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Abstract The successful conversion of plant production sys-
tems from conventional resource-exhausting to sustainable
strategies depends on knowledge-based management of envi-
ronmental factors. Root-inhabiting fungi came more and more
into focus because their hyphae connect in ideal manner
resources and challenges of the surrounding with the plant. A
paradigm for such root endophytes is presented by the basid-
iomycete Piriformospora indica. This fungus possesses a
broad host spectrum and positively affects different aspects
of plant performance. This so far unique combination of attrib-
utes makes P, indica and its close relatives among the Sebaci-
nales very interesting tools for cultivation of various crops.
This review will outline the different aspects required to apply
this root endophyte in agri- and horticulture concerning plant
growth, plant nutrition and plant defence or tolerance thereby
explaining what is known about the biological basis for the
observed effects. Open questions and challenges for successful
inoculum production and application will be discussed.
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Introduction

The rhizosphere of natural and anthropogenic ecosystems is
inhabited by a plethora of organisms in which fungi
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constitute a large part of the biomass. Many of these rhizo-
sphere fungi are able to colonise the plant and form different
types of mycorrhiza (Smith and Read 2008). In addition, it
has become evident that all plants also harbour non-
mycorrhizal root-endophytic fungi, and their colonisation
often impacts plant growth and development
(bioregulation), plant nutrition (biofertilisation) and plant
tolerance and resistance to abiotic and biotic stresses
(bioprotection). Therefore, root-endophytic fungi have to
be taken into account in order to understand the interaction
of the root with its environment, and moreover, they could
be used as biological agents to improve plant production
systems.

Root endophytes with application potential can be found
among non-pathogenic isolates of pathogens (Paparu et al.
2006) and among mycoparasites (Chacon et al. 2007). A
morphologically defined group, the dark septate endophytes,
which have been isolated from numerous plants (Jumpponen
and Trappe 1998), including crops (Andrade-Linares et al.
2011), are represented by different species among the Asco-
mycota. A phylogenetically defined group are the Sebacinales
(Basidiomycota). They contain mycorrhiza-forming and non-
mycorrhizal root colonisers and occur worldwide (WeiB3 et al.
2011). The best-studied member is the species Piriformospora
indica. It was originally isolated from the spore of an
arbuscular mycorrhizal fungus found in the Thar Desert
in India and root-colonising abilities were shown (Verma et al.
1998; isolate DSM 11827 deposited at the Deutsche Sammlung
fir Mikroorganismen und Zellkulturen, Braunschweig,
Germany). In addition of forming orchid mycorrhiza
(Blechert et al. 1998), plant growth-promoting effects
were revealed for various hosts, and its application to
plant production was proposed (Varma et al. 1999).
Such a potential was further substantiated by the find-
ing that barley plants colonised by P. indica were more
resistant to pathogens and more tolerant to salt stress
and showed higher yield (Waller et al. 2005).
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Basic research to investigate the mechanisms of the in-
teraction between P. indica and plants was facilitated by the
fact that the fungus interacts with Arabidopsis thaliana
(Peskan-Berghofer et al. 2004). Using this model, a num-
ber of genes were identified as being involved in the
interaction (for review: Oelmuller et al. 2009). Recent
establishment of a transformation system and the full
genome sequence of the fungus (Zuccaro et al. 2009,
2011) will likely stimulate great progress towards further
functional analysis. The positive effects observed for all
tested plant species implicated a biotrophic interaction
between the fungus and its host. However, staining of
roots with fluorescein diacetate revealed an increase in
dead root cells after colonisation (Franken et al. 2000).
This phenomenon is not due to necrotrophic features of
the endophyte (Schéfer et al. 2009), but rather it is due
to increased programmed cell death (Deshmukh et al.
2000) triggered by endoplasmatic reticulum stress and
caspase l-like activity (Qiang et al. 2012a). The current
view is that the interaction starts with a short biotrophic
phase followed by further saprophytic feeding on dead
plant cells (Zuccaro et al. 2011). During the different
stages of root colonisation, plant innate immunity is down-
regulated by manipulating several different phytohormone
signalling pathways in order to facilitate a compatible inter-
action between the endophyte and the plant (Schéfer et al.
2009; Jacobs et al. 2011).

