
The Poe Language-Based Editor Project

C. N. Fischer
Computer Sciences Department

University of Wisconsin - Madison, 1210 W. Dayton, Madison, WI

Gregory F. Johnson
Computer Science Department

Corneli University, Upson Hall, Ithaca, NY

Jon Mauney
Computer Science Department

North Carolina State University, Raleigh, NC

Anil Pal
Computer Sciences Department

University of Wisconsin - Madison, 1210 W. Dayton, Madison, Wl

Daniel L. Stock
Computer Sciences Department

University of Wisconsin - Madison, 1210 W. Dayton, Madison, WI

Overv iew

Editor Allan Poe (Pascal Oriented Editor) is a full-
screen language-based editor (LBE) that knows the
syntactic and semantic rules of Pascal. It is the
first step in development of a comprehensive Pascal
program development environment.

Poe's design began in 1979; version 1 is currently
operational on Vax l ls under Berkeley Unix and on
HP 9800-series personal workstations. Poe is writ.
ten in Pascal, and is designed to be readily tran-
sportable to new machines. An editor-generating
system called Poegen is operational, and much of
the language-specific character of Poe is table-
driven and retargetable.

Poe was inspired in large measure by the Cornell
Program Synthesizer [TRS1], although it is

This research was supported in part by NSF
Grant MCS 82-02444.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct corm
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

¢~1984 ACM 0-89791-131-8/84/0400/0021500.75

philosophically more akin to the COPE system
[AC81] (which was developed independently and
contemporaneously).

As a program is entered or modified, Poe automati-
cally structures ('prettyprints ') the program and
checks it for correctness. Semantic errors are noted
and incorrect usages are marked. Like the Syn-
thesizer, Poe is structure-oriented and models pro-
gram development as the repeated expansion of
language prototypes (termed prompts). However,
Poe attempts to provide a particularly simple user
interface {especially to novices). As a result, Poe
uses no ternplate8. Rather, it presents an interface
in which the user moves the cursor to a prompt
symbol and types text corresponding to the prompt.
Typing a single-token prefix of a particular expan-
sion is sufficient; an automatic syntactic error
eorrector will provide any added tokens which are
necessary to expand the user's input and make it
syntactically valid.

In the first section following this introduction, the
fundamental design philosophy and user interface
of Poe will be discussed. In the second section,
strategies employed for parsing, semantic checking,
the "undo" facility, and automatic program format.
ting will be presented.

21

T h e U s e r In ter face

When development of a new program is begun, the
program prototype shown in Figure 1 is displayed.
Poe displays three kinds of symbols:

(1) Required prompts
These are delimited by " < " and " > " (e.g.,
< I D > , <FILE ID LIST>). Required
prompt symbols are placeholders that must be
expanded to obtain a valid Pascal program.
The expansion expected by such a placeholder
is suggested by its name. Thus < I D > should
be expanded into an identifier and <FILE ID
LIST> should be expanded into a list of file
identifiers.

(2) Optional prompts
These are delimited by "{" and "}" (e.g.,
{VARIABLES}, {STMT LIST}). Optional
prompt symbols are placeholders that may be
expanded to produce a Pascal construct. If
an optional prompt is not expanded, it is
"erased", indicating that the suggested con-
struct is not needed in this particular pro-
gram.
For example, {VARIABLES} marks the place
at which program variables can be declared.
However, since a Pascal program may use no
variables, it is legal to ignore this symbol in
developing a program.

(3) Pascal symbols
These are the ordinary symbols found in Pas-
cal (identifiers, numbers, reserved words, etc.).
For emphasis, reserved words are shown in
upper case. When a complete Pascal program
has been created, only Pascal symbols remain.

To create a Pascal program in Poe, the user
expands optional and required prompts. To do

PROGRAM < I D > (<FILE ID LIST>) ;
{LABELS}
{CONSTANTS}
{TYPES}
{VARIABLES}
{PROCEDURES}
BEGIN

{STMT LIST}
END.

Figure I. The initial Pascal prototype used by Poe.

this, the user merely moves the cursor to the
prompt and types any expansion that agrees with
the prompt. Thus if the cursor is at an < I D >
prompt, one can type abe or xxxx or any other
valid identifier, l

Cursor movement is controlled using the usual cur-

sor control keys: z The space bar moves the cursor
one symbol right; the backspace key moves the cur-
sor one symbol left. The return key moves the cur-
sor to the leftmost symbol of the next line. The
" \" key s moves the cursor to the leftmost symbol of
the previous line.

