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flux-balance laws from the proper BMS flux-balance laws associated with the three relevant

memory effects defined from the shear, namely, the displacement, spin and center-of-mass

memory effects. We scrutinize the prescriptions used to define the angular momentum

and center-of-mass. In addition, we provide the exact form of all Poincaré and proper

BMS flux-balance laws in terms of radiative symmetric tracefree multipoles. Fluxes of
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of quadrupole supermomentum arise at 3PN and fluxes of momentum, center-of-mass and
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lead to integro-differential consistency constraints on the radiation-reaction forces acting

on the sources. Finally, we derive the exact form of all BMS charges for both an initial

Kerr binary and a final Kerr black hole in an arbitrary Lorentz and supertranslation frame,

which allows to derive exact constraints on gravitational waveforms produced by binary

black hole mergers from each BMS flux-balance law.
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1 Introduction and outline

The study of gravitational radiation has a long history enlightened by the seminal work of

Bondi, van der Burg, Metzner and Sachs [1, 2]. There, it was realized that asymptotically

flat spacetimes not only lead to Poincaré charges but also to so-called supermomenta as-

sociated with supertranslation asymptotic symmetries. It was subsequently realized that

super-Lorentz charges, associated with the so-called superrotations and superboosts, are

also finite surface charges for standard asymptotically flat spacetimes [3–5], even though
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the corresponding diffeomorphisms are not asymptotic symmetries but external symme-

tries [6].1 Each such “extended BMS” charge is associated with a flux-balance law that

relates all forms of radiation reaching null infinity (including matter radiation) to the dif-

ference of BMS surface charges at initial and final retarded times. The extended BMS flux-

balance laws are complete at second order in the large radius expansion, in the sense that

no other evolution equation arises from Einstein’s equations in Bondi gauge at that order,

though an infinite tower of subleading flux-balance laws are implied by Einstein’s equa-

tions [9, 23]. While such leading and subleading flux-balance laws have already appeared

in the literature [3, 9, 20, 24–32], no unified presentation has yet been given that provides

a comprehensive first-principle derivation of all BMS laws for standard asymptotically flat

spacetimes which includes their explicit relationship to memory effects. The first objective

of this paper is to provide such a unified presentation, complementing the remarkable work

of Nichols [27, 28]. The ten Poincaré flux-balance laws will be uniquely identified after

providing the prescription for the angular momentum matching with [9, 10, 20, 30, 33–36]

and for the center-of-mass matching with [37]. The proper BMS flux-balance laws will

be explicitly related to the three relevant memories defined from the Bondi shear, namely

the displacement memory [38–56], the spin memory [27, 57–60] and the center-of-mass

memory [28].

The BMS flux-balance laws provide explicit consistency constraints on waveforms gen-

erated by compact binary mergers that are derived within General Relativity. Such con-

straints have already been explicitly discussed for momenta and BMS supermomenta [1, 2].

The energy-momentum flux-balance laws allow to deduce the final mass and velocity kick

after the merger as a function of the initial parameters of the binary. The proper super-

momentum flux-balance laws instead allow to deduce the total displacement memory as

a function of the radiation and initial parameters of the merger [24, 44–48]. The Lorentz

flux-balance laws similarly allow to deduce the final angular momentum and center-of-mass

shift after the merger, though the choice of the supertranslation and Lorentz frame intro-

duces complications [32]. Finally, the super-Lorentz flux-balance laws allow to deduce the

spin and center-of-mass memories [27, 28]. Our second objective is to provide an explicit

formulation of all BMS consistency constraints that could be directly used by numerical

relativists and gravitational wave data analysts. We will achieve this goal by providing

a unified presentation of all BMS global constraints and, in addition, by providing the

explicit BMS charges of the initial and final states of black hole binary mergers, which

completes partial results previously obtained in the literature [1–4, 6, 25, 32, 61, 62].

