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ABSTRACT

Stomata are structures on the surfaces of most land plants that are

required for gas exchange between plants and their environment. In

Arabidopsis thaliana, stomata comprise two kidney bean-shaped

epidermal guard cells that flank a central pore overlying a cavity in the

mesophyll. These guard cells can adjust their shape to occlude or

facilitate access to this pore, and in so doing regulate the release of

water vapor and oxygen from the plant, in exchange for the intake of

carbon dioxide from the atmosphere. Stomatal guard cells are the end

product of a specialized lineagewhose cell divisions and fate transitions

ensure both the production and pattern of cells in aerial epidermal

tissues. The stomatal lineage is dynamic and flexible, altering stomatal

production in response to environmental change. As such, the stomatal

lineage is an excellent system to study how flexible developmental

transitionsare regulated in plants. In this Cell Scienceat aGlance article

and accompanying poster, we will summarize current knowledge of the

divisions and fate decisions during stomatal development, discussing

the role of transcriptional regulators, cell–cell signaling and polarity

proteins. We will highlight recent work that links the core regulators to

systemic or environmental information and provide an evolutionary

perspective on stomata lineage regulators in plants.

KEYWORDS: Arabidopsis, Asymmetric cell division, SPEECHLESS,

Cell–cell signaling, Stem cell, Stomata

Introduction

Stomata are pores in the plant surface that are flanked by two

epidermal guard cells. They are found in the epidermal aerial portions

of nearly all land plants and are critical regulators of gas and water

vapor exchange between plants and their environments. Stomatal

aperture is adjusted through a turgor-driven mechanism whereby ion

channels in guard cells are activated to change osmotic potential – to

open, guard cells import cations and the concomitant influx of water

causes swelling (for review, see Jezek and Blatt, 2017). Stomatal

aperture is responsive to many environmental stimuli including light,
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temperature, carbon dioxide levels and water availability (reviewed in

Murata et al., 2015) (see poster). Stomatal development, too, is

modulated by the environment, and whereas this phenomenon has

been documented inmany species and in the fossil record (McElwain

and Steinthorsdottir, 2017), mechanistic details about stomatal

development are best understood in the plant model Arabidopsis

thaliana. Decades of work have thoroughly characterized the series

of divisions and transitions in cellular identity that comprise the

Arabidopsis stomatal lineage (see poster). Transitions between each

intermediate stomatal lineage cell identity are mediated by closely-

related master regulator basic helix-loop-helix (bHLH) class Ia

transcription factors SPEECHLESS (SPCH),MUTE and FAMA and

their heterodimerization partners, the class III bHLH transcription

factors INDUCER OF CBF EXPRESSION 1 (ICE1, also known as

SCRM) and/or SCREAM 2 (SCRM2) (Kanaoka et al., 2008;

MacAlister et al., 2007; Ohashi-Ito et al., 2006; Pillitteri et al., 2007).

Here, we discuss the many factors that influence these core

transcriptional regulators and describe recent advances in

approaches to dissect these pathways (see also Box 1). We focus

on the influence of cell–cell signaling, polarity and environmental

and hormonal signals on stomatal divisions and cell fate in

Arabidopsis, and highlight the evolution of stomata and their

regulation throughout the plant kingdom.

Divisions and fate transitions of the stomatal lineage

The stomatal lineage initiates in leaf primordia. Here, many young

epidermal cells express SPCHRNA, and a subset of these cells enter

the stomatal lineage upon stable expression of SPCH protein

(MacAlister et al., 2007). These stomatal lineage initial cells are

likely chosen stochastically in a patterning mechanism that is

dependent on feedback interactions among SPCH and ICE1 and/or

SCRM2 (Horst et al., 2015). The remaining young epidermal cells

differentiate into pavement cells or trichomes. High SPCH levels

enable cells to undergo an asymmetric cell division (ACD),

producing daughter cells of unequal cell size and fate. The larger

daughter cell is the stomatal lineage ground cell (SLGC) (Shpak

et al., 2005), whereas the smaller cell is a meristemoid (Nadeau and

Sack, 2002). The latter can continue to express SPCH, giving it the

capacity to divide asymmetrically again several more times in a

process of amplifying divisions (Robinson et al., 2011) (see poster).

