
The Pochoir Stencil Compiler

Yuan Tang Rezaul Chowdhury Bradley C. Kuszmaul

Chi-Keung Luk Charles E. Leiserson

MIT Computer Science and Artificial Intelligence Laboratory
Cambridge, MA 02139, USA

ABSTRACT

A stencil computation repeatedly updates each point of a d-
dimensional grid as a function of itself and its near neighbors. Par-
allel cache-efficient stencil algorithms based on “trapezoidal de-
compositions” are known, but most programmers find them diffi-
cult to write. The Pochoir stencil compiler allows a programmer
to write a simple specification of a stencil in a domain-specific
stencil language embedded in C++ which the Pochoir compiler
then translates into high-performing Cilk code that employs an ef-
ficient parallel cache-oblivious algorithm. Pochoir supports gen-
eral d-dimensional stencils and handles both periodic and aperi-
odic boundary conditions in one unified algorithm. The Pochoir
system provides a C++ template library that allows the user’s sten-
cil specification to be executed directly in C++ without the Pochoir
compiler (albeit more slowly), which simplifies user debugging and
greatly simplified the implementation of the Pochoir compiler it-
self. A host of stencil benchmarks run on a modern multicore
machine demonstrates that Pochoir outperforms standard parallel-
loop implementations, typically running 2–10 times faster. The
algorithm behind Pochoir improves on prior cache-efficient algo-
rithms on multidimensional grids by making “hyperspace” cuts,
which yield asymptotically more parallelism for the same cache
efficiency.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel programming; D.3.2 [Programming Languages]: Lan-
guage Classifications—Specialized application languages; G.4
[Mathematical Software]: Algorithm design and analysis.

This work was supported in part by a grant from Intel Corporation and in
part by the National Science Foundation under Grants CCF-0937860 and
CNS-1017058.
Yuan Tang is Assistant Professor of Computer Science at Fudan Univer-

sity in China and a Visiting Scientist at MIT CSAIL. Bradley C. Kuszmaul
is Research Scientist at MIT CSAIL and Chief Architect at Tokutek, Inc.
Chi-Keung Luk is Senior Staff Engineer at Intel Corporation and a Research
Affiliate at MIT CSAIL. Rezaul Chowdhury is Research Scientist at Boston
University and Research Affiliate at MIT CSAIL. Charles E. Leiserson is
Professor of Computer Science and Engineering at MIT CSAIL.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’11, June 4–6, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0743-7/11/06 ...$10.00.

General Terms

Algorithms, Languages, Performance.

Keywords

C++, cache-oblivious algorithm, Cilk, compiler, embedded
domain-specific language, multicore, parallel computation, stencil,
trapezoidal decomposition.

1. INTRODUCTION
Pochoir (pronounced “PO-shwar”) is a compiler and runtime

system for implementing stencil computations on multicore proces-
sors. A stencil defines the value of a grid point in a d-dimensional
spatial grid at time t as a function of neighboring grid points at re-
cent times before t. A stencil computation [2, 9, 11, 12, 16, 17, 26–
28, 33, 34, 36, 40, 41] computes the stencil for each grid point over
many time steps.

Stencil computations are conceptually simple to implement us-
ing nested loops, but looping implementations suffer from poor
cache performance. Cache-oblivious [15, 38] divide-and-conquer
stencil codes [16,17] are much more efficient, but they are difficult
to write, and when parallelism is factored into the mix, most appli-
cation programmers do not have the programming skills or patience
to produce efficient multithreaded codes.

As an example, consider how the 2D heat equation [13]

∂ut(x,y)

∂t
= α

(
∂2ut(x,y)

∂x2
+

∂2ut(x,y)

∂y2

)

on an X ×Y grid, where ut(x,y) is the heat at a point (x,y) at time
t and α is the thermal diffusivity, might be solved using a stencil
computation. By discretizing space and time, this partial differen-
tial equation can be solved approximately by using the following
Jacobi-style update equation:

ut+1(x,y) = ut(x,y)

+
α∆t

∆x2
(ut(x−1,y)+ut(x+1,y)−2ut(x,y))

+
α∆t

∆y2
(ut(x,y−1)+ut(x,y+1)−2ut(x,y)) .

One simple parallel program to implement a stencil computation
based on this update equation is with a triply nested loop, as shown
in Figure 1. The code is invoked as LOOPS(u;0,T ;0,X ;0,Y) to per-
form the stencil computation over T time steps. Although the loop
indexing the time dimension is serial, the loops indexing the spa-
tial dimensions can be parallelized, although as a practical matter,
only the outer loop needs to be parallelized. There is generally no
need to store the entire space-time grid, and so the code uses two

LOOPS(u; ta, tb;xa,xb;ya,yb)

1 for t = ta to tb−1
2 parallel for x = xa to xb−1
3 for y = ya to ya−1
4 u((t+1) mod 2,x,y) = u(t mod 2,x,y)

+CX · (u(t mod 2,(x−1) mod X ,y)
+u(t mod 2,(x+1) mod X ,y)−2u(t mod 2,x,y))
+CY · (u(t mod 2,x,(y−1) mod Y)
+u(t mod 2,x,(y+1) mod Y)−2u(t mod 2,x,y))

Figure 1: A parallel looping implementation of a stencil computation for
the 2D heat equation with periodic boundary conditions. The array u keeps
two copies of an X ×Y array of grid points, one for time t and one for time
t + 1. The parameters ta and tb are the beginning and ending time steps,
and xa, xb, ya, and yb are the coordinates defining the region of the array u

on which to perform the stencil computation. The constants CX = α∆t/∆x2

and CY = α∆t/∆y2 are precomputed. The call LOOPS(u;0,T ;0,X ;0,Y)
performs the stencil computation over the whole 2D array for T time steps.

copies of the spatial grid, swapping their roles on alternate time
steps. This code assumes that the boundary conditions are peri-

odic, meaning that the spatial grid wraps around to form a torus,
and hence the index calculations for x and y are performed modulo
X and Y , respectively.
This loop nest is simple and fairly easy to understand, but its

performance may suffer from poor cache locality. Let M be the
number of grid points that fit in cache, and let B be the number of
grid points that fit on a cache line. If the space grid does not fit in
cache — that is, XY ≫M — then this simple computation incurs
Θ(TXY/B) cache misses in the ideal-cache model [15].
Figure 2 shows the pseudocode for a more efficient cache-

oblivious algorithm called TRAP, which is the basis of the algo-
rithm used by the Pochoir compiler. We shall explain this algo-

rithm in Section 3. It achieves Θ(TXY/B
√
M) cache misses,

assuming that X ≈ Y and T = Ω(X). TRAP easily outperforms
LOOPS on large data sets. For example, we ran both algorithms
on a 5000× 5000 spatial grid iterated for 5000 time steps using
the Intel C++ version 12.0.0 compiler with Intel Cilk Plus [23] on
a 12-core Intel Core i7 (Nehalem) machine with a private 32-KB
L1-data-cache, a private 256-KB L2-cache, and a shared 12-MB
L3-cache. The code based on LOOPS ran in 248 seconds, whereas
the Pochoir-generated code based on TRAP required about 24 sec-
onds, more than a factor of 10 performance advantage.
Figure 3 shows Pochoir’s performance on a wider range of

benchmarks, including heat equation (Heat) [13] on a 2D grid,
a 2D torus, and a 4D grid; Conway’s game of Life (Life) [18];
3D finite-difference wave equation (Wave) [32]; lattice Boltzmann
method (LBM) [30]; RNA secondary structure prediction (RNA)
[1, 6]; pairwise sequence alignment (PSA) [19]; longest common
subsequence (LCS) [7]; and American put stock option pricing
(APOP) [24]. Pochoir achieves a substantial performance improve-
ment over a straightforward loop parallelization for typical stencil
applications, such as Heat and Life. Even LBM, which is a complex
stencil having many states, achieves good speedup. When Pochoir
does not achieve as much speedup over the loop code, it is often
due to the space-time grid being too small to yield good paral-
lelism, the innermost loop containing many branch conditionals, or
the benchmark containing a high ratio of floating-point operations
to memory accesses. For example, RNA’s small grid size of 3002

yields a parallelism of just over 5 for both Pochoir and parallel
loops, and its innermost loop contains many branch conditionals.
PSA operates over a diamond-shaped domain, and so the applica-
tion employs many conditional branches in the kernel in order to
distinguish interior points from exterior points. These overheads

TRAP(u; ta, tb;xa,xb,dxa,dxb;ya,yb,dya,dyb)

1 ∆t = tb− ta

2 ∆x = max{xb− xa,(xb+dxb∆t)− (xa+dxa∆t)} // Longer x-base
3 ∆y = max{yb− ya,(yb+dyb∆t)− (ya+dya∆t)} // Longer y-base
4 k = 0 // Try hyperspace cut
5 if ∆x≥ 2σx∆t

6 Trisect the zoid with x-cuts
7 k += 1
8 if ∆y≥ 2σy∆t

9 Trisect the zoid with y-cuts
10 k += 1
11 if k > 0
12 Assign dependency levels 0,1, . . . ,k to subzoids
13 for i = 0 to k // for each dependency level i
14 parallel for all subzoids

