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Abstract. We give a criterion, in terms of pluri-genera, for a normal surface
singularity over the complex number field to be a simple elliptic or cusp singularity (resp.
quotient singularity, log-canonical singularity).

Introduction. Let (X, x) be a normal n-dimensional isolated singularity over the
complex number field C and f: (M, A)— (X, x) a resolution of the singularity (X, x)
with the exceptional locus 4=/ ~!(x). We say a resolution f to be good if 4 is a divi-
sor with normal crossings. The geometric genus of the singularity (X, x) is defined
by py(X, x)=dim(R"~ ' f,0,),. Watanabe [15] introduced pluri-genera {3,(X, X)} ncn
which carry more precise information of the singularity, where N is the set of positive
integers. The pluri-genera {§,,(X, x)},,ey can be computed on a good resolution,
and 4,(X, x)=p X, x).

In this paper, we work only on surface singularities, so “‘a singularity” always
means a normal surface singularity over C.

A singularity (X, x) is said to be rational (resp. elliptic) if p(X, x)=0 (resp. 1).
Watanabe [15] proved that a singularity (X, x) is a quotient singularity if and only if
0.(X, x)=0 for all me N. A singularity (X, x) is said to be purely elliptic if §,(X, x)=1
for all me N. Ishii [6] proved that a singularity (X, x) is a purely elliptic singularity if
and only if (X, x) is a cusp or a simple elliptic singularity, while (X, x) is a log-canonical
singularity if and only if 3,(X, x)<1 for all me V.

We will show that a singularity (X, x) is a quotient singularity if and only if
0{X, x)=0 for m=4,6, while (X, x) is a purely elliptic singularity if and only if
Ol X, x)=1 for m=1,4,6. We also prove similar assertions for log-canonical sin-
gularities.

Our result is a partial answer to the following question: Can {§,(X, X)}..n be
determined by {4,(X, x)} ..~ for some finite subset N of N?

Thanks are due to the referee for valuable comments. Thanks are also due to
Professor Kimio Watanabe for his encouragement.

1. Preliminaries.
(1.1) Let (X, x) be a surface singularity and f: (M, A)— (X, x) a resolution of the
singularity (X, x). Let A= :.‘= , 4; be the decomposition of the exceptional set 4 into
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irreducible components. A cycle D is an integral combination of the 4;,1.e., D= Zfz 1 diA;
with d;e Z, where Z is the set of rational integers. There exists a natural partial ordering
for cycles by comparison of the coefficients. A cycle D is said to be positive if D>0
and D#0. For any two positive cycles " and W, there exists an exact sequence

(1.L1) 0= O ®0p On(=V) = Oy = Oy = 0.

A resolution f: (M, A)— (X, x) is called a minimal good resolution, if f is the
smallest resolution for which 4 consists of non-singular curves interesecting among
themselves transversally, with no three through one point. It is well known that there
is a unique minimal good resolution. Lét us assume that f: (M, A) — (X, x) is the minimal
good resolution of the singularity (X, x). The weighted dual graph of (X, x) is the graph
such that each vertex represents a component of 4 weighted by the self-intersection
number, while each edge connecting the vertices corresponding to 4; and A4;, i#j,
corresponds to the point 4;n A4;. Giving the weighted dual graph is equivalent to giving
the information on the genera of the 4;’s and the intersection matrix (4; - 4;). A string
S in A is a chain of smooth rational curves A4,,..., 4, so that A;*A4;,,=1 for
i=1,...,n—1, and these account for all intersections in 4 among the 4;’s, except that
A, intersects exactly one other curve. The weighted dual graph of the singularity (X, x)
is said to be star-shaped, if the divisor 4 is written as 4=A4,+)S;, where 4, is a
curve and §; are maximal strings. Then A4, is called the central curve, and S; are called
branches.

(1.2) Let f: (M, A)— (X, x) be a resolution of a singularity (X, x), & a sheaf
of O,-modules and D a divisor on M. We will use the following notation:
F(D)=F Rq,,0(D), H(F)=H(M, F), H(F)=H\M, F), h(F)=dim:H(F) and
hi(F)=dimH(F).

We denote by K the canonical divisor on M. The Riemann-Roch theorem implies,
for any positive cycle V and any invertible sheaf ¥ on M, that

21Oy)=hOy)—h"(Oy)= =V - (V+K)/2,
and
X(@V®$)=ho((9v®3)_1’11((%@3):3 V4 x(0y).