SLGCs either differentiate into pavement cells or reinitiate

SPCH expression and undergo spacing divisions by dividing

asymmetrically again. These ACDs produce a loosely patterned

tissue with dispersed adult stem cells that drive growth throughout

the epidermis. When a meristemoid ceases ACDs, it will stop

expressing SPCH protein, start expressing MUTE, and become a

round guard mother cell (GMC) (Pillitteri et al., 2007). GMCs then

initiate FAMA expression, cease MUTE expression, and

symmetrically divide exactly once to produce a pair of guard cells

(GCs), which remodel a central pore and establish kidney-shaped

morphology (Han et al., 2018; Ohashi-Ito et al., 2006).

Stomata lineage regulators: cell–cell signaling

Stomatal patterning is critical for efficient regulation of gas

exchange (Dow et al., 2014). Stomata are always separated from

one another by one non-GC, a phenomenon known as the one-cell-

spacing rule (Geisler et al., 2000). The placement and number of

stomata in the epidermis are partly determined by the number of

entry, amplifying and spacing divisions that occur; cell–cell

signaling is largely responsible for tuning this process (see

poster). Cell–cell communication among stomatal lineage cells is

mediated by secreted peptides in the EPIDERMAL PATTERNING

FACTOR (EPF) family. Receptors for these peptides include the

membrane-bound receptor-like kinases (RLKs) in the ERECTA

family (ERf), along with their epidermal-specific co-regulator and

heterodimerization partner TOOMANYMOUTHS (TMM) (Shpak

et al., 2004, 2005) and general co-receptors of the SOMATIC

EMBRYOGENESIS RECEPTOR KINASE (SERK) family (Meng

et al., 2015). EPF2, secreted by meristemoid mother cells (MMCs)

and meristemoids, is detected by ERECTA–TMM heterodimeric

complexes in protodermal cells (Hunt and Gray, 2009; Lee et al.,

2012). EPF1 is detected by ERECTA-LIKE 1 (ERL1)–TMM

heterodimeric complexes in SLGCs (Lee et al., 2012). Recent work

indicates that EPF1 is also perceived by GMCs, which is critical for

timing stomatal differentiation (Qi et al., 2017). Signaling is further

modulated by structural features such as plasma membrane–

endoplasmic reticulum contact sites, which regulate ERL2 levels in

order to fine-tune EPF perception, possibly by changing the relative

amounts of ERECTA family homodimers and heterodimers (Ho et al.,

2016). TMM also binds another secreted peptide, STOMAGEN

(also known as EPFL9), which is a positive regulator of stomatal

development and is expressed in the inner tissue mesophyll, as

opposed to stomata-bearing epidermal layers (Sugano et al., 2010).

Several intracellular signaling cascades affect stomatal

development, primarily through the phosphorylation and

subsequent downregulation of SPCH. Genetic data indicate that a

mitogen-activated protein kinase (MAPK) cascade –comprising the

MAPK-kinase kinase YODA (YDA), mitogen-activated protein

kinase kinases 4 and 5 (MKK4, MKK5), and mitogen-activated

Box 1. Emerging approaches to study the stomatal

lineage
The accessibility of the stomatal lineage hasmade it an attractive model for

monitoring the emergence of cell identities and patterns in vivo. Time-lapse

imaging of cell morphology, division behavior and cell identity (through

transcriptional and translational reporter expression) in wild-type,

transgenic and mutant plants are now being combined with quantitative

data analysis and modeling to get a system-wide view of development

(Bringmann and Bergmann, 2017; Mansfield et al., 2018; Robinson et al.,

2011).

In parallel, advances in DNA sequencing technology have enabled

unprecedented high-throughput genomic profiling in the stomatal lineage.

