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THE PMU PLACEMENT PROBLEM∗

DENNIS J. BRUENI† AND LENWOOD S. HEATH‡

Abstract. The PMU placement problem is an optimization problem abstracted from an ap-
proach to supervising an electrical power system. The power system is modeled as a graph, and
adequate supervision of the system requires that the voltage at each node and the current through
each edge be observable. A phasor measurement unit (PMU) is a monitor that can be placed at a
node to directly observe the voltage at that node, as well as the current and its phase through all
incident edges. The PMU placement problem is to place PMUs at a minimum number of nodes so
that the entire electric power system is observed. A new simpler definition of graph observability
and several complexity results for the PMU placement problem are presented. The PMU placement
problem is shown to be NP-complete even for planar bipartite graphs. Several fundamental proper-
ties of PMU placements are proven, including the property that a minimum PMU placement requires
no more than 1/3 of the nodes in a connected graph of at least 3 nodes.
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power monitoring, NP-completeness
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1. Power systems and PMUs. An electrical power system includes a set of
buses and a set of transmission lines connecting the buses. A bus is a substation
where lines are joined. A power system also includes a set of generators, which supply
power, and a set of loads, into which the power is directed. To securely control a
power system, its state must be monitored [8, 14, 19]. The state of a power system is
expressed in terms of state variables, such as voltage at a load and phase angle at a
generator. Typically, measurement devices are placed at selected points in the power
system to monitor values of the state variables, which are fed back to the central
control. The central control adjusts the power system to compensate for imbalances
and to prevent hazardous (e.g., fault) situations [23]. For proper control, it is essential
that all state variables be communicated to the central control in real time.

A phasor measurement unit (PMU) is a measurement device placed on a bus
to monitor voltage at the bus and current phase along outgoing lines [5, 11, 12,
13, 25]. The ability to measure the current phasors as well as the voltage gives
the PMU an advantage over other measurement units, enabling the deployment of
fewer PMUs than is required in other types of measurement systems, some of which
require one measurement unit per bus. PMUs track transients in the power system
at high sampling rates, allowing automated real-time monitoring and control [21].
It is important to place the PMUs on buses so as to minimize their number while
maintaining system observability, as PMUs are expensive [1, 18].

Stability problems of real-time control using PMUs have been studied before,
including neural network approaches to control [16, 17]. Synchronization of the con-
trol unit and the PMUs may be done by satellite, using the global positioning sys-
tem [3, 4, 20, 24], and communications of measurements can be implemented via the
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Fig. 1. Sample power system graph.

Internet [22]. The problem of optimal placement of PMUs has been studied before.
El-Shal and Thorp [6] give an algorithm to optimally place two PMUs to minimize
their notion of measurement error. Palmer and Ledwich [20] propose an optimization
algorithm based on measurement sensitivity. Baldwin, Mili, Boisen, and Adapa [1]
first formulate the PMU placement problem as a problem of minimizing cost and
investigate heuristics for the problem.

Brueni [2] recasts the PMU placement problem in a more formal graph-theoretic
setting. Haynes, Hedetniemi, Hedetniemi, and Henning [9] also study the problem
in a graph-theoretic setting, using the notion of a power dominating set in a graph.
Specifically, a power system is modeled as an undirected graph G = (V,E), where
V is the set of buses, generators, and loads, and where an edge (u, v) ∈ E exists if
there is a transmission line connecting u and v. For convenience of discussion, such
a graph G is called a power system graph (PSG). A PMU placement Π is a subset
of V on which PMUs are placed. System observability is defined as a function of a
PSG G and a PMU placement Π that returns the subgraph of G that is observed
by Π (see section 2 for the precise definition of observability). A PMU cover Π of
G is a placement that observes all of G. A minimum PMU cover is a PMU cover Π
whose size |Π| is minimum. Given a PSG G, the PMU placement problem is to find a
minimum PMU cover for G. A more formal definition of the problem, together with
an example, is given in section 3. Without loss of generality, we assume henceforth
that a PSG is a connected graph with at least two nodes.

We make a few observations about a typical PSG, which are illustrated by the
sample PSG in Figure 1. A PSG is planar or nearly so; it is uncommon for power
lines to intersect, except, of course, at a bus. A PSG has large induced subgraphs
that are trees, due to the fact that power distribution is most economical using only
a tree; cycles in power systems provide redundancy. A PSG has many degree one
nodes—generators and loads. The maximum degree of a PSG is low, because it is
impractical to connect a bus to a large number of lines.
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746 DENNIS J. BRUENI AND LENWOOD S. HEATH

A node with a PMU

An observed node

An unobserved node

Node status unstated

An observed edge

An unobserved edge

Edge status unstated

Fig. 2. Graphical notation for PMU observability.

In this paper, we address observability and PMU placement as graph-theoretic
and algorithmic problems. In section 2, we first take the definition of observability
from the power system literature [1] and give an equivalent, much simplified, graph-
theoretic definition. Employing the simplified definition of observability, we show how
to compute observability in linear time. In section 3, we formally define the minimum
PMU placement problem and explore its graph-theoretic properties. In particular, we
show that a PSG of at least 3 nodes requires a PMU cover that occupies no more than
1/3 of its nodes. Finally, in section 4, we prove that the PMU placement problem is
NP-complete even for planar bipartite graphs.