(ta, tb;xa′,xb′,dxa′,dxb′;ya′,yb′,dya′,dyb′)
with dependency level i

15 TRAP(ta, tb;xa′,xb′,dxa′,dxb′;ya′,yb′,dya′,dyb′)
16 elseif ∆t > 1 // time cut
17 // Recursively walk the lower zoid and then the upper
18 TRAP(ta, ta+∆t/2;xa,xb,dxa,dxb;ya,yb,dya,dyb)
19 TRAP(ta+∆t/2, tb; xa+dxa∆t/2,xb+dxb∆t/2,dxa,dxb;

ya+dya∆t/2,yb+dyb∆t/2,dya,dyb)
20 else // base case
21 for t = ta to tb−1
22 for x = xa to xb−1
23 for y = ya to yb−1
24 u((t+1) mod 2,x,y) = u(t mod 2,x,y)

+CX · (u(t mod 2,(x−1) mod X ,y)
+u(t mod 2,(x+1) mod X ,y)−2u(t mod 2,x,y))
+CY · (u(t mod 2,x,(y−1) mod Y)
+u(t mod 2,x,(y+1) mod Y)−2u(t mod 2,x,y))

25 xa += dxa

26 xb += dxb

27 ya += dya

28 yb += dyb

Figure 2: The Pochoir cache-oblivious algorithm that implements a 2D
stencil computation to solve the 2D heat equation using a trapezoidal de-
composition with hyperspace cuts. The parameter u is an X ×Y array of
grid points. The remaining variables describe the hypertrapezoid, or “zoid,”
embedded in space-time that is being processed: ta and tb are the begin-
ning and ending time steps; xa, xb, ya, and yb are the coordinates defining
the base of the zoid; dxa, dxb, dya, and dyb are the slopes (actually inverse
slopes) of the sides of the zoid. The values σx and σy are the slopes of the
stencil in the x- and y-dimensions, respectively, which are both 1 for the
heat equation.

can sometimes significantly mitigate a cache-efficient algorithm’s
advantage in incurring fewer cache misses.

The Berkeley autotuner [8,26,41] focuses on optimizing the per-
formance of stencil kernels by automatically selecting tuning pa-
rameters. Their work serves as a good benchmark for the maximum
possible speedup one can get on a stencil. K. Datta and S. Williams
graciously gave us their code for computing a 7-point stencil and
a 27-point stencil on a 2583 grid with “ghost cells” (see Section 4)
using their system. Unfortunately, we were unable to reproduce
the reported results from [8] — presumably because there were too
many differences in hardware, compilers, and operating system —
and thus we are unable to offer a direct side-by-side comparison.
Instead, we present in Figure 5 a comparison of our results to their
reported results.

We tried to make the operating conditions of the Pochoir tests
as similar as possible to the Berkeley environment reported in [8].
We compared Pochoir running 8 worker threads on a 12-core sys-
tem to the reported numbers for the Berkeley autotuner running 8
threads on 8 cores. The comparison may result in a disadvantage
to the Berkeley autotuner, because their reported numbers involve

Benchmark Dims Grid Time Pochoir Serial loops 12-core loops
size steps 1 core 12 cores speedup time ratio time ratio

Heat 2 16,0002 500 277s 24s 11.5 612s 25.5 149s 6.2

Heat 2p 16,0002 500 281s 24s 11.7 1,647s 68.6 248s 10.3

Heat 4 1504 100 154s 54s 2.9 433s 8.0 104s 1.9

Life 2p 16,0002 500 345s 28s 12.3 2,419s 86.4 332s 11.9

Wave 3 1,0003 500 3,082s 447s 6.9 3,170s 7.1 1,071s 2.4

LBM 3 1002×130 3,000 345s 68s 5.1 304s 4.5 220s 3.2

RNA 2 3002 900 90s 20s 4.5 121s 6.1 26s 1.3
PSA 1 100,000 200,000 105s 18s 5.8 432s 24.0 77s 4.3
LCS 1 100,000 200,000 57s 9s 6.3 105s 11.7 27s 3.0
APOP 1 2,000,000 10,000 43s 4s 10.7 515s 128.8 48s 12.0

Figure 3: Pochoir performance on an Intel Core i7 (Nehalem) machine. The stencils are nonperiodic unless the Dims column contains a “p.” The header
Serial loops means a serial for loop implementation running on one core, whereas 12-core loops means a parallel cilk_for loop implementation running on
12 cores. The header ratio indicates how much slower the looping implementation is than the 12-core Pochoir implementation. For nonperiodic stencils, the
looping implementations employ ghost cells [8] to avoid boundary processing.

only a single time step, whereas the Pochoir code runs for 200 time
steps. (It does not make sense to run Pochoir for only 1 time step,
since its efficiency is in large measure due to the temporal locality
of cache use.) Likewise, the Pochoir figures may exhibit a disad-
vantage compared with the Berkeley ones, because Pochoir had to
cope with load imbalances due to the scheduling of 8 threads on 12
cores. Notwithstanding these issues, as can be seen from the fig-
ure, Pochoir’s performance is generally comparable to that of the
Berkeley autotuner on these two benchmarks.
The Pochoir-generated TRAP code is a cache-oblivious [15, 38]

divide-and-conquer algorithm based on the notion of trapezoidal
decompositions introduced by Frigo and Strumpen [16, 17]. We
improve on their code by using hyperspace cuts, which produce
an asymptotic improvement in parallelism while attaining essen-
tially the same cache efficiency. As can be seen from Figure 2,
however, this divide-and-conquer parallel code is far more com-
plex than LOOPS, involving recursion over irregular geometric re-
gions. Moreover, TRAP presents many opportunities for optimiza-
tion, including coarsening the base case of the recursion and han-
dling boundary conditions. We contend that one cannot expect av-
erage application programmers to be able to write such complex
high-performing code for each stencil computation they wish to
perform.
The Pochoir stencil compiler allows programmers to write sim-

ple functional specification for arbitrary d-dimensional stencils,
and then it automatically produces a highly optimized, cache-
efficient, parallel implementation. The Pochoir language can be
viewed as a domain-specific language [10,21,31] embedded in the
base language C++ with the Cilk multithreading extensions [23].
As shown in Figure 4, the Pochoir system operates in two phases,

only the second of which involves the Pochoir compiler itself. For
the first phase, the programmer compiles the source program with
the ordinary Intel C++ compiler using the Pochoir template li-
brary, which implements Pochoir’s linguistic constructs using un-
optimized but functionally correct algorithms. This phase ensures
that the source program is Pochoir-compliant. For the second
phase, the programmer runs the source through the Pochoir com-
piler, which acts as a preprocessor to the Intel C++ compiler, per-
forming a source-to-source translation into a postsource C++ pro-
gram that employs the Cilk extensions. The postsource is then com-
piled with the Intel compiler to produce the optimized binary exe-
cutable. The Pochoir compiler makes the following promise:

The Pochoir Guarantee: If the stencil program com-
piles and runs with the Pochoir template library during
Phase 1, no errors will occur during Phase 2 when it

Berkeley Pochoir

CPU Xeon X5550 Xeon X5650
Clock 2.66GHz 2.66 GHz

cores/socket 4 6
Total # cores 8 12

Hyperthreading Enabled Disabled
L1 data cache/core 32KB 32KB
L2 cache/core 256KB 256KB
L3 cache/socket 8MB 12 MB
Peak computation 85 GFLOPS 120 GFLOPS

Compiler icc 10.0.0 icc 12.0.0
Linux kernel 2.6.32

Threading model Pthreads Cilk Plus

3D 7-point 2.0 GStencil/s 2.49 GStencil/s
8 cores 15.8 GFLOPS 19.92 GFLOPS

3D 27-point 0.95 GStencil/s 0.88 GStencil/s
8 cores 28.5 GFLOPS 26.4 GFLOPS

Figure 5: A comparison of Pochoir to the reported results from [8]. The
7-point stencil requires 8 floating-point operations per grid point, whereas
the 27-point stencil requires 30 floating-point operations per grid point.

is compiled with the Pochoir compiler or during the
subsequent running of the optimized binary.

Pochoir’s novel two-phase compilation strategy allowed us to
build significant domain-specific optimizations into the Pochoir
compiler without taking on the massive job of parsing and type-
checking the full C++ language. Knowing that the source program
compiles error-free with the Pochoir template library during Phase
1 allows the Pochoir compiler in Phase 2 to treat portions of the
source as uninterpreted text, confident that the Intel compiler will
compile it correctly in the optimized postsource. Moreover, the
Pochoir template library allows the programmer to debug his or her
code using a comfortable native C++ tool chain without the com-
plications of the Pochoir compiler.

Figure 6 shows the Pochoir source code for the periodic 2D heat
equation. We leave the specification of the Pochoir language to
Section 2, but outline the salient features of the language using this
code as an example.

Line 6 declares the Pochoir shape of the stencil, and line 7 cre-
ates the 2-dimensional Pochoir object heat having that shape. The
Pochoir object will contain all the state necessary to perform the
computation. Each triple in the array 2D_five_pt corresponds to a
relative offset from the space-time grid point (t,x,y) that the stencil
kernel (declared in lines 11–13) will access. The compiler cannot
infer the stencil shape from the kernel, because the kernel can be
arbitrary code, and accesses to the grid points can be hidden in sub-
routines. The Pochoir template library complains during Phase 1,
however, if an access to a grid point during the kernel computation
falls outside the region specified by the shape declaration.