DEerFINITION 1.3. A positive cycle E is minimally elliptic if y(Of)=0 and x(0p)>0
for all cycles D such that 0 <D<E.

(1.4) There is a unique fundamental cycle Z (cf. [2]) such that Z>0, 4,- Z<0
for all i, and that Z is minimal with respect to these two properties. Note that h%((0;) =1

(cf. [9D).

ProrosiTiON 1.5 (Laufer [9, Theorem 3.4]). Let f: (M, A) - (X, x) be the minimal
resolution of the singularity (X, x), Z the fundamental cycle and K the canonical divisor
on M. Then the following are equivalent.
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(1) Z is a minimally elliptic cycle.
2) A;+Z=—A,-K for all A,

DEerINITION 1.6. A singularity (X, x) is minimally elliptic if the minimal resolution
f: (M, 4)—> (X, x) satisfies the conditions of Proposition 1.5.

THEOREM 1.7 (cf. [9, Theorem 3.101). A singularity (X, x) is minimally elliptic if
and only if (X, x) is an elliptic Gorenstein singularity.

(1.8) Let f: (M, A)— (X, x) be the minimal resolution of the singularity (X, x)
and Z the fundamental cycle. By the natural surjective map H(O,,) — H'(0;), we have
PAX, x)=h"(0,). Artin [2] proved that p(X, x)=0if and only if 4'(0,)=0.If p (X, x)=1,
then 4*(0;)=1, and there exists a unique minimally elliptic cycle E by [9, Proposition
3.1]. The support of E is the exceptional set of a minimally elliptic singularity by {9,
Lemma 3.3]. '

(1.9) We take the following characterization of du Bois singularities as its
definition.

ProrosiTiON 1.10 (Steenbrink [13, (3.6)]). A normal surface singularity (X, x) is a
du Bois singularity if and only if the natural map H(0,) — HY(0 ) is an isomorphism,
where f: (M, A)—(X, x) is a good resolution.

THEOREM 1.11 (Ishii [3, Theorem 2.3]). Every resolution of a du Bois singularity
is a good resolution.

2. The pluri-genera.
(2.1) Let (X, x) be a singularity and f: (M, A) - (X, x) a resolution. We denote
by K the canonical divisor on M, and set U=X—{x}=M—A4.

DerFINITION 2.2 (Watanabe [15]). We define the pluri-genera {9,(X, x)}nen DY
On(X, x)=dime HY(Oy(mKx)/L*™(U),
where L>™U) denotes the set of all L>™integrable m-ple holomorphic 2-forms on U.

ProrosiTiON 2.3 (cf. [15, p. 671). If f: (M, A)—> (X, x) is a good resolution, then
0,.(X, x) is expressed as

8, X, x)=dime HYO (mK))/HOy(mK +(m—1)4)) .

THEOREM 2.4 (cf. [15, Theorem 2.8]). Let A’ be a connected proper subvariety of
A, and (X', x') the singularity obtained by contracting A' in M. Then 6,{X, x}=d,(X’, x')
Jor all meN.

TueoreM 2.5 (Ishii [5]). Let n: X—(C, 0) be a small deformation of a singularity
(X, x)=x"Y0). Let Y=n""(c), with ce C near 0, and {y;} the set of singular points of
Y. Then
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6m(Xs X)225M(Y, yx) .
THEOREM 2.6 (Kato [8, p. 246]). Let ¥ be an invertible sheaf on M. If
LA, >K- A; for all i, then H(%)=0.
Lemma 2.7. If f: (M, A)— (X, x) is minimal, i.e., K- A;>0 for all i, and if (X, x)
is not a rational double point, then H(0\/(nK+ A))=0 for n=2.
Proor. There exists an exact sequence

0 - Op(nK) > Op(nK+ A)—> 0 (nK+ A)—> 0.

By Theorem 2.6, H'(0,(nK))=0, and hence H (O, (nK+ A))=H'(0 (nK + A)). By the
Serre duality, £'(0 (nK+ A))=h°0 ((1—n)K)). We will show that H%O (—nK))=0
for n>1. Since (X, x) is not a rational double point, we may assume that K-4,>0.
Let {Z;};-0.1,..x be a computation sequence for A: Z,=0, Z,=A4,=4,,...,Z;=
Z; \+4,....L=Z_+4, =A,where Z;_,+A4; >0forj=2,..., k. Forj=1,...,k,
HO((OAij(—nK—Zj‘l))=O, since (—nK—2Z; )+ 4;,<0. From the exact sequences (cf.
(1.1.1)
00— @Aij(—nK—Zj,l) =0z (—nK)—> 0z, (—nK)—>0,

we inductively see that H%(0, (—nK))=0for j=1, ..., k. In particular, H%(0 ,(—nK))=0.
O

THEOREM 2.8. Let (X, x) be a du Bois singularity, and f: (M, A)— (X, x) the
minimal resolution of the singularity (X, x). Then

3,(X, x)=hYO\2K + A)=h (O — K— A)) .

