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Reactive Programming for 
Orchestrating Robotic Behavior

F
or many service robots, reactivity to changes in 
their surroundings is a must. However, developing 
software suitable for dynamic environments is 
difficult. Existing robotic middleware allows 
engineers to design behavior graphs by organizing 

communication between components. But because these 
graphs are structurally inflexible, they hardly support the 
development of complex reactive behavior. To address this 
limitation, we propose Playful, a software platform that 
applies reactive programming to the specification of 
robotic behavior. 

Playful’s front end is a scripting language that is simple 
(only five keywords) yet results in the runtime coordinated 
activation and deactivation of an arbitrary number of 

higher-level sensory–motor couplings. When using Playful, 
developers describe actions on various levels of abstraction 
via behavior trees. During runtime, an underlying engine 
applies a mixture of logical constructs to obtain the desired 
behavior. These constructs include conditional ruling, 
dynamic prioritization based on resource management, and 
finite state machines. We have successfully used Playful to 
program an upper-torso humanoid manipulator to perform 
lively interaction with any human approaching it.

Robotic Behavior Specification
High-level behavior specification is the offline setup of infor-
mation exchange between software components so that a 
robot autonomously performs a desired behavior online. 
Existing robotic middleware tackles this by enabling the cre-
ation of behavior graphs that arrange communication 
between components.
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A limitation of such behavior graphs is their inflexibility. 
Typically, the structure of the graph is fixed. Therefore, run-
time changes in the robot’s behavior can occur only through 
changes in the states of the nodes. This results in increased 
node-code complexity. Consequently, the robotic behavior is 
no longer expressed solely by the structure of the graph, i.e., a 
profound knowledge of the code embedded with the nodes is 
required to relate the graph to the behavior displayed by the 
robot. As the size of the graph grows and the complexity of 
the nodes increases, this relationship becomes intractable. 
Because the code encapsulated by the nodes does not neces-
sarily refer exclusively to a functionality reusable across 
behaviors, but may also include logic related to the specifics of 
the target behavior, there is a direct negative impact on code 
reusability. And because the logic of the behavior is shared 
between the structure of the graph and the code encapsulated 
by the nodes, the efforts required to modify or extend the 
existing graphs is considerable.

Playful enables the encoding of robotic behavior via 
behavior trees that support runtime structural modifica-
tions, such as 1) changes in the activation status of nodes, 
2) online creation of branches, and 3) online setup of 
information flows between nodes. A first consequence of 
these runtime structural modifications is that these trees 
may express reactive behaviors. For example, Playful is 
suitable for implementing the sensory–motor couplings 
required to grasp a moving object while looking at it. The 
second consequence is that the logic of the robotic 
behaviors designed via Playful no longer needs to be par-
tially delegated to nodes; it may be fully expressed by the 
tree. As exemplified in the “Complex Behaviors” section, 
this has a positive effect in terms of code reuse and 
behavior refactoring.

When using Playful, developers design reactive trees 
whose structure will change during runtime. To simplify the 
definition of such behavior trees, Playful supports, as a front 
end for developers, a novel dedicated scripting language 
based on the reactive programming paradigm. We chose 
this paradigm because it allows for specifying logic via 
expressive statements relatively close to natural language. At 
startup, the script provided by the user is interpreted, the 
corresponding behavior tree is created, and Playful’s under-
lying engine ensures that the specified logic is applied and 
the sensory–motor couplings are suitably coordinated. 
Reactive programming, while popular for creating graphical 
interfaces, is rarely used for robotics (see the “Related Work” 
section). To our knowledge, the Playful scripting language is 
the first application of such programming to the definition 
of behavior trees.

This article shows that applying reactive programming to 
the design of dynamic trees amounts to a high-level scripting 
language that allows the design of reactive behavior trees 
using descriptive statements. In the “Complex Behaviors” sec-
tion, we show that Playful supports the creation of complex 
dynamic behaviors via the association of reusable compo-
nents of modest size. We also show how these behaviors can 

be significantly extended via the addition of only a few lines of 
script. This work focuses on Playful as a convenient tool for 
creating first-order reactive and lively behaviors; interfacing 
with higher-order planning and reasoning software has not 
yet been validated. In the “Future Work” section, we discuss 
how such interfacing could be done and report on related 
early results.

A dedicated website for download and tutorials is available 
[15]. A support video [16] for this article as well as an over-
view video [17] can be found online.