(a) (b)

Figure 4: Pochoir’s two-phase compilation strategy. (a) During Phase 1 the programmer uses the normal Intel C++ compiler to compile his or her code with
the Pochoir template library. Phase 1 verifies that the programmer’s stencil specification is Pochoir compliant. (b) During Phase 2 the programmer uses the
Pochoir compiler, which acts as a preprocessor to the Intel C++ compiler, to generate optimized multithreaded Cilk code.

1 #define mod(r,m) ((r)%(m) + ((r) <0)? (m):0)

2 Pochoir_Boundary_2D(heat_bv , a, t, x, y)
3 return a.get(t,mod(x,a.size(1)),mod(y,a.size(0)));
4 Pochoir_Boundary_End

5 int main(void) {

6 Pochoir_Shape_2D 2D_five_pt[] = {{1,0,0}, {0,1,0},
{0,-1,0}, {0,-1,-1}, {0,0,-1}, {0,0,1}};

7 Pochoir_2D heat(2D_five_pt);

8 Pochoir_Array_2D(double) u(X, Y);
9 u.Register_Boundary(heat_bv);
10 heat.Register_Array(u);

11 Pochoir_Kernel_2D(heat_fn , t, x, y)
12 u(t+1, x, y) = CX * (u(t, x+1, y) - 2 * u(t, x,

y) + u(t, x-1, y)) + CY * (u(t, x, y+1) - 2
* u(t, x, y) + u(t, x, y-1)) + u(t, x, y);

13 Pochoir_Kernel_End

14 for (int x = 0; x < X; ++x)
15 for (int y = 0; y < Y; ++y)
16 u(0, x, y) = rand();

17 heat.Run(T, heat_fn);

18 for (int x = 0; x < X; ++x)
19 for (int y = 0; y < Y; ++y)
20 cout << u(T, x, y);

22 return 0;
23 }

Figure 6: The Pochoir stencil source code for a periodic 2D heat equation.
Pochoir keywords are boldfaced.

Line 8 declares u as an X×Y Pochoir array of double-precision
floating-point numbers representing the spatial grid. Lines 2–4 de-
fine a boundary function that will be called when the kernel func-
tion accesses grid points outside the computing domain, that is, if
it tries to access u(t, x, y) with x < 0, x ≥ X, y < 0, or y ≥ Y.
The boundary function for this periodic stencil performs calcula-
tions modulo the dimensions of the spatial grid. (Section 2 shows
how nonperiodic stencils can be specified, including how to spec-
ify Dirichlet and Neumann boundary conditions [14].) Line 9 as-
sociates the boundary function heat_bv with the Pochoir array u.
Each Pochoir array has exactly one boundary function to supply
a value when the computation accesses grid points outside of the
computing domain. Line 10 registers the Pochoir array u with the
heat Pochoir object. A Pochoir array can be registered with more
than one Pochoir object, and a Pochoir object can have multiple
Pochoir arrays registered.
Lines 11–13 define a kernel function heat_fn, which specifies

how the stencil is computed for every grid point. This kernel can
be an arbitrary piece of code, but accesses to the registered Pochoir
arrays must respect the declared shape(s).
Lines 14–16 initialize the Pochoir array u with values for time

step 0. If a stencil depends on more than one prior step as indicated
by the Pochoir shape, multiple time steps may need to be initialized.
Line 17 executes the stencil object heat for T time steps using ker-

nel function heat_fn. Lines 18–20 prints the result of the compu-
tation by reading the elements u(T, x, y) of the Pochoir array. In
fact, Pochoir overloads the “<<” operator so that the Pochoir array
can be pretty-printed by simply writing “cout << u;”.

The remainder of this paper is organized as follows. Section 2
provides a full specification of the Pochoir embedded language.
Section 3 describes the cache-oblivious parallel algorithm used
by the compiled code and analyzes its theoretical performance.
Section 4 describes four important optimizations employed by the
Pochoir compiler. Section 5 describes related work, and Section 6
offers some concluding remarks.

2. THE POCHOIR SPECIFICATION

LANGUAGE
This section describes the formal syntax and semantics of the

Pochoir language, which was designed with a view to offer as much
expressiveness as possible without violating the Pochoir Guarantee.
Since we wanted to allow third-party developers to implement their
own stencil compilers that could use the Pochoir specification lan-
guage, we avoided to the extent possible making the language too
specific to the Pochoir compiler, the Intel C++ compiler, and the
multicore machines we used for benchmarking.

The static information about a Pochoir stencil computation, such
as the computing kernel, the boundary conditions, and the stencil
shape, is stored in a Pochoir object, which is declared as follows:

• Pochoir_dimD name (shape);

This statement declares name as a Pochoir object with dim spatial
dimensions and computing shape shape, where dim is a small pos-
itive integer and shape is an array of arrays which describes the
shape of the stencil as elaborated below.

We now itemize the remaining Pochoir constructs and explain
the semantics of each.

• Pochoir_Shape_dimD name [] = {cells}

This statement declares name as a Pochoir shape that can hold
shape information for dim spatial dimensions. The Pochoir shape
is equivalent to an array of arrays, each of which contains dim+ 1
integer numbers. These numbers represent the offset of each mem-
ory footprint in the stencil kernel relative to the space-time grid
point 〈t,x,y, · · ·〉. For example, suppose that the computing kernel
employs the following update equation:

ut(x,y) = ut−1(x,y)

+
α∆t

∆x2
(ut−1(x−1,y)+ut−1(x+1,y)−2ut−1(x,y))

+
α∆t

∆y2
(ut−1(x,y−1)+ut−1(x,y+1)−2ut−1(x,y)) .

The shape of this stencil is {{0,0,0}, {−1,1,0}, {−1,0,0},
{−1,−1,0}, {−1,0,1}, {−1,0,−1}}.

The first cell in the shape is the home cell, whose spatial coordi-
nates must all be 0. During the computation, this cell corresponds
to the grid point being updated. The remaining cells must have
time offsets that are smaller than the time coordinate of the home
cell, and the corresponding grid points during the computation are
read-only.
The depth of a shape is the time coordinate of the home cell

minus the minimum time coordinate of any cell in the shape. The
depth corresponds to the number of time steps on which a grid point
depends. For our example stencil, the depth of the shape is 1, since
a point at time t depends on points at time t−1.. If a stencil shape
has depth k, the programmer must initialize all Pochoir arrays for
time steps 0,1, . . . ,k−1 before running the computation.

• Pochoir_Array_dimD(type, depth) name(sizedim−1, . . . ,
size1,size0)

This statement declares name as a Pochoir array of type type with
dim spatial dimensions and a temporal dimension. The size of the
ith spatial dimension, where i ∈ {0,1, . . . ,dim}, is given by sizei.
The temporal dimension has size k+ 1, where k is the depth of
the Pochoir shape, and are reused modulo k+1 as the computation
proceeds. The user may not obtain an alias to the Pochoir array or
its elements.

• Pochoir_Boundary_dimD(name,array, idxt , idxdim−1,
. . . , idx1, idx0)

〈definition〉
Pochoir_Boundary_End

This construct defines a boundary function called name that
will be invokeda to supply a value when the stencil computa-
tion accesses a point outside the domain of the Pochoir array
array. The Pochoir array array has dim spatial dimensions, and
〈idxdim−1, . . . , idx1, idx0〉 are the spatial coordinates of the given
point outside the domain of array. The coordinate in the time di-
mension is given by idxt . The function body 〈definition〉) is C++
code that defines the values of array on its boundary. A current
restriction is that this construct must be declared outside of any
function, that is, the boundary function is declared global.

• Pochoir_Kernel_dimD(name,array, idxt , idxdim−1, . . . ,
idx1, idx0)

〈definition〉
Pochoir_Kernel_End

This construct defines a kernel function named name for updating
a stencil on a spatial grid with dim spatial dimensions. The spa-
tial coordinates of the point to update are 〈idxdim−1, . . . , idx1, idx0〉,
and idxt is the coordinate in time dimension. The function body
〈definition〉 may contain arbitrary C++ code to compute the sten-
cil. Unlike boundary functions, this construct can be defined in any
context.

• name.Register_Array(array)

A call to this member function of a Pochoir object name informs
name that the Pochoir array arraywill participate in its stencil com-
putation.

• name.Register_Boundary(bdry)

A call to this member function of a Pochoir array name asso-
ciates the declared boundary function bdry with name. The bound-
ary function is invoked to supply a value whenever an off-domain
memory access occurs. Each Pochoir array is associated with ex-
actly one boundary function at any given time, but the programmer
can change boundary functions by registering a new one.

• name.Run(T,kern)

This function call runs the stencil computation on the Pochoir ob-
ject name for T time steps using computing kernel function kern.

After running the computation for T steps, the results of the
computation can be accessed by indexing its Pochoir arrays at time
T + k−1, where k is the depth of the stencil shape. The program-
mer may resume the running of the stencil after examining the re-
sult of the computation by calling name.Run(T ′,kern), where T ′ is
the number of additional steps to execute. The result of the compu-
tation is then in the computation’s Pochoir arrays indexed by time
T +T ′+ k−1.