PrOOF. By the Serre duality, 23(0y(2K + A))=h"(0y(— K— A)). We assume that
(X, x) is not a rational double point. By Lemma 2.7, there exists an exact sequence

0 = HYOy(2K + A)) > H(0y(2K)) > Hy(0y(2K + 4) > 0.

From Theorem 1.11 and Proposition 2.3, §,(X, x)=4(0,,2K + A)).

Let (X, x) be a rational double point. Then K=0 and H(0,,(—A4))=0. Hence
H'(0,(—K—A))=0. Since (X, x) is a quotient singularity (see Theorem 2.11), (X, x)=
0. O

COoROLLARY 2.9. [In the situation above, let V be a positive cycle. Then
(X, x)=V+(K+ A)—x(Oy) .
Proor. Theorem 2.8 implies that
02X, )2 h (O =K~ A) 2 ~ (O~ K—A)=V - (K+A)—x(Oy).
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DEerINITION 2.10. A singularity (X, x) is called a Q-Gorenstein singularity if there
exists a positive integer » such that Ox(rKy) is invertible at x. It is well known that any
rational singularity is a Q-Gorenstein singularity. For a Q-Gorenstein singularity (X, x),
the minimal positive integer r which satisfies the condition above is called the index of
(X, x), and denoted by (X, x).

For any singularity (X, x), the minimal positive integer m such that §,,(X, x)#0 is
called the d-index of (X, x), and denoted by I(X, x). If 6,,(X, x)=0 for all me N, we set
I(X, x)= 0.

THeOREM 2.11 (cf. [15, Theorem 3.97). A singularity (X, x) is a quotient singularity
if and only if I(X, x)=co0.

THEOREM 2.12 (cf. [6]). Let (X, x) be a singularity such that {0,(X, X)}}men IS
bounded, i.e., there exists an integer B such that 6,(X, x)<B for all me N. Assume that
(X, x) is not a quotient singularity. Then (X, x) is a Q-Gorenstein singularity with
I(X, x)=I(X, x),and 6 (X, x) < 1 forallme N. Let I = [ X, x). Then we have the following:

(1) 6,4X,x)=1 for m=0 (mod]I) and §,(X, x)=0 for m#0 (mod I).

(2) I=1ifand only if (X, x) is a simple elliptic or a cusp singularity.

(3) If I>1, then (X, x) is the quotient with respect to a cyclic group of a simple
elliptic or a cusp singularity.

(2.13) A Q-Gorenstein singularity (X, x) is said to be log-canonical if the following
condition is satisfied: For a good resolution f: (M, 4) »(X, x), we have, as Q-divisor,

Ky=f*Ky+ > ad; with a;>—1 forall i.

The singularities in Theorem 2.12 are log-canonical by [4, Theorem 2.17.

(2.14) A singularity with C*-action is called a C*-singularity.

Let (X, x) be a C*-singularity and f: (M, A) — (X, x) the minimal good resolution.
It is well known that the weighted dual graph of (X, x) is a star-shaped graph. The
weighted dual graph of a cyclic quotient singularity is regarded as a start-shaped graph
without central curve (note that it is a chain of rational curves).

We set A =A0+Zf:1 S;, where A, is the central curve, and S; the branches. The
curves of §; are denoted by 4;; 1<j<r, where Ay*A4;,=4;;*A4;;+1=1. Let
b; j=—A, ;* A, ;. For each branch S;, positive integers e; and d; are defined by

d; 1

1
p,—

where ¢;<d;, and ¢; and d, are relatively prime.
For any integers m>1 and k>0, we define the divisors on 4, by
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]
DY =kD— Y, [(ke;+m(d,—1))/d;]1P;,
i=1
where D is a divisor such that @, (D) is the conormal sheaf of 4,, P;=A4,nA4;;, and
for any aeR, [a] is the greatest integer not more than a.
The following is an extended version of Pinkham’s formula (cf. [12, Theorem 5.7]).

