
49SEPTEMBER 2018 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

©ISTOCKPHOTO.COM/DINN

The Playful
Software Platform

By Vincent Berenz and Stefan Schaal

Reactive Programming for
Orchestrating Robotic Behavior

F
or many service robots, reactivity to changes in
their surroundings is a must. However, developing
software suitable for dynamic environments is
difficult. Existing robotic middleware allows
engineers to design behavior graphs by organizing

communication between components. But because these
graphs are structurally inflexible, they hardly support the
development of complex reactive behavior. To address this
limitation, we propose Playful, a software platform that
applies reactive programming to the specification of
robotic behavior.

Playful’s front end is a scripting language that is simple
(only five keywords) yet results in the runtime coordinated
activation and deactivation of an arbitrary number of

higher-level sensory–motor couplings. When using Playful,
developers describe actions on various levels of abstraction
via behavior trees. During runtime, an underlying engine
applies a mixture of logical constructs to obtain the desired
behavior. These constructs include conditional ruling,
dynamic prioritization based on resource management, and
finite state machines. We have successfully used Playful to
program an upper-torso humanoid manipulator to perform
lively interaction with any human approaching it.

Robotic Behavior Specification
High-level behavior specification is the offline setup of infor-
mation exchange between software components so that a
robot autonomously performs a desired behavior online.
Existing robotic middleware tackles this by enabling the cre-
ation of behavior graphs that arrange communication
between components.

Digital Object Identifier 10.1109/MRA.2018.2803168

Date of publication: 10 May 2018

1070-9932/18©2018IEEE

50 • IEEE ROBOTICS & AUTOMATION MAGAZINE • SEPTEMBER 2018

A limitation of such behavior graphs is their inflexibility.
Typically, the structure of the graph is fixed. Therefore, run-
time changes in the robot’s behavior can occur only through
changes in the states of the nodes. This results in increased
node-code complexity. Consequently, the robotic behavior is
no longer expressed solely by the structure of the graph, i.e., a
profound knowledge of the code embedded with the nodes is
required to relate the graph to the behavior displayed by the
robot. As the size of the graph grows and the complexity of
the nodes increases, this relationship becomes intractable.
Because the code encapsulated by the nodes does not neces-
sarily refer exclusively to a functionality reusable across
behaviors, but may also include logic related to the specifics of
the target behavior, there is a direct negative impact on code
reusability. And because the logic of the behavior is shared
between the structure of the graph and the code encapsulated
by the nodes, the efforts required to modify or extend the
existing graphs is considerable.

Playful enables the encoding of robotic behavior via
behavior trees that support runtime structural modifica-
tions, such as 1) changes in the activation status of nodes,
2) online creation of branches, and 3) online setup of
information flows between nodes. A first consequence of
these runtime structural modifications is that these trees
may express reactive behaviors. For example, Playful is
suitable for implementing the sensory–motor couplings
required to grasp a moving object while looking at it. The
second consequence is that the logic of the robotic
behaviors designed via Playful no longer needs to be par-
tially delegated to nodes; it may be fully expressed by the
tree. As exemplified in the “Complex Behaviors” section,
this has a positive effect in terms of code reuse and
behavior refactoring.

When using Playful, developers design reactive trees
whose structure will change during runtime. To simplify the
definition of such behavior trees, Playful supports, as a front
end for developers, a novel dedicated scripting language
based on the reactive programming paradigm. We chose
this paradigm because it allows for specifying logic via
expressive statements relatively close to natural language. At
startup, the script provided by the user is interpreted, the
corresponding behavior tree is created, and Playful’s under-
lying engine ensures that the specified logic is applied and
the sensory–motor couplings are suitably coordinated.
Reactive programming, while popular for creating graphical
interfaces, is rarely used for robotics (see the “Related Work”
section). To our knowledge, the Playful scripting language is
the first application of such programming to the definition
of behavior trees.

This article shows that applying reactive programming to
the design of dynamic trees amounts to a high-level scripting
language that allows the design of reactive behavior trees
using descriptive statements. In the “Complex Behaviors” sec-
tion, we show that Playful supports the creation of complex
dynamic behaviors via the association of reusable compo-
nents of modest size. We also show how these behaviors can

be significantly extended via the addition of only a few lines of
script. This work focuses on Playful as a convenient tool for
creating first-order reactive and lively behaviors; interfacing
with higher-order planning and reasoning software has not
yet been validated. In the “Future Work” section, we discuss
how such interfacing could be done and report on related
early results.

A dedicated website for download and tutorials is available
[15]. A support video [16] for this article as well as an over-
view video [17] can be found online.