Rationale

The Pochoir language is a product of many design decisions, some
of which were influenced by the current capabilities of the Intel
12.0.0 C++ compiler. We now discuss some of the more important
design decisions.

Although we chose to pass a kernel function to the Run method
of a Pochoir object, we would have preferred to simply store the
kernel function with the Pochoir object. The kernel function is
a C++ lambda function [5], however, whose type is not available
to us. Thus, although we can pass the lambda function as a tem-
plate type, we cannot store it unless we create a std::function

to capture its type. Since the Intel compiler does not yet support
std::function, this avenue was lost to us. There is only one ker-
nel function per Pochoir object, however, and so we decided as a
second-best alternative that it would be most convenient for users
if they could declare a kernel function in any context and we just
pass it as an argument to the Run member function.

The lack of support for function objects also had an impact on
the declaration of boundary functions. We wanted to store each
boundary function with a Pochoir array so that whenever an access
to the array falls outside the computing domain, we can call the
boundary function to supply a value. The only way to create a
function that can be stored is to use an ordinary function, which
must be declared in a global scope. We hope to improve Pochoir’s
linguistic design when function objects are fully supported by the
compiler.

We chose to specify the kernel function imperatively rather than
as a pure function or as an expression that returns a value for
the grid point being updated. This approach allows a user to
write multiple statements in a kernel function and provides flexi-
bility on how to specify a stencil formula. For example, the user
can choose to specify a stencil formula as a(t, i, j) = ... or
a(t+1, i, j) = ..., whichever is more convenient.

We chose to make the user copy data in and out of Pochoir inter-
nal data structures, rather than operate directly on the user’s arrays.
Since the user is typically running the stencil computation for many
time steps, we decided that the copy-in/copy-out approach would
not cause much overhead. Moreover, the layout of data is now un-
der the control of the compiler, allowing it to optimize the storage
for cache efficiency.

3. POCHOIR’S CACHE-OBLIVIOUS

PARALLEL ALGORITHM
This section describes the parallel algorithm at the core of

Pochoir’s efficiency. TRAP is a cache-oblivious algorithm based
on “trapezoidal decompositions” [16, 17], but which employs
a novel “hyperspace-cut” strategy to improve parallelism with-
out sacrificing cache-efficiency. On a d-dimensional spatial
grid with all “normalized” spatial dimensions equal to w and
the time dimension a power-of-2 multiple of w, TRAP achieves
Θ(wd−lg(d+2)+1/d2) parallelism, whereas Frigo and Strumpen’s

original parallel trapezoidal decomposition algorithm [17] achieves

Θ(wd−lg(2d+1)+1/2d) =O(w) parallelism. Both algorithms exhibit

the same asymptotic cache complexity of Θ(hwd/M 1/dB) proved
by Frigo and Strumpen, where h is the height of the time dimen-
sion,M is the cache size, and B is the cache-block size.

TRAP uses a cache-oblivious [15] divide-and-conquer strategy
based on a recursive trapezoidal decomposition of the space-time
grid, which was introduced by Frigo and Strumpen [16]. They orig-
inally used the technique for serial stencil computations, but later
extended it to parallel stencil computations [17]. Whereas Frigo
and Strumpen’s parallel algorithm cuts the spatial dimensions of a
hypertrapezoid, or “zoid,” one at a time with “parallel space cuts,”
TRAP performs a hyperspace cut where it applies parallel space
cuts simultaneously to as many dimensions as possible, yielding
asymptotically more parallelism when the number of spatial di-
mensions is 2 or greater. As we will argue later in this section,
TRAP achieves this improvement in parallelism while attaining the
same cache complexity as Frigo and Strumpen’s original parallel
algorithm.

TRAP operates as follows. Line 5 of Figure 2 determines whether
the x-dimension of the zoid can be cut with a parallel space cut, and
if so, line 6 trisects the zoid, as we shall describe later in this sec-
tion and in Figure 7, but it does not immediately spawn recursive
tasks to process the subzoids, as Frigo and Strumpen’s algorithm
would. Instead, the code attempts to make a “hyperspace cut” by
proceeding to the y-dimension, and if there were more dimensions,
to those, cutting as many dimensions as possible before spawning
recursive tasks to handle the subzoids. The counter k keeps track
of how many spatial dimensions are cut. If k > 0 spatial dimen-
sions are trisected, as tested for in line 11, then line 12 assigns each
subzoid to one of k+ 1 dependency levels such that the subzoids
assigned to the same level are independent and can be processed in
parallel, as we describe later in this section and in Figure 8. Lines
13–15 recursively walk all subzoids level by level in parallel. Lines
17–19 perform a time cut if no space cut can be performed. Lines
20–28 perform the base-case computation if the zoid is sufficiently
small that no space or time cut is productive.
We first introduce some notations and definitions, many of

which have been borrowed or adapted from [16, 17]. A
(d + 1)-dimensional space-time hypertrapezoid, or (d + 1)-
zoid, Z = (ta, tb; xa0,xb0,dxa0,dxb0; xa1,xb1,dxa1,dxb1; . . . ;
xad−1,xbd−1,dxad−1,dxbd−1), where all variables are integers, is
the set of integer grid points 〈t,x0,x1, . . . ,xd−1〉 such that ta ≤
t < tb and xai + dxai(t − ta) ≤ xi < xbi + dxbi(t − ta) for all
i ∈ {0,1, . . . ,d−1}. The height of Z is ∆t = ta− tb. Define
the projection trapezoid Z i of Z along spatial dimension i to
be the 2D trapezoid that results from projecting the zoid Z onto
the dimensions xi and t. The projection trapezoid Z i has two
bases (sides parallel to the xi axis) of lengths ∆xi = xbi− xai and
∇xi = (xai+dxai∆t)− (xbi+dxbi∆t). We define the width1 wi of
Z i to be the length of the longer of the two bases (parallel sides)
of Z i, that is wi = max{∆xi,∇xi}. The value wi is also called the
width of Z along spatial dimension i. We say that Z i is upright
if wi = ∆xi — the longer base corresponds to time ta — and in-

verted otherwise. A zoid Z is well-defined if its height is positive,
its widths along all spatial dimensions are positive, and the lengths
of its bases along all spatial dimensions are nonnegative. A pro-
jection trapezoid Z i is minimal if Z i is upright and ∇xi = 0, or
Z i is inverted and ∆xi = 0. A zoid Z is minimal if all its Z i’s are
minimal.
Given the shape S of a d-dimensional stencil (as described in

1Frigo and Strumpen [16,17] define width as the average of the two bases.

(a)

(b)

(c)

Figure 7: Cutting projection trapezoids. The spatial dimension increases to
the right, and the time runs upward. (a) Trisecting an upright trapezoid us-
ing a parallel space cut produces two black trapezoids that can be processed
in parallel and a gray trapezoid that must be processed after the black ones.
(b) Trisecting an inverted trapezoid using a parallel space cut produces two
black trapezoids that can be processed in parallel and a gray trapezoid that
must be processed before the black ones. (c) A time cut produces a lower
and an upper trapezoid where the lower trapezoid must be processed before
the upper.

Section 2), define thome be the time index of the home cell. We
define the slope2 of a cell c = (t,x0,x1, . . . ,xd−1) ∈ S along di-
mension i ∈ {0,1, . . . ,d−1} as σi(c) = |xi/(thome− t)|, and we
define the slope of the stencil along spatial dimension i as σi =
maxc∈S ⌈σi(c)⌉. (Pochoir assumes for simplicity that the stencil is
symmetric in each dimension.) We define the normalized width of
a zoid Z along dimension i by ŵi = wi/2σi.

Parallel space cuts

Our trapezoidal decomposition differs from that of Strumpen and
Frigo in the way we do parallel space cuts. A parallel space cut can
be applied along a given spatial dimension i of a well-defined zoid
Z provided that the projection trapezoid Z i can be trisected into 3
well-defined subtrapezoids, as shown in Figures 7(a) and 7(b). The
triangle-shaped gray subtrapezoid that lies in the middle is a mini-
mal trapezoid. The larger base of Z i is split in half with each half
forming the larger base of a black subtrapezoid. These three sub-
trapezoids of Z i correspond to three subzoids of Z. Since the two
black subzoids have no interdependencies, they can be processed
in parallel. As shown in Figure 7(a), for an upright projection
trapezoid, the subzoids corresponding to the black trapezoids are
processed first, after which the subzoid corresponding to the gray
subtrapezoid can be processed. For an inverted projection trape-

2Actually, the reciprocal of slope, but we follow Frigo and Strumpen’s ter-
minology.

(a)

(b)

Figure 8: Dependency levels of subzoids resulting from a hyperspace cut
along both spatial dimensions of a 3-zoid. (a) Labeling of coordinates of
subzoids and their dependency levels. (b) The corresponding dependency
graph.

zoid, as shown in Figure 7(b), the opposite is done. In either case,
the 3 subzoids can be processed in parallel in the time to process 2
of them, what we shall call 2 parallel steps. The following lemma
describes the general case.

LEMMA 1. All 3k subzoids created by a hyperspace cut on

k ≥ 1 of the d ≥ k spatial dimensions of a (d+ 1)-zoid Z can be

processed in k+1 parallel steps.