A crucial analytic method used to derive gravitational waveforms for binary mergers

is the post-Newtonian/post-Minkowskian matched asymptotic expansion scheme between

the source near-zone and the radiative far-zone; see e.g., [33, 63–65] as well as the effective

field theory methods [66, 67]. The BMS formalism allows for an exact solution of the

far-zone gravitational field. The third objective of this paper is to exploit this far-zone

1Alternatively, either asymptotic Virasoro×Virasoro [7–10] or smooth Diff(S2) symmetries [11, 12] can

be considered to act on an extended notion of asymptotically flat spacetimes that encompasses cosmic

events such as cosmic string decays or Robinson-Trautman waves [13–22]. In this paper, we only consider

standard asymptotically flat spacetimes, i.e., that can be written as gµν = ηµν +O(1/r) for r →∞.
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solution to derive the exact form of all Poincaré and proper BMS flux-balance laws in the

symmetric trace-free (STF) radiative multipole expansion to all orders in the Newton’s

gravitational constant G and the speed of light c. This completes the existing results in

the literature [27, 28, 33, 68, 69] and thereby constitutes a resolved sub-problem of the

post-Newtonian/post-Minkowskian matched asymptotic expansion scheme. In turn, these

multipolar BMS flux-balance laws can be expressed in terms of source parameters. We will

elaborate that — in the case of a compact binary inspiral — the BMS flux-balance laws

lead to towers of coupled integro-differential constraints on the source parameters.

The rest of the paper is organized as follows. After a short review of the BMS formalism

in section 2, we will present the complete set of BMS flux-balance laws in simplified form

in section 3. In particular, we will derive the angular momentum and center-of-mass flux-

balance laws and extensively discuss their comparison with the literature. Section 4 is

devoted to the multipole expansion of the BMS flux-balance laws. We present the explicit

constraints resulting from the time integrated BMS flux-balance laws for binary black

hole mergers in section 5. We conclude in section 6. The derivation of the Kerr black

hole in an arbitrary supertranslation and Lorentz frame in relegated to appendix A, while

appendices B, C and D provide technical details on the multipole expansion and on the

integration of STF tensors and a comparison between STF and spherical harmonics.

Notations and conventions. In this paper, we explicitly keep track of the speed of

light c and of Newton’s gravitational constant G in all formulae. Upper-case Latin letters

{A,B,C, . . . } label indices of tensors defined over the sphere; lower-case Latin letters

{i, j, k, . . . } label indices of tensors defined over the unit sphere embedded into Euclidean

space, with unit normal vector ~n = (sin θ cosφ, sin θ sinφ, cos θ). The Einstein summation

convention will always be implicit over repeated indices, even if both are raised or lowered.

The unit normalized integral of a function over the sphere,
∫
S
d2Ω
4π f(xA), will be denoted

by the shorthand notation
∮
S f(xA). An overdot is used to denote derivation with respect

to retarded time, while the k-th retarded time derivative of f is denoted as
(k)

f .

2 Brief review of the BMS formalism

The study of gravitational radiation close to future null infinity I+ can be suitably studied

in Bondi gauge [1, 2]. This section is aimed at reviewing the main ingredients of the BMS

formalism that we will need and at spelling our conventions. For more extended reviews,

see e.g., [3, 5, 9, 20, 70–73].

2.1 Metric in Bondi gauge

We use retarded coordinates (u, r, xA) near future null infinity. Bondi gauge is defined from

the gauge fixing conditions grr = grA = 0 and ∂r det
(
r−2gAB

)
= 0, the latter fixing the

radial coordinate r to be the luminosity (areal) distance. We consider General Relativity

coupled to a matter stress-tensor obeying the following asymptotic conditions as r → ∞
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(as in [3] which slightly generalizes [26])

Tuu = r−2T̂uu(u, xA) +O(r−3), Tur = O(r−4), (2.1a)

Trr = r−4T̂rr(u, x
A) +O(r−5), TuA = r−2T̂uA(u, xA) +O(r−3), (2.1b)

TrA = r−3T̂rA(u, xA) +O(r−4), TAB = r−1γABT̂ (u, xA) +O(r−2). (2.1c)

This is obviously satisfied by compact sources for which Tµν = 0 outside some finite radius.

