of collection. Addi-
tionally, feedback from the consumers of plant
tissue collections and functional trait data and
from those integrating data with airborne and
other NEON data streams will be considered as
the NEON design is optimized. This iteration
must occur with input from members of the eco-
logical community: The data must be relevant to
specific questions and analytical approaches and
it must facilitate insights the next generation of
ecologists will produce.
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