PROOF. Assume without loss of generality that the hyperspace
cut is applied to the first k spatial dimensions of Z. For each such
dimension i, label the projection subtrapezoids in 2D space-time
resulting from the parallel space cut (see Figures 7(a) and 7(b))
with the numbers 1, 2, and 3, where the black trapezoids are labeled
1 and 3 and the gray trapezoid is labeled 2. When the hyperspace
cut consisting of all k parallel space cuts is applied, it creates a set
S of 3k subzoids in (k+ 1)-dimensional space-time. Each subzoid
can be identified by a unique k-tuple 〈u0,u1, . . . ,uk−1〉, where ui ∈
{1,2,3} for i= 0,1, . . . ,k−1. Let Ii = 1 if the projection trapezoid
Zi along the ith dimension is upright and Ii = 0 if Zi is inverted.
The dependency level of a zoid 〈u0,u1, . . . ,uk−1〉 ∈ S is given by

dep(〈u0,u1, . . . ,uk−1〉) =
k−1∑

i=0

((ui+ Ii) mod 2) .

Observe that this equation implies exactly k+ 1 dependency lev-
els, since each term of the summation may be either 0 or 1. Fig-
ure 8(a) shows the dependency levels for the subzoids of a 3-zoid,
both of whose projection trapezoids are inverted, generated by a
hyperspace cut with k = 2.
We claim that all zoids in S with the same dependency level

are independent, and thus all of S can be processed in k + 1
parallel steps. As illustrated in Figure 8(b), we can construct
a directed graph G = (S,E) that captures the dependency rela-
tionships among the subzoids of S as follows. Given any pair
of zoids 〈u0,u1, . . . ,uk−1〉,

〈
u′0,u

′
1, . . . ,u

′
k−1

〉
∈ S, we include an

edge (〈u0,u1, . . . ,uk−1〉,
〈
u′0,u

′
1, . . . ,u

′
k−1

〉
) ∈ E, meaning that a

grid point in
〈
u′0,u

′
1, . . . ,u

′
k−1

〉
directly depends on a grid point in

〈u0,u1, . . . ,uk−1〉, if there exists a dimension i ∈ {0,1, . . . ,k−1}
such that the following conditions hold:

• u j = u′j for all j ∈ {0,1, . . . , i−1, i+1, . . . ,k−1},
• (Ii+ui) mod 2= 0,
• (Ii+u′i) mod 2= 1.

Under these conditions, we have dep(
〈
u′0,u

′
1, . . . ,u

′
k−1

〉
) =

dep(〈u0,u1, . . . ,uk−1〉)+ 1. Thus, along any path in G, the depen-
dency levels are strictly increasing, and no two nodes with the same
dependency level can lie on the same path. As a result, all zoids in
S with the same dependency level form an antichain and can be
processed simultaneously. Thus, all zoids in S can be processed in
k+ 1 parallel steps with step s ∈ {0,1, . . . ,k} processing all zoids
having dependency level s.

Pochoir’s cache-oblivious parallel algorithm

Given a well-defined zoid Z, the algorithm TRAP from Figure 2
works by recursively decomposing Z into smaller well-defined
zoids as follows.

Hyperspace cut. Lines 4–10 in Figure 2 apply a hyperspace
cut involving all dimensions on which a parallel space cut can be
applied, as shown in Figures 7(a) and 7(b). If the number k of
dimensions of Z on which a space cut can be applied is at least
1, as tested for in line 11 of Figure 2, then dependency levels are
computed for all resulting subzoids in line 12, and then lines 13–15
recursively process them in order according to dependency level as
described in the proof of Lemma 1.

Time cut. If a hyperspace cut is not applicable and Z has height
greater than 1, as tested for in line 16, then lines 17–19 cut Z in
the middle of its time dimension and recursively process the lower
subzoid followed by the upper subzoid, as shown in Figure 7(c).

Base case. If neither a hyperspace cut nor a time cut can be
applied, lines 20–28 processes Z directly by invoking the stencil-
specific kernel function. In practice, the base case is coarsened (see
Section 4) by choosing a suitable threshold larger than 1 for ∆t in
line 16, which cuts down on overhead due to the recursion.

Analysis

We can analyze the parallelism using a work/span analysis [7,
Ch. 27]. The work T1 of a computation is its serial running time,
and the span T∞ is the longest path of dependencies, or equiva-
lently, the running time on an infinite number of processors assum-
ing no overheads for scheduling. The parallelism of a computation
is the ratio T1/T∞ of work to span.

The next lemma provides a tight bound on the span of TRAP

algorithm on a minimal zoid.

LEMMA 2. Consider a minimal (d+ 1)-zoid Z with height h

and normalized widths ŵi = h for i ∈ {0,1, . . . ,d−1}. Then the

span of TRAP when processing Z is Θ(dhlg(d+2)).

PROOF. For simplicity we assume that a call to the kernel func-
tion costs O(1), as in [17]. As TRAP processes Z, some of the
subzoids generated recursively have normalized widths equal to
their heights and some have twice that amount. Let us denote by
T∞(h,k,d − k) the span of TRAP processing a (d + 1)-zoid with
height h where k ≥ 0 of the d spatial dimensions have normalized
width 2h and d− k spatial dimensions have normalized width h.
Using Lemma 1, the span of TRAP processing a zoid Z when it
undergoes a hyperspace cut can be described by the recurrence

T∞(h,k,d− k) = (k+1)T∞(h,0,d)+Θ

(
k∑

i=0

lg(3k)

)

= (k+1)T∞(h,0,d)+Θ(k2) ,

where T (1,0,d) = Θ(1) is the base case. The summation in this
derivation represents the span due to spawning. A parallel for with
r iterations adds Θ(lgr) to the span, and since the number of zoids
at all levels is 3k, this value upper-bounds the number of iterations
at any given level. Moreover, the lower bound on the number of
zoids on a given level is at least the average 3k/(k+1), whose log-
arithm is asymptotically the same as lg(3k), and hence the bound is
asymptotically tight.
A time cut can be applied when the zoid Z is minimal. Assume

that k ≥ 0 projection trapezoids Z i’s are upright and the rest are
inverted. Then for each upright projection trapezoid Z i, the nor-
malized width of the lower zoid generated by the hyperspace cut is
ŵi = h, the same as forZ, and for each inverted projection trapezoid
Z i, the lower zoid has normalized width ŵi−h/2= h/2. Similarly,
for each upright projection trapezoid Z i, the normalized width of
the upper zoid is ŵi− h/2 = h/2, and for each inverted projection
trapezoid Z i, the upper zoid has normalized width ŵi. Thus, the
recurrence for the span of TRAP when a minimal Z undergoes a
time cut can be written as follows:

T∞(h,0,d) = T∞(h/2,k,d− k)+T∞(h/2,d− k,k)+Θ(1) .

Applying hyperspace cuts to the subzoids on the right-hand side of
this recurrence yields

T∞(h,0,d) = (d+2)T∞(h/2,0,d)+Θ(k2)+Θ((d− k)2)

= (d+2)T∞(h/2,0,d)+Θ(d2)

= Θ(d2(d+2)lgh−1)+Θ((d+2)lgh)

= Θ(dhlg(d+2)) .

THEOREM 3. Consider a (d+1)-dimensional gridZ with ŵi =
w for i∈ {0,1, . . . ,d−1} and height h= 2rw. Then the parallelism
of TRAP when processing Z using a stencil with constant slopes is

Θ(wd−lg(d+2)+1/d2).

PROOF. Assume without loss of generality that the stencil is pe-
riodic. (As will be discussed in Section 4, Pochoir implements
TRAP so that the control structure for nonperiodic stencils is the
same as that for periodic.) The algorithm first applies a series of r
time cuts, dividing the original time dimension into h/w= 2r sub-
grids with ŵi =w with height w. These grids are processed serially.
The next action of TRAP applies a hyperspace cut to all d spatial
dimensions of Z, dividing the grid into d+1 minimal zoids which
are then processed serially. Applying Lemma 2 yields a span of

T∞ = (h/w)(d+1) ·Θ(dwlg(d+2))

= Θ((d2h)wlg(d+2)−1) .

The work is the volume ofZ, which is T1 = Θ(hwd), since the sten-
cil has constant slopes. Thus, the parallelism is

T1/T∞ = Θ(wd−lg(d+2)+1/d2) .

We can compare TRAP with a version of Frigo and Strumpen’s
parallel stencil algorithm [17] we call STRAP, which performs the
space cuts serially as in Figures 7(a) and 7(b). Each space cut re-
sults in one synchronization point, and hence a sequence of k space
cuts applied by STRAP introduces 2k parallel steps compared to
the k+ 1 parallel steps generated by TRAP (see Lemma 1). Thus,
each space cut virtually doubles STRAP’s span. Figure 8(a) shows a
simple example where STRAP produces 22−1= 3 synchronization
points while TRAP introduces only 2. The next lemma and theorem
analyze STRAP, mimicking Lemma 2 and Theorem 3. Their proofs
are omitted.

LEMMA 4. Consider a minimal (d+ 1)-zoid Z with height h

and normalized widths ŵi = h for i ∈ {0,1, . . . ,d−1}. Then the

span of STRAP when processing Z is Θ(hlg(2
d+1)).