Our construction however allows for more general configurations involving electromagnetic

radiation. The metric field in Bondi gauge reads on-shell as

ds2 =− c2 du2 − 2c dudr + r2γAB dx
AdxB

+
2Gm

c2r
du2 + r CAB dx

AdxB +DBCAB cdudx
A

+

(
c

16
CABC

AB +
2πG

c
T̂rr

)
1

r2
dudr +

1

r

[
4G

3c2
N̄A −

c

8
∂A
(
CBCC

BC
)]
dudxA

+

(
1

4
γAB CCDC

CD +DAB
)
dxAdxB + (subleading terms in r). (2.2)

The stress-energy conservation imposes

∂uT̂rA = cDAT̂ , ∂uT̂rr = −2cT̂ , (2.3)

and Einstein’s equations further imply T̂rA = −1
2DAT̂rr − 1

8πD
BDAB. Here, γAB is the

unit metric on the sphere and all indices are raised and lowered using this metric. The

symmetric tracefree field, CAB(u, xA), is the Bondi shear and it contains the transverse

and traceless gravitational radiation. Its retarded time derivative, ĊAB, is the Bondi news ;

DAB is a conserved traceless tensor γABDAB = ∂uDAB = 0; m(u, xA) is the Bondi mass

aspect and N̄A(u, xA) is Bondi angular momentum aspect as defined in [58], which is a

convenient definition for writing down the metric (2.2). We use the following conventions:

m has dimension of energy, N̄A has dimension of angular momentum, CAB has dimension

of length and T̂ has dimension of mass. Einstein’s equations then reduce to the following

three constraint equations:

∂um = −4πcT̂uu −
c3

8G
ĊABĊ

AB +
c4

4G
DADBĊ

AB, (2.4a)

∂uN̄A = −8πc
(
T̂uA +

c

4
DAT̂

)
+ ∂Am+

c4

4G
DB(DAD

CCBC −DBD
CCAC)

+
c3

4G
DB

(
ĊBCCCA

)
+

c3

2G
DBĊ

BCCCA. (2.4b)

2.2 Supertranslations and super-Lorentz transformations

Bondi gauge is preserved by exactly two families of smooth diffeomorphisms: supertransla-

tions and Diff(S2) super-Lorentz transformations [11, 12]. We will refer to the total group
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of residual diffeomorphisms in Bondi gauge as the extended BMS group. The exact form

of the infinitesimal generators can be found, e.g., in [9, 20], They schematically read as

ξT = T (xA)∂u + · · · (supertranslations); (2.5a)

ξY = Y A(xB)∂A + · · · (super-Lorentz transformations); (2.5b)

where T and Y A respectively denote an arbitrary function and vector on the sphere. The

dots in eqs. (2.5) refer to additional terms required to preserve Bondi gauge. What is

important for our purposes is that the symmetries are completely determined by their

arguments T, YA. The action of these diffeomorphisms on the metric can be found, e.g.,

in [5, 9, 20, 73].

The four supertranslations, whose generator T obeys

DADBT +
1

2
γAB∆T = 0, (2.6)

uniquely define the Poincaré translations. Here ∆ = DCD
C is the Laplacian on the unit

2-sphere. The generator T is given by a linear combination of the ` = 0, 1 spherical

harmonics. Time translation is associated with T = 1. Spatial translations are associated

with T = −1
c ni where ni, with i = 1, 2, 3, are the three components of the unit vector ~n =

(sin θ cosφ, sin θ sinφ, cos θ).2 We will call proper supertranslations the supertranslations

that are not the time and spatial translations.