THEOREM 2.15 (Watanabe [16, Corollary 2.221). In the situation above,

On(X, x)= Y, K0, (mK,,—D¥)).
k=0
THEOREM 2.16 (Tomaru [14]). In the situation above, let g be the genus of the
central curve A,
(1) (X, x) is a log-canonical singularity with (X, x)>1 if and only if g=0 and
b (di—1)/d;=2. In this case, I(X, x)=lem(d,, ..., dj).
@) (X, x) is a quotient singularity if and only if g=0 and Zf= di—1)/d;<2.

3. Rational singularities.

(3.1) Let (X,x) be a rational singularity and f: (M, A)— (X, x) the minimal
resolution of the singularity (X, x). Since H(0,,)=H0,)=0, f is a minimal good
resolution by Proposition 1.10 and Theorem 1.11. Note that the weighted dual graph
of a rational singularity is a tree. For any component A4; of 4, we set t;=(4—A4,)* 4,,
the cardinality of the intersection points on A4,.

In this section, except in Corollary 3.6, (X, x) denotes a rational singularity and
f: (M, A)— (X, x) the minimal resolution.

LemMa 3.2.  If the weighted dual graph of (X, x) is a star-shaped graph, then

On(X, x)= 3. hO4(mK4,— D)),

k>0

where A, and D are as in (2.14).

Proor. By the Riemann-Roch theorem of [10, p. 196], §,(X, x)+A (Opy(mK+
(m—1)A4)) is determined by the weighted dual graph. Let L,,=mK +(m—1)A. From the
exact sequence

0 — Op(mK) - OpdL,,) > (Q(m— l)A(Lm) -0,

using Theorem 2.6, we have h'(Oy(L,))=h" (0, - 1,4(L,)). Since H'(0,)=0, we have
H (O, - 1,0)=0.By[1, (1.7)], invertible sheaves on (m —1)4 are classified by their degree.
Thus ~'(0,, - 1)4(L,,)) is determined by the weighted dual graph and the variety A, hence
so is (X, x).

Let Ay, D, D®), P, e; and d, be as in (2.14) (note that they are defined for star-shaped

1

graphs). For any k>0, let D® be the divisor
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B
DY=kD— Y {ke/d,}P,
i=1

on Ay, where for any aeR, {a} denotes the least integer not less than 4. Let R=
D s o HYO 1(D™)). By [12], Spec(R) is a singularity of which the exceptional set of
the minimal good resolution and the weighted dual graph are the same as those of
(X, x). Then §,(X, x)=40,,(Spec(R)). Since Spec(R) is a C*-singularity, J,(Spec(R)) is
computed by the formula in Theorem 2.15. O

(3.3) Let(X, x)be a rational singularity with a star-shaped graph. Then the central
curve is a non-singular rational curve. Using the notation of (2.14), we set

8
F®O=_2m—kb+ Y [(ke;+m(d,—1)/d;],
i=1

where b= —A,* A,. By Lemma 3.2,

In(X, )= 2 hO(04(FY).

k=0
We always assume that d; < - - - <dj.

LeMMA 3.4. If 6,(X, x)=0, then the weighted dual graph of (X, x) is either a chain
(if (X, x) is a cyclic quotient singularity), or a star-shaped graph with three branches.

Proor. For any component 4; of 4, we have 1,<3 by Corollary 2.9. If ;<2 for
all i, then A is a chain of curves.

We assume that ¢, =3. Let 4, be any component of 4. Let Y |_, 4, be the minimal
connected cycle containing 4, and A4,. Then ¢,>2 for i<n—1. Applying Corollary 2.9
to the positive cycle Y [~ A, we have 0>Y 7~ (t;—2). Hence #;,=2 for i=2,...,n—1.

O

THEOREM 3.5 (Okuma [11]). If §,(X, x)=0 for m=4, 6, then (X, x) is a quotient
singularity.

Proor. Note that the assumption implies J,(X, x)=0 for m=1, 2 (cf. Proposition
2.3). We assume that (X, x) is not a cyclic quotient singularity. By Lemma 3.4, the
weighted dual graph of (X, x) is a star-shaped graph with three branches. Then

3 3
F{=—8+ ) [4—4/d] and F'=-12+ ) [6—6/d].
i=1 i=1

Note that [m—m/a,]<[m—m/a,] if a; <a,.