THEOREM 5. Consider a (d+1)-dimensional gridZ with ŵi =
w for i∈ {0,1, . . . ,d−1} and height h= 2rw. Then the parallelism
of STRAP when processing Z using a stencil with constant slopes

is Θ(wd−lg(2d+1)+1/2d).

Discussion

As can be seen from Theorems 3 and 5, both TRAP and STRAP have
the same asymptotic parallelism Θ(w2−lg3) for d= 1, but for d= 2,
TRAP has Θ(w2) while STRAP has Θ(w3−lg5), and the difference
grows with the number of dimensions.

The cache complexities of TRAP and STRAP are the same, which
follows from the observation that both algorithms apply exactly the
same time cuts in exactly the same order, and immediately before
each time cut, both are in exactly the same state in terms of the
spatial cuts applied. Thus, they arrive at exactly the same configu-
ration — number, shape, and size — of subzoids before each time
cut.

Frigo and Strumpen’s parallel stencil algorithm is actually
slightly different from STRAP. For any fixed integer r > 1, a space
cut in their algorithm produces r black zoids and between r− 1
and r+ 1 gray zoids. STRAP is a special case of that algorithm
with r = 2 for upright projection trapezoids and r = 1 for inverted
projection trapezoids. For larger values of r, Frigo and Strumpen’s
algorithm achieves more parallelism but the cache efficiency drops.
It is straightforward to extend TRAP to perform r multiple cuts
along each dimension to match the cache complexity of Frigo and
Strumpen’s algorithm while providing asymptotically more paral-
lelism.

Empirical results

Figure 9 shows the results of using the Cilkview scalability an-
alyzer [20] to compare the parallelism of TRAP and STRAP on
two typical benchmarks. We measured the two algorithms with
uncoarsened base cases. As can be seen from the figure, TRAP’s
asymptotic advantage in parallelism is borne out in practice for
these benchmarks.

We used the Linux perf tool [29] to verify that TRAP does not
suffer any loss in cache efficiency compared to the STRAP algo-
rithm. Figure 10 also plots the cache-miss ratio of the straightfor-
ward parallel loop algorithm, showing that it exhibits poorer cache
performance than the two cache-oblivious algorithms.

4. COMPILER OPTIMIZATIONS
The Pochoir compiler transforms code written in the Pochoir

specification language into optimized C++ code that employs the
Intel Cilk multithreading extensions [23]. The Pochoir compiler is
written in Haskell [37], and it performs numerous optimizations,
the most important of which are code cloning, loop-index calcula-
tions, unifying periodic and nonperiodic boundary conditions, and
coarsening the base case of recursion. This section describes how
the Pochoir compiler implements these optimizations.

Before a programmer compiles a stencil code with the Pochoir
compiler, he or she is expected to perform Phase 1 of Pochoir’s two-
phase methodology which requires that it be compiled using the
Pochoir template library and debugged. This C++ template library
is employed by both Phases 1 and 2 and includes both loop-based
and trapezoidal algorithms. Differences between stencils, such as
dimensionality or data structure, are incorporated into these generic
algorithms at compile-time via C++ template metaprogramming.

52

500

1000

1887

100 400 1600 6400

P
ar
al
le
li
sm

Grid side length N

Hyperspace cut

Space cut

(a)

23

100

200

300

337

100 200 400 800

P
ar
al
le
li
sm

Grid side length N

Hyperspace cut

Space cut

(b)

Figure 9: Parallelism comparison on two benchmarks between TRAP,
which employs hyperspace cuts, and STRAP, which uses serial space cuts.
Measurements are of code without base-case coarsening. (a) 2D nonperi-
odic heat equation. Space-time size is 1000N2. (b) 3D nonperiodic wave
equation. Space-time size is 1000N3.

Handling boundary conditions by code cloning

The handling of boundary conditions can easily dominate the run-
time of a stencil computation. For example, we coded the 2D heat
equation on a periodic torus using Pochoir, and we compared it to a
comparable code that simply employs a modulo operation on every
array index. For a 50002 spatial grid over 5000 time steps, the run-
time of the modular-indexing implementation degraded by a factor
of 2.3.
For nonperiodic stencil computations, where a value must be

provided on the boundary, performance can degrade even more if
a test is made at every point to determine whether the index falls
off the grid. Stencil implementers often handle constant nonperi-
odic boundary conditions with the simple trick of introducing ghost
cells [8] that form a halo around the periphery of the grid. Ghost
cells are read but never written. The stencil computation can apply
the kernel function to the grid points on the real grid, and accesses
that “fall off” the edge into the halo obtain their values from the
ghost cells without any need to check boundary conditions.
In practice, however, nonperiodic boundary conditions can be

more complicated than simple constants, and we wanted to al-
low Pochoir users flexibility in the kinds of boundary conditions
they could specify. For example, Dirichlet boundary conditions
may specify boundary values that change with time, and Neumann
boundary conditions may specify the value the derivative should

0

0.2

0.4

0.6

0.86

1

200 400 800 1600 3200 6400

C
ac
h
e
m
is
s
ra
ti
o

Grid side length N

Hyperspace cut

Space cut

Loops

(a)

0

0.2

0.4

0.6

0.8

0.99

100 200 400 800

C
ac
h
e
m
is
s
ra
ti
o

Grid side length N

Hyperspace cut

Space cut

Loops

(b)

Figure 10: Cache-miss ratios for two benchmarks using TRAP, STRAP,
and a parallel-loop algorithm. The cache-miss ratio is the ratio of the cache
misses to the number of memory references. Measurements are of code
without base-case coarsening. (a) 2D nonperiodic heat equation. Space-
time is 1000N2. (b) 3D nonperiodic wave equation. Space-time is 1000N3.

1 Pochoir_Boundary_2D(dirichlet , arr , t, x, y)
2 return 100 + 0.2*t;
3 Pochoir_Boundary_End

(a)

1 Pochoir_Boundary_2D(neumann , arr , t, x, y)
2 int newx = x;
3 if (x < 0) newx = 0;
4 if (x >= arr.size(1)) newx = arr.size(1);
5 int newy = y;
6 if (y < 0) newy = 0;
7 if (y >= arr.size(0)) newy = arr.size(0);
8 return arr.get(t, newx , newy);
9 Pochoir_Boundary_End

(b)

Figure 11: Pochoir code for specifying nonperiodic boundary conditions.
(a) A Dirichlet condition with constrained boundary value (set equal to a
function of t). (b) A Neumann condition with constrained derivative at the
boundary (set equal to 0).

take on the boundary [14]. Figure 11(a) shows a Pochoir specifica-
tion of a Dirichlet boundary condition, and Figure 11(b) shows the
Pochoir specification of a Neumann boundary condition.

To handle boundaries efficiently, the Pochoir compiler generates
two code clones of the kernel function: a slower boundary clone
and a faster interior clone. The boundary clone is used for bound-
ary zoids: those that contain at least one point whose computation
requires an off-grid access. The interior clone is used for interior
zoids: those all of whose points can be updated without indexing

1 Pochoir_Kernel_1D(heat_1D_fn , t, i)
2 a(t+1, i) = 0.125 * (a(t, i-1) + 2 * a(t, i) +

a(t, i+1));
3 Pochoir_Kernel_End

(a)

1 /* a.interior() is a function to dereference the
value without checking boundary conditions */

2 #define a(t, i) a.interior(t, i)
3 Pochoir_Kernel_1D(heat_1D_fn , t, i)
4 a(t + 1, i) = 0.125 * (a(t, i - 1) + 2 * a(t, i

) + a(t, i + 1));
5 Pochoir_Kernel_End
6 #undef a(t, i)

(b)

1 Pochoir_Kernel_1D(heat_1D_fn , t, i)
2 /* The base address of the Pochoir array ’a’ */
3 double *a_base = a.data();
4 /* Pointers to be used in the innermost loop */
5 double *iter0 , *iter1 , *iter2 , *iter3;
6 /* Total size of the Pochoir array ’a’ */
7 const int l_a_total_size = a.total_size();
8 int gap_a_0;
9 const int l_stride_a_0 = a.stride(0);
10 for (int t = ta; t < tb; ++t) {
11 double * baseIter_1;
12 double * baseIter_0;
13 baseIter_0 = a_base + ((t + 1) & 0xb) *

l_a_total_size + (l_grid.xa[0]) *
l_stride_a_0;

14 baseIter_1 = a_base + ((t) & 0xb) *
l_a_total_size + (l_grid.xa[0]) *
l_stride_a_0;

15 iter0 = baseIter_0 + (0) * l_stride_a_0;
16 iter1 = baseIter_1 + (-1) * l_stride_a_0;
17 iter2 = baseIter_1 + (0) * l_stride_a_0;
18 iter3 = baseIter_1 + (1) * l_stride_a_0;
19 for (int i = l_grid.xa[0]; i < l_grid.xb[0];

++i, ++iter0 , ++iter1 , ++iter2 , ++iter3) {

20 (*iter0) = 0.125 * ((*iter1) + 2 * (*iter2) +
(*iter3)); }

21 }
22 Pochoir_Kernel_End

(c)

Figure 12: Pochoir’s loop-indexing optimizations illustrated on a 1D heat
equation. (a) The original Pochoir code for the kernel function. (b) The
code as transformed by -split-macro-shadow. (c) The code as trans-
formed by -split-pointer.

off the edge of the grid. Whether a zoid is interior or boundary is
determined at runtime.
In the base case of the recursive trapezoidal decomposition, the

boundary clone invokes the user-supplied boundary function to per-
form the relatively expensive checks on the coordinates of each
point in the zoid to see whether they fall outside the boundary.
If so, the user-supplied boundary function determines what value
to use. The base case of the interior clone avoids this calculation,
since it knows that no such test is necessary, and it simply accesses
the necessary grid points.
The trapezoidal-decomposition algorithm exploits the fact that

all subzoids of an interior zoid remain interior. If all the dimensions
of the grid are approximately the same size, the boundary of the
grid is much smaller than its (hyper)volume. Consequently, the
faster interior clones dominate the running time, and the slower
boundary clones contribute little.