Related Work
Reactive programming is an asynchronous programming
paradigm concerned with data streams and the propagation
of change. Elliot and Hudak first formulated it [1], and it has
been used mostly for the development of graphical user inter-
faces. The researchers in [2] and [3] proposed its use for robot
control in the form of languages embedded in Haskell. These
languages handle both streams of continuous values and dis-
crete events without regard for their rates, allowing the cre-
ation of commands at higher levels of abstraction. While the
latter languages focus on lower-level control, Playful applies
reactive programming to another domain of robotics: that of
orchestrating behavior trees. Our software platform monitors
the activation of higher-level modules communicating with a
middleware—e.g., the Robot Operating System (ROS). In this
context, a combination of streams is solved by the middle-
ware, as with the use of publishers and subscribers. Playful
operates with different concepts (e.g., it does not use monades
and signals) and provides complementary constructs more
suitable for describing overall behavior (e.g., online activation
and modification of behavior trees).

Three-layer architectures, and notably modern hybrid
architectures, are robotic software creations supporting the
integration of deliberation and reactive execution. Execu-
tive control often refers to the middle component of three-
layer architectures, for which the concept of task is central
[4]. A task refers to the execution of a potentially complex
action characterized by a start and an end. Typically, a task’s
performance can be monitored, and its success or failure
evaluated on completion. While both approaches have been
designed for supporting reactive execution, they differ
drastically, as the notion of task does not exist in Playful.
The latter’s behaviors are encoded in tree structures defin-
ing mappings between the state of the world and module
activation patterns. Thus, Playful and three-layer architec-
tures are suitable for different application domains. Execu-
tive control, as implemented in three-layer architectures, is
suitable for applying sequences of actions generated online
by planners. In this article, on the other hand, we present
Playful only for rapid prototyping of reactive behaviors and
its possible interfacing with other higher-level decision-
making systems not yet tested and only briefly discussed in
the “Future Work” section.

Following Target-Drive-Means (TDM), a software product
for declarative specification of high-level robotic behavior

51SEPTEMBER 2018 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

described in [5], Playful relies on a light robotic architecture
implementing a simple shared memory and resource man-
agement system. It also supports runtime instantiation and
deletion of modules via the trigger mechanism [6]. The plat-
form is inspired by TDM and implements a similar declara-
tive programming paradigm, one improved with an original
scripting language as well as support for state machines and
tree structures.

In many respects, Playful is similar to cognitive robot
abstract machine (CRAM) plan language (CPL), with
which it shares some core features: a dedicated language
and a synchronizing of parallel behaviors, with support for
reactive execution targeting real, physical robots [7]. The
two software items nevertheless rely on fundamentally dif-
ferent approaches. CPL is a plan language that is explicitly
goal oriented. On the other hand, Playful does not rely on
planning, as it is based on a mixture of logic, with no ex -
plicit declaration of goals. In CRAM, CPL has also been
tightly integrated into knowledge processing for robots,
which provides first-order knowledge representation and
reasoning. In the “Future Work” section, we discuss the
possibility of interfacing Playful with reasoning-enabled
software via evaluation.

Playful encodes behaviors using tree structures, similar to
some frameworks used for robot soccer [8]. Our platform dif-
fers from these by the mixture of logic it implements: a com-
bination of conditional ruling, dynamic prioritization based
on resource management, and finite state machines.

Playful’s scripting language is used to encapsulate sub-
behaviors as branches of a behavior tree. Because of the
reactive programming paradigm applied, these branches
may run in parallel, and Playful’s syntax is particularly
suitable for specifying parallel actions. The work in [9]
introduced scripting commands for parallel execution as
nonblocking commands in URBI and have since been
implemented in robotic operating systems as post com-
mands (Softbank Robotics NaoQi) or via monitoring
libraries, such as actionLib (the ROS monitoring library).
But in those, parallel commands are created in the con-
text of imperative scripts, where sequential executions are
monitored by classic statements. In contrast, Playful uses
parallel commands in the context of reactive program-
ming. Our platform does not use any of the statements
used by imperative programming languages, such as
while, if, or for. It is based on novel statements that
are suitable for reactive programming: whenever,
targeting, priority of, and switch to. If is
also a keyword used by Playful, but is adapted to reac-
tive programming.

At runtime, the Playful engine reevaluates the behavior
tree at a fixed frequency, leading to activation and/or deacti-
vation of its branches. This differs from the approaches in
which logic is encoded in edges, and module activation relies
on traversing the tree during operation [10].

The leaf nodes of Playful’s tree are Python modules that
run their own thread, control access to resources, and manage

start and stop calls. Our software platform provides an appli-
cation programming interface (API) for the creation of new
modules, and is in this respect similar to PyRobot [11].

Reactive Programming
The reactive programming paradigm, as implemented by
Playful, declares the conditional activation of a

a whenever e

This declarative statement calls for the activation of a
whenever e is evaluated to true, independently of the execu-
tion status of the rest of the program. When using reactive
programming, e is continuously reevaluated, and the activa-
tion status of a is updated accordingly. By contrast, using an
imperative programming paradigm, conditional activation of
a routine a is monitored via instructions such as

if(e){
 a;
}

Based on such an instruction, a will be activated if e is
true at the moment the expression is evaluated. The difference
between imperative programming and reactive programming
is striking. Typically, imperative scripts focus on sequential
execution, monitored via classic statements such as while,
for, and if. In the following imperative example, a2 may
activate only after a1:

if(e1){
 a1;
}
if(e2){
 a2;
}

In contrast, reactive programming results in a purely
declarative approach in which the commands in the script do
not presume any execution order. Activations of a and b are
asynchronously monitored, and the order of these two state-
ments has no importance:

a1 whenever e1
a2 whenever e2

As the evaluation status of e1 and e2 change, the pro-
gram above results in four activation patterns: 1) neither a1
nor a2 is activated, 2) only a1 is activated, 3) only a2 is acti-
vated, and 4) both a1 and a2 are activated. If a1 and a2 are
modules communicating with a robotic middleware, these
changes in activation patterns will shape the behavior of the
robot. Reactive programming therefore naturally supports
mapping from the world state to patterns of module activa-
tion. In addition, it allows the natural expression of behaviors
that may overlap in time.