Since 4(X, x)=0, we have FQ' < —1. If d, >3, then F>0. Hence d, =2. Since
84X, x)=0, we have F{¥= —6+[4—4/d,]+[4—4/d;]< —1. Thus d,<3.

If d, =d,=2, then Z?zl (d;—1)/d;<2, and hence (X, x) is a quotient singularity by
Theorem 2.16.
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Assume d,=3. Since F®'=—5+[6—6/d;]< —1, we have d;<5. Again, we get
? - (d;—1)/d;<2, and hence (X, x) is a quotient singularity by Theorem 2.16. O

CoRrOLLARY 3.6. Let (X, x) be any singularity. If (X, x) is not a quotient singularity,
then I{X, x)<6.

Proor. The result is an immediate consequence of Theorems 2.11 and 3.5. [

ProposiTiON 3.7. Let (X, x) be a singularity with I(X, x)=6 and 6,,(X, x)=0.
Then (X, x) is a log-canonical singularity with [X, x)=6.

Proor. By assumption, §,,(X, x)=0form=1, 2, 3,4, 5. By Lemma 3.4, (X, x) has

a star-shaped graph with three branches. Since (X, x)=0, we have F{¥=—6+
3 ,[3—3/d]]1< —1. Thus d,; =2. Similarly, we have d, <3 by d;=2 and F{”<—1.
If d, =2 or dy <5, then I(X, x)= o0 by the proof of Theorem 3.5. Hence we get d; =2,
d,=3 and d;>6. Since 3,,(X, x)=0, we have F{Q=—12+[14—14/d;]< —1. Thus
dy=6. By Theorem 2.16, (X, x) is a log-canonical singularity with I(X, x)=6. O

(3.8) We note that if I,(X, x)=S5, then (X, x) is not a log-canonical singularity by
Theorems 2.12 and 2.16 (cf. Theorem 3.11).

ProposiTION 3.9. Let (X, x) be a singularity with I(X, x)=4 and §,,(X, x)=0.
Then (X, x) is a log-canonical singularity with (X, x)=4.

PrROOF. As in the proof of the proposition above, we have d,=2 and d,>3.
However, d, =3 implies the same result as in the proposition above. Hence d, >4. Then
d,=d;=4 by F{9<—1. By Theorem 2.16, (X, x) is a log-canonical singularity with
I(X, x)=4. O

ProposiTION 3.10. Let (X, x) be a singularity with I(X, x)=3 and 64X, x)=0.
Then (X, x) is a log-canonical singularity with (X, x)=3.

Proor. If d; =2, we have the same result as in the proposition above. Hence
d,>3. Then d,=d,=d;=3 by F{Q< —1. Again by Theorem 2.16, (X, x) is a log-
canonical singularity with I(X, x)=3. |

THeOREM 3.11. Let (X, x) be a singularity with 8,,(X, x}=0. Then (X, x) is a log-
canonical singularity.

ProOF. Since §,,4(X, x)=0, we have §,(X, x)=5,(X, x)=0, and hence /)X, x) > 3.

If Ij(X, x)= o0, then (X, x) is a quotient singularity, and it is log-canonical (more
precisely, log-terminal). Assume that I5(X, x) <6 (cf. Corollary 3.6). If I(X, x) #5, then
we are done. By the proof of the propositions above, there exists no singularity (X, x)
with I(X, x)=5 and 8,,(X, x}=0. g

LemMa 3.12. Let (X, x) be a singularity with 6,(X, x)=1. Then we have one of the
Sfollowing:
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(1) (X, x) has a star-shaped graph with three branches.

(2) (X, x) has a star-shaped graph with four branches.

(3) The exceptional divisor A is written as Z?=o S;, where S;, i= 1, are the maximal
strings, and Sq is a chain of curves.

Proor. By Corollary 2.9, we have £;<4 for all 4;. Since (X, x) is not a cyclic
quotient singularity, there exists a component 4; such that ¢;>3. Assume that (X, x) is
not in the case (1). If £, =4, then as in the proof of Lemma 3.4, we have a star-shaped
graph with four branches. If ¢, <3 for all 4;, then we may assume that ¢, =¢,=3. Then,
as in the proof of Lemma 3.4, we have 7,<2 for i>3. Thus 4—4,—A4, is a disjoint
union of chains of curves. Since the weighted dual graph is a tree, there exists a unique
minimal connected cycle S, containing 4, and 4,. Since t;=¢,=3,acycle A —S;is a
disjoint union of four maximal strings in A4. O

LemMa 3.13. Let(X, x)be a singularity with §, (X, x)=1. If (X, x) has a star-shaped
graph with three branches, then §,(X, x)=0.