Datasets generated using these techniques include profiles of plants

enrichedor depleted in the stomatal lineage (Bergmannet al., 2004;Pillitteri

et al., 2011), genome-wide maps of SPCH binding sites (Lau et al., 2014),

identification of MUTE targets by RNA-seq followingMUTE induction (Han

et al., 2018), and cell type-specific transcriptional profiles (Adrian et al.,

2015). From these large-scale data sets, new genes and new regulatory

modules have emerged. For instance, following up on these data (Adrian

et al., 2015) led to identification of the stomatal lineage-specific CYCLIN

D7;1 (CYCD7;1),which ispartof a system that ensuresGMCsdivideonce–

and only once – to produce a pair of GCs (Weimer et al., 2018; and further

elaborated in Han et al., 2018). A role for ICE1 in anther dehydration

regulation was revealed by over-representation of GC-expressed genes

among ICE1-regulatedgenes inanthers (Wei et al., 2018).GCcellwalls are

unique among Arabidopsis cells with regards to the composition and

modificationof cellwallmatrixpolymers; thestomatal lineage transcriptional

map was noted as a valuable resource for identification of GC-specific cell

wall-modifyingenzymes (Ruietal., 2018).Regulatorysystems feedingback

into the core stomatal bHLHswere also revealed. For example, thePOLAR

family of potential BR signaling scaffolds emerged first from stomatal

lineage profiles (Pillitteri et al., 2011; Houbaert et al. 2018) and genome-

wide maps of SPCH targets (Lau et al., 2014) inspired research that

established roles for cytokinin signaling in tuning stomatal lineage divisions

(Vatén et al., 2018) and new connections between temperature and

regulation of stomatal development (Lau et al., 2018).
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protein kinases 3 and 6 (MPK3, MPK6) – acts downstream of the

EPF–ERECTA signaling (Gudesblat et al., 2012; Lampard et al.,

2008; Wang et al., 2007). Simultaneously, kinases of the shaggy-

like kinase family such as BRASSINOSTEROID-INSENSITIVE 2

(BIN2, also known as ASK7), which are connected to

brassinosteroid (BR) signaling, also target and downregulate

SPCH protein (Gudesblat et al., 2012).

How developmental specificity is mediated by broadly expressed

factors such as YODA remains an open question. Domain swaps

amongMAPK family members engineered to signal only in specific

stages of the stomatal lineage identified unique portions of MKK5

and MKK7 that enabled them to affect divergent developmental

decisions, possibly by mediating interaction with different scaffold

proteins (Wengier et al., 2018). Components of the MAPK cascade

depend on scaffold proteins to obtain asymmetric inheritance during

ACDs, and their differential presence in daughters of an ACD could

be responsible for mediating cell fate asymmetry (Houbaert et al.,

2018; Zhang et al., 2015). This links MAPK signaling to polarity

proteins, which we discuss in the next section. The MAPK cascade,

along with secreted peptides and membrane-bound receptors

described here, are critical for regulating stomatal patterning.

Stomatal lineage regulators: polarity

Mechanistic connections between signaling components and

stomatal ‘polarity proteins’ in coordinating ACDs come from

studies of BREAKING OF ASYMMETRY IN THE STOMATAL

LINEAGE (BASL) (Dong et al., 2009) and POLAR

LOCALIZATION DURING ASYMMETRIC DIVISION AND

REDISTRIBUTION (POLAR) (Pillitteri et al., 2011) proteins. In

the stomatal lineage, ACDs are coordinated by these polarity

proteins, which localize to specific subdomains of the cell

membrane in stomatal lineage cells prior to ACDs. This is critical

because errors in stomatal lineage ACDs result in stomata contacting

each other that, as a consequence, do not open or close efficiently

(Dow et al., 2014). The localization of the accumulated proteins at

specific cortical subdomains, referred to as the polarity domain or

crescent, is predictive and instructive of the orientation of an ACD

(Dong et al., 2009) (see poster). BASL and POLAR have partially

overlapping polarity domains (Houbaert et al., 2018), and BASL

activity is required for POLAR to be polarized (Pillitteri et al., 2011).