2. Observability.

2.1. Definitions of observability. In this section, we provide two definitions of
PSG observability and prove the two definitions equivalent. We require some notation
and terminology. Fix a PSG G = (V,E). Let V ′ ⊆ V . The node induced subgraph
<V ′> of an undirected graph G = (V,E) is

<V ′>= (V ′, {(u, v) | (u, v) ∈ E and u, v ∈ V ′}),

where V ′ ⊆ V . For any node v, its (open) neighborhood is ΓG(v) = Γ(v) = {u ∈
V | (u, v) ∈ E} . Its closed neighborhood is ΓG[v] = Γ[v] = Γ(v) ∪ {v}. A placement
Π ⊆ V is a set of the buses on which PMUs are placed. A bus or a line is observed
if its state variables are monitored. A PMU cover Π is a placement where the entire
graph is observed. Figure 2 summarizes the graphical notation used for observability
in the remainder of the paper.

Baldwin, Mili, Boisen, and Adapa [1] develop the rules in the following definition
of the nodes and edges observed. The rules follow from elementary laws of electrical
networks.

Definition 1 (Observability). Let Π be a placement of PMUs on the nodes
of G = (V,E). These rules determine the set of observed nodes ΠR and the set of
observed edges Π−.

R1. By definition: A bus with a PMU and any line extending from the bus is
observed. Formally, if v ∈ Π and u ∈ Γ(v), then v ∈ ΠR and (v, u) ∈ Π−.

R2. Ohm’s law, P = IR: Any bus that is incident to an observed line connected
to an observed bus is observed (the known current in the line, the known
voltage at the observed bus, and the known resistance of the line determines
the voltage at the bus). Formally, if (u, v) ∈ Π− and u ∈ ΠR, then v ∈ ΠR.

R3. Ohm’s law, I = P/R: Any line joining two observed buses is observed (the
known voltage at both observed buses and the known resistance of the line
determines the current on the line). Formally, if u, v ∈ ΠR and (u, v) ∈ E,
then (u, v) ∈ Π−.
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Fig. 3. Example of definition of observability.

R4. Kirchoff current: If all the lines incident to an observed bus are observed, save
one, then all of the lines incident to that bus are observed (the net current
flowing through a bus is zero). Formally, if v ∈ ΠR and |Γ(v)∩(V −ΠR)| ≤ 1,
then Γ[v] ⊆ ΠR.

R5. Derived: Any bus incident only to observed lines is observed. Formally, if,
for all u ∈ Γ(v), (v, u) ∈ Π−, then v ∈ ΠR.
Proof. An observed line must be connected to at least one observed bus (R1
and R3). If all lines incident to a bus are observed, the bus must either be
observed itself or each bus adjacent to it is observed. Hence, by R2, the bus
is observed.

This definition does not take into account any inductance or capacitance in the
system, which will have effects on the dynamic behavior of the system.

To illustrate the definition, consider the graph of Figure 1 and the placement
Π = {14}. Since 14 ∈ Π, by rule R1, we have

14 ∈ ΠR

(5, 14), (9, 14), (13, 14), (19, 14) ∈ Π−.

By R3, we have (5, 9) ∈ Π−, as 5, 9 ∈ ΠR. By R4, we have (8, 9) ∈ Π−, as 2 of the 3
lines incident to bus 9 are known to be observed. Finally, we have 8 ∈ ΠR by R2; see
Figure 3 for the annotated result.

We now provide a simplified definition of observability (originally in Brueni [2])
that requires only 2 rules. Our definition of observability is restricted to observing
nodes (buses).

Definition 2 (Simplified Observability). Let Π be a placement of PMUs on
the nodes of G = (V,E). The two rules below determine the set of observed nodes
ΠS ⊆ V .

S1. If a node v has a PMU, then all nodes in Γ[v] are observed. Formally, if
v ∈ Π, then Γ[v] ⊆ ΠS.
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748 DENNIS J. BRUENI AND LENWOOD S. HEATH

S2. If a node v is observed and all nodes in Γ(v) are observed, save one, then all
nodes in Γ[v] are observed. Formally, if v ∈ ΠS and |Γ(v) ∩ (V − ΠS)| ≤ 1,
then Γ[v] ⊆ ΠS.

We now demonstrate that Definitions 1 and 2 are equivalent.
Theorem 1. Let G = (V,E) be a PSG, and let Π ⊆ V be a placement. Then

ΠR = ΠS.
Proof. We first show that ΠS ⊂ ΠR. The set ΠS can be obtained one node at a

time by a sequence of applications of S1 and S2. For purposes of induction, choose
a sequence of steps—applications of S1 and S2—that yields ΠS . The base case of
the induction is zero steps, in which case the set of nodes obtained is ∅ ⊂ ΠR. Now
assume that v ∈ ΠS is obtained in step k > 0 and that all nodes obtained at earlier
steps are in ΠR. If step k is an S1 step, then either v ∈ Π and v ∈ ΠR by R1 or there
is a node u ∈ Γ(v) ∩ Π, in which case (u, v) ∈ Π− by R1 and v ∈ ΠR by R2. If step
k is an S2 step, then there exists an observed node u such that v ∈ Γ(u) and every
node w ∈ (V −ΠS) is obtained in an earlier step and hence is in ΠR. By R4, v ∈ ΠR.
By induction, we conclude that ΠS ⊂ ΠR.