The six Diff(S2) super-Lorentz transformations that preserve the boundary metric of

the sphere, or equivalently, whose generator Y A obeys the conformal Killing equations on

the unit sphere

DAYB +DBYA = γABD
CYC , (2.7)

uniquely define the six Lorentz asymptotic symmetries projected into the celestial sphere

that form a so(1, 3) subgroup of diff(S2).3 Within the solutions to (2.7), the three ro-

tations are uniquely defined as the divergence-free subgroup DAY
A = 0, while the 3

boosts are uniquely defined as the curl-free generators εAB∂AYB = 0. The generator

Y A is given by a linear combination of the ` = 1 spherical harmonics. We will call proper

super-Lorentz transformations the super-Lorentz transformations that are not the Lorentz

transformations.

A general super-Lorentz generator is parametrized by an arbitrary vector on the sphere,

which can be uniquely decomposed as

Y A = εAB∂BΦ + γAB∂BΨ. (2.8)

In Minkowski spacetime, the Lorentz boosts are given by ξ(i) = 1
cxi∂t+ct∂i. When written

in retarded coordinates, one can read off the leading components as r →∞ on the sphere

as Y A = γAB∂Bni. Similarly, a rotation is given in Minkowski spacetime by ξ(i) = εijkxj∂k

2Indeed, in retarded coordinates, ∂i = − 1
c
ni∂u + ni∂r + 1

r
Pil

∂
∂nl

where Pij = δij − ninj .
3Also note that (DADB + γAB)DCY

C = 0 = (∆ + 1)YA and [DB , DA]YB = YA.
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and its leading angular components in retarded coordinates are εAB∂Bni. We infer that

the asymptotic rotations and boosts are parametrized by Φ ∼ ni and Ψ ∼ ni, respectively.

Therefore, the decomposition (2.8) provides a generalization of those notions and hence

we call them super-rotations and super-boosts, respectively. Explicitly, we decompose the

super-Lorentz residual transformations (2.5) as

ξΦ = εAB∂BΦ ∂A + · · · (superrotations); (2.9a)

ξΨ = γAB∂BΨ ∂A + · · · (superboosts). (2.9b)

Together, the translations, the Lorentz asymptotic symmetries and the proper super-

translations form the BMS group which is the asymptotic symmetry group of asymptoti-

cally flat spacetimes of the form (2.2). Such asymptotic symmetries obey two fundamental

properties: they are associated with finite surface charges, and their action as diffeomor-

phisms preserves the set of metrics. The proper super-Lorentz transformations are not

asymptotic symmetries of the set of metrics (2.2), because they do not preserve the fall-off

conditions of the Bondi metric (2.2) upon action as diffeomorphisms.4 Yet, they define

finite surface charges for the set of metrics (2.2) and, therefore, they are physically rele-

vant for standard asymptotically flat spacetimes [3–5], as we will detail below. They are

particular instances of external or outer symmetries, which is a more general concept than

asymptotic symmetries [6, 74].

3 The BMS flux-balance laws

In this section, we present our definition of the extended BMS charges and derive their

evolution in terms of retarded time. We will always refer to the flux-balance laws of

extended BMS charges as the BMS flux-balance laws.

3.1 Supermomenta, super-angular momenta and super-center-of-mass

The surface charges PT associated with the supertranslations T are called the supermo-

menta. The surface charges JΦ and KΨ associated with the superrotations (labelled by

Φ) and the superboosts (labelled by Ψ) are, respectively, the super-angular momenta and

super center-of-mass charges. We call all these charges the BMS charges. They are built

from a complete set of potentials in Bondi gauge that admit a retarded time evolution

constrained by Einstein’s equations. They are defined as

PT ≡
1

c

∮
S
T m, (3.1a)

JΦ ≡
1

2

∮
S
εAB∂BΦNA, (3.1b)

KΨ ≡
1

2c

∮
S
γAB∂BΨNA (3.1c)

where m and NA are the Bondi mass and angular momentum aspects, respectively. We ad-

justed the factors of c such that the momentum has dimension mass-times-velocity and the

4For the construction of an extended phase space of metric admitting super-Lorentz transformations as

asymptotic symmetries, see [9, 10, 18, 20, 21].