Proor. Assume that (X, x) has a star-shaped graph with three branches. Using
the notation of (3.3), we have

3
Fid=m—kb+ Y [(ke;—m)/d;].
i=1

If b>3, then FP<F{ V<. - <F®<0, and hence §,(X,x)=0. If Y 1/d,>1, then
3,(X, x)=0 by Theorem 2.16. Assume that b=2 and ) 1/d;<1. We define a subset 4*
of N¢ as follows: (e,d)=(ey, e,, €3, d;, d,, d;)e N® is an element of A* if and only if
di<d,<dy, Y 1/d;<1, Y e/d; <2 (cf. [12, p. 185]), e;<d,, and e; and d; are relatively
prime for i=1, 2, 3. We regard F® as a function of k, m and (e, d)e 4*, and write
F®(e, d). Let

G®e, d)=k(2e,-/di—2)+2(l —Z l/di) .
Then
F¥e,d)<2—2k+ Z(kei—2)/di= G®e, d).

Since Y e;/d;—2<0, we have F{(e,d)<0 for k>2 (resp. k>3) if GP(e, d)<0 (resp.
—0).
Let

A4={deN?|(e, d)e 4* for some eec N?, and F{9 <0} .

Let 4,={(2,3,d3)|7<d;<13} and 4,={(2,4,5), (2,4, 6)}. As in the proof of the
propositions above, we have 4=4,u4,0{(3, 4, 4)}.
Assume that de 4,. Since 8,4(X, x)=1 and F{9=0, we have
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F@= —34¢,+[(Be;—14)/dy]< 1.

Let A;={(e,d)e 4* |de 4,, F{} < —1}. We can easily get F§'(e, d)<0 for (e, d)e 41 and
k=0, 1,2. We will show G?(e, d)=2(Y (e;~1)/d;—1)<0 for (e, d)e 4;. For (e,d)e 4,
with e, =1, we have G®(e, d)=2((e;—1)/d;—1)<0. Let e,=2. Then 3e;—14<d;, and
e3/d3<5/6. The maximum of {(e;—1)/d;} is (7—1)/9=2/3. Hence GP(e, d)=2((es—1)/
d;—2/3)<0. Then we have F{ <0, for k>0 and (e, d)e 4;.

Assume that ded,. If e,=1, then GP e, d)=2((e;—1)/d;—1)<0. Let e,=3. As
above, we have ey +d; <7 from F{% < —1. Hence e;=1. Then G'*(e, d)=2(1/2—1)<0.
Clearly, F{” and F$" are negative. Hence F <0 for k>0.

If d=(3,3,4), then e=(ey, e,, e5) (e; <e,) such that (e,d)eA* is one of (1,1, 1),
(1,1,3),(1,2,1),(1,2,3) and (2, 2, 1). Again, we have F{¥ <0 for k> 0.

Thus in any of the cases, we get d,(X, x)=0. ]

ProrosiTioN 3.14.  Let (X, x) be a singularity with I{X, x)=2 and 0,,(X, x)=1.
Then (X, x) is a log-canonical singularity with (X, x)=2.

PrROOF. Since d,4(X, x)=1 and §,(X, x)#0, we have 5,(X, x)=1 (cf. Proposition
2.3). By the lemmas above, we have the weighted dual graph in (2) or (3) of Lemma 3.12.

Suppose (X, x) has a star-shaped graph. Then d,=---=d,=2 by F{¥<0, and
hence (X, x) is a log-canonical singularity with (X, x)=2 by Theorem 2.16.

Assume that A=Zf=OS,- as in (3) of Lemma 3.12. By [7, Theorem 3.7], there
exists a deformation n: M —(C, 0) of M =7r"1(0) which induces a trivial deformation
of S; for i=1, 2, 3, 4, and for ¢#0 near 0, =~ !(c) has a connected component of the
exceptional set 4, +Zf’= . Si» where A, is a rational curve. Note that = blows down to
a deformation of (X, x). Let( Y, y) be a singularity obtained by contracting the exceptional
divisor A0+Z?=1S,- above. By Theorem 2.5, we have p(Y,y)=0, 6,(7, y)<1 and
014(Y, )< 1. Thus (Y, y) is a rational singularity which has a star-shaped graph with
four branches. By Lemma 3.4, we have J,(Y, y)=6,4,(Y, y)=1. Applying the argument
above to (Y, y), we have d;, =---=d,=2. By the definition of d;, we see that S; is a
curve with S;-S;= —2, for i>1. Recall that n induces a trivial deformation of S; for
i>1. Let B be a cycle on M defined by B=4+S,. Then — B is numerically equivalent
to 2K. Since any rational singularity is a Q-Gorenstein singularity, (X, x) is a
log-canonical singularity with (X, x)=2 (cf. Theorem 2.12 and (2.13)). O

4, Elliptics singularities.