We now show that ΠR ⊂ ΠS . The set ΠR can be obtained one node at a time by
a sequence of applications of R1–R4 (R5 is derived and an application of R5 can be
rewritten using applications of R1–R4). For purposes of induction, choose a sequence
of steps—applications of R1–R4—that yields ΠR. The base case of the induction is
zero steps, in which case the set of nodes obtained is ∅ ⊂ ΠS . Now assume that
v ∈ ΠR is obtained in step k > 0 and that all nodes obtained at earlier steps are in
ΠS . If step k is an R1 step, then v ∈ Π and v ∈ ΠS by S1. If step k is an R2 step,
then there exists an observed node u such that v ∈ Γ(u), (u, v) ∈ Π−, and u ∈ ΠR.
If u ∈ Π, then v ∈ ΠS by S1. Otherwise, (u, v) ∈ Π− because of an R3 step, at which
point u, v ∈ ΠR and hence v ∈ ΠS . Rule R3 only observes edges, so an R3 step does
not place any node in ΠR. If step k is an R4 step, then there exists an observed node
u such that v ∈ Γ(u) and every node w ∈ (V −ΠR) is obtained in an earlier step and
hence is in ΠS . By S2, v ∈ ΠS . By induction, we conclude that ΠR ⊂ ΠS .

The theorem follows.
By eliminating the concern for observing edges, this definition simplifies proofs

and algorithms. All results in this paper are presented using Definition 2.

2.2. Observability computation in linear time. The computation of ΠS

for a PSG G = (V,E) can be accomplished in time linear in |V | + |E|; see Algo-
rithm Observe in Figure 4. (The algorithm of Haynes, Hedetniemi, Hedetniemi, and
Henning [9] that implements Definition 1 is not obviously linear time.) For each node
v ∈ V , the variable observedneighbors[v] maintains the number of nodes in Γ(v) that
are currently known to be observed. The degree of v is degree(v) = |Γ(v)|.

Theorem 2. For G = (V,E) and Π ⊆ V , Algorithm Observe computes ΠS in
O(|V | + |E|) time.

Proof. An examination of Algorithm Observe shows that it implements rules S1
and S2 of Definition 2. The for loop for rule S1 marks all the nodes in Π and all their
neighbors observed. To implement rule S2, every node u that is observed and whose
observed neighbor count reaches the S2 threshhold of degree(u)− 1 is placed in the
queue Q. In the rule S1 for loop, neighbors of nodes in Π that reach the S2 threshhold
are enqueued. (There is no need to enqueue a node whose observed neighbor count
equals its degree.) The while loop implements the propagation of observation of
rule S2. Each dequeued node v was enqueued at a time when it was already marked
observed and had observed neighbor count degree(v)−1. At the time it is dequeued,
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THE PMU PLACEMENT PROBLEM 749

Observe(G,Π)
Q ← ∅
for each v ∈ V

do observed [v] ← false
for each v ∈ V

do observedneighbors[v] ← 0
for each v ∈ Π

do � Rule S1—observe all elements of Π and their neighbors
for each u ∈ Γ[v]

do if not observed [u]
then observed [u] ← true

for each w ∈ Γ(u)
do observedneighbors[w] ← observedneighbors[w] + 1

for each u ∈ Γ(v)
do � Enqueue neighbors of Π that reach the S2 threshold

if observedneighbors[u] = degree(u) − 1
then Enqueue(Q, u)

while Q 
= ∅
do � v is observed and has at most one unobserved neighbor

v ← Dequeue(Q,w)
if observedneighbors[v] = degree(v) − 1

then u ← unobserved neighbor of v
observed [u] ← true
for each w ∈ Γ(u)

do observedneighbors[w] ← observedneighbors[w] + 1
if observed(w)

if observedneighbors[w] = degree(w) − 1
then Enqueue(Q,w)

if observedneighbors[u] = degree(u) − 1
then Enqueue(Q, u)

return {v ∈ V | observed [v]}

Fig. 4. Algorithm Observe to compute the observability function.

the observed neighbor count of v may have increased to degree(v). Otherwise, v has
a unique neighbor u that is not marked observed. It is u that becomes observed as a
consequence of rule S2. In both places in Observe where a node u is marked observed,
the count of observed neighbors of u is incremented, so that the observedneighbors
values are correctly maintained. Moreover, in the while loop, whenever an observed
node reaches the S2 threshhold, it is enqueued. We conclude that Algorithm Observe

correctly computes ΠS .

Every node is marked observed at most once and is enqueued at most once. The
tests for the S2 threshhold are executed at most |E| times and require at most (|E|)
work. The remaining work is done at most once for each node and is hence O(|V |).
We conclude that the time complexity of Observe is O(|V | + |E|).

3. Properties of PMU placement. In this section, we explore graph-theoretic
properties of PMU placement.
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750 DENNIS J. BRUENI AND LENWOOD S. HEATH

(a) (b)

Fig. 5. Minimum covers for (a) a graph G and (b) an induced subgraph of G.

3.1. The PMU placement problem. The PMU placement problem (PMUP)
of finding a minimum cover is stated formally here.
Problem: PMU Placement (Optimization Version)
Instance: Graph G = (V,E).
Question: Find a cover Π ⊆ V such that for any cover Π′ ⊆ V , |Π| ≤ |Π′|.