Recently, several reviews have focused on the interaction
of P. indica with plants (Schafer et al. 2007; Oelmuller et al.
2009; Qiang et al. 2012b; Lahrmann and Zuccaro 2012).
While these reviews mention potential applications, they are
more concentrated on the mechanisms of interaction be-
tween the root endophyte and some model plants. Here we
review significant publications related to the presence or
absence of fungal effects on plant growth, plant nutrition,
defence and tolerance, as well as on yield and plant product
quality. The mechanisms and processes behind these effects
have been investigated and described. Finally, progress and
bottlenecks for inoculum production will be delineated in
order to discuss future experiments which should smooth
the way towards the application of P. indica.

Plant growth and development

The most obvious effect of P. indica on plants is the pro-
motion of vegetative growth, and this has been repeatedly
shown with species from various plant families (Table 1).
The extent of growth promotion is typically around 50 %,
but significant variation exists, likely due in part to a num-
ber of environmental and experimental conditions. Thus far,
analysis has only been carried out on the influence of
substrate and the timing of inoculation on growth promotion
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(Fakhro et al. 2010). Following the course of growth param-
eters indicated that P. indica promoted initial stages of plant
development (Barazani et al. 2005; Rai and Varma 2005).
Further on, promotion of initial stages of vegetative growth
results in an earlier switch to generative stages (Barazani et al.
2005; Achatz et al. 2010; Andrade-Linares et al. 2012). Pro-
motion of early growth stages seems to be mainly based on
accelerated root development (Waller et al. 2005; Baltruschat
et al. 2008), and age-dependent regulation of genes was
shifted to earlier time points in P. indica-colonised roots
(Waller et al. 2008). Promotion of root development is an
interesting feature as such. Indeed, application of P. indica
results in enhanced rooting of callus cultures (Varma et al.
1999) and cuttings in the production of medicinal and orna-
mental plants (Rai and Varma 2005; Driige et al. 2007).
Interestingly, root growth promotion can be achieved
even in the absence of colonisation (Driige et al. 2007).
Therefore, it was not surprising to find P. indica produc-
ing the auxin indole-acetic acid (Sirrenberg et al. 2007).
Although expression of auxin-regulated genes in Arabi-
dopsis was not affected by the endophyte (Vadassery et al.
2008), such genes were induced in barley (Schifer et al.
2009) and in Chinese cabbage (Lee et al. 2011), and their
induction was causative for the strong growth-promoting
effect. The inducer was, however, not the indole-acetic
acid itself, but an unknown component in the exudates
of the fungal hyphae (Lee et al. 2011). Ethylene typically
inhibits plant growth, and some rhizobacteria produce
enzymes that degrade ethylene (Hayat et al. 2010). In
fact, P. indica seems to inhibit ethylene signalling, which
could contribute to plant growth promotion (Barazani et
al. 2007). The finding that although barley genes involved
in ethylene synthesis are induced, ethylene-responsive
genes repressed in P. indica-colonised roots further sup-
port this suggested role of the phytohormone (Schéfer et
al. 2009). A more complex picture was drawn in Arabi-
dopsis, where mutations in ethylene signal transduction
components resulted in increased root colonisation and
abolished growth promotion or even caused growth re-
pression (Camehl et al. 2010). Hence, moderate interfer-
ence with ethylene signalling may allow a certain degree
of colonisation by releasing the inhibiting effect of the
phytohormone. A total knock out, however, results in
uncontrolled spread of P. indica and pathogenic behaviour.
Additional phytohormones synthesised or manipulated by
the root endophyte include cytokinins (Vadassery et al.
2008), gibberellins, abscisic acid and brassinosteroids
(Schéifer et al. 2009). In response to colonisation, the
abscisic acid pathway was proposed to enhance plant
growth via calcium (Vadassery et al. 2009a), phosphoinositide
and particular protein kinases (Camehl et al. 2011). In sum-
mary, nearly the whole orchestra of phytohormones and phy-
tohormone signalling networks seems to be involved in
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Table 1 Plant growth promotion by Piriformospora indica measured as increases in fresh weight (fw) or dry weight (dw). Date of harvest is given
in days after inoculation (dai)

Plant material Inoculation Cultivation (conditions) Biomass ratios Reference
inoculated/control

Various species Seedlings or Mycelium and spores 4-week pot cultures in 1.8-2.8 (shoot fw) Varma et al.