When stomatal lineage cells divide asymmetrically, the polarity

crescent is always found in the SLGC (Dong et al., 2009). BASL

polarization is tightly regulated by phosphorylation on several

residues (Zhang et al., 2016a). Changing phosphorylation status

alters the relative amount of polarized cortical to nuclear BASL with

varying ability to rescue the basl phenotype (Zhang et al., 2015,

2016a,b). Evidence supports a mechanism wherein BASL is

phosphorylated by MPK3 and/or MPK6 and serves as a scaffold to

hold MPK3/6 and YODA at the polarity crescent (Zhang et al.,

2015), resulting in differential signaling capacity and, ultimately,

differential SPCH protein levels in the two daughter cells (Zhang

et al., 2016b). Interestingly, POLAR appears to regulate stomatal

lineage ACDs by altering subcellular localization of BIN2 (Houbaert

et al., 2018). This change can relieve the repressive effects of BIN2

on SPCH (discussed below) by sequestering BIN2 to the polarity

crescent and freeing SPCH to drive ACD (Houbaert et al., 2018).

Observations of polarity protein dynamics in live tissues have

also revealed tissue-level growth coordination in Arabidopsis leaves

and cotyledons. Fluorescently tagged BASL that is expressed under

the control of a ubiquitous promoter successfully polarizes in all

cells and reveals a coordinated whole-leaf polarity field (Mansfield

et al., 2018). However, the degree to which individual cells polarize

relative to this overall field varies; in meristemoids and SLGCs, it

appears that orientation relative to neighbor cells, as dictated by EPF

signaling, and potentially mechanical forces, dominates over global

alignments (Bringmann and Bergmann, 2017).

Auxin transport has long been recognized as a critical cue for

coordinating growth in Arabidopsis (Sabatini et al., 1999). It is

tempting to think that auxin and the polarized localization of its

transporters might have a role in stomatal lineage polarity, but

current data do not completely support this. Auxin transporter PIN-

FORMED 1 (PIN1) is polarized in very young leaves (Kuchen et al.,

2012) and BASL, when ectopically expressed at this early stage, is

polarized to the opposite side of the cell (Mansfield et al., 2018).

However, during the leaf stages where the stomatal lineage produces

the largest number of asymmetric divisions, PIN1 is no longer

expressed, and PIN3, which can be seen throughout the epidermis,

is not polarized (Le et al., 2014; Robinson et al., 2011). Auxin

signaling does affect stomatal fates (Le et al., 2014), but it is not

clear whether this is through polar transport.

Overall, current research indicates that polarity proteins critically

regulate ACDs and do so in collaboration with BR and MAPK

signaling. In the next section, we will explore how hormonal and

environmental signals regulate stomatal lineage ACDs.

Regulators: hormonal and environmental signaling

Plant hormones also mediate environmental responses. Stomata are

critical gatekeepers between plants and their environments. As such,

stomatal development integrates a tremendous number of hormonal

and environmental signals to optimize the number and placement of

stomata for the ambient environment of a plant (see poster). Much of

this regulation converges on stomatal lineage initiation by regulating

SPCH expression or SPCH protein levels. Drought and the ‘drought

hormone’ abscisic acid (ABA) regulate stomatal closing (reviewed in

Cutler et al., 2010). ABAmediates signaling of drought conditions in

Arabidopsis and can inhibit progression of stomatal development

(Tanaka et al., 2013). Interestingly, recent work has demonstrated

that osmotic stress, which mimics drought, activates the YODA–

MKK4/5–MPK3/6 signaling cascade, thereby downregulating

SPCH activity and limiting the number of stomatal lineage ACDs

(Kumari et al., 2014). Therefore, drought also regulates stomata

behaviorally and developmentally.

Increasing levels of carbon dioxide (CO2) induce expression of the

extracellular protease CO2 RESPONSE SECRETED PROTEASE

(CRSP), which represses stomatal development by activating

extracellular EPF2 peptide through cleavage of its pro-peptide form

(Engineer et al., 2014). Furthermore, CARBONIC ANHYDRASE 1

and 4 (CA1, also known as BCA1;CA4, also known as BCA4), which

have been shown to regulate stomatal aperture in response to CO2

levels (Hu et al., 2010), are also required together to induce EPF2

expression when atmospheric CO2 is high (Engineer et al., 2014). This

indicates dual roles for CO2 in stomatal physiology and development.