Such a placement Π is called a minimum PMU cover. The reader may verify, with
some effort, that Π = {3, 10, 14, 19, 22} is a minimum PMU cover for the PSG of
Figure 1.

Haynes, Hedetniemi, Hedetniemi, and Henning [9] call the same problem the
power domination problem (PDS) and explore the analogy between PDS and the
traditional domination set problem. Though both problems involve some kind of
observation of part of a graph, there is the significant difference that observation in
dominating sets has bounded locality, while observation in PMUP can propagate more
globally. For example, a single PMU suffices to observe a path or cycle PSG. Given
an undirected graph G, a dominating set for G is also a PMU cover for G, although
it is a poor one in many cases. The converse is, of course, seldom true.

3.2. Induced subgraphs. One might expect that an induced subgraph of a
PSG G would always have a minimum PMU cover no larger than the size of a minimum
PMU cover of G. However, this expectation is incorrect, as illustrated by the graph
G in Figure 5. The single PMU in Figure 5(a) directly observes three nodes, two of
which are of degree two. These degree two nodes then allow the node at the top to
be observed, after which the observability of the remaining two nodes follows. While
the graph in Figure 5(b) is induced by all but one of the nodes of G, it is clearly
impossible to observe all of this subgraph of G without two PMUs.

3.3. Placement substitution. The following theorem shows that certain place-
ment sets may replace others.

Theorem 3 (Substitution). Given a PSG G = (V,E) and two placements

Π1,Π2 ⊆ V , if Π1
S ⊆ Π2

S, then for any placement Π, (Π ∪ Π1)
S ⊆ (Π ∪ Π2)

S
.

Proof. For purposes of induction, choose a sequence of steps—applications of S1
and S2—that yields (Π ∪ Π1)

S
. The base case of the induction is zero steps, in which

case the set of nodes obtained is ∅ ⊂ (Π ∪ Π2)
S
. Now assume that v ∈ (Π ∪ Π1)

S
is

obtained in step k > 0 and that all nodes obtained at earlier steps are in (Π ∪ Π2)
S
.

If step k is an S1 step, then there exists u ∈ Π∪Π1 such that v ∈ Γ[u]. If u ∈ Π, then

v ∈ (Π ∪ Π2)
S

by S1. If u ∈ Π1, then v ∈ (Π ∪ Π2)
S

since Π1
S ⊆ Π2

S . If step k is
an S2 step, then there exists an observed node u such that v ∈ Γ(u) and every node

w ∈ (V − (Π ∪ Π1)
S
) is obtained in an earlier step and hence is in (Π ∪ Π2)

S
. By S2,

v ∈ (Π ∪ Π2)
S
. By induction, we conclude that (Π ∪ Π2)

S ⊂ (Π ∪ Π2)
S
.
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THE PMU PLACEMENT PROBLEM 751

If |Π2| < |Π1| with Π1
S ⊆ Π2

S , then substituting Π2 for Π1 in a PMU cover
results in a smaller cover, without loss of system observability.

The following corollary to Theorem 3 shows that it is counterproductive to place
a PMU on a degree one node (unless, of course, |V | = 2).

Corollary 1. Given a PSG G = (V,E) with a cover Π ⊆ V such that there is
a degree one node v ∈ Π, there exists a cover Π′ such that v 
∈ Π′ and |Π′| ≤ |Π|.

Proof. Let {u} = Γ(v) and Π′ = (Π − {v}) ∪ {u}. Clearly, {v}S ⊆ {u}S . By
Theorem 3, Π′ is a PMU cover for G such that v 
∈ Π′ and |Π′| ≤ |Π|.

A second corollary shows that it is counterproductive to place a PMU on a degree
two node (unless, of course, G is a path or a cycle).

Corollary 2. Given a PSG G = (V,E) with a cover Π ⊆ V such that there is
a degree two node v ∈ Π, there exists a cover Π′ such that v 
∈ Π′ and |Π′| ≤ |Π|.

Proof. Let {u,w} = Γ(v) and Π′ = (Π − {v}) ∪ {u}. Note that w ∈ {u}S by
application of S1 and S2. Since Γ[v] ⊆ {u}S , we have {v}S ⊆ {u}S . By Theorem 3,
Π′ is a PMU cover for G such that v 
∈ Π′ and |Π′| ≤ |Π|.

Corollaries 1 and 2 are implicit in Observation 4 of Haynes, Hedetniemi, Hedet-
niemi, and Henning [9].

3.4. Placing a PMU on a separation node. A separation node in a connected
graph is one whose removal leaves a subgraph with two or more components. Baldwin,
Mili, Boisen, and Adapa [1] claim that if a PMU placed at a separation node v observes
all of the nodes in any one of the subgraphs resulting from the deletion of v, then v is
an element of some minimum cover. This claim may fail if the observed subgraph is
a path, due to the propagation of observability using S2, even when v has no PMU.
The following restatement is correct.

Theorem 4. Let G = (V,E) have separation node x. Let u,w ∈ Γ(x) be distinct
nodes. Let U and W be the components of <V −x> containing u and w, respectively.
If U ∪W ⊆ {x}S, then there exists a minimum cover for G containing x.

Proof. Note that U and W do not have to be distinct. Let Π1 be any minimum
PMU cover of G. If x ∈ Π1, then we are done. Otherwise, by S2, there must be a
node y ∈ (U ∪W )∩Π1. Let Π2 = {x}∪ (Π1 −{y}). Then Π2 is a minimum cover for
G containing x.