52 • IEEE ROBOTICS & AUTOMATION MAGAZINE • SEPTEMBER 2018

Playful Scripting Language

Conditional Activation
In the previous section, we already presented a reactive pro-
gramming statement: a is called a node and e an evaluation.
In Playful, evaluations are arbitrary functions programmed
using the Python scripting language.

Online Prioritization
Statements may be prioritized as follows:

a1 whenever e1
a2 whenever e2

When both e1 and e2 evaluate to true, this program com-
mands a1 and a2 to be simultaneously activated. If a1 and a2
control the same resource (e.g., the same robotic joint), they
may conflict. The keyword priority of can be used to
specify which node has prioritized access to the resource.

a1 whenever e1, priority of f1
a2 whenever e2, priority of f2

If f1 evaluates to a number higher than f2, a1 is activated
and a2 is inactivated. In case a1 and a2 do not compete for
access to the same resource, the priority of keyword has
no effect.

State Machine
Playful supports state machines. For example,

a1 switch to a2 if e1
a2 switch to a1 if e2

Nodes a1 and a2 may never activate simultaneously, and
they will alternatively activate depending on the runtime
evaluation of e1 and e2. At startup, if e1 evaluates to true,
a1 will activate. Using state machines in Playful scripts
allows the platform to deviate from a purely reactive pro-
gramming paradigm, as the order statement of the script is
of importance.

Behavior Tree
A node can be declared as a list of nodes, themselves associat-
ed with evaluations. For example,

a1 whenever e1
a1:
a1a whenever e1a, priority of f1a
a1b whenever e1b, priority of f1b

This defines a tree in which a1 is a node, and a1a and a1b
its child nodes. Nodes a1a and a1b may be leaf nodes, or they
may be declared a list of nodes, resulting in behavior trees of
arbitrary depth. Leaf nodes are instances of user-developed
Python objects. The code they encapsulate may use the API

provided by the robotic middleware to receive sensor data or
send control commands.

Configuration
Some nodes and some evaluations may be configurable. Con-
figuration values can be provided:

a whenever e | key = value

If the code encapsulated by a and/or e accepts key as an
argument, it will be configured accordingly.

Targeting
The keyword targeting is a multifaceted term that
simultaneously commands the creation of new branches at
runtime and enables continuous configuration of the creat-
ed branches. Through targeting, developers can attach
branches to a type of perception. For example, setting a look
node to target objects of ball type will set the robot to look at
detected balls. A new branch will be created for each detect-
ed ball. Each new branch will continuously reconfigure itself
during runtime, according to the changing properties of the
associated ball.

The targeting system relies on Playful’s shared memory.
This memory supports data exchange via the pull/push para-
digm: code encapsulated by leaf nodes may push or pull
schemes to or from the memory. Schemes are instances of
arbitrary objects consisting of a set of properties. When a
scheme is pushed to the memory for the first time, the mem-
ory attributes a key to it. The Python API provides a pull
function. The code encapsulated in nodes can pass this mem-
ory key to this function to extract from the memory the infor-
mation encapsulated by the scheme. The targeting
keyword is used to relate a tree branch to a specific memory
key, as in

a1 |out = s
 targeting s: a2 whenever e2, priority
of f2

During runtime, node a1 pushes schemes of type s to the
memory. When a new memory key related to a scheme of
type s is created, targeting commands

 ● the creation of a new instance of a2 and its related evalua-
tions; if a2 is declared as a list of child nodes, these are also
instantiated, creating a full tree branch

 ● that the memory key is passed as an implicit argument to
all nodes and evaluations of the newly created branch.
Schemes may also be deleted from the memory, and the

Playful Python API provides a function for doing so. In
such a case, the branches relating to the memory key of the
deleted scheme are removed from the tree. By default, the
Playful engine never deletes schemes, even when the corre-
sponding objects are not currently perceived, as it allows
the system to act on objects that are not currently in the
field of vision.

53SEPTEMBER 2018 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

Passing a memory key as an argument to a branch is in
many respects similar to passing a pointer to a function in the
C++ programming language. During runtime, the code relat-
ed to the targeted branches may use the key to query the
memory and use the extracted information for self-reconfigu-
ration. As schemes may be pushed and pulled to and from the
memory at high frequencies, this may result in efficient sen-
sory–motor couplings.