Loop indexing

Because the interior zoids asymptotically dominate the comput-
ing time, most of the optimizations performed by Pochoir com-
piler focus on the interior clone. Two important optimizations re-
late to loop indexing. The particular optimization is chosen auto-
matically by the Pochoir compiler, or it can be mandated by user
as a command-line option. Consistent with their command-line
names, the optimizations are called -split-macro-shadow and
-split-pointer.

1.2 ·108

109

5.3 ·109

100 200 400 800 1600 3200 6400 12800

G
ri
d
P
o
in
ts
/S
ec
o
n
d

Grid side length N

--split-pointer

--split-macro-shadow

Figure 13: The performance of different loop-index optimizations on a 2D
heat equation on torus. The grid is N2 with 1000 time steps.

The -split-macro-shadow option causes the Pochoir com-
piler to employ macro tricks on the interior clone to eliminate the
boundary-checking overhead. Consider the code snippet in Fig-
ure 12(a) which defines the kernel function for a 1D heat equation.
Figure 12(b) shows the postsource code generated by the Pochoir
compiler using -split-macro-shadow. Line 2 defines a macro
that replaces the original accessing function a, which also does
boundary checking, with one that performs the address calculation
but without boundary checking.

The -split-pointer command-line option causes the Pochoir
compiler to transform the indexing of Pochoir arrays in the inte-
rior clone into C-style pointer manipulation, as illustrated in Fig-
ure 12(c). A C-style pointer represents each term in the stencil
formula. The resulting array indexing appears on line 20. For each
consecutive iteration, the code increments each pointer. When it-
erating outer loops, the code adds a precomputed constant to each
pointer as shown in lines 15–18.

The Pochoir compiler tries to use the -split-pointer opti-
mization if possible. It can do so if it can parse and “under-
stand” the C++ syntax of the user’s specification. Because our
prototype Haskell compiler does not contain a complete C++ front
end, however, it sometimes may not understand unusually com-
plex C++ code written by the user, in which case, it employs the
-split-macro-shadow optimization, relying on Phase 1 to ensure
that the code is Pochoir-compliant.

Figure 13 compares the performances of the two optimizing op-
tions for a 2D heat equation on a torus. Other benchmarks show
similar relative performances.

Unifying periodic and nonperiodic boundary conditions

Typical stencil codes discriminate between periodic and nonperi-
odic stencils, implementing them in different ways. To make the
specification of boundary functions as flexible as possible, we in-
vestigated how periodic and nonperiodic stencils could be imple-
mented using the same algorithmic framework, leaving the choice
of boundary function up to the user. Our unified algorithm al-
lows the user to program boundary functions with arbitrary peri-
odic/nonperiodic behavior, providing support, for example, for a
2D cylindrical domain, where one dimension is periodic and the
other is nonperiodic.

The key idea is to treat the entire computation as if it were peri-
odic in all dimensions and handle nonperiodicity and other bound-
ary conditions in the base case of the boundary clone where the
kernel function is invoked. When a zoid wraps around the grid in a
given dimension i, meaning that xai > xbi, we represent the lower-

and upper-bound coordinates of the zoid in dimension i by virtual

coordinates (xai,Ni+ xbi), where Ni is the size of the periodic grid
in dimension i. In the base of the recursion of the boundary clone,
Pochoir calls the kernel function and supplies it with the true co-
ordinates of the grid point being updated by performing a modulo
computation on each coordinate. Within the kernel function, ac-
cesses to the Pochoir arrays now call the boundary function, which
provides the correct value for grid points that are outside the true
grid. Of course, no such checking is required for interior zoids,
which are always represented by true coordinates.

Coarsening of base cases

Previous work [9, 26, 27, 34] has found that although trapezoidal
decomposition dramatically reduces cache-miss rates, overall per-
formance can suffer from function-call overhead unless the base
case of the recursion is coarsened. For example, proper coarsen-
ing of the base case of the 2D heat-equation stencil (running for
5000 time steps on a 5000× 5000 toroidal grid) improves the per-
formance by a factor of 36 over running the recursion down to a
single grid point.
Since choosing the optimal size of the base case can be difficult,

we integrated the ISAT autotuner [22] into Pochoir. Despite the
advantage of finding the optimal coarsening factor on any specific
platform, this autotuning process can take hours to find the optimal
value, which may be unacceptable for some users.
In practice, Pochoir employs some heuristics to choose a rea-

sonable coarsening. One principle is that to maximize data reuse,
we want to make the spatial dimensions all about the same size.
Another principle is that to exploit hardware prefetching, we want
to avoid cutting the unit-stride spatial dimension and avoid odd-
shaped base cases. For example, for 2D problems, a square-shaped
computing domain often offers the best performance. We have
found that for 3D problems, the effect of hardware prefetching
can often be more important than cache efficiency for reasonably
sized base cases. Consequently, for 3 or more dimensions, Pochoir
adopts the strategy of never cutting the unit-stride spatial dimen-
sion, and it cuts the rest of the spatial dimensions into small hyper-
cubes to ensure that the entire base case stays in cache. Given all
that potential complexity, the compiler’s heuristic is actually fairly
simple. For 2D problems, Pochoir stops the recursion at 100×100
space chunks with 5 time steps. For 3D problems, the recursion
stops at 1000×3×3 with 3 time steps.

5. RELATEDWORK
Attempts to compile stencils into highly optimized code are not

new. This section briefly reviews the history of stencil compilers
and discusses some of the more recent innovative strategies for op-
timizing stencil codes.
Special-purpose stencil compilers for distributed-memory ma-

chines first came into existence at least two decades ago [3, 4, 39].
The goal of these researchers was generally to reduce interproces-
sor data transfer and improve the performance of loop-based stencil
computations through loop-level optimizations. The compilers ex-
pected the stencils to be expressed in some normalized form.
More recently, Krishnamoorthy et al. [28] have considered au-

tomatic parallelization of loop-based stencil codes through loop
tiling, focusing on load-balancing the execution of the tiles. Kamil
et al. [25] have explored automatic parallelization and tuning of
stencil computations for chip multiprocessors. The stencils are
specified using a domain-specific language which is a subset of For-
tran 95. An abstract syntax tree is built from the stencil specified in
the input language, from which multiple formats of output can be

generated, including Fortran, C, and CUDA. The parallelization is
based on blocked loops.

We have discussed Frigo and Strumpen’s seminal trapezoidal-
decomposition algorithms [16, 17] at length, since they form the
foundation of the Pochoir algorithm. Nitsure [34] has studied how
to use Frigo and Strumpen’s parallel algorithm to implement 2D
and 3D lattice Boltzmann methods. In addition to several other
optimizations, Nitsure employs two code clones for the kernel to
reduce the overhead of boundary checking, which Pochoir does as
well. Nitsure’s stencil code is parallelized with OpenMP [35], and
data dependencies among subdomains are maintained by locking.

Cache-aware techniques have been used extensively to improve
the stencil performance. Datta et al. [9] and Kamil et al. [26, 27]
have applied both algorithmic and coding optimizations to loop-
based stencil computations. Their algorithmic optimizations in-
clude an explicitly blocked time-skewing algorithm which overlaps
subregions to improve parallelism at the cost of redundant mem-
ory storage and computation. Their coding optimizations include
processor-affinity binding, kernel inlining, an explicit user stack,
early cutoff, indirection instead of modulo, and autotuning.

Researchers at the University of Southern California [11, 12, 36]
have performed extensive studies on how to improve the perfor-
mance of high-order stencil computations though parallelization
and optimization. Their techniques, which apply variously to mul-
ticore and cluster machines, include intranode, internode, and data-
parallel optimizations, such as cache blocking, register blocking,
manual SIMD-izing, and software prefetching.

6. CONCLUDING REMARKS
It is remarkable how complex a simple computation can be when

performance is at stake. Parallelism and caching make stencil com-
putations interesting. As discussed in Section 5, many researchers
have investigated how various other features of modern machines
— such as prefetching units, graphical processing units, and clus-
tering — can be exploited to provide even more performance. We
see many ways to improve Pochoir by taking advantage of these
machine capabilities.