(4.1) Let (X, x) be an elliptic singularity, f: (M, A)— (X, x) a resolution of the
singularity (X, x) and K the canonical divisor on M.

Lemma 4.2, Let (X, x) be a Gorenstein singularity. Then 6, (X, x)<6,,,(X, x) if
ml S mz.

ProOF. Let f: (M, A)— (X, x) be the minimal good resolution of the singularity
(X, x). It is well known that there exists a positive cycle D > A4 such that O p(K)= O,(— D).
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Then H%(O)_ (mK)= H%O,) and OpdmK +(m—1)A4)= O, ((m —1)(A— D)+ K). Since
A—D <0, we have

Oml(m, —1)(A—D)+ K)> Op((m, —1)(A— D)+ K)
for m, <m,. Thus Proposition 2.3 implies the assertion. O

LemMa 4.3. Let (X, x) be a minimally elliptic singularity which is not a du Bois
singularity. Then d¢(X, x)=2.

Proor. First, we assume that the minimal resolution of the singularity (X, x) is
a good resolution. Let f: (M, A) — (X, x) be the minimal resolution. By Lemma 2.7, we
have H'(0,(2K + A))=0. By Proposition 2.3 and [8, Corollary 1], we have

8,(X, x)=—(K+A4) QK+ A)2+1.

Since (X, x) is not a du Bois singularity, we have H(0,)=0, and hence —A-
(A+K)/2=y(0,)=1. Then we have d,(X, x)= —(K + A) - K+2. Since f is minimal and
—(K+A4)>0, we get 0,(X, x)>2. By Lemma 4.2, we have d4X, x)>2.

Now we assume that the minimal resolution of (X, x) is not good. Let
f: (M, A)— (X, x) be the minimal good resolution of the singularity (X, x). By [9,
Proposition 3.5], (X, x) has a star-shaped graph with three branches, and the divisor
A can be written as 4 =Zf= , A;, where A, is the central curve with 4,4, =—1, and
Ay Ay>As- A3> A, A, Then —K=24,+Y71 A4, Let Z=Y1 nA, be the
fundamental cycle on M. Then (ny, ..., n,)isoneof (6,3,2,1),(4,2,1,1)or (3,1, 1, 1).
Let .# be the maximal ideal in ¢y which defines the singular point x. By [9, Theorem
3.13], there exists a function ge H(#) (under the assumption that X is sufficiently
small) such that f*(g) has a zero of order n; on A,. Since (X, x) is minimally elliptic,
we have f,0,(K)=.#. On the other hand, we have

4
Op(6K +54) 2 O (K—54) = @M< —74,— Y A,.> .
i=2

Hence
f*g)e HYOW(K)\H (06K +54)) .

Since H(0,) 2 HY(O(K) 2 HY(O4(6K +54)), we have J4(X,x)>2 by Proposition
2.3. O

ProposITION 4.4. Let (X, x) be an elliptic singularity which is not a du Bois
singularity. Then §4X, x)=>2.

Proor. (1.8), Theorem 2.4 and Lemma 4.3 imply the assertion. O

ExampLE 4.5. There exists a singularity (X, x) with 4,(X, x)=1 for m=1,...,5
which is not a du Bois singularity, but a minimally elliptic singularity.
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Let (X, x) be a minimally elliptic singularity such that the minimal resolution of
(X, x} is not good. Using the notation in the proof of Lemma 4.3, we assume that
Ay Ay=—2, A3+ A3=—3 and A,+A,<—7. Then Z=64,+34,+24;+A,=—K+
4A4,+2A4,+ A;. Note that there exists such a minimally elliptic singularity. Since
Z> A, we have H'(0,)=0 (cf. Definition 1.3). Thus (X, x) is not a du Bois singularity
by Proposition 1.10. As in the proof of Lemma 4.3, we have

85(X, x)=dim¢ H(Oq)/ H(O(K)) +dime H(O(K))/H (O (5K +44))
=1+dim¢ HY(O(K))/H(Op(K—4A))) .
From the exact sequence
0 Oy(K—44,) > Oy(K) > 044,(K) -0,
we have
dime HAOy(K)/HUOp(K—44,)) =6—h' (O (K —44,)) .