Temperature and light affect stomatal development through

phytochrome B (PHYB), whereas light also signals to stomatal

development through other phytochrome and cryptochrome

receptors to positively regulate stomatal development (Kang et al.,

2009). The E3 ubiquitin-protein ligase COP1 degrades ICE1 in the

absence of light, which inhibits stomatal development (Lee et al.,

2017). This response may be auxin-dependent, because auxin-

insensitive mutant seedlings that are grown in darkness fail to repress

stomatal development (Balcerowicz et al., 2014). Mechanistically,

activated PHYB represses PHYTOCHROME INTERACTING

FACTOR 4 (PIF4), which downregulates SPCH levels. PIF4 itself

is a SPCH transcriptional target, creating a negative feedback loop
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(Lau et al., 2018) and further linking light and temperature signals to

BR signaling. PIF4, alongwith SPCH andYODA, is a target of BIN2

repression (Kim et al., 2012). These targets are de-repressed upon BR

signaling through repression of BIN2 via the BRI1 SUPPRESSOR 1

(BSU1) family of phosphatases, in turn. Thus, light and temperature

signal to stomatal development through many of the same

components. Moving forward, it will be interesting to see how

stomatal development responds to apparently conflicting signals,

such as low light and high temperature.

PIF4might also connect light or temperature signaling to cytokinin

signaling through induction of the cytokinin-degrading enzyme

CYTOKININ OXIDASE 5 (CKX5) (Nomoto et al., 2012).

Cytokinin, a well-known promoter of cell divisions and vascular

patterning, was recently shown to regulate the balance between

stomatal lineage amplifying and spacing divisions, tuning the cellular

composition of the epidermis (Vatén et al., 2018). Cell type-specific

profiling of gene expression within the stomatal lineage and SPCH

target profiling revealed stomatal lineage-specific repressive type A

ARABIDOPSIS RESPONSE REGULATORs (ARRs), ARR16 and

ARR17. These ARRs, together with CLAVATA3/ESR-RELATED 9

(CLE9) and CLE10, regulate cytokinin levels (Vatén et al., 2018).

Active cytokinin signaling increases SPCH levels to promote spacing

divisions; increased SPCH then positively regulates ARR16 and

ARR17 to suppress cytokinin levels. Furthermore, increased SPCH

levels promote CLE9 and CLE10 expression, which negatively

regulates ARR16 and ARR17. Thus, SPCH and cytokinin signaling

constitutes a complex feedback loop (see poster).

Taken together, a change in stomatal density or pattern can be

attributed to experimental manipulation of nearly all the classic

plant hormones, mainly by modulating SPCH protein and RNA

levels. A future challenge will be to decipher how SPCH can

integrate so many different inputs.

Evolution of stomatal development

Much of our knowledge regarding stomatal development comes from

the model dicot Arabidopsis. Yet, stomata are found in nearly all land

plants, with reasonably consistent morphology: stomata in non-

vascular plants and in dicots have a characteristic kidney bean shape,

whereas monocot stomata are more typically dumbbell shaped.

Evidence from the fossil record indicates stomata morphologically

similar to those in dicots were found as far back as 410 million years

ago (Edwards et al., 1992). Recent work has taken advantage of this

deep evolutionary conservation to expand our knowledge into plants

that are less experimentally tractable, but more important as food

crops such as rice, corn and wheat. Furthermore, as stomatal structure

has been largely preserved through evolution (Chater et al., 2016b11,

2017; Rudall et al., 2013), increased understanding of stomatal

development across species can reveal essential evolutionary

mechanisms for stomatal development. Many key stomatal lineage

regulators are conserved (see poster and Box 2). Orthologs of the core

stomatal lineage regulators control grass stomatal development as

well, with some variation in functionality.

Stomatal development has been described in several cereal crops

and in the diploid biofuel model purple false brome (Brachypodium

distachyon). Grass leaves differ fromArabidopsis in that their stomatal

lineage cells are typically restricted to specific cell files, and they have

a strict base-to-tip growth orientation, with earlier phases of stomatal

development occurring closer to the base of the leaf (for details of

grass leaf development see Hepworth et al., 2018). In Brachypodium,

stomatal cell files are specified by BdSPCH1 and BdSPCH2, which

precede and drive asymmetric entry divisions with putative binding

partner BdICE1 (Raissig et al., 2016). There are no repeated rounds of

ACDs, so the smaller cells produced in this phase act asGMCs and the

larger cells become intervening pavement cells.BdYODAmutants fail

to establish this fate asymmetry, producing clusters of GMCs that

eventually produce incorrectly spacedGCs (Abrash et al., 2018).As in

Arabidopsis, Brachypodium GMCs express BdMUTE (Raissig et al.,

2017). Mature grass stomata are four-celled structures, where the GC

pair is flanked on each side by a subsidiary cell (SC) (see poster).