Related Work
Reactive programming is an asynchronous programming 
paradigm concerned with data streams and the propagation 
of change. Elliot and Hudak first formulated it [1], and it has 
been used mostly for the development of graphical user inter-
faces. The researchers in [2] and [3] proposed its use for robot 
control in the form of languages embedded in Haskell. These 
languages handle both streams of continuous values and dis-
crete events without regard for their rates, allowing the cre-
ation of commands at higher levels of abstraction. While the 
latter languages focus on lower-level control, Playful applies 
reactive programming to another domain of robotics: that of 
orchestrating behavior trees. Our software platform monitors 
the activation of higher-level modules communicating with a 
middleware—e.g., the Robot Operating System (ROS). In this 
context, a combination of streams is solved by the middle-
ware, as with the use of publishers and subscribers. Playful 
operates with different concepts (e.g., it does not use monades 
and signals) and provides complementary constructs more 
suitable for describing overall behavior (e.g., online activation 
and modification of behavior trees).

Three-layer architectures, and notably modern hybrid 
architectures, are robotic software creations supporting the 
integration of deliberation and reactive execution. Execu-
tive control often refers to the middle component of three-
layer architectures, for which the concept of task is central 
[4]. A task refers to the execution of a potentially complex 
action characterized by a start and an end. Typically, a task’s 
performance can be monitored, and its success or failure 
evaluated on completion. While both approaches have been 
designed for supporting reactive execution, they differ 
drastically, as the notion of task does not exist in Playful. 
The latter’s behaviors are encoded in tree structures defin-
ing mappings between the state of the world and module 
activation patterns. Thus, Playful and three-layer architec-
tures are suitable for different application domains. Execu-
tive control, as implemented in three-layer architectures, is 
suitable for applying sequences of actions generated online 
by planners. In this article, on the other hand, we present 
Playful only for rapid prototyping of reactive behaviors and 
its possible interfacing with other higher-level decision-
making systems not yet tested and only briefly discussed in 
the “Future Work” section.

Following Target-Drive-Means (TDM), a software product 
for declarative specification of high-level robotic behavior 
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described in [5], Playful relies on a light robotic architecture 
implementing a simple shared memory and resource man-
agement system. It also supports runtime instantiation and 
deletion of modules via the trigger mechanism [6]. The plat-
form is inspired by TDM and implements a similar declara-
tive programming paradigm, one improved with an original 
scripting language as well as support for state machines and 
tree structures.

In many respects, Playful is similar to cognitive robot 
abstract machine (CRAM) plan language (CPL), with 
which it shares some core features: a dedicated language 
and a synchronizing of parallel behaviors, with support for 
reactive execution targeting real, physical robots [7]. The 
two software items nevertheless rely on fundamentally dif-
ferent approaches. CPL is a plan language that is explicitly 
goal oriented. On the other hand, Playful does not rely on 
planning, as it is based on a mixture of logic, with no ex -
plicit declaration of goals. In CRAM, CPL has also been 
tightly integrated into knowledge processing for robots, 
which provides first-order knowledge representation and 
reasoning. In the “Future Work” section, we discuss the 
possibility of interfacing Playful with reasoning-enabled 
software via evaluation.

Playful encodes behaviors using tree structures, similar to 
some frameworks used for robot soccer [8]. Our platform dif-
fers from these by the mixture of logic it implements: a com-
bination of conditional ruling, dynamic prioritization based 
on resource management, and finite state machines.

Playful’s scripting language is used to encapsulate sub-
behaviors as branches of a behavior tree. Because of the 
reactive programming paradigm applied, these branches 
may run in parallel, and Playful’s syntax is particularly 
suitable for specifying parallel actions. The work in [9] 
introduced scripting commands for parallel execution as 
nonblocking commands in URBI and have since been 
implemented in robotic operating systems as post com-
mands (Softbank Robotics NaoQi) or via monitoring 
libraries, such as actionLib (the ROS monitoring library). 
But in those, parallel commands are created in the con-
text of imperative scripts, where sequential executions are 
monitored by classic statements. In contrast, Playful uses 
parallel commands in the context of reactive program-
ming. Our platform does not use any of the statements 
used by imperative programming languages, such as 
while, if, or for. It is based on novel statements that 
are suitable for reactive programming: whenever, 
targeting, priority of, and switch to. If is 
also a keyword used by Playful, but is adapted to reac-
tive programming.