As a Pascal symbol is entered, a prompt symbol
may be replaced by new symbols, representing the
detailed structure of a construct. Thus if in the
above example, the cursor were to be moved to the
{STMT LIST} prompt, and "if " is typed 4 the
structure shown in Figure 2 results.

Since a THEN is always created when an IF is
recognized, it is impossible to create ill-formed IF
statements. In fact, in Poe syntactically incorrect
program structures (of any kind) can never be
created.

But what if the user were to type something that is
illegal at the point at which the cursor is posi-
tioned? For example, a THEN (which cannot begin
a statement) might be entered at a {STMT}
prompt, or BEGIN might be typed at the very top
of a program. Rather than considering these errors,
Poe uses an automatic error-repair algorithm to
place all symbols, as they are entered, in their
"most reasonable" program context. Thus typing a
THEN with the cursor at a {STMT} prompt will
expand the prompt into an IF-THEN construct,
with the cursor immediately following the THEN.
Similarly, entering a BEGIN at the top of a

1Poe will allow an undeclared identifier to be
entered, but will highlight it until it is properly de-
clared.

2"Arrow" keys found on many terminals are
not used because they are not standard and not al-
ways available. Particular implementations {such
as HP 9800 Poe) make use d such keys as an ex-
tension. Analog input devices such as mice and
touch-sensitive screens can also be used when they
are available.

~rhis choice is arbitrary; "reverse iinefeed" is
non-standard on ordinary keyboards.

erhe blank after the "if" is needed so that the
editor can distinguish between the symbol "Jr' and
a pause in the entry of, e.g., "fir'.

22

PROGRAM < I D > (< F I L E ID L I S T >) ;
BEGIN

IF ¢TEXPR>
THEN {STMT}
{ELSE CLAUSE} ;
{MORE STMTs}

E N D .

Figure 2. The structure created in response to input of "if ".

program will move the cursor just beyond the
nearest BEGIN.

This approach makes Poe fairly forgiving in the
entry of program text. But what if the repair
chosen by Poe is not what the user wants? To
minimize the effect of user errors, a very general
"undo" command is provided. This allows consid-
erable experimentation without the danger of irre-
trievable errors. If the repair elicited by an input
symbol is unwanted, the repair can be undone and
an alternate input sequence can be tried. 6

Full static semantic checking of program text is
also provided. Whenever a semantically incorrect
symbol or construct is entered, it is immediately
highlighted. Highlighting remains until the associ-
ated semantic errors are repaired. An error mes-
sage detailing a particular semantic error can be
obtained by moving the cursor to a highlighted
symbol.

An important difference between Poe and some
other LBE's is that Poe represents an "open
environment". That is, Poe can read text files
created by any program or utility and can output
text files usable by other programs and utilities.
This follows the Unix model of allowing the output
of one program to be the input of another. Some
LBE's store programs (internally and externally) in
a tree-structured form. In such a system it is not
easy to "read" a program created on a conventional
text editor or to apply other text-oriented proces-
sors such as cross-reference generators or optimizing
compilers to its output. Poe, of course, can easily
read programs created on other text-oriented sys-
tems. Further, it is easy (though not necessarily
efficient) to augment Poe by operating on the text
files it creates (e.g., to implement a cross-reference

6A prompting facility is also provided.

mechanism or a program compaction algorithm).

The price paid for a textual representation of a pro-
gram in a structured editor is a substantial amount
of processing when editing begins. It appears that
some of this overhead can be avoided by maintain-
ing associated "environment" files (as UW-Pascal
does [LF79])) or by doing background processing
during editing Isince "think time" normally goes
unused). Systems such as Gandalf [Hab79] and the
Ada APSE [SFGTRI] anticipate a variety of utili-
ties all sharing a common tree-structured program
representation. This allows redundant processing
(such as rescanning) to be avoided and allows a
much richer representation (optimization, debug-
ging, compilation information, etc. can be included
in the tree).

The question of whether a textual or tree-
structured program representation (or even both,
maintained in parallel!) is preferable remains open.
Both have significant advantages and disadvan-
tages.