– 6 –



J
H
E
P
1
0
(
2
0
2
0
)
1
1
6

center-of-mass charge has dimension mass-times-length. The angular momentum has its

canonical dimension. For T,Φ and Ψ, consisting of linear combinations of ` = 0, 1 harmon-

ics, the BMS charges (3.1) reduce to the ten Poincaré charges. More precisely, we associate

the energy (divided by c) with T = 1, the momentum with T = ni (the momentum is

associated with −∂i), the angular momentum with Φ = −ni (the angular momentum is

associated with −∂ϕ) and the center-of-mass with Ψ = ni. For T,Φ and Ψ consisting of

linear combinations of higher ` ≥ 2 spherical harmonics, the BMS charges (3.1) are the

proper BMS charges. While all the literature agrees with the definition of Bondi mass

aspect, the definitions of super-angular momentum and super-center-of-mass are ambigu-

ous: they require a prescription for defining the Bondi angular momentum aspect. We will

scrutinize the different prescriptions in section 3.4. In this paper, we prescribe the Bondi

angular momentum aspect NA as

NA = N̄A − u∂Am−
c3

4G
CABDCC

BC − c3

16G
∂A
(
CBCC

BC
)

+
uc4

4G
DBD

BDCCAC −
uc4

4G
DBDADCC

BC (3.2)

where N̄A is defined from the metric expansion (2.2). This prescription was found in [20]5

by requiring that the Ward identity associated with super-Lorentz symmetries reproduces

the standard form of the subleading soft graviton theorem [75]. In section 4 of this paper,

we will further prove that the definition (3.2) exactly leads to the flux-balance law for

the angular momentum as computed in [33] without any additional divergences or total

time derivatives. Moreover, it will lead to the flux-balance law for the center-of-mass that

matches with the post-Newtonian derivation of [76]. Furthermore, the center-of-mass flux

will be related to the symplectic flux, which parallels the prescription used to defining the

angular momentum flux [34].

The term −u∂Am in eq. (3.2) cancels the linear u divergence present in N̄A for non-

radiative configurations, as shown in [5], and as we will rederive in section 5.3. The super-

center-of-mass charge KΨ is therefore exactly conserved for non-radiative configurations,

even in the presence of supermomentum. In particular, the center-of-mass charge Ki,
defined for Φ = ni, is conserved in the presence of momentum and therefore physically

measures mass times the initial (i.e., at u = 0) center-of-mass position. The center-of-mass

that evolves linearly as a function of momentum in the absence of radiation is instead

given by Gi ≡ Ki + uPi. We can generalize this definition to all superboosts by defining

the comoving super-center-of-mass,

GΨ ≡
1

2c

∮
S
γAB∂BΨ (NA + u∂Am) . (3.3)

The comoving super-center-of-mass GΨ is related to the super-center-of-mass by

GΨ = KΨ + uPT=− 1
2

∆Ψ. (3.4)

For boosts, Ψ = ni, −1
2∆ni = ni and we recover the standard relationship Gi ≡ Ki + uPi.

Finally note that the shift NA 7→ NA−u∂Am does not affect the super-angular momentum

because εAB∂A∂BΦ = 0.

5It was denoted as N̂A and defined in eq. (5.52).
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3.2 The BMS flux-balance laws

The BMS flux-balance laws are simply obtained by taking the u-derivative of the BMS

charges (3.1) and using the constraint equations (2.4) derived from the Einstein’s equations.