At runtime, the Playful engine reevaluates the behavior 
tree at a fixed frequency, leading to activation and/or deacti-
vation of its branches. This differs from the approaches in 
which logic is encoded in edges, and module activation relies 
on traversing the tree during operation [10].

The leaf nodes of Playful’s tree are Python modules that 
run their own thread, control access to resources, and manage 

start and stop calls. Our software platform provides an appli-
cation programming interface (API) for the creation of new 
modules, and is in this respect similar to PyRobot [11].

Reactive Programming
The reactive programming paradigm, as implemented by 
Playful, declares the conditional activation of a  

a whenever e

This declarative statement calls for the activation of a 
whenever e is evaluated to true, independently of the execu-
tion status of the rest of the program. When using reactive 
programming, e is continuously reevaluated, and the activa-
tion status of a is updated accordingly. By contrast, using an 
imperative programming paradigm, conditional activation of 
a routine a is monitored via instructions such as 

if(e){
   a;
}

Based on such an instruction, a will be activated if e is 
true at the moment the expression is evaluated. The difference 
between imperative programming and reactive programming 
is striking. Typically, imperative scripts focus on sequential 
execution, monitored via classic statements such as while, 
for, and if. In the following imperative example, a2 may 
activate only after a1:

if(e1){
   a1;
}
if(e2){
   a2;
}

In contrast, reactive programming results in a purely 
declarative approach in which the commands in the script do 
not presume any execution order. Activations of a and b are 
asynchronously monitored, and the order of these two state-
ments has no importance:

a1 whenever e1
a2 whenever e2

As the evaluation status of e1 and e2 change, the pro-
gram above results in four activation patterns: 1) neither a1 
nor a2 is activated, 2) only a1 is activated, 3) only a2 is acti-
vated, and 4) both a1 and a2 are activated. If a1 and a2 are 
modules communicating with a robotic middleware, these 
changes in activation patterns will shape the behavior of the 
robot. Reactive programming therefore naturally supports 
mapping from the world state to patterns of module activa-
tion. In addition, it allows the natural expression of behaviors 
that may overlap in time.
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Playful Scripting Language

Conditional Activation
In the previous section, we already presented a reactive pro-
gramming statement: a is called a node and e an evaluation. 
In Playful, evaluations are arbitrary functions programmed 
using the Python scripting language.

Online Prioritization
Statements may be prioritized as follows: 

a1 whenever e1
a2 whenever e2

When both e1 and e2 evaluate to true, this program com-
mands a1 and a2 to be simultaneously activated. If a1 and a2 
control the same resource (e.g., the same robotic joint), they 
may conflict. The keyword priority of can be used to 
specify which node has prioritized access to the resource. 

a1 whenever e1, priority of f1
a2 whenever e2, priority of f2

If f1 evaluates to a number higher than f2, a1 is activated 
and a2 is inactivated. In case a1 and a2 do not compete for 
access to the same resource, the priority of keyword has 
no effect.

State Machine
Playful supports state machines. For example, 

a1 switch to a2 if e1
a2 switch to a1 if e2

Nodes a1 and a2 may never activate simultaneously, and 
they will alternatively activate depending on the runtime 
evaluation of e1 and e2. At startup, if e1 evaluates to true, 
a1 will activate. Using state machines in Playful scripts 
allows the platform to deviate from a purely reactive pro-
gramming paradigm, as the order statement of the script is 
of importance.

Behavior Tree
A node can be declared as a list of nodes, themselves associat-
ed with evaluations. For example, 

a1 whenever e1
a1:
a1a whenever e1a, priority of f1a
a1b whenever e1b, priority of f1b

This defines a tree in which a1 is a node, and a1a and a1b 
its child nodes. Nodes a1a and a1b may be leaf nodes, or they 
may be declared a list of nodes, resulting in behavior trees of 
arbitrary depth. Leaf nodes are instances of user-developed 
Python objects. The code they encapsulate may use the API 

provided by the robotic middleware to receive sensor data or 
send control commands.

Configuration
Some nodes and some evaluations may be configurable. Con-
figuration values can be provided: 

a whenever e | key = value

If the code encapsulated by a and/or e accepts key as an 
argument, it will be configured accordingly.