Poe is a rnodeless editor in that all keystrokes are
(by default) assumed to be input text. Cursor con-
trol and text manipulation are tied (where possible)
to special-purpose keys (e.g., deletion is associated
with the "del" or "rubout" key). Other commands
are prefixed with an escape character ("!').

To preserve syntactic correctness, all text-
manipulation is structure-oriented. That is, the
only text segments that can be deleted, copied or
inserted are those that correspond to valid syntactic
structure (as defined by the underlying grammar).

Poe uses a top-down parsing approach, so an
incomplete program is viewed internally as a parse
tree with some unexpanded non-terminals as leaves.
What the user thinks of as prompt symbols are
actually unexpanded non-terminals. This leads to
an interesting prompting feature. Whenever the

23

cursor is on a prompt symbol, the user can ask to
see a possible expansion of the prompt (without
actually doing the expansion). Repeated requests
will cycle through all possible expansions. The user
is actually just cycling through all the (non-trivial)
productions that have the ~prompt" as the left-
hand side symbol. Another command is provided
to actually choose a suggested expansion. With
this mechanism, it is possible to "explore" the
structure of a language. This appears to be partic-
ularly useful when a user has an idea of what he
wants, but is unsure of the exact details.

Poe takes a highly general approach to structure
elision. With the cursor on any symbol, an "elide"
command will replace the smallest structure con-
taining the symbol with an "elision marker". This
marker is essentially a prompt symbol with ellipsis
added. Thus a BEGIN-END block can be elided to
<BEGIN-END. . .> and an W-THEN-ELSE can be
elided to < IF-THEN-{ELSE}.. .>.

Poe allows a complete program to be executed,
with an automatic return after normal or abnormal
termination. At present, this is performed by
invoking (invisibly) the standard Pascal interpreter
or compiler. A built-in interpreter that allows exe-
cution of program fragments (and editing of data as
well as program text) is under development.

T e c h n i c a l Issues

Lexlea l S c a n n i n g

Scanning is fairly routine except for the fact that
editor commands can be intermixed with user
input. The scanner is therefore actually a com-
bined scanner/command interpreter. Further, after
the user has started to enter a token ~ he can delete
characters by moving the cursor to the left. Thus
the scanner must fully buffer the set of finite auto-
maton states that it passes through. As the user
hits the back-space key, the scanner must back up
through its previous states in order to be able to
continue scanning when the user finally starts to
enter text again.

P a r s i n g Issues

The parser uses a table-driven LL(1) technique with
special provision made for lists. Because of its
table-driven flavor, it is fairly easy to implement
syntax-directed editors based on Poe for languages
other than Pascal. The editor generator creates

FMQ [FMQS01 error correction tables in addition to
the parse tables, so the user-friendly "feel" of Poe is
automatically preserved in transitions to other tar-
get languages.

Because LLII) parsers abhor left recursion, lists are
usually generated by productions of the formS:

< l i s t > ~ item {more list}
{more list} --* delimiter item {more list}
{more list} --* c

This method of generating lists is undesirable in an
interactive editing environment. First, it may be
necessary to add or delete items anywhere in a list;
the above grammar form does not support this,
since all editing operations in Poe take the form of
sub-tree insertions and deletions. Second, lists gen-
erated by left or right recursive productions are
"skewed" and "deep". To facilitate manipulation
of lists as complete structures, and to make editing
of individual list elements possible, "flat" and
"shallow" list structures are preferred.

Poe's parser therefore recognizes special ~list ~
structures. A list may generate e, or at least one
item may be required. Whenever an item is gen-
erated in a list, "more list" non-terminals are
included on both sides of the item. For example,
we start with

< l i s t > --* item {more list}

When this production is applied, we actually use a
right hand side of the form

{list head} item {more list}

We include productions of the form

{list head} ~ item delimiter {more list}
{list head} --, c
{more list} ~ delimiter item {more list}
{more list} --, c

although whenever either of the non-e productions
is applied, we actually substitute

{list head} item delimiter {more list}

o r

{more list} delimiter item {more list}

The net effect is to allow insertions or deletions of
list items at any position in a list. Note too that
all {list head} and {more list} subtrees are made
immediate descendents of the < l i s t > non-terminal.
This forces lists to be ~wide ~ and "shallow ~, simpli-
fying list manipulation.

s .c . is the empty or null string.