3.5. Upper bound on the size of a minimum PMU cover. In this section,
we show that, in a PSG having n ≥ 3 nodes, at most �n/3 PMUs suffice to cover
the PSG and that this upper bound is tight. Haynes, Hedetniemi, Hedetniemi, and
Henning [9] show the same upper bound just for trees (their Theorem 14).

In a PSG, a node u is symmetric to a node v, written u ≡ v, if Γ(u) − {v} =
Γ(v) − {u}.

Theorem 5. Node symmetry is an equivalence relation.

Proof. Let G = (V,E) be a connected graph. Reflexivity. For any x ∈ V ,
Γ(x)−{x} = Γ(x)−{x} and hence x ≡ x. Symmetry. For any x, y ∈ V , x ≡ y implies
Γ(x) − {y} = Γ(y) − {x}, which implies y ≡ x. Transitivity. For any x, y, z ∈ V ,
x ≡ y and y ≡ z implies Γ(x)−{y} = Γ(y)−{x} and Γ(y)−{z} = Γ(z)−{y}. These
imply that (x, z) ∈ E if and only if (y, z) ∈ E and (x, y) ∈ E if and only if (x, z) ∈ E.
Consequently, (x, y) ∈ E if and only if (y, z) ∈ E. Let N = Γ(x)∪Γ(y)∪Γ(z)−{x, y, z}.
Thus Γ(x)− {z} = (Γ(x)∩ {y})∪N = (Γ(z)∩ {y})∪N = Γ(z)− {x}. Hence, x ≡ z.

Thus, node symmetry is an equivalence relation.

For a PSG G = (V,E), let S be the set of equivalence classes of V under ≡.
For every P ∈ S, <P > is either a clique or an independent set. For two distinct
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752 DENNIS J. BRUENI AND LENWOOD S. HEATH

equivalence classes P,Q ∈ S, P is adjacent to Q if for every u ∈ P , we have Q ⊆ Γ(u).
Note that P adjacent to Q implies Q adjacent to P . Define A(S) = {(P,Q) | P,Q ∈
S and P adjacent to Q}. The graph H(S) = (S,A(S)) is the adjacency graph of S.
For any R ⊆ S, define π(R) = ∪U∈RU .

Lemma 1. Let G = (V,E) be a PSG, and let S be the set of equivalence classes
of V under ≡. Let U1, U2 ∈ V be distinct equivalence classes, and let u1 ∈ U1 and
u2 ∈ U2. Then (u1, u2) ∈ E if and only if (U1, U2) ∈ A(S). Consequently, H(S) is
connected.

An equivalence class of ≡ containing more than one node represents a kind of
node redundancy. The following lemma identifies a small placement that dominates
all but one node of each equivalence class.

Lemma 2. Let G = (V,E) have 3 or more nodes. There exists a placement Π
such that

1. for every distinct u, v ∈ V such that u ≡ v, either u ∈ Γ[Π] or v ∈ Γ[Π]; and
for every U ∈ S, |Γ[Π] ∩ U | ≥ |U | − 1; and

2. |Γ[Π]| ≥ 3|Π|.
Proof. First suppose that G is a clique. Then S = {V } and H(S) = (S, ∅). Let

Π = {v}, where v ∈ V . Clearly, Π satisfies (1) and (2).

Now suppose that G is not a clique. Then |S| ≥ 2. We proceed by induction on
|S| to show that there exists a Π that satisfies (1) and (2), as long as |π(S)| ≥ 3. The
base case is |S| = 2. Let S = {U1, U2}, where |U1| ≥ |U2| ≥ 1. If |U2| = 1 or |U2| = 2,
then let Π = {u} for any u ∈ U2. If |U2| ≥ 3, then let Π = {u1, u2} for any u1 ∈ U1

and any u2 ∈ U2. In both cases, U1 ∪ U2 ⊆ Γ[Π], and |U1 ∪ U2| ≥ 3|Π|. Hence, (1)
and (2) hold for Π.

Now assume that |S| = m ≥ 3 and that the inductive hypothesis holds for any
adjacency graph H(S′) of size less than m, as long as |π(S′)| ≥ 3. Let T = (S, F ) be a
spanning tree of H(S). Choose U ∈ S that is not a leaf but is adjacent to at least one
leaf in T . Root T at U . Let T1, T2, . . . , Tr be the subtrees under U . Note that r ≥ 2,
since |S| ≥ 3. For 1 ≤ j ≤ r, let Rj be the root of Tj . Without loss of generality,
assume that Rj is a leaf of T for j ≤ s and a nonleaf for j > s, where 1 ≤ s ≤ r, and
that the Tj , for 1 ≤ j ≤ s, are arranged in nondecreasing order by cardinality of |Rj |.

First suppose that |R1| = 1. Then R1 places no constraints on Π with respect to
(1) or (2). Let S′ = S − {R1}. If |S′| ≥ 3, then, by induction, a placement Π can
be found for H(S′) that satisfies (1) and (2) for <V − R1> and hence also for G. If
|S′| = 2, then s = r = 2. Select u ∈ U and w ∈ R2. If |R2| ≤ 2, then set Π = {w}. If
|R2| ≥ 3 and |U | ≤ 2, then set Π = {u}. If |R2| ≥ 3 and |U | ≥ 3, then set Π = {u,w}
(in this case, |π(S)| ≥ 6). In all cases, Π satisfies (1) and (2) for G.