In the background, data exchange relies exclusively on
pull/push calls. But in effect, the targeting keyword
results in a flow of information from the memory to all nodes
and evaluations corresponding to the targeted branch. Via the
targeting keyword, these information flows are only
implied by the programmer and implemented transparently
by the system at runtime.

Targeting is Playful’s less intuitive concept. It is based on
the triggering system, which we previously implemented in
TDM [5], here extended to behavior trees. For details related
to shared memory, the pull/push data exchange paradigm,
and encapsulation of data into schemes, we invite the reader
to consult [6]. We provide concrete instances in the “Exam-
ples” section.

Formal Syntax
Playful’s syntax is formally presented in Algorithm 1. Items in
parentheses refer to content that has to be specified by the
developer, and items in brackets indicate optional content. In
bold are the supported statement keywords. Evaluations are
functions that should either return a Boolean (when associated
with whenever or if) or a float (when associated with pri-
ority of). A node is defined as a list of nodes associated
with keywords for dynamic reconfiguration and exchange of
memory keys (targeting), evaluations for setting rules of
activation (whenever, switch to), and rules of priori-
tization (priority of). Leaf nodes are instances of Python
objects, which interact with the middleware. Higher levels of
the tree encode the logic that monitors the leaf nodes’ activation
status. They do so through evaluations and resource manage-
ment (e.g., forbidding two leaf nodes from simultaneously con-
trolling the same robot joints). If no evaluation is used and no
resource conflict is detected, each leaf node runs continuously,
concurrent with all of the other running leaf nodes.

The activation status of a node propagates to all of the
nodes of its subtree, including the leaf nodes. If a given node

is deactivated, all of the nodes in its subtrees are deactivated. If
a node is activated, the monitoring of the activation status of
its underlying nodes is delegated to their evaluations. Thus, a
change in the activation status of a node in the tree implies a
change in the pattern of activation of its underlying leaf
nodes. And because leaf nodes interface with the middleware,
a change in the patterns of activation of the leaf nodes shapes
the behavior performed by the robot.

Python for Evaluations and Leaf Nodes
Evaluations and leaf nodes are to be programmed using
the Python scripting language. Evaluations can be any
arbitrary Python statement that evaluates to either a Bool-
ean (when associated with the keywords whenever or
if) or a float (when connected with priority to).
The Playful interpreter also supports simple logic and
arithmetic. For example, an evaluation may consist of the
negation of a Python function (keyword not) or the addi-
tion of a function with a number. Leaf nodes correspond
to Python objects, which must implement the specific
interface required for communication with the Playful
engine (e.g., it must implement a run function). Leaf
nodes may be considered our platform’s primitives, and
the behavior tree the encoding of the logic used to orches-
trate their activation during runtime. Each leaf node is
spawned in a dedicated thread running at its dedicated fre-
quency. Playful provides an API for receiving start or stop
commands from the engine, accessing the shared memory,
and reserving or releasing resources.

Playful’s Back End
The scripting language is the front end of the Playful software
platform, which is completed by the engine back end. The lat-
ter consists of two parts. First, there is the interpreter, which
creates the behavior tree and relates nodes and evaluations to
their corresponding Python code. Second, there is the engine,
which at runtime

 ● instantiates new branches when the memory is updated
with a new key, according to the usage of the targeting
keyword

 ● calls evaluations code, i.e., branches that are conditionally
evaluated as false (whenever keyword) or as not active
(switch to keyword) are sent signals to deactivate;
other nodes are sent signals to activate

Algorithm 1:

(node name):
[
 [targeting (memory key):](node name)[, whenever (evaluation)][, priority of
 (evaluation) if (evaluation), […]][, switch to (node name)
 if (evaluation), […]]

 […]
]

54 • IEEE ROBOTICS & AUTOMATION MAGAZINE • SEPTEMBER 2018

 ● sorts activated leaf nodes (based on the priority of
keyword and the tree structure), and grants or revokes
access to resources based on this order.

Examples
Algorithm 2 shows a Playful script for a toy example corre-
sponding to a dynamic ball-searching and following behavior.
The corresponding tree representation is displayed in Fig-
ure 1. We implemented this script in Nao, a small humanoid
robot commercialized by Softbank Robotics, and the related
behavior can be seen in the support video [17].

Script Description
The higher level of behavior is shown in

ball_chase, switch to sit if battery_low
sit, switch to ball_chase if battery_high

This implements a state machine that has the robot chas-
ing the ball until its battery gets low (ball_chase), in
which case it sits (sit). When recharged, the robot
resumes the chasing behavior. ball_chase is declared as
a list of three nodes:

ball_chase:
 ball_detection | out=ball
 bargeting ball: following, whenever
 time_ago <2, priority of 2
 searching, priority of 1

When ball chasing is activated, the vision module for ball
detection is activated and pushes schemes describing detected
balls to the memory. In this case, a ball is described using
three properties: its color (to differentiate one ball from
another), its position, and a time stamp. When a new ball is
detected, the targeting command creates a following
branch related to it—i.e., a pulling of position and color infor-
mation from the memory via the Python API will return the
most recent information corresponding to the targeted ball.
This branch is activated only when the ball has been recently
detected, as commanded by the time_ago <2 evaluation.
When activated, because of its higher priority score, it blocks
searching, which is of lower priority. Only at startup, when no
ball has been detected yet, or when a ball has not been detect-
ed for more than 2 s, the lower priority searching branch
may activate. Not using priorities results in an undefined
behavior, as both following and searching would, at
times, be set to activate without informatio n about which
should take precedence. This results in the robot alternating
between following and searching for the ball.

memory

ball_chase

ball_detection
following

looking
walk_to

searching

turning head_search

head_search

sit

look_at

Figure 1. A tree representation of the script presented in
Algorithm 2. Nodes in blue correspond to leaf nodes.