(e.g. maize, plantlets mixed with expanded greenhouses (25 °C; 1.5-3.5 (root fw) (1999)
poplar, parsley) clay 16 h light)

Spilanthes calva Seeds Seed coating + mix 13 weeks field-grown 2.3 or 7.8 (shoot dw) Rai et al. (2001)

Withania somnifera with field soil (Central India) 1.4 or 3.3 (root dw)

Arabidopsis 10-day-old Agar plug On MM medium, 10 % 1.4 (shoot fw, 8 dai)* Peskan-

thaliana seedlings P and N, no carbohydrates, 1.4 (root fw, 5 dai)® Berghofer et
continuous illumination al. (2004)

Adhatoda vasica Cuttings Mycelium and spore Pot cultures with soil/sand/ 2 (whole plants Rai and Varma
suspension to cuttings farmyard manure (3:1:1); after 2 months) (2005)
in water (22 °C; day light; 1.2 (whole plants

Central India) after 6 months)
Nicotiana attenuata Seeds Germination on Pot cultures 1.9 (seed germination Barazani et
plates + fungus 4 dai)® al. (2005)
1.2 (stalk length 40 dai)®
Nicotiana tabacum  14-day-old Agar plug On MM medium, 10 % 1.4 (seedling fw Sherameti et
seedlings P and N, no carbohydrates, and dw) al. (2005)
continuous illumination

Hordeum vulgare ~ Seeds Mycelium and spores S-week pot cultures in 1.7 (shoot fw)? Waller et al.
mixed with expanded green houses (2005)
clay (22/18 °C; 16 h light)

Triticum aestivum  Seedlings Mycelium and spore Pot cultures in greenhouse Sand—1.7 (shoot Serfling et al.
suspension added (22-30 °C without and root fw)* (2007)
to pots additional light); field Soil—1.4 and 1

(Mid Europe) (shoot and root fw)*
1.1 (straw yield on
poor soil)*
Solanum 4-week-old Root dipping Pot cultures in green house Nutrient solution—1.1 Fakhro et al.
lycopersicum plants (22/19 °C; no additional light)  (shoot fw) (2010)
Sand—1.3 (shoot fw)
Commercial
substrate—1.1
(shoot fw)
Chlorophytum sp. ~ Micropropagated Mycelium and spores Polythene bags (greenhouse, Greenhouse—1.3 Gosal et al.
plantlets mixed with soil 27 °C; 13 h light) — field (shoot and root dw) (2010)
(North India) Field—1.1 (shoot dw)

Cicer arietinum Seeds Seed coating with Pots with soil (phytotron; No effect Meena et al.
mycelium and spore 22-26 °C; 16 h light) (2010)
suspension

Cicer arietinum Seeds Mycelium and spores Pots with soil (greenhouse) 1.4 (total dry weight) Nautiyal et al.
mixed with soil (2010)

Phaseolus aureus ~ Seeds Mycelium and spores Greenhouse (24-31 °C, 1.4 (total dw 20 dai) Ray and
mixed with soil 11 h light) 0.6 (total dw 60 dai) Valsalakumar

(2010)

Brassica campestris 5-day-old Agar plug 15 days on MM medium, 1.4 (root fw) Sun et al.

seedlings 1/2 strength, 12 h light; 1.5 (shoot fw) (2010)
transfer to soil for 15 days

Piper nigrum Tissue cultured ~ Mycelium and spores 60 days in pot cultures Effects on leave Anith et al.

plants mixed with sand number (1.2) and fw (2011)

Glycine max

Seeds

Soil cultures of the fungus Not reported

(1.1), but not on dw
1.1 (height) with
cultivar JS-335
no effect with
cultivar TAMS-21

Rathod et al.
(2011)
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Table 1 (continued)

Plant material Inoculation Cultivation (conditions) Biomass ratios Reference
inoculated/control
Foeniculum vulgare Seedlings Myecelium and spores 15 days in greenhouse 1.3 (root fw)* Dolatabadi
added to seedlings in (25/18 °C, 16 h light) 1.2 (shoot fw)* et al. (2011a)
pots (sand/peat/perlite)
Thymus vulgaris Non-rooted Agar plug 60 days on agar (25 °C) 3.5 (root fw); 3.7 Dolatabadi
cuttings 30 days on agar (shoot fw) et al. (2011b)
120 days in substrate 2 (root fw); 1.4 (shoot fw)
(sand/peat/perlite;
24/18 °C, 16 h light)
Vigna mungo Seeds Seed coating Greenhouse 2.7 (shoot dw) Kumar et al.
Field 2.5 (shoot dw) (2012a)
Fragaria x Micropropagated Mycelium and spores (Phytotron; 28 °C; 1.3 (plant fw) Husaini et al.
ananassa plantlets added to seedlings in 16 h light) (2012)

Centella asiatica Rooted plantlets

pots (vermiculite/peat/
solirite)
Mycelium + spore

Liquid MS + PDB in
glass bottles (23 °C;
16 h light)

1.4 (whole plants fw)
1.75 (whole plants dw)

Satheesan et al.
(2012)

Repetitive experiments with the same plant species are not mentioned, except results were very different

# Approximate values deduced from graphs

generating compatible interactions between the fungus and
host, which lead to increased early root growth promotion
and finally to greater biomass.