2l~

To allow easy creation and manipulation of expres-
sions, all expressions are considered to be lists of
operands, separated by operators. This avoids the
proliferation of special non-terminals (<expres-
sion>, < fac to r> , < t e r m > , ...) commonly used to
force operator precedence. In Poe operator pre-
cedence is considered to be a semantic issue. Use of
syntax to enforce operator precedence makes
structure-oriented editing of expressions ungainly
and difficult. One solution is to temporarily turn
off syntactic and semantic checking and enter a
special character-level mode to deal with expression
editing. Poe's solution of treating expressions as
fiat lists allows the user to edit expressions flexibly
at the token level while maintaining the benefit of
immediate feedback if semantic errors arise inside
the expression.

Inc rementa l pars ing and e r ro r repai r

In many LBE's incremental reparsing is an impor-
tant issue (see, e.g., [MS81D. That is, after editing
operations, we must guarantee that a syntactically
valid structure has been maintained. Poe's
approach to this problem is to parse tokens only
when they are originally entered. All editing opera-
tions involve structural units {i.e., parse trees).
Insertion and copying of units is limited to contexts
that admit the unit in question. That is, a subtree
can be inserted or copied only under a non-terminal
that matches the root of the subtree. This
approach works well, except in the case where "unit
productions" are involved. Unit productions allow
the same structure to be rooted by different non-
terminals, making identification of valid subtrees
more difficult. For example, given a production

<Parameter expr> ~ < E x p r >

a sub-tree rooted by "<Parameter expr>" may
appear illegal if it is placed in a context expecting
" < E x p r > ' . In such cases, an LBE must examine
not only the root of a subtree, but also all "trivial"
subtrees.

Syntactic error repair is implemented using the
FMQ LL(I) error repair algorithm. All symbols are
given an insertion cost, and the FMQ algorithm
computes the locally least cost insertion sequence
that allows the next input symbol to be accepted as
syntactically valid. Repairs can be controlled by
adjusting the costs of particular insertions.

This technique works well for minor errors, but is
less satisfactory for major errors. There are really
two issues involved. First, the FMQ algorithm is
batch-oriented, and its simple cost model is not
entirely applicable in Poe's interactive

environment. In particalar, insertion costs do not
distinguish between symbols that already have been
entered, and those that are created as part of the
repair process. For example, if an "If Then Else"
construct has already been created, and the cursor
is placed on the "If", entering a "Then" will invoke
error repair, which will determine that insertion of
"If < E X P R > " will allow the "Then" to be
matched in a valid context. This "repair" should
be deemed fairly cheap [and hence desirable)
because its net effect is merely to move the cursor.

If a "Then" were entered with the cursor placed on
a " < S T M T > " non-terminal, then insertion of "if
< E X P R > " will again show the "Then" to be
matched in a valid context. In this ease, however,
the screen is actually changed and new symbols are
inserted (rather than matched) and therefore a
higher cost ought to charged. Clearly, an extension
of the FMQ model is required in this case.

A second problem with automatic error repair is the
fact that the more complex (and costly) a repair is,
the less likely it is to be acceptable to the user. In
such cases, the user must often "undo" the "repair"
and try again. A cost threshold probably ought to
be established. Below this threshold, automatic
repair would proceed. Above the threshold, the
user would be engaged in a dialogue of possible
choices, much as is done in the CAPS system
[WDT7OI.

Semant ic e r ro r checking

Semantic analysis in Foe is implemented using
attribute grammars. As program fragments are
entered, they are parsed and if necessary, repaired.
Parse trees are built and decorated with attribute
values. An incremental attribute evaluation
mechanism is used ([JF82], [Joh83 D. This mechan-
ism is novel in that attributed graphs rather than
attributed trees are supported. "Non-local" pro-
duction instances [Joh83] are added to the parse
tree as part of the attribute evaluation process, and
these productions allow attribute information to
flow directly to program structures that are struc-
turaUy distant. For example, if the type of a vari-
able is changed, all occurrences of the variable can
be immediately re-examined to determine if they
are semantically valid.

In the first implementation of Poe, the incremental
attribute evaluator is driven by copy rules, which
are evaluation functions that simply assign the
value of one attribute to another attribute. After a
sub-tree replacement takes place, the production
instances immediately above and below the site of

25

the change are visited by the evaluator. When the
evaluator visits a production instance, the attribute
evaluation functions which are not copy rules are
invoked. Then, the evaluator performs the copy
rule evaluations. If it notices that it is about to
over-write an attribute with a new value, then the
production instance which receives the new value is
visited.