The evolution of the Bondi mass aspect m is given by eq. (2.4a). One can multiply

each side of this equation by an arbitrary function T (xA) over the sphere. Upon integration

and using the definition of the supermomentum (3.1a), one obtains the supermomentum

flux-balance law

ṖT −
c3

4G

∮
S
T DADBĊ

AB = − c2

8G

∮
S
T

(
ĊABĊ

AB +
32πG

c2
T̂uu

)
. (3.5)

This flux-balance law has been well-studied and derived in many references, including [1,

2, 24, 26]. The term linear in the shear tensor CAB gives the soft contribution to the

Weinberg’s leading soft graviton theorem upon quantization. The quadratic term in the

shear as well as the matter contribution are called the hard terms, as they contribute to

the energy flux.

The evolution of the Bondi angular momentum aspect N̄A is given by eq. (2.4b). The

definitions of the super-angular momentum and super-center-of-mass charges (3.1b)–(3.1c)

involve NA given in eq. (3.2). It is a simple matter of algebra to write down the retarded

time evolution of JΦ and KΨ or, equivalently, GΨ. The answer is most easily expressed as

follows. We first introduce the bilinear hard super-Lorentz operator [77]

HA(Ċ, C) ≡ 1

2
∂A

(
ĊBCC

BC
)
− ĊBCDACBC +DB

(
ĊBCCAC − CBCĊAC

)
, (3.6)

and the linear soft superrotation operator

SA(Ċ) ≡ ∆DCĊAC −DBDADCĊ
BC . (3.7)

The constraint (2.4b) can then be rewritten in terms of NA as

∂uNA + u∂Aṁ =
c3

4G
HA(Ċ, C) +

uc4

4G
SA(Ċ)− 8πc T̄uA (3.8)

where T̄uA ≡ T̂uA + c
4DAT̂ − u

2 T̂uu. Eq. (3.8) is in fact a rewriting of eq. (5.53) of [20],

complemented with the matter contributions. After contraction with Y A and integration

over the sphere, one obtains the flux-balance laws for the super-angular momentum and

super-center-of-mass.

Let us now obtain the simplest possible form for these flux-balance laws. Here, we

first observe that the soft superrotation operator SA in eq. (3.7) does not contribute to the

flux-balance law for the super-center-of-mass. Indeed, contracting eq. (3.7), respectively,

with a superrotation Y A
Φ = εAB∂BΦ and a superboost Y A

Ψ = γAB∂BΨ, one can show after

integration by parts that∮
S
εAB∂BΦ SA(Ċ) =

∮
S

∆ΦDADB

(
εACĊ

CB
)
, (3.9a)∮

S
γAB∂BΨ SA(Ċ) = 0. (3.9b)
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The operator SA therefore deserves its name as the soft superrotation operator. We also

observe that the soft contribution to the super-angular momentum flux-balance law (3.9a)

is similar to the soft contribution to the supermomentum flux-balance law (3.5). The dif-

ference amounts to a parity flip of the Bondi news: the soft supertranslation term depends

upon the parity-even part, while the soft superrotation term depends upon the parity-odd

part of the news. The structure can be made explicit by performing the decomposition of

the Bondi shear into its two polarization modes6

CAB = −2DADBC
+ + γAB∆C+ + 2εC(ADB)D

CC−. (3.10)

The BMS flux-balance laws then take the simpler form

ṖT +
c3

4G

∮
S
T (∆ + 2)∆Ċ+ = − c2

8G

∮
S
T

(
ĊABĊ

AB +
32πG

c2
T̂uu

)
, (3.11a)

J̇Φ + u
c4

4G

∮
S

(
−1

2
∆Φ

)
(∆ + 2)∆Ċ− = +

c3

8G

∮
S
εAB∂BΦ

(
HA(Ċ, C)− 32πG

c2
T̄uA

)
,

(3.11b)

K̇Ψ + u ṖT=− 1
2

∆Ψ = +
c2

8G

∮
S
γAB∂BΨ

(
HA(Ċ, C)− 32πG

c2
T̄uA

)
.