Plant nutrition

Rhizosphere microorganisms are able to support plant nutri-
tion by two general mechanisms. They convert unavailable
resources to plant available compounds, e.g. by nitrogen
fixation or phosphate solubilisation, or they support their
transport towards or even inside the plant root, both leading
to increased mineral nutrient uptake by the plant (Hayat et al.
2010). In tobacco, barley and green gram, colonisation did not
increase P or N content of plants although plant growth was
promoted (Barazani et al. 2005; Achatz et al. 2010; Ray and
Valsalakumar 2010). Chickpea and black lentil plants, how-
ever, showed higher N, P and K content (Nautiyal et al. 2010;
Kumar et al. 2012a), and sugar cane plants could overcome Fe
and Cu deficiencies if inoculated with the endophyte (Gosal et
al. 2011). In Arabidopsis, uptake of radio-labelled P was
strongly enhanced in the presence of the fungus (Shahollari
etal. 2005), and such uptake was abolished in maize by down-
regulation of one of the fungal phosphate transporters (Yadav
et al. 2010). Similarly, a nitrate reductase shows enhanced
expression in P. indica-colonised roots which could indicate
that the fungus also supports N nutrition of plants (Sherameti
et al. 2005).

At the moment, it appears as chicken-and-egg question:
does P. indica-enhanced root development result in
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increased mineral nutrient uptake, or is more direct support
of plant nutrition primarily responsible for the plant growth-
promoting effects of colonisation? More targeted research is
necessary to know which combinations of physical and
chemical soil properties allow the fungus to contribute to
plant nutrition and which of the two mechanisms mentioned
above are involved. Especially important will be the analy-
sis of conditions where the application of mineral fertilisers
is reduced and exchanged with different types of organic
matter that could serve as a resource for the saprophytic
capabilities of P. indica. At least and in contrast to arbus-
cular mycorrhizal fungi, P. indica colonise plant roots inde-
pendent of phosphate availability (Varma et al. 1999). This
is a clear advantage for agricultural applications because the
fungus can be applied even in anthropogenic ecosystems
with high concentrations of phosphate where it also exerts
plant growth-promoting effects (Achatz et al. 2010).

The need for more research also applies to the question of
whether there is a reciprocal transfer of carbohydrates, and
more specifically, whether the fungus establishes an addi-
tional carbohydrate sink for the plant. The induced expres-
sion of a starch-degrading enzyme in the roots (Sherameti et
al. 2005) could be a hint, but enhanced degradation of starch
might be also necessary for the accelerated development of
the root and so expression may merely be regulated by
metabolic needs rather than induced by the fungus. Such
an additional sink could lead to carbohydrate starvation, but
this could be balanced by higher CO, assimilation rates in P.
indica-colonised barley plants at low light intensities com-
pared to the corresponding controls (Achatz et al. 2010).
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This goes along with an analysis of chlorophyll fluorescence
showing P. indica-increased photosynthetic performance of
maize plants (Rai et al. 2008).

Abiotic and biotic stresses

The impact of biological agent application, including P.
indica, on abiotic stress tolerance is the subject of numerous
reports. Initial studies have explored how plants respond to
the combination of stress factors and endophyte inoculation.
If the positive impact of the endophyte is higher under stress
conditions, then it can be concluded that the fungus confers
stress tolerance on the plant. If the impact of the fungus is
similar under stress and non-stress conditions, then it exerts
its positive influence irrespective of the cultivation condi-
tions. Decreased growth promotion by the endophyte under
stress conditions implies that the plant—fungus interaction
suffers in adverse conditions.