Now suppose that |R1| ≥ 2. Select u ∈ U . Consider the case |U | ≤ 2. If r = s,
then set Π = {u}. Otherwise, consider each Tj , where s + 1 ≤ j ≤ r, in turn. If
|π(Tj)| ≥ 3, then apply the inductive hypothesis to Tj to identify Πj that satisfies
(1) and (2) for Tj . If |π(Tj)| ≤ 2, then Tj is a path of one-node equivalence classes;
set Πj = ∅. Set Π = {u} ∪

⋃r
j=s+1 Πj . Then Π satisfies (1) and (2). Now consider

the case |U | ≥ 3. In this case, |U − {u}| ≥ 2 and | <V − R1 − {u}> | ≥ 3. Let
G′ =<V − R1 − {u}>. By induction, there exists a Π′ satisfying (1) and (2) for G′.
Set Π = Π′ ∪ {u}. Then Π satisfies (1) and (2).

By induction, we obtain Π ⊆ V satisfying (1) and (2).

Theorem 6. Let G = (V,E) be a PSG, and let n = |V |. Then there exists a
cover Π satisfying |Π| ≤ �n/3, if n ≥ 3, and |Π| = 1, if 1 ≤ n ≤ 2.

Proof. The result for 1 ≤ n ≤ 2 is immediate. For n ≥ 3, the proof is an inductive
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Πj
S

Bj

V − Πj
S

vkv2v1

u

Fig. 6. Boundary node u ∈ B.

construction of a sequence of placements Π0
S ,Π1

S , . . . ,Π�
S such that, for 0 ≤ j < �,

we have that Πj is a proper subset of Πj+1; Π� is a cover of G; and, for 0 ≤ j ≤ �, we

have Πj 
= ∅ and |Πj
S ≥ 3|Πj

S |.
The base case is j = 0. Let Π′ be the initial placement guaranteed by Lemma 2.

If Π′ 
= ∅, then set Π0 = Π′. Otherwise, set Π0 = {u}, where u is any degree 2 node
of G. Clearly, Π0 
= ∅ and |Πj

S ≥ 3|Πj
S |, as required.

Now suppose that j ≥ 0 and that, for every 0 ≤ i < j, Πi is a proper subset of
Πi+1, and, for 0 ≤ i ≤ j, Πj 
= ∅ and |Πi

S ≥ 3|Πi
S |. Let Bj = {u ∈ Πj

S | Γ(u) ∩
(V − Πj

S)} be the set of boundary nodes—observed nodes adjacent to unobserved
nodes. If Bj = ∅, then Πj is a cover of G and the theorem is proved for G. Otherwise,

V − Πj
S 
= ∅. In that case, we construct Πj+1 as follows.

Clearly Bj ∩ Πj = ∅, since Γ[Πj ] ⊂ ΠS . Let u ∈ Bj , and let Γ(u) ∩ (V − Πj
S) =

{v1, v2, . . . , vk}, as illustrated in Figure 6. Without loss of generality, we may assume
that u is selected so that k is as large as possible. Observe that k ≥ 2, because if v1

were the only unobserved neighbor of u, then v1 would be observed by rule S2.
First consider the case k ≥ 3. Set Πj+1 = Πj ∪ {u}, a proper superset of Πj .

Then |Πj+1
S | ≥ |Πj

S | + 3, as desired.
Now consider the case k = 2, which means that every node in Bj is adjacent to

exactly two nodes of V −Πj
S . Without loss of generality, assume that degree(v1) ≥

degree(v2) ≥ 1. Since v1 
≡ v2, we cannot have degree(v1) = degree(v2) = 1.
Thus, degree(v1) ≥ 2.

Let C1 = (V1, E1) (respectively, C2 = (V2, E2)) be the component of <V − Πj
S>

containing v1 (respectively, v2). First consider the cases where |V1| ≥ 3 or where
|V1| = 2 and C1 
= C2. Select a v3 ∈ V1 ∩ Γ(v1) that is not v2. Set Πj+1 = Πj ∪ {v1},
a proper superset of Πj . We obtain v2, v3 ∈ Πj+1

S ; in particular, v2 ∈ Πj+1
S because

v2 is the last unobserved neighbor of u and hence is observed by rule S2. Therefore,
|Πj+1

S | ≥ |Πj
S | + 3, as desired. Now consider the cases where |V1| = 1 or where

|V1| = 2 and C1 = C2. These cases imply that v1 and v2 are adjacent only to nodes in
Bj and perhaps each other. Since degree(v1) ≥ 2 and v1 
≡ v2, there must be a node

w ∈ Bj −{u} adjacent to v1 and not adjacent to v2. Let Γ(w)∩ (V −Πj
S) = {v1, z};

see Figure 7. We have z 
= v2, since w is not adjacent to v2. Set Πj+1 = Πj ∪ {v1},
a proper superset of Πj . We obtain v2, z ∈ Πj+1

S by application of rule S2 to u and

w. Therefore, |Πj+1
S | ≥ |Πj

S | + 3, as desired.
Since the sequence of placements are increasing, we must eventually reach the
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Πj
S

v1v2 z

u w

Bj

V − Πj
S

Fig. 7. Boundary nodes u,w ∈ Bj .