BdMUTE further serves to recruit SCs, which contribute to improved

environmental responsiveness of stomata in Brachypodium (Raissig

et al., 2017). In barley and rice, both the entry ACD and SC

recruitment are repressed by overexpression of the EPF peptides

HvEPF1 and OsEPF2, respectively, suggesting parallel roles in

repressing stomatal progression between grasses and dicots.

Importantly, for agriculture, these manipulations can improve water

use efficiency (Caine et al., 2019; Hughes et al., 2017; Lu et al., 2019).

However, unlike in Arabidopsis, where ICE1 and SCRM2

broadly and redundantly regulate stomatal development, loss of

BdICE1 alone prevents stomatal lineage initiation and BdSCRM2

functionality is restricted to stomatal lineage termination (Raissig

et al., 2016). BdSCRM2 is expressed throughout the Brachypodium

stomatal lineage, but is only required for the differentiation of

mature stomata (Raissig et al., 2016). In rice OsFAMA mutants,

GMCs can divide once symmetrically, but fail to establish GC

morphology (Liu et al., 2009). This is unlike Arabidopsis, where

GMCs in FAMA mutants divide uncontrollably while failing to

achieve GC morphology (Ohashi-Ito et al., 2006). The mutant

phenotypes of BdSCRM2 and OsFAMA – four-celled stomatal

complexes where GCs never attain their characteristic dumbbell

shape – suggest that these proteins may function cooperatively in

monocot stomatal lineage terminal differentiation.

Box 2. Evolution of stomatal development: deep ancestry

and divergence
Mosses and angiosperms last shared a common ancestor over 400

million years ago (Morris et al., 2018). Stomatal development in themoss

Physcomitrella patens requires PpSMF1 (SPEECHLESS, MUTE and

FAMA-like) and PpSCREAM1, two orthologs of genes that were first

characterized in Arabidopsis, SPCH and MUTE (Chater et al., 2016).

Patterning of stomata inPhyscomitrella involves orthologs of TMM,EPF1

and ERECTA (Caine et al., 2016). Thus, the core stomatal lineage

regulators have been preserved across vast evolutionary distances,

indicating control of stomatal development is deeply fundamental in the

plant kingdom. This dovetails with previous observations that bHLH

transcription factor cascades regulate development across the kingdoms

of life; closely related bHLH transcription factors also regulate muscle

development in animals, suggesting the foundations of this strategy were

already in place when plants and animals diverged 1600 million years

ago (Matos and Bergmann, 2014).

Monocot and dicot stomata have distinct morphology and patterning,

but both employ orthologs of the same set of core transcriptional

regulators – SPCH, MUTE, FAMA, ICE1 and SCRM2 (reviewed in

Hepworth et al., 2018). What then accounts for the divergent epidermal

patterning in these species? The polarity proteins BASL and POLAR are

critical patterning regulators (Dong et al., 2009; Houbaert et al., 2018;

Pillitteri et al., 2011). Orthologs of these proteins have not been reported

in non-dicots, and protein searches with BLAST (Altschul et al., 1990) do

not reveal any obvious non-dicot candidates. In parallel, repeated

asymmetric amplifying divisions are common in Arabidopsis and other

rosid eudicots, but not in grasses or earlier-derived angiosperms

(reviewed in Rudall et al., 2013). So, although stomatal lineage identity

regulators are conserved, BASL and POLAR do not appear to be. No

cross-species functional tests have yet been done, but it is intriguing to

speculate that the polarity proteins may have evolved as part of a

patterning mechanism that exists only in dicots.
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These studies reveal the deep conservation of stomata, underlining

the physiological importance of stomata in land plants. The

regulatory mechanisms we describe here – cell–cell signaling,

polarity, and environmental and hormonal signals – all modulate the

fundamental and highly conserved regulators of the series of

divisions and identity changes known as the stomatal lineage.