‘Positive’ interaction of abiotic stress and P. indica
colonisation has been only shown for Triticum aestivum
where the plant growth-promoting effect increased with
rising salt concentrations (Zarea et al. 2012). In a different
type of experiments, where factor interaction was not
directly analysed, pre-inoculation with the endophyte
relieved Arabidopsis seedlings from drought stress (Sherameti
et al. 2008). Such seedlings continue to grow after water
removal, but the development of non-inoculated controls is
arrested. A similar phenomenon was observed in Chinese
cabbage (Sun et al. 2010) and strawberry (Husaini et al.
2012). These observations cannot be simply explained by
growth promotion.

In order to adapt to osmotic stress, plant tissues, e.g. of
halophytes, accumulate organic solutes such as the amino
acid proline (Moore 1975). Interestingly, P. indica-colon-
ised plants have higher concentrations of proline than
corresponding controls, and this could partially explain
their increased tolerance to osmotic stress (Zarea et al.
2012). Another response to abiotic stress is the accumu-
lation of reactive oxygen species (ROS) and the synthesis
of corresponding antioxidants (Foyer and Shigeoka 2011),
and it has been proposed that endophyte-conferred abiotic
stress tolerance relies on an enhancement of these reac-
tions (White and Torres 2010; Hamilton et al. 2012).
Searching for the mechanisms of P. indica-induced stress
tolerance also revealed increased conversion of dehydroas-
corbate to ascorbate and higher levels of glutathione, the
two main antioxidants (Waller et al. 2005). Further anal-
yses showed a significant interaction of the factors ‘P.
indica’> and ‘salt’ on the expression of a number of
enzymes involved in ROS metabolism in barley (Baltruschat
et al. 2008). Such an enhanced expression was accompanied

in Chinese cabbage by a clear reduction in malondialdehyde
content, an indicator of unsaturated lipid degradation by
ROS (Sun et al. 2010). Also the expression of a number
of genes putatively involved in stress response is induced
by drought to higher levels in plants colonised by P.
indica. Interestingly, down-regulation of two genes encod-
ing enzymes for ascorbate synthesis in Arabidopsis
resulted in much greater colonisation by the endophyte
and disappearance of its plant growth-promoting effect
(Vadassery et al. 2009b).

Biotic stress protection by P. indica was first shown in
barley roots against Fusarium culmorum and in shoots
against Blumeria graminis (Waller et al. 2005). Since sim-
ilar results have been obtained in plants from other families
(Table 2), P. indica may protect a wide variety of plants
against fungal pathogens. Root pathogens might be directly
inhibited by antagonistic activities of the endophyte. Such
growth inhibition of fungi by P. indica could not be ob-
served for F. culmorum (Waller et al. 2005) or for Pseudo-
cercosporella herpotrichoides (Serfling et al. 2007), but to a
low extent for Fusarium oxysporum (Dolatabadi et al.
2012). At least for leaf pathogens, it is clear that P. indica
root colonisation systemically induces resistance. The pro-
duction of ROS and the synthesis of antioxidants seem to
also play a role similar to the aforementioned abiotic stress
protection, at least in the monocots barley, wheat and maize
(Waller et al. 2005; Serfling et al. 2007; Kumar et al. 2009).
Analysis of a number of Arabidopsis mutants showed that
jasmonate signalling is important for P. indica-induced re-
sistance (Stein et al. 2008). In root endophyte-colonised
barley plants, a subset of defence-related genes is earlier
and more strongly induced by leaf pathogens than in control
plants (Molitor et al. 2011). Hence, the mechanisms of P.
indica-induced resistance seem to be similar to the well-
characterised induced systemic resistance described for
plant growth-promoting rhizobacteria-colonised plants (van
Wees et al. 2008). In contrast to fungal pathogens, coloni-
sation of plants by the endophyte leads to a higher suscep-
tibility to insect attack (Barazani et al. 2005) and results in
increased viral spread at low light intensities in tomato
(Fakhro et al. 2010).