In the first implementation, some important princi-
ples of incremental evaluation were recognized and
included, but at the time a rigorous theory of incre-
mental evaluation [Joh83, Rep821 had yet to be
developed. Experience with the first implementa-
tion led us to conclude that evaluation functions
should do no tree-walking, and should operate only
on attributes in a single production instance. An
attribute evaluator which is controlled by changing
attribute values should manage the re-evaluation
process. This permits the difficult task of managing
the incremental re-evaluation process to be local-
ized to a single table-driven routine, rather than
being spread throughout the bodies of semantic
routines. Further, as was mentioned above, it was
realized that some syntactically unrelated nodes in
a parse tree (such as definitions and uses of
identifiers) must be bound together into non-local
productions to make incremental evaluation in
large programs feasible.

Also of value was the inclusion of "pointer-
valued" attributes. Some attributes in the early
version of Poe (as well as later versions) have as
their values Pascal pointers to parse-tree nodes.
The most important use of this technique is for
attributes which indicate type information. The
"type" attribute of a given identifier or expression
is simply a pointer to the appropriate " < t y p e > ~
non-terminal node in the parse tree 7. Similarly, the
"constituent" or "base" type attribute of a
< t y p e > node is a pointer to the appropriate
< t y p e > node o f its subtree. This technique
results in significant space savings, since parts of a

parse tree are used for two related purposes which
might otherwise require separate storage: They
describe the context-free structure of the program,
and also the value of an object in the domain of
Pascal types.

The copy rule-driven incremental evaluation
strategy of the early version of Poe had several
defects; to name some of them, semantic routines

For consistency, pre-defined types such as "in-
teger" and "boolean" are represented internally as
parse-tree fragments; thus all type attributes are
pointers.

have embedded in them tests to see if their desired
attribute arguments have yet been evaluated, dis-
tinctions are made in the code of the evaluation
functions as to whether an initial evaluation or an
incremental evaluation is being performed, and only
propagation of attributes whose evaluation rules are
copy rules is table-driven.

An experimental version of Poe exists in which
attribute evaluation functions are simple, direct
mappings of input attributes to output attributes.
Knowledge of the mechanics of attribute evaluation
is localized to the attribute evaluator. Attribute
evaluation is completely automated and is based on
tables produced by an editor generator. The editor
generator written in conjunction with Poe, called
Poegen, processes context-free grammars aug-
mented with attribute evaluation rules and pro-
duces tables which control Poe's parser and attri-
bute evaluator.

In the experimental version, the system implemen-
tor is required to supply the following:

(I} an attribute grammar indicating, on a
production-by-production basis, what the
inputs and outputs of each evaluation func-
tion are;

(2) the evaluation functions;

(3) functions which test attribute values for
equality.

From the first of the above items, the complex
tasks of planning the attribute evaluation process
on initial read-in and in response to incremental
tree editing operations are performed in advance by
Poegen. Poe takes the tables produced by Poegen,
the evaluation functions, and the equality tests, and
performs the desired semantic operations in real
time as the user edits his program.

Much of Poe is table-driven. This includes parsing,
error-repair and {in the experimental version) attri-
bute evaluation. This suggests that creation of
LBEs for other languages should be comparatively
easy. Experience to date confirms this. For exam-
pie, an LBE (without semantics) for the VAL data
flow language [M82 ! was created in less than a
week. Work on the "VOLE" (as its implementor
terms it) is continuing, and a complete editor (with
semantics) is expected within the next year. An
experimental editor for the "ABE" data base
language [K81] has also been built.

Ef f ldeney I s s u ~

26

LBEs are designed to be highly interactive, and
hence are very sensitive to load in time-shared
environments. Experience with version 1 of Poe
supports this observation. The liP 9800 version of
Poe is much more "smooth" and responsive than
the Vax version, even though the MC 68000 proces-
sor used in the liPs has perhaps an order of magni-
tude less "mip-power" than the current generation
of VAX-11/780's. As a result, recent development
work has assumed an environment at least as
powerful as that provided by a typical MC 68000-
based workstation.