Targeting
The keyword targeting  is a multifaceted term that 
simultaneously commands the creation of new branches at 
runtime and enables continuous configuration of the creat-
ed branches. Through targeting, developers can attach 
branches to a type of perception. For example, setting a look 
node to target objects of ball type will set the robot to look at 
detected balls. A new branch will be created for each detect-
ed ball. Each new branch will continuously reconfigure itself 
during runtime, according to the changing properties of the 
associated ball.

The targeting system relies on Playful’s shared memory. 
This memory supports data exchange via the pull/push para-
digm: code encapsulated by leaf nodes may push or pull 
schemes to or from the memory. Schemes are instances of 
arbitrary objects consisting of a set of properties. When a 
scheme is pushed to the memory for the first time, the mem-
ory attributes a key to it. The Python API provides a pull 
function. The code encapsulated in nodes can pass this mem-
ory key to this function to extract from the memory the infor-
mation encapsulated by the scheme. The targeting 
keyword is used to relate a tree branch to a specific memory 
key, as in 

a1 |out = s
 targeting s: a2 whenever e2, priority 
of f2

During runtime, node a1 pushes schemes of type s to the 
memory. When a new memory key related to a scheme of 
type s is created, targeting commands

 ●  the creation of a new instance of a2 and its related evalua-
tions; if a2 is declared as a list of child nodes, these are also 
instantiated, creating a full tree branch

 ●  that the memory key is passed as an implicit argument to 
all nodes and evaluations of the newly created branch.
Schemes may also be deleted from the memory, and the 

Playful Python API provides a function for doing so. In 
such a case, the branches relating to the memory key of the 
deleted scheme are removed from the tree. By default, the 
Playful engine never deletes schemes, even when the corre-
sponding objects are not currently perceived, as it allows 
the system to act on objects that are not currently in the 
field of vision.
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Passing a memory key as an argument to a branch is in 
many respects similar to passing a pointer to a function in the 
C++ programming language. During runtime, the code relat-
ed to the targeted branches may use the key to query the 
memory and use the extracted information for self-reconfigu-
ration. As schemes may be pushed and pulled to and from the 
memory at high frequencies, this may result in efficient sen-
sory–motor couplings.

In the background, data exchange relies exclusively on 
pull/push calls. But in effect, the targeting keyword 
results in a flow of information from the memory to all nodes 
and evaluations corresponding to the targeted branch. Via the 
targeting keyword, these information flows are only 
implied by the programmer and implemented transparently 
by the system at runtime.

Targeting is Playful’s less intuitive concept. It is based on 
the triggering system, which we previously implemented in 
TDM [5], here extended to behavior trees. For details related 
to shared memory, the pull/push data exchange paradigm, 
and encapsulation of data into schemes, we invite the reader 
to consult [6]. We provide concrete instances in the “Exam-
ples” section.

Formal Syntax
Playful’s syntax is formally presented in Algorithm 1. Items in 
parentheses refer to content that has to be specified by the 
developer, and items in brackets indicate optional content. In 
bold are the supported statement keywords. Evaluations are 
functions that should either return a Boolean (when associated 
with whenever or if) or a float (when associated with pri-
ority of). A node is defined as a list of nodes associated 
with keywords for dynamic reconfiguration and exchange of 
memory keys (targeting), evaluations for setting rules of 
activation (whenever, switch to), and rules of priori-
tization (priority of). Leaf nodes are instances of Python 
objects, which interact with the middleware. Higher levels of 
the tree encode the logic that monitors the leaf nodes’ activation 
status. They do so through evaluations and resource manage-
ment (e.g., forbidding two leaf nodes from simultaneously con-
trolling the same robot joints). If no evaluation is used and no 
resource conflict is detected, each leaf node runs continuously, 
concurrent with all of the other running leaf nodes.

The activation status of a node propagates to all of the 
nodes of its subtree, including the leaf nodes. If a given node 

is deactivated, all of the nodes in its subtrees are deactivated. If 
a node is activated, the monitoring of the activation status of 
its underlying nodes is delegated to their evaluations. Thus, a 
change in the activation status of a node in the tree implies a 
change in the pattern of activation of its underlying leaf 
nodes. And because leaf nodes interface with the middleware, 
a change in the patterns of activation of the leaf nodes shapes 
the behavior performed by the robot.