Yield and product quality

In addition to positive effects on plant development, resis-
tance and tolerance, P. indica colonisation also can improve
crop plant yield, due to increased vegetative tissue yield,
greater number of inflorescences and flowers (Rai et al.
2001; Dolatabadi et al. 2011a) or greater seed weight (Rai
et al. 2001; Peskan-Berghofer et al. 2004; Barazani et al.
2005). For example, barley yield can be increased by 10 %
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Table 2 Protection against pathogens by Piriformospora indica

Plant Pathogen

Evidence Reference

Hordeum vulgare Fusarium culmorum

Hordeum vulgare Blumeria graminis
Hordeum vulgare Fusarium graminearum
Triticum aestivum Pseudocercosporella herpotrichoides
Triticum aestivum Blumeria graminis
Arabidopsis thaliana Golovinomyces orontii
Zea mays Fusarium verticillioides
Solanum lycopersicum Verticillium dahliae
Solanum lycopersicum Fusarium oxysporum

Lens culinaris Fusarium oxysporum

Effect on shoot fresh weight®
Disease symptoms

Waller et al. (2005)

Deshmukh and Kogel (2007)
Serfling et al. (2007)

Pathogen spread
Disease symptoms
Disease symptoms
Stein et al. (2008)
Kumar et al. (2009)
Fakhro et al. (2010)
Sarma et al. (2011)
Dolatabadi et al. (2012)

Disease symptoms

Effect on shoot dry weight®
Disease symptoms

Effect on dry root weight®
Disease symptoms

? Differences between P. indica-inoculated plants and controls were much higher in pathogen-inoculated plants

depending on the cultivar, due to a higher number of ears
(Waller et al. 2005), while in green gram, the number of
pods per plant as well as the number of seeds per pod was
higher (Ray and Valsalakumar 2010). In tomato, results
depended on the harvest date. At early time points, twice
as many fruits were harvested from colonised plants (Fakhro
et al. 2010; Sarma et al. 2011), but over time non-colonised
plants caught up and the same number of fruits was har-
vested (Andrade-Linares et al. 2012). In summary, plants
with one, fixed-date of harvest seem to achieve higher
yields, but in a plant like tomato with a long harvest period,
the overall yield does not differ between P. indica-colonised
plants and controls.

In addition to yield quantity, yield quality is also an
important parameter. Chemical analyses showed increased
concentrations of various compounds in P. indica-colonised
plants such as the antifungal spilanthol in Spilanthes calva
(Rai et al. 2004), pharmaceutically important substances
such as podophyllotoxins from Linum album (Baldi et al.
2010), saponin from Chlorophytum sp. (Gosal et al. 2010)
or asiaticoside from Centella asiatica (Satheesan et al.
2012) and essential oils in Foeniculum vulgare and Thymus
vulgaris (Dolatabadi et al. 2011a, b). Moreover, as human
health-promoting compounds such as antioxidants are shown
to be increased in colonised plants (see above), P. indica may
generally increase the quality of vegetables, fruits and seeds
being used as food.

Micropropagated plantlets are another product that can
benefit from the application of P. indica. Inoculation of
such plantlets significantly increases the survival rate of
tobacco, Chlorophytum species, sugar cane and strawberry
(Varma et al. 1999; Sahay and Varma 1999; Mathur et al.
2008; Gosal et al. 2010, 2011; Husaini et al. 2012). This
increased survival rate is probably due to both the promo-
tion of root development and the increase in tolerance to
abiotic stress.
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Comparison, combination and interaction
with other microorganisms

As P. indica belongs to the Sebacinales, a group of
endophytic fungi distributed worldwide (Weill et al.
2011), it can be assumed that close relatives show similar
effects on plant performance. Closely related to P. indica
is the orchid mycorrhiza-forming species Sebacina vermi-
fera (Weil} et al. 2004), and indeed S. vermifera isolates
(deposited at the National Institute of Agrobiological Sci-
ences, Tsukuba, Japan; culture collection numbers are
described in Deshmukh et al. 2006) show similar effects
on plant growth (Barazani et al. 2005, 2007; Ghimire et
al. 2009; Baldi et al. 2010; Dolatabadi et al. 2011a, b),
disease resistance (Deshmukh et al. 2006; Dolatabadi et
al. 2012), drought tolerance (Ghimire and Craven 2011;
Husaini et al. 2012) and chemical composition (Baldi et
al. 2010; Dolatabadi et al. 2011a, b). Interestingly, a
related multinucleate Rhizoctonia strain was isolated from
an AM fungal spore (Williams 1985), as was P. indica
(Verma et al. 1998). This strain was described as a new
species, Piriformospora williamsii (Sharma and Kogel
2009; Basiewicz et al. 2012), but its impact on plant
performance has not yet been analysed.