Fig. 8. Corona B�,2, which requires n/3 PMUs.

case where Bj = ∅. The theorem follows.
We now show that the above bound is existentially tight. To do so, we start with

a construction defined in Haynes, Hedetniemi, Hedetniemi, and Henning [9]. If G and
H are two graphs, then the corona G ◦H of G and H is achieved by making a copy
Hv of H for every node v of G and adding an edge from v to every node of Hv. For
purposes of notation, let C� = (U�, E�), where

U� = {u1, u2, . . . , u�}

E� =

�−1⋃

i=1

{(ui, ui+1)} ∪ {(u�, u1)}),

be a cycle of length �, and let Ik = (Vk, ∅), where Vk = {v1, v2, . . . , vk}, be a graph
of k isolated nodes. For each ui ∈ U�, define a copy Ik,ui of Ik by Iui,k = (Vk,ui , ∅),
where Vui,k = {vi,1, vi,2, . . . , vi,k}. The corona B�,k = C� ◦ Ik is a graph of n = k�
nodes that requires exactly � PMUs to be observed when k ≥ 2. Moreover, the initial
placement phase in the proof of Theorem 6 finds exactly the minimum PMU cover
of B�,k. More specifically, B�,2 requires exactly n/3 PMUs to be observed, which we
show in Theorem 7. For example, a minimum PMU cover for B�,2 has exactly � PMUs
as shown in Figure 8.

Theorem 7. A minimum cover for B�,k requires ��/3� PMUs if k = 1 and
requires � PMUs if k ≥ 2.

Proof. First consider the construction of a minimum PMU cover of B�,1 = C� ◦I1.
Starting with an arbitrary point on C�, place a PMU on every third node of C�. It is
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THE PMU PLACEMENT PROBLEM 755

easy to verify that such a placement is a minimum cover, since every degree one node
is either adjacent to a PMU or adjacent to a node of C� that is adjacent to PMU.

Now assume k ≥ 2 and consider the construction of a minimum PMU cover of
B�,k. Let V = ∪�

i=1Vui,k. Let Π be a minimum cover of G. Among all minimum covers
of G, select Π ∩ V to be as small as possible. Suppose v = vi,j ∈ Π ∩ V . Then v is a
degree one node adjacent only to ui, a degree k+2 node. The set {ui}∪ (Π−{v}) is a
cover of G of the same cardinality as Π, but with one fewer element of V , contradicting
the choice of Π. Hence, Π ∩ V = ∅. We claim that Π = U�. Consider any ui ∈ U�.
We know that none of the k neighbors of ui in V are in Π. If ui 
∈ Π, then the k
neighbors are observed via applications of rule S2. But rule S2 can only be applied
when at most one neighbor of ui is unobserved, while k ≥ 2. We conclude that ui ∈ Π
and, moreover, that Π = U�. The theorem follows.

One referee suggested this generalization of Theorem 7.
Theorem 8. Let G be a connected graph with � nodes, and let k ≥ 2. Then a

minimum cover for the corona G ◦ Ik requires � PMUs.
The proof is similar to that of Theorem 7.

4. NP-completeness. Haynes, Hedetniemi, Hedetniemi, and Henning [9] show
that PMUP is NP-complete for bipartite graphs and for chordal graphs. Here we
show that the following decision problem version of PMUP is NP-complete even for
planar bipartite graphs.
Problem: PMU Placement (Decision Version)
Instance: Graph G = (V,E), integer k ≥ 1.
Question: Is there a set Π ⊆ V such that |Π| ≤ k and ΠS = V ?

Theorem 9. PMUP is NP-complete even when restricted to the class of planar
bipartite graphs.

Proof. The decision problem is easily in NP. Nondeterministically select k nodes
forming a candidate Π and verify observability using the methods described in sec-
tion 2.

The remainder of the proof is a reduction from planar 3-SAT (P3SAT) [15]. An
instance of 3-SAT is a boolean formula φ in conjunctive normal form such that each
clause contains at most 3 literals [7]. φ consists of the variables {v1, v2, . . . , vr} and
the set of clauses {c1, c2, . . . , cs}. Each cj is a set containing at most 3 literals, where
each literal is either a variable vi or its complement vi. A clause containing exactly k
literals is called a k-clause. The graph of φ, G(φ) = (V (φ), E(φ)), is a bipartite graph
constructed as follows:

V (φ) = {vi | 1 ≤ i ≤ r} ∪ {cj | 1 ≤ j ≤ s}
E(φ) = {(vi, cj) | vi ∈ cj or vi ∈ cj}.

The edges in E(φ) represent whether a variable occurs in a clause or not. For example,
the graph of the formula

φ = (v1 ∨ v2 ∨ v3) ∧ (v1 ∨ v4 ∨ v5) ∧ (v2 ∨ v3 ∨ v5) ∧ (v3 ∨ v4) ∧ (v3 ∨ v4 ∨ v5)

is shown in Figure 9. φ is satisfied if v2, v4, and v5 are true; hence φ is a satisfiable
formula. Lichtenstein shows that 3-SAT is NP-complete even when G(φ) is planar
(the problem P3SAT) [15].

It suffices to consider only instances of P3SAT such that each clause contains
either 2 or 3 literals. Our planar embedding of G(φ) positions each node vi, 1 ≤ i ≤ r,
along a straight line; this is called the variable axis. From Lemma 1 of [15], we may
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v1

v2

v3

v4

v5

c5

c4

c1

c2

c3

Fig. 9. Example of planar 3-SAT.