Algorithm 2:

 ball_chase, switch to sit if battery_low
 sit, switch to ball_chase if battery_high

ball_chase:
 ball_detection | out=ball
 targeting ball: following, whenever time_ago<2, priority of 2
 searching, priority of 1

 following:
 looking
 walk_to, whenever far

 looking:
 look_at, whenever time_ago<1, priority of 2
 head_search, priority of 1

 searching:
 turning

 head_search

55SEPTEMBER 2018 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

In turn, following corresponds to looking at the ball
while walking toward it (as long as the distance between the
ball and the robot is significant, as expressed by the evaluation
implementing the Python function far):

following:
 looking
 walk_to, whenever far

and looking at the ball corresponds to either centering
the detected ball in the center of vision (look_at)
or performing a rapid head-search motion (head_
search):

looking:
 look_at, whenever time_ago <1,

 priority of 2
 head_search, priority of 1

It can be noted that the Python code corresponding to leaf
nodes and evaluations can be reused not only across pro-
grams but also several times in the same script. For example,
the head_search node is used in two branches: looking
and searching.

The full behavior is robust, as the robot either 1) walks
toward the ball when it sees it, 2) keeps walking toward the
last known position of the ball while searching for it with its
head, 3) stops walking and performs a full body search, or 4)
sits in a safe position if at any time its battery runs low. Relat-
ed patterns of activation in the behavior tree are displayed in
Figure 2.

Reactivity
The keyword targeting relates sensory information
corresponding to the detected ball to the following
node. Figure 3 shows the resulting flows of informa-
tion that are applied at runtime when the following
subtree is activated. Information encoded by the

memory

ball_detection

turning head_search

memory

ball_detection

walk_to

head_search

memory

sit

memory

ball_detection

walk_to

look_at

(a)

(b)

(c)

(d)

Figure 2. Some possible patterns of activation of the tree
presented in Figure 1 where the robot is (a) walking toward the
ball when it sees it; (b) walking toward the last known position
of the ball while searching for it with its head; (c) performing
a full body search; and (d) sitting in a safe position when its
battery runs low. Black is used to indicate activation of nodes
and blue activation of leaf nodes. For brevity, only activated leaf
nodes are labeled.

memory

following

walk_tolook_at

ball_detection

Middleware

B
a
ll

Ball

B
a
ll

C
o
n
tr
o
l

Figure 3. The flows of information are monitored during runtime
to implement sensory–motor couplings, here for having the
robot tracking the ball.

56 • IEEE ROBOTICS & AUTOMATION MAGAZINE • SEPTEMBER 2018

ball_detection leaf nodes are pushed to the shared
memory. The targeting keyword then links the follow-
ing branch to the related memory item. By virtue of the
resulting information flows, the leaf nodes look_at and
walk_to dynamically reconfigure their parameters. Eval-
uations along the subtree may also relate to the targeted
memory item; e.g., time_ago refers to the latest time
stamp of the memory item.

Adaptation for Multiple Targets
As presented in the “Targeting” section, the keyword
targeting commands the online creation of subtrees.
That keyword conditions the runtime instantiation of
targeted subtrees to the creation of their related memory
key. Figure 4(a) shows the instantiation of the tree at
startup. Because no corresponding memory key has yet
been created, the following subtree has not been
instantiated. In Figure 4(b), the robot detected a green
ball, and a corresponding following subtree has
been instantiated.

If the ball_detection node differentiates between
balls (e.g., using color information), it pushes related
information to several memory keys. The memory will
host a separate memory key for each ball detected. The
targeting keyword then results in online instantiation
of several subtrees, one per memory key. The script pre-
sented in Algorithm 2 can easily be modified to support
an environment with multiple balls (the updated code is
in bold):

targeting ball: following, whenever time_
ago <2, priority of
2 + 1/ distance

This modification sets the robot to follow the closest ball,
as reevaluated continuously during runtime. In Figure 4(c),
the robot detected a red ball, and a second following
branch has been instantiated.