Python for Evaluations and Leaf Nodes
Evaluations and leaf nodes are to be programmed using 
the Python scripting language. Evaluations can be any 
arbitrary Python statement that evaluates to either a Bool-
ean (when associated with the keywords whenever or 
if) or a float (when connected with priority to). 
The Playful interpreter also supports simple logic and 
arithmetic. For example, an evaluation may consist of the 
negation of a Python function (keyword not) or the addi-
tion of a function with a number. Leaf nodes correspond 
to Python objects, which must implement the specific 
interface required for communication with the Playful 
engine (e.g., it must implement a run  function). Leaf 
nodes may be considered our platform’s primitives, and 
the behavior tree the encoding of the logic used to orches-
trate their activation during runtime. Each leaf node is 
spawned in a dedicated thread running at its dedicated fre-
quency. Playful provides an API for receiving start or stop 
commands from the engine, accessing the shared memory, 
and reserving or releasing resources.

Playful’s Back End
The scripting language is the front end of the Playful software 
platform, which is completed by the engine back end. The lat-
ter consists of two parts. First, there is the interpreter, which 
creates the behavior tree and relates nodes and evaluations to 
their corresponding Python code. Second, there is the engine, 
which at runtime

 ●  instantiates new branches when the memory is updated 
with a new key, according to the usage of the targeting 
keyword

 ●  calls evaluations code, i.e., branches that are conditionally 
evaluated as false (whenever keyword) or as not active 
(switch to keyword) are sent signals to deactivate; 
other nodes are sent signals to activate

Algorithm 1: 

(node name):
[
  [targeting (memory key):](node name)[, whenever (evaluation)][, priority of  
 (evaluation) if (evaluation), […]][, switch to (node name)  
 if (evaluation), […]]

 […]
]
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 ●  sorts activated leaf nodes (based on the priority of 
keyword and the tree structure), and grants or revokes 
access to resources based on this order.

Examples
Algorithm 2 shows a Playful script for a toy example corre-
sponding to a dynamic ball-searching and following behavior. 
The corresponding tree representation is displayed in Fig-
ure 1. We implemented this script in Nao, a small humanoid 
robot commercialized by Softbank Robotics, and the related 
behavior can be seen in the support video [17].

Script Description
The higher level of behavior is shown in 

ball_chase, switch to sit if battery_low 
sit, switch to ball_chase if battery_high

This implements a state machine that has the robot chas-
ing the ball until its battery gets low (ball_chase), in 
which case it sits (sit). When recharged, the robot 
resumes the chasing behavior. ball_chase is declared as 
a list of three nodes:

ball_chase:
  ball_detection | out=ball
   bargeting ball: following, whenever  
   time_ago <2, priority of 2
  searching, priority of 1

When ball chasing is activated, the vision module for ball 
detection is activated and pushes schemes describing detected 
balls to the memory. In this case, a ball is described using 
three properties: its color (to differentiate one ball from 
another), its position, and a time stamp. When a new ball is 
detected, the targeting command creates a following 
branch related to it—i.e., a pulling of position and color infor-
mation from the memory via the Python API will return the 
most recent information corresponding to the targeted ball. 
This branch is activated only when the ball has been recently 
detected, as commanded by the time_ago <2 evaluation. 
When activated, because of its higher priority score, it blocks 
searching, which is of lower priority. Only at startup, when no 
ball has been detected yet, or when a ball has not been detect-
ed for more than 2 s, the lower priority searching branch 
may activate. Not using priorities results in an undefined 
behavior, as both following and searching would, at 
times, be set to activate without informatio n about which 
should take precedence. This  results in the robot alternating 
between following and searching for the ball.

memory

ball_chase

ball_detection
following

looking
walk_to

searching

turning head_search

head_search

sit

look_at

Figure 1. A tree representation of the script presented in 
Algorithm 2. Nodes in blue correspond to leaf nodes.

Algorithm 2: 

 ball_chase, switch to sit if   battery_low
 sit, switch to ball_chase if  battery_high

ball_chase:
  ball_detection | out=ball
   targeting ball: following,  whenever time_ago<2, priority of 2
  searching, priority of 1

  following:
   looking
   walk_to, whenever far

   looking:
      look_at, whenever time_ago<1, priority of 2
     head_search, priority of 1

  searching:
   turning

   head_search
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In turn, following corresponds to looking at the ball 
while walking toward it (as long as the distance between the 
ball and the robot is significant, as expressed by the evaluation 
implementing the Python function far):

following:
  looking
  walk_to, whenever far

and looking at the ball corresponds to either centering 
the detected ball in the center of vision (look_at) 
or performing a rapid head-search motion (head_
search):

looking:
   look_at, whenever time_ago <1,  

 priority of 2
  head_search, priority of 1

It can be noted that the Python code corresponding to leaf 
nodes and evaluations can be reused not only across pro-
grams but also several times in the same script. For example, 
the head_search node is used in two branches: looking 
and searching.