The liP 9800 version of Poe contains some 27,000
source lines. Much of this represents monitoring
and debugging code. The program requires about
270k bytes (plus the standard boot system), which
is about the same as the system Pascal compiler.
With effort this size could undoubtedly be reduced,
although major reductions would probably be pain-
ful. Trends in workstations point toward ever more
generous memory capacities, so significant efforts in
this direction are probably misdirected.

Program read-in speed is about 300 lines/rain,
representing scanning, parsing, pretty-printing,
semantic analysis, and construction of an internal
tree-structured program representation. Read-in
speed would be greatly enhanced if an "internal
form" image of a program could be written. This
involves writing a program tree in a form that
doesn't use explicit pointers.

Program trees are rather space intensive, requiring
(on average) hundreds of bytes per source line.
This is a major concern in that the size of programs
that can be edited is sensitive to how compactly
program trees can be represented. Some space
inefficiency results from the fact that Poe trees are
not completely abstract (i.e., redundant nodes are
stored to simplify program display). The quality of
Pascal packing and heap routines has a very direct
effect on program tree size. Alternatives to
syntax-tree representations including linear struc-
tures and production based-structures are being
experimented with. A sufficiently fast and compact
structure is still an unresolved matter.

O the r User In ter face Issues

"Prettyprinting" is automatic (and inescapable)
when programs are displayed. Prettyprinting infor-
mation (indent, outdent, newline, etc.) decorates
program trees, and controls the mapping of pro-
gram trees to screen format. The creation of pret-
typrinting tables is interactive, allowing different
formating conventions to be accommodated. Ways

of allowing user selection of formating rules are
under study, although the most interesting proposal
to date suggests an automatic "analysis" program
that examines programs adhering to a desired style,
and which infers from the examples the necessary
"prettyprinting rules".

The "undo" facility can be used to reverse the
effect of any tree insertion, deletion, elision, or
unelision. Poe saves a history of the last several
user modifications s, so that successive "undo"
operations undo the effects of successively earlier
modifications. There is a corresponding "Un-undo"
(or "Redo"} command which can be used to move
back forward in time and re-instate operations
which have been undone. (If the user performs
several "undo" operations and then manually per-
forms a tree modification, it is no longer possible to
use the "Un-undo" feature to reverse the effects of
the "undo" operations.) Internally, Poe maintains a
stack of (sub-tree, parse-node pointer) ordered
pairs. The sub-tree is a copy of a tree that was
either inserted or deleted by the user, and the
pointer refers to the node in the parse tree at which
the change took place. Note that both insertions
and deletions can be viewed as exchanges of a null
(empty) sub-tree and a non-empty sub-tree. To
undo an insertion, Poe simply takes the parse tree
node pointed to by the current element of the his-
tory list and deletes its sub-tree. Similarly, to undo
a deletion Poe inserts the sub-tree of the current
history list element under the node pointed to by
that element. If the user deletes a structure, and
then deletes another structure which contains the
site at which the previous deletion took place, then
the pointer of the former history element will point
to a node imbedded in the sub-tree of the latter his-
tory element. This situation is acceptable because
of the strict "last-done first undone" protocol of the
"undo" stack.

Ongoing W o r k

Poe-related research continues in a number of
areas. Integration of program development and
testing facilities is an important goal. Execution of
programs and program fragments should be freely
intermixed with program development and editing.
This includes the ability to edit data as well as pro-
gram text, and the ability to resume suspended exe-
cutions. Questions of how to map the "state" of a
suspended execution to a modified program text are

SCurrent versions of Poe save the last ten user
interactions.

27

under study.

Structuring concepts embodied in current program-
ming languages are oriented toward static program
representations (e.g., program listings). Given the
far more dynamic representations made possible by
LBEs, redefinition and generalization of traditional
program structures will be studied.

Completion of a version of Poegen that automati-
cally creates linear-time incremental attribute
evaluators for attribute grammars with non-local
productions is expected shortly. This will aid in
automating the production of LBEs for other
languages, and will reduce attribute evaluation
errors found in earlier versions of Poe.

The current version of Poe has no "context-search"
command. This certainly is not because such a
mechanism is unnecessary, but rather because
search commands found in ordinary editors aren't
really suitable. Poe is structure-oriented rather
than character-oriented, and search commands
ought to be in terms of that structure. Ways of
compactly abbreviating structure (akin to the
regular-expression notation used in Unix systems)
need to be explored. An interesting observation is
that Poe's error repair facility can be used to do
restricted forms of context-search. That is, enter-
ing (e.g.) "Then" can mean create a new structure
containing a "Then" or it can mean match an exist-
ing "Then", and place a cursor just beyond the
matching symbol. Whether text-entry and context
search can be unified is an interesting open ques-
tion.