Filtering
Leaf nodes can be used to implement filters. For example, the
original script shows

 targeting ball: following, whenever
time_ago <2, priority of 2

The following modification implements filtering:

targeting ball: filter | out=filtered_ball
targeting filtered_ball: following,

whenever time_ago <2, priority of 2

This syntax is agnostic to the specifics of the filter
implemented. In our example, the filter combines knowl-
edge about the perceived ball with the odometry function-
ality provided by the middleware to implement a Kalman

ball_detection

searching

ball_detection

searchingfollowing

ball_detection
searchingfollowing following

(a)

(b)

(c)

Figure 4. An illustration of dynamic topology updating. (a) The
topology of the behavior tree at runtime prior to any ball detection
by the robot. (b) The robot detects a green ball, and a corresponding
following subtree is instantiated (in green). (c) A red ball is
detected, resulting in the instantiation of a competing following
subtree (in red).

57SEPTEMBER 2018 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

filter. While the syntax is trivial, it enforces suitable infor-
mation flows, presented in Figure 5. Because Playful relies
on schemes for data exchange (see the “Targeting” sec-
tion), it is possible to create generic filters that can be
applied over a wide range of objects. For example, the fil-
ter used in this section could be targeted by any scheme
having a position and time_stamp property. It can
be noted that, via the targeting keyword, it is possible
to relate branches to different levels of filtering. A branch,
for instance, may relate to raw data (targeting
ball), while another relates to filtered data (targeting
filtered_ball).

Refactoring
Playful’s declarative programming paradigm allows for
rapid refactoring of existing programs. These advantages
have been exposed for TDM [6] and experimentally vali-
dated in [5]. Here, we briefly show through an example
how they apply to Playful. In Algorithm 2, the robot
looks at the ball it is approaching. The behavior would be
more robust if it could share attention between all of the
detected balls. The robot could better reevaluate the rela-
tive distance to all balls, and therefore make a better-
informed decision of which ball to approach. The
original script is

 targeting ball: following, whenever
time_ago <2, priority of 2

following:
 looking
 walking_to, whenever far

The following shows how a simple refactoring of the
original script results in the robot alternating in looking at
each ball:

 targeting ball: walking_to, whenever
time_ago <2 and far,priority of 2

 targeting ball: looking, priority of 1
+ time_not_seen

The longer the robot did not see a specific ball, the higher
the priority of the related look action. This results in the
robot looking alternatively at each ball.

Core Reuse
Because of its tree-based organization, full Playful applica-
tions may be trivially reused as leaf nodes of larger applica-
tion trees. For example, the full tree of the ball-tracking
behavior may be saved in a file ball_tracking.play,
which may be reused in other programs. This feature pro-
vides a strategy for the development of robotic applications
of increasing complexity. Full applications may be created
and debugged, saved as leaf nodes, and then combined. The
following section shows examples of applications developed
using this approach.

Complex Behaviors
A ball-grouping behavior executed by Nao and an interactive
manipulation behavior performed by Apollo, a real-time-con-
trolled upper-torso humanoid robot, have been obtained exclu-
sively through the combination of evaluations and leaf nodes of
modest size (three to 72 lines of code, averaging 21). This indi-
cates that complexity is well managed and spread over simple
reusable components, rather than centralized in a few complex
leaf nodes. Spreading of complexity across reusable compo-
nents enables developers to extend behaviors via recombination
of these components. An extension of Apollo’s behavior in the
“Extended Behavior” section provides a concrete example.

Ball-Grouping Behavior Executed on Nao
The goal of the application considered in this section is to
keep two balls together, either by kicking one toward the
other (if both balls are on the floor) or by grasping a ball and
bringing it to the other (if one of the balls is presented to the
robot by a person). The application is executed on a Nao
robot, with no supplementary external sensing. Figure 6
shows the robot executing the behavior, which is also includ-
ed in the support video [16].

Figure 7 includes the layout of the tree when the robot has
detected only one ball. The online creation of subtrees results

Figure 6. A Nao robot executing the ball-grouping behavior.

memory

followingfilter
ball_detection

filtered_ball

walk_to

look_at

Middleware

B
a
ll

Ball

Ba
ll

C
o
n
tr
o
l

O
d
o
m
e
tr
y

Figure 5. A filter is added to the tree.

58 • IEEE ROBOTICS & AUTOMATION MAGAZINE • SEPTEMBER 2018

memory

perception looking searching kick_together carry_together

carry_together

go_grasp

perform_grasp

perform_grasp

looking arm_tracking close_hand obstacle_avoidance smart_walking smart_walking

smart_walkinglooking

random_head search_around look_at slide_to walk_to turn_to

drop_ball

avoid_walking

avoid_walking

reunite

reunite

leds sleep

Figure 7. The iterative development of the carry_together subtree of the reuniting application for Nao. In blue are leaf nodes.
From bottom to top, trees of small size are created and debugged and then used as leaf nodes of trees of higher levels of abstraction.
Other nodes of the full application, e.g., kick_together, are developed using a similar approach (but are omitted here for brevity).

59SEPTEMBER 2018 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

in a considerably larger behavior tree at runtime once Nao
detects a second ball. We developed this tree by first creating
and debugging simple trees, then reusing these as leaf nodes
of other simple trees, which we also debugged, and so forth
until we obtained the desired complex behavior.