The full behavior is robust, as the robot either 1) walks 
toward the ball when it sees it, 2) keeps walking toward the 
last known position of the ball while searching for it with its 
head, 3) stops walking and performs a full body search, or 4) 
sits in a safe position if at any time its battery runs low. Relat-
ed patterns of activation in the behavior tree are displayed in 
Figure 2.

Reactivity
The keyword targeting relates sensory information 
corresponding to the detected ball to the following 
node. Figure 3 shows the resulting flows of informa-
tion that are applied at runtime when the following 
subtree is activated. Information encoded by the 

memory

ball_detection

turning head_search

memory

ball_detection

walk_to

head_search

memory

sit

memory

ball_detection

walk_to

look_at

(a)

(b)

(c)

(d)

Figure 2. Some possible patterns of activation of the tree 
presented in Figure 1 where the robot is (a) walking toward the 
ball when it sees it; (b) walking toward the last known position 
of the ball while searching for it with its head; (c) performing 
a full body search; and (d) sitting in a safe position when its 
battery runs low. Black is used to indicate activation of nodes 
and blue activation of leaf nodes. For brevity, only activated leaf 
nodes are labeled. 

memory

following

walk_tolook_at

ball_detection

Middleware

B
a
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Ball

B
a
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C
o
n
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Figure 3. The flows of information are monitored during runtime 
to implement sensory–motor couplings, here for having the 
robot tracking the ball. 



56 •  IEEE ROBOTICS & AUTOMATION MAGAZINE  •  SEPTEMBER 2018

ball_detection leaf nodes are pushed to the shared 
memory. The targeting keyword then links the follow-
ing branch to the related memory item. By virtue of the 
resulting information flows, the leaf nodes look_at and 
walk_to dynamically reconfigure their parameters. Eval-
uations along the subtree may also relate to the targeted 
memory item; e.g., time_ago refers to the latest time 
stamp of the memory item.

Adaptation for Multiple Targets
As presented in the “Targeting” section, the keyword 
targeting commands the online creation of subtrees. 
That keyword conditions the runtime instantiation of 
targeted subtrees to the creation of their related memory 
key. Figure 4(a) shows the instantiation of the tree at 
startup. Because no corresponding memory key has yet 
been created, the following subtree has not been 
instantiated. In Figure 4(b), the robot detected a green 
ball, and a corresponding following subtree has 
been instantiated.

If the ball_detection node differentiates between 
balls (e.g., using color information), it pushes related 
information to several memory keys. The memory will 
host a separate memory key for each ball detected. The 
targeting keyword then results in online instantiation 
of several subtrees, one per memory key. The script pre-
sented in Algorithm 2 can easily be modified to support 
an environment with multiple balls (the updated code is 
in bold):

targeting ball: following, whenever time_
ago <2, priority of  
2 + 1/ distance

This modification sets the robot to follow the closest ball, 
as reevaluated continuously during runtime. In Figure 4(c), 
the robot detected a red ball, and a second following 
branch has been instantiated.

Filtering
Leaf nodes can be used to implement filters. For example, the 
original script shows

 targeting ball: following, whenever 
time_ago <2, priority of 2

The following modification implements filtering:

targeting ball: filter | out=filtered_ball
targeting filtered_ball: following, 

whenever time_ago <2, priority of 2

This syntax is agnostic to the specifics of the filter 
implemented. In our example, the filter combines knowl-
edge about the perceived ball with the odometry function-
ality provided by the middleware to implement a Kalman 

ball_detection

searching

ball_detection

searchingfollowing

ball_detection
searchingfollowing following

(a)

(b)

(c)

Figure 4. An illustration of dynamic topology updating. (a) The 
topology of the behavior tree at runtime prior to any ball detection 
by the robot. (b) The robot detects a green ball, and a corresponding 
following subtree is instantiated (in green). (c) A red ball is 
detected, resulting in the instantiation of a competing following 
subtree (in red).
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filter. While the syntax is trivial, it enforces suitable infor-
mation flows, presented in Figure 5. Because Playful relies 
on schemes for data exchange (see the “Targeting” sec-
tion), it is possible to create generic filters that can be 
applied over a wide range of objects. For example, the fil-
ter used in this section could be targeted by any scheme 
having a position and time_stamp property. It can 
be noted that, via the targeting keyword, it is possible 
to relate branches to different levels of filtering. A branch, 
for instance, may relate to raw data (targeting 
ball), while another relates to filtered data (targeting 
filtered_ball).