T F

X

XX

X

Fig. 10. A gadget for a variable.

assume that our planar embedding of G(φ) satisfies the condition that, for each vi,
all clauses containing the literal vi are on one side of the variable axis and all clauses
containing the literal vi are on the other side. This property of the planar embedding
of G(φ) is called consistency [10]. Figure 9 is an example of a consistent planar
embedding.

Let V = {v1, . . . , vr} and C = {c1, c2, . . . , cs} be an instance of P3SAT such
that G(φ) has a consistent planar embedding. We will construct a corresponding
instance of PMUP that also is a planar bipartite graph. The strategy is to replace
each node in G(φ) with a specially constructed graph, or gadget. Let H(φ) denote the
resulting graph. Each clause node cj , 1 ≤ j ≤ s, is replaced with a 2-clique C[j], C ′[j],
effectively making the clause node adjacent to an additional degree one node. The
gadgets placed on clauses simply force a clause to be adjacent to at least one node
with a PMU. Each variable node vi is replaced by the gadget shown in Figure 10.
Observe that the gadget forces at least one PMU placed on it in order to be covered.
This implies that H(φ) requires a minimum of r PMUs in its cover. We wish to show
that a minimum cover for H(φ) uses exactly r PMUs if and only if φ is satisfiable.
Thus we are allowed only one PMU per gadget.

The gadget is designed to toggle between two states, representing either a true
(T) or false (F) value for the literal it replaces, depending on which node the PMU
is placed on; see Figure 11. For any variable vi, let zi ∈ {vi, vi} denote the variable
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THE PMU PLACEMENT PROBLEM 757

(b)(a)

(c) (d)

(f)(e)

Fig. 11. Gadget states: (a) true; (b) false; (c) left bridge; (d) right bridge; (e) left leaf; and (f)
right leaf.

appearing in all clauses to the left of the variable axis. The following cases ensue:

1. true: In this case, the gadget is indicating that zi is true. The right leaf of
the gadget is observed only if all clauses connected to the rightmost node are
observed.

2. false: In this case, the gadget is indicating that zi is false. The left leaf of
the gadget is observed only if all clauses connected to the leftmost node are
observed.

3. eliminated (left bridge and right bridge): It is impossible to cover the gadget
with one PMU on either bridge.

4. eliminated (left leaf and right leaf): It is impossible to cover the gadget with
one PMU on a leaf.

For illustration, consider the instance of P3SAT depicted in Figure 9, with gadgets
inserted, as shown in Figure 12, and shown with a minimum PMU cover in Figure 13.

We have shown our construction guarantees a graph H(φ) for which a minimum
PMU cover has at least one PMU per gadget. At this time, note that H(φ) is planar
and bipartite, as shown in Figure 14. We have also classified the nodes of the gadget
semantically as either true, false, or illegal. By the substitution lemma, we do not
need to consider illegal nodes when constructing a minimum PMU cover for H(φ). It
remains to show that H(φ) has a cover of size r if and only if φ is satisfiable.
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v1

v2

v3

v4

v5

c4

c5 c3

c1
c2

Fig. 12. Instance of PMUP (planar 3-SAT with gadgets).

Assume that φ is satisfiable. For each variable vi, 1 ≤ i ≤ r, place a PMU on
either the leftmost or the rightmost gadget node according to whether vi is true or
false in a given satisfying instance S for φ. If φ is satisfied, then for each clause cj ,
1 ≤ j ≤ s, there exists a literal vi ∈ cj or vi ∈ cj which is in S. The PMU placed on
the corresponding gadget observes the main node of cj , as well as the main body of
the vi’s gadget. Thus all main clause nodes are observed. Furthermore, all leaf nodes
on clauses become observed by S2. Likewise, the remaining leaf nodes on gadgets
become observed. Hence, there is a cover of size r for H(φ).

Now assume that H(φ) has a cover Π of size r. Each gadget must have at least
one PMU. Thus there can be no nongadget PMUs in Π. Since Π is a cover, all clauses
are observed. By construction, a clause cannot be observed unless it is adjacent to at
least one PMU located on a gadget. Then for each main clause node cj , 1 ≤ j ≤ s,
there exists a node u ∈ Γ(cj) with a PMU. Let vi be variable containing u. Let
zi ∈ {vi, vi} be the variable appearing in cj . The clause cj is satisfied if zi is chosen
as true. Hence, all clauses in φ are satisfied by the truth assignment derived from the
minimum cover Π.

In summary, we have transformed instance φ of P3SAT into a PSG H(φ) with the
property that φ is satisfiable if and only if H(φ) has a PMU cover of size r. Therefore,
P3SAT reduces to PMUP. Since P3SAT is NP-complete [15], we conclude that PMUP
is NP-complete even when restricted to planar bipartite graphs.
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THE PMU PLACEMENT PROBLEM 759

Fig. 13. Minimum PMU cover (P3SAT with gadgets).

(a)

V1 V1 V1 V1V2 V2

c0 c1 c2 c3v0

v1

v2

v4

v5

v6

V2

(b)

c1

v0

v2v1

v6 c3

c2v4 v5

V1

V2

c0

Fig. 14. Partitions of nodes in H(φ) showing that H(φ) is bipartite.D
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