The tree has Nao sharing attention between the two balls.
The robot uses virtual targets to which to walk for either
aligning itself with the two balls to kick one in the direction of
the other or for walking toward one while avoiding the other
and performing a reactive arm-tracking behavior based on
inverse kinematics.

Interactive Manipulation Task Executed on Apollo

Software Stack
Apollo is a fixed-base manipulation platform equipped with
seven-degrees of freedom Kuka LWR IV arms, three-fingered
Barrett Hands, and a red, green, blue depth camera (Asus
Xtion) mounted on an active humanoid head (Sarcos). Its
operating system, simulation laboratory (SL), runs over a real-
time-patched Linux kernel (Xenomai), and performs torque
control using an inverse dynamics controller to track the
desired joint state [12]. The controllers implemented in SL are
designed to remain stable in the context of rapid behavior
switching, which is a requirement for safe interfacing with
Playful. The ROS is used for broadcasting RGB images and
point clouds collected from the head-mounted camera, apply-
ing sensor processing using the point cloud library and the
OpenCV libraries, and calculating transformations between
various reference frames. ROS nodes broadcast sensory infor-
mation, transforms, and joint states. This approach corre-
sponds to standard robotics practices.

The Playful tree is added above the ROS. The sensory
leaf nodes subscribe to the underlying topics, and the motor
leaf nodes publish the desired joint states, which are then
transmitted to the underlying SL controller via the ROS in
real time.

Original Behavior
We used Playful to develop a human–robot interaction
application. We controlled the right arm of the robot to mir-
ror the motion of the arm of the closest person standing in
front of it. When presented with a cup, the robot grasps it
and places it at the location indicated by the person. As the
cup moves, new grasping postures are dynamically recom-
puted. Both for the sake of keeping objects centered in the
field of vision and giving an impression of liveliness, the
robot alternates its gaze between the presented cup, the per-
son, and the person’s hand.

A picture of Apollo performing the application is shown in
Figure 8, and the behavior is also shown in the support video
[16]. As can be seen, the robot is highly interactive. However,
we effectively managed the complexity with reusable compo-
nents of modest size. All of the code and modules used are
based on well-known accessible libraries, part of the roboti-
cist’s standard tool kit. We were able to achieve behavioral

richness and reactivity because of Playful’s efficient code orga-
nization and expressiveness.

Extended Behavior
We exclusively extended the behavior by reusing existing
nodes and evaluations. This extension has the robot dropping
the cup it has in hand if
any other cup is presented
to it. To obtain the desired
results, the nodes for arm
tracking, motion plan-
ning, and evaluations that
assess the relative posi-
tions of objects were ap -
plied in a new branch.
This extension required
the addition of only six
lines to the Playful script
and did not require de -
velopment of any new
Python component. Yet it
extends the behavior considerably. This extended behavior
can be found in the support video [16]. A video of Apollo
running this application when interacting with various guests
is shown online [18].

Future Work
Playful is suitable for the creation of first-order reactive
behavior. Our efforts are now directed toward evaluating
Playful as an interface between higher-level decision-making
systems and reactive execution. A standard approach consists
of using planners to generate sequences of tasks to execute
and monitor. Our platform is different.

In Playful, all of the logic is implemented via evaluations.
As evaluations correspond to arbitrary Python code, they
may be used as bridges with any higher-level software that
supports interfacing with Python. Via evaluations, other
software may thus command activation or deactivation of
subtrees, modify priorities, or change the state of the run-
ning program.

To evaluate this approach, we have interfaced Playful
with a case-supported principle-based behavior paradigm, a

Figure 8. Apollo executing an interactive manipulation behavior.

We were able to achieve

behavioral richness

and reactivity because

of Playful’s efficient

code organization

and expressiveness.

60 • IEEE ROBOTICS & AUTOMATION MAGAZINE • SEPTEMBER 2018

system for deciding which action a robotic agent should
accomplish based on ethical principles [13]. The target appli-
cation is elder care, and the target robotic system is TiaGO

(PAL Robotics). Proof of
concept is currently per-
formed using Nao. The
ethical engine continu-
ously reevaluates the situ-
ation as observed by the
robot by connecting to
Playful’s shared memory.
Via the evaluations it
interfaces with, it sets the
priority of the higher-level
subtrees based on their
ethical desirability. Details

may be found in [14], a presentation video is online [19], and
the latest results are being prepared for publication. The suc-
cess of this approach would enhance the reactivity displayed
by robots without sacrificing the framework’s ability to inter-
face with other advanced decision-making algorithms.

Conclusions
Playful is a software creation for behavior engineering whose
front end is a scripting language based on a reactive pro-
gramming paradigm. It supports the development of simple,
clear, and well-structured code that brings robots to life.
Unlike other complex software and robotic architectures,
Playful is easy to use and deploy. It uses a five-keyword
scripting language that supports the rapid definition of
dynamic behavior trees of arbitrary complexity. Playful not
only allows for specifying the desired logic, but it expresses
the flow of information that should be applied at runtime. As
a result, reactive behavior can be created using expressive
instructions. Playful is agnostic regarding the middleware
and the robotic platform it runs on, making it a convenient
tool for a wide range of applications.