Refactoring
Playful’s declarative programming paradigm allows for 
rapid refactoring of existing programs. These advantages 
have been exposed for TDM [6] and experimentally vali-
dated in [5]. Here, we briefly show through an example 
how they apply to Playful. In Algorithm 2, the robot 
looks at the ball it is approaching. The behavior would be 
more robust if it could share attention between all of the 
detected balls. The robot could better reevaluate the rela-
tive distance to all balls, and therefore make a better-
informed decision of which ball to approach. The 
original script is

 targeting ball: following, whenever 
time_ago <2, priority of 2

following:
  looking
  walking_to, whenever far

The following shows how a simple refactoring of the 
original script results in the robot alternating in looking at 
each ball:

 targeting ball: walking_to, whenever 
time_ago <2 and far,priority of 2

 targeting ball: looking, priority of 1 
+ time_not_seen

The longer the robot did not see a specific ball, the higher 
the priority of the related look action. This results in the 
robot looking alternatively at each ball.

Core Reuse
Because of its tree-based organization, full Playful applica-
tions may be trivially reused as leaf nodes of larger applica-
tion trees. For example, the full tree of the ball-tracking 
behavior may be saved in a file ball_tracking.play, 
which may be reused in other programs. This feature pro-
vides a strategy for the development of robotic applications 
of increasing complexity. Full applications may be created 
and debugged, saved as leaf nodes, and then combined. The 
following section shows examples of applications developed 
using this approach.

Complex Behaviors
A ball-grouping behavior executed by Nao and an interactive 
manipulation behavior performed by Apollo, a real-time-con-
trolled upper-torso humanoid robot, have been obtained exclu-
sively through the combination of evaluations and leaf nodes of 
modest size (three to 72 lines of code, averaging 21).  This indi-
cates that complexity is well managed and spread over simple 
reusable components, rather than centralized in a few complex 
leaf nodes. Spreading of complexity across reusable compo-
nents enables developers to extend behaviors via recombination 
of these components. An extension of Apollo’s behavior in the 
“Extended Behavior” section provides a concrete example.

Ball-Grouping Behavior Executed on Nao
The goal of the application considered in this section is to 
keep two balls together, either by kicking one toward the 
other (if both balls are on the floor) or by grasping a ball and 
bringing it to the other (if one of the balls is presented to the 
robot by a person). The application is executed on a Nao 
robot, with no supplementary external sensing. Figure 6 
shows the robot executing the behavior, which is also includ-
ed in the support video [16].

Figure 7 includes the layout of the tree when the robot has 
detected only one ball. The online creation of subtrees results 

Figure 6. A Nao robot executing the ball-grouping behavior. 
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in a considerably larger behavior tree at runtime once Nao 
detects a second ball. We developed this tree by first creating 
and debugging simple trees, then reusing these as leaf nodes 
of other simple trees, which we also debugged, and so forth 
until we obtained the desired complex behavior.

The tree has Nao sharing attention between the two balls. 
The robot uses virtual targets to which to walk for either 
aligning itself with the two balls to kick one in the direction of 
the other or for walking toward one while avoiding the other 
and performing a reactive arm-tracking behavior based on 
inverse kinematics.

Interactive Manipulation Task Executed on Apollo

Software Stack
Apollo is a fixed-base manipulation platform equipped with 
seven-degrees of freedom Kuka LWR IV arms, three-fingered 
Barrett Hands, and a red, green, blue depth camera (Asus 
Xtion) mounted on an active humanoid head (Sarcos). Its 
operating system, simulation laboratory (SL), runs over a real-
time-patched Linux kernel (Xenomai), and performs torque 
control using an inverse dynamics controller to track the 
desired joint state [12]. The controllers implemented in SL are 
designed to remain stable in the context of rapid behavior 
switching, which is a requirement for safe interfacing with 
Playful. The ROS is used for broadcasting RGB images and 
point clouds collected from the head-mounted camera, apply-
ing sensor processing using the point cloud library and the 
OpenCV libraries, and calculating transformations between 
various reference frames. ROS nodes broadcast sensory infor-
mation, transforms, and joint states. This approach corre-
sponds to standard robotics practices.