Conclusions and future perspectives

Studying stomatal development reveals regulatory strategies by

which plants optimize developmental trajectories. This might

provide broad insight into plant development strategies, since

many of these mechanisms are alternatively purposed in other

tissues in plants. For instance, cytokinin signaling regulates the

cellular composition in the Arabidopsis epidermis (Vatén et al.,

2018). This hormone is also critical for phyllotactic patterning

(Giulini et al., 2004) and in the regulation of vascular cell identity

and pattern (Bishopp et al., 2011). BR signaling impacts stomatal

development at several levels (Houbaert et al., 2018; Kim et al.,

2012) and regulates multiple aspects of root growth (reviewed in

Wei and Li, 2016). This makes the stomatal lineage a valuable

model system for studying general developmental strategies in

plants, but it also poses a problem. Classical approaches define gene

function by mutant phenotype. Many of the early-identified

stomatal lineage regulators were specific to the stomatal lineage

and were identified in mutant screens for stomatal lineage defects

(Dong et al., 2009; MacAlister et al., 2007; Ohashi-Ito et al., 2006;

Pillitteri et al., 2007). However, mutant phenotypes of broadly

expressed stomatal lineage regulators will also have non-stomatal

lineage defects, which can lead to confounding pleiotropic effects.

We discussed recent advancements that circumvented this hurdle by

using genome-wide profiling of stomatal lineage cells (see Box 1) to

identify stomatal lineage-specific functions for broadly employed

developmental regulators, which can potentially be validated by

tissue-specific gene editing (Decaestecker et al., 2018 preprint).

Moving forward, novel discoveries of stomatal lineage regulators

will likely be aided by the production of cell type-specific

proteomes as well as finer-scale genome-wide datasets.
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Gudesblat, G. E., Schneider-Pizoń, J., Betti, C., Mayerhofer, J., Vanhoutte, I.,

van Dongen, W., Boeren, S., Zhiponova, M., de Vries, S., Jonak, C. et al.

(2012). SPEECHLESS integrates brassinosteroid and stomata signalling

pathways. Nat. Cell Biol. 14, 548-554. doi:10.1038/ncb2471

Han, S.-K., Qi, X., Sugihara, K., Dang, J. H., Endo, T. A., Miller, K. L., Kim, E.-D.,

Miura, T. and Torii, K. U. (2018). MUTE directly orchestrates cell-state switch and

the single symmetric division to create stomata. Dev. Cell 45, 303-315.e5. doi:10.

1016/j.devcel.2018.04.010

Hepworth, C., Caine, R. S., Harrison, E. L., Sloan, J. and Gray, J. E. (2018).

Stomatal development: focusing on the grasses. Curr. Opin. Plant Biol. 41, 1-7.

doi:10.1016/j.pbi.2017.07.009

Ho, C.-M. K., Paciorek, T., Abrash, E. and Bergmann, D. C. (2016). Modulators of

stomatal lineage signal transduction alter membrane contact sites and reveal

specialization among ERECTA kinases. Dev. Cell 38, 345-357. doi:10.1016/j.

devcel.2016.07.016

Horst, R. J., Fujita, H., Lee, J. S., Rychel, A. L., Garrick, J. M., Kawaguchi, M.,

Peterson, K. M. and Torii, K. U. (2015). Molecular framework of a regulatory

circuit initiating two-dimensional spatial patterning of stomatal lineage. PLoS

Genet. 11, e1005374. doi:10.1371/journal.pgen.1005374

Houbaert, A., Zhang, C., Tiwari, M., Wang, K., de Marcos Serrano, A., Savatin,

D. V., Urs, M. J., Zhiponova, M. K., Gudesblat, G. E., Vanhoutte, I. et al. (2018).

POLAR-guided signalling complex assembly and localization drive asymmetric

cell division. Nature 563, 574-578. doi:10.1038/s41586-018-0714-x

Hu, H., Boisson-Dernier, A., Israelsson-Nordström, M., Böhmer, M., Xue, S.,
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