Acknowledgments
This research was supported in part by the Max Planck Soci-
ety, National Science Foundation (grants IIS-1205249, IIS-
1017134, and EECS-0926052), the Office of Naval Research,
and the Okawa Foundation.

References
[1] C. Elliott and P. Hudak, “Functional reactive animation,” in Proc. Int.

Conf. Functional Programming, 1997, pp. 263–273.

[2] J. Peterson, P. Hudak, and C. Elliott, “Lambda in motion: Control-

ling robots with Haskell,” in Practical Aspects Declarative Languages

(PADL), G. Gupta, Ed. Berlin, Heidelberg: Springer-Verlag, Jan. 1999, pp.

91–105.

[3] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson, “Arrows,

robots, and functional reactive programming,” in Advanced Func-

tional Programming (Lecture Notes in Computer Science, vol. 2638), J.

Jeuring and S. L. P. Jones, Eds. Berlin, Heidelberg: Springer-Verlag,

2003, pp. 159–187.

[4] D. Kortenkamp and R. Simmons, “Robotic systems architectures and

programming,” in Springer Handbook of Robotics, B. Siciliano and O. Khat-

ib, Eds. Berlin, Heidelberg, Germany: Springer-Verlag, 2008, pp. 187–206.

[5] V. Berenz and K. Suzuki, “Targets-Drives-Means: A declarative

approach to dynamic behavior specification with higher usability,”

Robotics Auton. Syst., vol. 62, no. 4, pp. 545–555, 2014.

[6] V. Berenz, F. Tanaka, K. Suzuki, and M. Herink, “TDM: A software

framework for elegant and rapid development of autonomous behav-

iors for humanoid robots,” in Proc. IEEE-RAS Int. Conf. Humanoid

Robots, Oct. 2011, pp. 179–186.

[7] M. Beetz, L. Mösenlechner, and M. Tenorth, “CRAM: A Cognitive

Robot Abstract Machine for everyday manipulation in human envi-

ronments,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems,

Oct. 2010, pp. 1012–1017.

[8] T. J. de Haas, T. Laue, and T. Roefer, “A scripting-based approach to

robot behavior engineering using hierarchical generators,” in Proc.

IEEE Int. Conf. Robotics and Automation, May 2012, pp. 4736–4741.

[9] J.-C. Baillie, “URBI: Towards a universal robotic interface,” in Proc.

4th IEEE/RAS Int. Conf. Humanoid Robots, 2004, pp. 33–51.

[10] A. Marzinotto, M. Colledanchise, C. Smith, and P. Ogren, “Towards

a unified behavior trees framework for robot control,” in Proc. IEEE Int.

Conf. Robotics and Automation, May 2014, pp. 5420–5427.

[11] S. Lemaignan, A. Hosseini, and P. Dillenbourg, “PYROBOTS: A

toolset for robot executive control,” in Proc. IEEE Int. Conf. Intelligent

Robots and Systems, Sept. 2015, pp. 2848–2853.

[12] S. Schaal. (2009). The SL simulation and real-time control software

package. Univ. Southern California, Los Angeles. [Online]. Available: http://

www-clmc.usc.edu/publications/S/schaal-TRSL.pdf

[13] M. Anderson and S. L. Anderson, “Toward ensuring ethical behav-

ior from autonomous systems: A case-supported principle-based para-

digm,” Ind. Robot: An Int. J., vol. 42, no. 4, pp. 324–331, 2015.

[14] M. Anderson, S. L. Anderson, and V. Berenz, “Ensuring ethical

behavior from autonomous systems,” in Proc. Artificial Intelligence

Applied Assistive Technologies and Smart Environments Workshop,

Phoenix, AZ, Feb. 12, 2016.

[15] Playful. [Online]. Available: playful.is.tuebingen.mpg.de

[16] V. Berenz. (2017, Sept. 15). Playful: Reactive programming for

orchestrating robot behavior. [Online]. Available: https://youtu.be/

Kb6O0KKXKp8

[17] V. Berenz. (2017, May 14). How to create a reactive robot application

for Nao (with Playful). [Online]. Available: https://youtu.be/784eL6uSKbk

[18] V. Berenz. (2017, Oct. 12). Guests playing with Max Planck Apollo

(long). [Online]. Available: https://youtu.be/ivJ8ZdUPOPo

[19] Machine Ethics. (2017, Dec. 8). A value driven agent [press]. [Online].

Available: https://youtu.be/V8utFzn7DJk

Vincent Berenz, Autonomous Motion Department, Max
Planck Institute for Intelligent Systems, Tübingen, Germa-
ny. E-mail: vberenz@tuebingen.mpg.de.

Stefan Schaal, Autonomous Motion Department, Max Planck
Institute for Intelligent Systems, Tübingen, Germany, and
Computational Learning and Motor Control Lab, University
of Southern California, Los Angeles, United States. E-mail:
sschaal@usc.edu.

All of the code and modules

used are based on well-

known accessible libraries,

part of the roboticist’s

standard tool kit.