The Playful tree is added above the ROS. The sensory 
leaf nodes subscribe to the underlying topics, and the motor 
leaf nodes publish the desired joint states, which are then 
transmitted to the underlying SL controller via the ROS in 
real time.

Original Behavior
We used Playful to develop a human–robot interaction 
application. We controlled the right arm of the robot to mir-
ror the motion of the arm of the closest person standing in 
front of it. When presented with a cup, the robot grasps it 
and places it at the location indicated by the person. As the 
cup moves, new grasping postures are dynamically recom-
puted. Both for the sake of keeping objects centered in the 
field of vision and giving an impression of liveliness, the 
robot alternates its gaze between the presented cup, the per-
son, and the person’s hand.

A picture of Apollo performing the application is shown in 
Figure 8, and the behavior is also shown in the support video 
[16]. As can be seen, the robot is highly interactive. However, 
we effectively managed the complexity with reusable compo-
nents of modest size. All of the code and modules used are 
based on well-known accessible libraries, part of the roboti-
cist’s standard tool kit. We were able to achieve behavioral 

richness and reactivity because of Playful’s efficient code orga-
nization and expressiveness.

Extended Behavior
We exclusively extended the behavior by reusing existing 
nodes and evaluations. This extension has the robot dropping 
the cup it has in hand if 
any other cup is presented 
to it. To obtain the desired 
results, the nodes for arm 
tracking, motion plan-
ning, and evaluations that 
assess the relative posi-
tions of objects were ap -
plied in a new branch. 
This extension required 
the addition of only six 
lines to the Playful script 
and did not require de -
velopment of any new 
Python component. Yet it 
extends the behavior considerably. This extended behavior 
can be found in the support video [16]. A video of Apollo 
running this application when interacting with various guests 
is shown online [18].

Future Work
Playful is suitable for the creation of first-order reactive 
behavior. Our efforts are now directed toward evaluating 
Playful as an interface between higher-level decision-making 
systems and reactive execution. A standard approach consists 
of using planners to generate sequences of tasks to execute 
and monitor. Our platform is different.

In Playful, all of the logic is implemented via evaluations. 
As evaluations correspond to arbitrary Python code, they 
may be used as bridges with any higher-level software that 
supports interfacing with Python. Via evaluations, other 
software may thus command activation or deactivation of 
subtrees, modify priorities, or change the state of the run-
ning program.

To evaluate this approach, we have interfaced Playful 
with a case-supported principle-based behavior paradigm, a 

Figure 8. Apollo executing an interactive manipulation behavior. 
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system for deciding which action a robotic agent should 
accomplish based on ethical principles [13]. The target appli-
cation is elder care, and the target robotic system is TiaGO 

(PAL Robotics). Proof of 
concept is currently per-
formed using Nao. The 
ethical engine continu-
ously reevaluates the situ-
ation as observed by the 
robot by connecting to 
Playful’s shared memory. 
Via the evaluations it 
interfaces with, it sets the 
priority of the higher-level 
subtrees based on their 
ethical desirability. Details 

may be found in [14], a presentation video is online [19], and 
the latest results are being prepared for publication. The suc-
cess of this approach would enhance the reactivity displayed 
by robots without sacrificing the framework’s ability to inter-
face with other advanced decision-making algorithms.

Conclusions
Playful is a software creation for behavior engineering whose 
front end is a scripting language based on a reactive pro-
gramming paradigm. It supports the development of simple, 
clear, and well-structured code that brings robots to life. 
Unlike other complex software and robotic architectures, 
Playful is easy to use and deploy. It uses a five-keyword 
scripting language that supports the rapid definition of 
dynamic behavior trees of arbitrary complexity. Playful not 
only allows for specifying the desired logic, but it expresses 
the flow of information that should be applied at runtime. As 
a result, reactive behavior can be created using expressive 
instructions. Playful is agnostic regarding the middleware 
and the robotic platform it runs on, making it a convenient 
tool for a wide range of applications.
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