At present Poe operates entirely at the token level.
This means that an individual token can't be
edited; it can merely be created, moved or deleted.
This makes modification of complex tokens (e.g.,
strings and comments) difficult and unpleasant. A
"character level" is probably indicated, although it
will have to be carefully controlled to avoid repars-
ing problems.

Alternate elision mechanisms need to be explored.
For example, "first line" elision (in which the first
line of a construct is used to elide it) has the poten-
tial to better convey the intent of the construct.
Thus rather than being elided to <IF-THEN-
{ELSE}...>, an IF-THEN-ELSE might be elided to

IF a----I THEN ... ELSE ...;

Comments, when they are available might also be
employed:

(* Test for completion *) IF a ~ 1 ...

The idea is to minimize the amount of space
needed to represent a construct, while conveying as
much information about it as possible. Elision
needs a more formal and systematic treatment to
reach this goal.

Ways of automatically or semi-automatically elid-
ing structure will also be considered. At first
glance, automatic elision might seem simple - -
elide structure that is distant from the current posi-
tion of the cursor (obtaining a form of perspective).
The problem with this is that as the cursor is
moved, the display tends to oscillate wildly, making
viewing and cursor synchronization difficult. An
alternative might be to allow global commands
such as "elide all procedure bodies" or "elide all
structure at a nesting level of 3 or more ~.

As mentioned in the introduction, execution and
program-testing capabilities will be incorporated
into the Poe environment. A promising possibility
is to use denotational semantic descriptions of run-
time program behavior. Ideally, a system such as
Poegen will take a formal description of the
dynamic semantics of a programming language and
produce interpretation and high-level debugging
facilities that are available from within Poe and
can be used on incomplete program fragments.

References

[AC81]

[FMQS0]

[Hab79]

IJF82]

[JobS31

Archer, James and Richard Conway,
COPE: A Cooperative Programming
Environment, Coruell University TR
81-459, June 1981.

Fischer, C., D. Milton and S. Quiring,
Efficient LL(1) Error Correction and
Recovery Using Only Insertions, Acta
Information, 13, 2, 141-154, 1980.

Habermann, A. N., The gandalf research
project, Carnegie-Mellon University
Computer Science Research Review -
1979, 28-35, 1979.

Johnson, G. F. and C. N. Fischer, Non-
syntactic attribute flow in language
based editors, Pros. 9th ACM Syrup.
Principles of Programming Languages,
185-195, January 1982.

Johnson, G. F., An Approach to Incre-
mental Semantics, PhD thesis, Univ of
Wisconsin - Madison, August 1983.

28

[KS1]

[LF79]

[M82]

[MS811

[Rep82]

[SFGT81]

[TR81]

[WDT76]

Klug, Anthony, Abe - A Query
Language for Constructing Aggregates-
by-example, Workshop on Statistical
Database Management (1981).

LeBlanc, R .J. and C. N. Fischer, A
Simple Separate Compilation Mechan-
ism for Block-Structured Languages,
Sigplan Notices, 14, 8, 139.-143, 1979.

McGraw, James R., The VAL Language:
Description and Analysis, ACM Trans.
Prog. Lang. and Sys., 4, 1, 44.-82, Janu-
ary 1982.

Morris, Joseph M. and Mayer D.
Schwartz, The Design of a Language-
Directed Editor for Block-Structured
Languages, SIGPLAN Notices, 16, 6,
28..33, June, 1981.

Rcps, Thomas, Generating Language-
Based Environments, Cornell University
TR 82-514, August 1982.

Stenning, Vic, Terry Froggatt, Roger
Gilbert, and Ellis Thomas, The Ada
Environment: A Perspective, Computer,
14, 6, 26-36, June 1981.

Teiteibaum, Tim and Thomas Reps,
The Cornell program synthesizer: a
syntax-directed programming environ-
ment, Comm ACM, 24, 9, 563.-573,
1981.

Wilcox, T. R., A.M. Davis and M.H.
Tindall, The design and implementation
of a table-driven, interactive diagnostic
programming system, Comm ACM, 19,
11, 609-616, 1976.

29