P. indica has also been compared and combined with
other beneficial microorganisms. In direct comparison
with AM fungi, P. indica did not increase P and N content
of barley plants (Achatz et al. 2010) and showed less
plant growth promotion in green gram (Ray and Valsalakumar
2010), but it increased the survival of micropropagated
plants to a greater extent (Mathur et al. 2008). The myco-
parasite Trichoderma harzianum inhibits P. indica growth
in vitro and root colonisation, but inoculation of pepper
plants with P. indica and subsequently with 7. harzianum
resulted in higher plant dry weights compared to single
inoculations (Anith et al. 2011). Different combinations of



Appl Microbiol Biotechnol (2012) 96:1455-1464

1461

Trichoderma species with P. indica and S. vermifera were
tested for their effects on protection of lentil against Fusarium
wilt, and the best effects were achieved by combining
the two Sebacinales with T. harzianum (Dolatabadi et
al. 2012). P. indica was also compared with various
plant growth-promoting rhizobacteria (fluorescent pseu-
domonads, Azospirillum sp.), and they showed similar
effects on growth promotion, yield, salt tolerance and
disease resistance (Sarma et al. 2011; Kumar et al.
2012a; Zarea et al. 2012), while P. indica was superior
to the bacteria in supporting the establishment of micro-
propagated plantlets (Gosal et al. 2010). However, again
the strongest effects resulted from combining biological
agents (Meena et al. 2010; Gosal et al. 2010; Sarma et al.
2011; Kumar et al. 2012a).

Inoculum production and commercial application

In contrast to the obligate biotrophic arbuscular mycorrhizal
fungi, P. indica can also be propagated in axenic cultures as
a saprophyte and grows on numerous different natural and
artificial cultivation media (Verma et al. 1998). However,
the choice of substrate for inoculum production influences
the impact on the plant (Andrade-Linares et al. 2012). The
choice of N source, for example, is critical because propa-
gation on a substrate containing only ammonium results in a
strong negative effect on the plant after inoculation (Kaldorf
et al. 2005).

In current experimental conditions, the fungus is typically
applied as a mixture of hyphae and spores (Table 1). However,
to produce inocula which can be commercially applied, it is
necessary to obtain a larger quantity of spores. This can be
achieved by optimisation of substrate composition and envi-
ronmental conditions (Kumar et al. 2011) and by the applica-
tion of certain nanomaterials (Suman et al. 2010). Additionally,
for distribution, the inoculum must be combined with a carrier,
and two such carriers have already been tested (Sarma et al.
2011). Other important parameters include the amount of
inoculum being applied, the time point of inoculation (Fakhro
et al. 2010) and the choice of soil or substrate for plant
cultivation (Serfling et al. 2007; Fakhro et al. 2010).

Further, to place P. indica on the market, it must be
registered as an inoculum. Regulations for registration vary
between countries, but one bottleneck concerning safety
might be that sometimes negative effects on plant growth
can be observed. This is probably based on the mode of
colonisation, which includes a dependency on programmed
cell death (Deshmukh et al. 2006). Another concern is that
the fungus was isolated in India, and at present, only this
one isolate of P. indica exists. Because S. vermifera is
distributed worldwide and shows similar characteristics to
P. indica (see above), it will be useful to obtain more S.

vermifera isolates from different regions and to analyse their
impact on the plant and for their mode of colonisation. The
fact that the hyphae of P. indica and related Sebacinales
contain bacteria, which promote plant growth and disease
resistance and which can at least partially be cultivated
(Sharma et al. 2008), opens up the possibility of using such
bacteria as inoculum. Another alternative would be the appli-
cation of culture filtrate, since such filtrate can also promote
plant growth and development (Varma et al. 1999; Ghimire et
al. 2009; Vadassery et al. 2009a; Bagde et al. 2011; Kumar et
al. 2012b) and influences the synthesis of particular valuable
compounds (Balsi et al. 2010; Bagde et al. 2011; Kumar et al.
2012b).

Outlook

The interaction of P. indica with plant roots has been inten-
sively studied, and genome sequence and transformation
systems are available. However, in order to use the root
endophyte in agricultural practice, a product for commercial
use must be established and registered. For this purpose,
future research concerning applications should concentrate
on the following points:

— Evaluation of alternatives to P. indica, including related
fungal isolates, endophytic bacteria and culture filtrate

— Inoculum production conditions

— Inoculum formulation and stability

— Persistence of the fungus in the environment

After which, it will be possible to specify scopes for
application, which theoretically could be manifold as the
present review has shown, and to define the conditions
which support the beneficial effects. Finally, it will be nec-
essary to calculate ecological and economic costs and bene-
fits to guide P. indica and related products to successful
agricultural application.
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