In addition, we see ample opportunity to enhance the linguis-
tic features of the Pochoir specification language to provide more
generality and flexibility to the user. For example, we are con-
sidering how to allow the user to specify irregularly shaped do-
mains. As long as the boundary of a region, however irregular, is
small compared to the region’s interior, special-case code to handle
the boundary should not adversely impact the overall performance.
Even more challenging is coping with boundaries that change with
time. We believe that such capabilities will dramatically speed up
the PSA, RNA, and LCS benchmarks which operate on diamond-
shaped space-time domains.

Pochoir’s two-phase compilation strategy introduces a new
method for building domain-specific languages embedded in C++.
Historically, the complexity of parsing and type-checking C++
has impeded such separately compiled domain-specific languages.
C++’s template programming does provide a good measure of ex-
pressiveness for describing special-purpose computations, but it
provides no ability to perform the domain-specific optimizations
such as those that Pochoir employs. Pochoir’s compilation strategy
offers a new way to build optimizing compilers for domain-specific
languages embedded in C++ where the compiler can parse and “un-
derstand” only as much of the programmer’s C++ code as it is able,
confident that code it does not understand is nevertheless correct.

The Pochoir compiler can be downloaded from http://

supertech.csail.mit.edu/pochoir.

7. ACKNOWLEDGMENTS
Thanks to Matteo Frigo of Axis Semiconductor and Volker

Strumpen of the University of Linz, Austria, for providing us with
their code for trapezoidal decomposition of the 2D heat equation
which served as a model and inspiration for Pochoir. Thanks to
Kaushik Datta of Reservoir Labs and Sam Williams of Lawrence
Berkeley National Laboratory for providing us with the Berkeley
autotuner code and help with running it. Thanks to Geoff Lowney
of Intel for his support and critical appraisal of the system and
to Robert Geva of Intel for an enormously helpful discussion that
led to a great simplification of the Pochoir specification language.
Many thanks to the Intel Cilk team for support during the devel-
opment of Pochoir, and especially Will Leiserson for his respon-
siveness as the SPAA submission deadline approached. Thanks to
Will Hasenplaugh of Intel and to members of the MIT Supertech
Research Group for helpful discussions.

8. REFERENCES
[1] T. Akutsu. Dynamic programming algorithms for RNA secondary

structure prediction with pseudoknots. Discrete Applied
Mathematics, 104:45–62, 2000.

[2] R. Bleck, C. Rooth, D. Hu, and L. T. Smith. Salinity-driven
thermocline transients in a wind- and thermohaline-forced isopycnic
coordinate model of the North Atlantic. Journal of Physical
Oceanography, 22(12):1486–1505, 1992.

[3] R. G. Brickner, W. George, S. L. Johnsson, and A. Ruttenberg. A
stencil compiler for the Connection Machine models CM-2/200. In
Workshop on Compilers for Parallel Computers, 1993.

[4] M. Bromley, S. Heller, T. McNerney, and G. L. Steele Jr. Fortran at
ten Gigaflops: The Connection Machine convolution compiler. In
PLDI, pages 145–156, Toronto, Ontario, Canada, June 26–28 1991.

[5] C++ Standards Committee. Working draft, standard for programming
language C++. available from http://www.open-std.org/jtc1/

sc22/wg21/docs/papers/2011/n3242.pdf, 2011. ISO/IEC
Document Number N3242=11-0012.

[6] R. A. Chowdhury, H.-S. Le, and V. Ramachandran. Cache-oblivious
dynamic programming for bioinformatics. TCBB, 7(3):495–510,
July-Sept. 2010.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press, third edition, 2009.

[8] K. Datta. Auto-tuning Stencil Codes for Cache-Based Multicore

Platforms. PhD thesis, EECS Department, University of California,
Berkeley, Dec 2009.

[9] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker,
D. Patterson, J. Shalf, and K. Yelick. Stencil computation
optimization and auto-tuning on state-of-the-art multicore
architectures. In SC, pages 4:1–4:12, Austin, TX, Nov. 15–18 2008.

[10] A. van Deursen, P. Klint, and J. Visser. Domain-specific languages:
An annotated bibliography. SIGPLAN Not., 35(6):26–36, June 2000.

[11] H. Dursun, K.-i. Nomura, L. Peng, R. Seymour, W. Wang, R. K.
Kalia, A. Nakano, and P. Vashishta. A multilevel parallelization
framework for high-order stencil computations. In Euro-Par, pages
642–653, Delft, The Netherlands, Aug. 25–28 2009.

[12] H. Dursun, K.-i. Nomura, W. Wang, M. Kunaseth, L. Peng,
R. Seymour, R. K. Kalia, A. Nakano, and P. Vashishta. In-core
optimization of high-order stencil computations. In PDPTA, pages
533–538, Las Vegas, NV, July13–16 2009.

[13] J. F. Epperson. An Introduction to Numerical Methods and Analysis.
Wiley-Interscience, 2007.

[14] H. Feshbach and P. Morse.Methods of Theoretical Physics. Feshbach
Publishing, 1981.

[15] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran.
Cache-oblivious algorithms. In FOCS, pages 285–297, New York,
NY, Oct. 17–19 1999.

[16] M. Frigo and V. Strumpen. Cache oblivious stencil computations. In
ICS, pages 361–366, Cambridge, MA, June 20–22 2005.

[17] M. Frigo and V. Strumpen. The cache complexity of multithreaded

cache oblivious algorithms. Theory of Computing Systems,
45(2):203–233, 2009.

[18] M. Gardner. Mathematical Games. Scientific American,
223(4):120–123, 1970.

[19] O. Gotoh. An improved algorithm for matching biological sequences.
Journal of Molecular Biology, 162:705–708, 1982.

[20] Y. He, C. E. Leiserson, and W. M. Leiserson. The Cilkview
scalability analyzer. In SPAA, pages 145–156, Santorini, Greece,
June 13–15 2010.

[21] P. Hudak. Building domain-specific embedded languages. ACM
Computing Surveys, 28(4), December 1996.

[22] Intel software autotuning tool. http://software.intel.com/en-
us/articles/intel-software-autotuning-tool/, 2010.

[23] Intel Corporation. Intel Cilk Plus Language Specification, 2010.
Document Number: 324396-001US. Available from
http://software.intel.com/sites/products/cilk-plus/

cilk_plus_language_specification.pdf.

[24] C. John. Options, Futures, and Other Derivatives. Prentice Hall,
2006.

[25] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams. An
auto-tuning framework for parallel multicore stencil computations. In
IPDPS, pages 1–12, 2010.

[26] S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf, and K. Yelick.
Implicit and explicit optimizations for stencil computations. In
MSPC, pages 51–60, San Jose, CA, 2006.

[27] S. Kamil, P. Husbands, L. Oliker, J. Shalf, and K. Yelick. Impact of
modern memory subsystems on cache optimizations for stencil
computations. InMSP, pages 36–43, Chicago, IL, June 12 2005.

[28] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam,
A. Rountev, and P. Sadayappan. Effective automatic parallelization of
stencil computations. In PLDI, San Diego, CA, June 10–13 2007.

[29] https://perf.wiki.kernel.org/index.php/Main_Page.

[30] R. Mei, W. Shyy, D. Yu, and L. Luo. Lattice Boltzmann method for
3-D flows with curved boundary. J. of Comput. Phys,
161(2):680–699, 2000.

[31] M. Mernik, J. Heering, and A. M. Sloane. When and how to develop
domain-specific languages. ACM Computing Surveys, 37:316–344,
December 2005.

[32] P. Micikevicius. 3D finite difference computation on GPUs using
CUDA. In GPPGPU, pages 79–84, Washington, DC, Mar. 8 2009.

[33] A. Nakano, R. Kalia, and P. Vashishta. Multiresolution molecular
dynamics algorithm for realistic materials modeling on parallel
computers. Computer Physics Communications, 83(2-3):197–214,
1994.

[34] A. Nitsure. Implementation and optimization of a cache oblivious
lattice Boltzmann algorithm. Master’s thesis, Institut für Informatic,
Friedrich-Alexander-Universität Erlangen-Nürnberg, July 2006.

[35] OpenMP application program interface, version 2.5. OpenMP
specification, May 2005.

[36] L. Peng, R. Seymour, K.-i. Nomura, R. K. Kalia, A. Nakano,
P. Vashishta, A. Loddoch, M. Netzband, W. R. Volz, and C. C. Wong.
High-order stencil computations on multicore clusters. In IPDPS,
pages 1–11, Rome, Italy, May 23–29 2009.

[37] S. Peyton Jones. Haskell 98 Language and Libraries: The Revised
Report. Cambridge University Press, 1998.

[38] H. Prokop. Cache-oblivious algorithms. Master’s thesis, Department
of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, June 1999.

[39] G. Roth, J. Mellor-Crummey, K. Kennedy, and R. G. Brickner.
Compiling stencils in High Performance Fortran. In SC, pages 1–20,
San Jose, CA, Nov. 16–20 1997. ACM.

[40] A. Taflove and S. Hagness. Computational Electrodynamics: The
Finite-Difference Time-Domain Method. Artech House, Norwood,
MA, 2000.

[41] S. Williams, J. Carter, L. Oliker, J. Shalf, and K. Yelick. Lattice
Boltzmann simulation optimization on leading multicore platforms.
In IPDPS, pages 1–14, Miami, FL, Apr. 2008.