We will show that AY0,(K—44,)=6. Since HY0,)~HY(0,, we have

HY(O4(—Z))=0. From the exact sequence

05 0(=2)> O(K—4A4) > 03 4,1 4,(K—44,) >0,
we have HY(O (K —4A) = H" (03,4, 1 4,(K—44,)). Let L=K—4A,. Consider the exact
sequences

0 0 4,(L—A3) > O34,+ 4,(L) = Uy (L) >0,

00 (L—A3—Ay)) > Oy (L—A3) = Oy (L—A43) > 0.

Then we get
PO, 4, 4 4 (K—4A4)=h" (04 (D)+ A O, (L — A3) + B (04 (L— A5 — A43))
=2+3+1=6.

Hence 64X, x)=1. By Lemma 4.2, §,(X, x)=1 for m=1, ..., 5.

(4.6) Let(X, x) be anelliptic du Bois singularity and f: (M, A)— (X, x) the minimal
resolution. Since HY((0,)=1, the divisor 4 is decomposed as 4=E, + E,, where E; is
either a non-singular elliptic curve or a cycle of r rational curves with r>1 (a cycle of
one rational curve means a rational curve with an ordinary double point), and E, is
void or a disjoint union of trees of non-singular rational curves. If E,=0, then (X, x)

is a simple elliptic or a cusp singularity.
We will use this notation in Lemma 4.7, Lemma 4.8 and Proposition 4.9 below.

Lemma 4.7. If E, is a rational curve with E, - E, < =3, then d;(X, x)=>2.

Proor. For any component A; of 4, we have 2K +2A4 —E,)* A;=0. By Theorem
2.6, H'(Oy(3K +2A4)=H'(O,(3K +24)). Since (3K+2A4)-E,=K-E,—2>—1, we



PLURI-GENERA OF SURFACE SINGULARITIES 131

have HY(0y(3K+2A4))=0. Let L=3K +2A. Then we get
0- HO(@M(L)) g HO(@M(L +E1)) - HO(@EI(L +E1)) -0,

and
dimc HYO (L + E )/ HUO (L) =h(Og (L+E )= x(Op (L+E,)=2.
Since
05(X, x)=dimo HY(O,_ (3K))/HY(O (L))
and
H%Opy - 43K) 2 HUOML+E )2 HAOW(L))
we have d,(X, x)>2. O

LemMma 4.8. If E, is a rational curve with E, * E,= —2, then §,(X, x)=2.

PROOF. As above, we have H' (O, (4K +3A))= H'(O,£,(4K +34)). Let L=4K +
3A. From the exact sequence

0 Op(L—E;) > Oy,(L) = Op(L) -0,
we have h'(0,z,(L))=2. Consider the exact sequence
0> Oy(L) > Op(L+FE)— Og (L+E)—0.
As in the proof of Lemma 4.7,
04X, x)>dimc HYOp(L+ E)/H(O (L) =1+h'(Oy(L+E))) .
Since h(O\(L+ E,))=h'(Og (L+ E))=1, we have 3,(X, x)=>2. O

ProrosiTiON 4.9, Let (X, x) be an elliptic du Bois singularity such that E,#0.
Then 65(X, x)=2 or 0,(X, x)=2.

PrOOF. Let A, be a curve in E, intersecting E,. Then h'(0, , 4,)=1. Let (X', x')
be the singularity obtained by contracting £, + 4, in M. By Theorem 2.4, we have
p (X', x')<1. Hence p, (X', x)=h"(Og, . 4,)=1. By Proposition 1.10, the singularity
(X", x') is an elliptic du Bois singularity. Thus the result is an immediate consequence
of Theorem 2.4 and Lemmas 4.7 and 4.8. O

THEOREM 4.10. Let (X, x) be a singularity with §,(X, x)=1 for m=1,4, 6. Then
(X, x) is a simple elliptic or cusp singularity.

PrOOF. Note that §,(X, x)=34(X, x)=1 implies §;(X, x)=1. By Proposition 4.4,
(X, x) is an elliptic du Bois singularity. Then Proposition 4.9 implies the assertion (cf.

(4.6)). O
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