(3.11c)

Notice that using eq. (3.4), we can rewrite

K̇Ψ + u ṖT=− 1
2

∆Ψ = ĠΨ − PT=− 1
2

∆Ψ. (3.12)

Thanks to this simplified form, the physical content of the soft contributions to

the BMS flux-balance laws is now apparent. The supermomentum flux-balance law is

associated with the displacement memory effect which is caused by a permanent dis-

placement of C+ between non-radiative regions due to null radiation reaching null infin-

ity [24, 38, 45, 46, 48, 49, 78]. The super-angular momentum flux-balance law is associated

with the super-angular momentum memory effect dubbed the “spin memory effect” [27, 58–

60]. It is caused by an accumulation
∫ u2
u1
u∂uC

− between the initial and final retarded time

of the operator u∂u acting on the parity-odd radiative polarization mode. Though the spin

memory effect is not clearly a memory effect (i.e., an effect depending only on the initial

and final states) using variables in Bondi gauge, it is clearly a memory effect once rewritten

in canonical/harmonic gauge [60]. The only soft contribution to the super-center-of-mass

flux-balance law (3.11c) arises from the soft contribution to the supermomentum, with

T = −1
2∆Ψ, and is proportional to u∂uC

+. The “super-center-of-mass memory effect”, or

“center-of-mass memory effect” in short, arises from an accumulation
∫ u2
u1
u∂uC

+ between

the initial and final retarded time of the operator u∂u acting on the parity-even radiative

polarization mode [28]. We will come back to the memory effects in section 5, where we

write down the time-integrated form of the flux-balance laws.

Let us now simplify the right-hand side of the super-angular momentum and super-

center-of-mass flux-balance laws. Using integration by parts and eq. (2.7), we observe that

6Note that under a supertranslation, C+ 7→ C+ + T , while C− is invariant.
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the first term in the hard super-Lorentz operator (3.6) does not contribute to the super-

angular momentum flux-balance law (though we will keep it to simplify the integrand),

while the third term does not contribute to super-center-of-mass flux-balance law. In

addition, not all quadratic terms are independent from each other. Indeed, for any pair of

symmetric tracefree bidimensional tensors XAB, YAB, we have

XACDBY
BC = XBCDAYBC −XBCDBYAC . (3.13)

We can therefore choose two quadratic operators as a basis and express the hard contribu-

tions in terms of them. It is convenient to define

T
(1)
A (Ċ, C) ≡ 1

2
(ĊBCDACBC − CBCDAĊBC), (3.14a)

T
(2)
A (Ċ, C) ≡ 1

2
(ĊBCDBCAC − CBCDBĊAC). (3.14b)

Following the steps mentioned above, the BMS flux-balance laws finally read as

ṖT +
c3

4G

∮
S
T (∆ + 2)∆Ċ+ = − c2

8G

∮
S
T

(
ĊABĊ

AB +
32πG

c2
T̂uu

)
, (3.15a)

J̇Φ − u
c4

8G

∮
S

∆Φ(∆ + 2)∆Ċ− = +
c3

8G

∮
S
εAB∂BΦ

(
−3T

(1)
A (Ċ, C) + 4T

(2)
A (Ċ, C)

)
− 4πc

∮
S
εAB∂BΦ T̄uA, (3.15b)

K̇Ψ + u ṖT=− 1
2

∆Ψ = − c2

4G

∮
S
γAB∂BΨ T

(1)
A (Ċ, C)

− 4π

∮
S
γAB∂BΨ T̄uA. (3.15c)

While these laws have been written down for various definitions of BMS charges, it is the

first time that they are written for the definition of the super-Lorentz charges (3.1b)–(3.1c)

in simplified form. A comparison with the literature will be provided in section 3.4. The

proper supermomentum, super-angular momentum and super-center-of-mass flux-balance

laws will be expanded in post-Newtonian form in sections 4.3, 4.4 and 4.5. Finally note

that one could also absorb the soft terms into the supermomenta and thereby defining

dressed BMS supermomenta as done for electric asymptotic charges in [79].

3.3 Poincaré flux-balance laws

In the special case of Poincaré generators, the BMS flux-balance laws simplify. All the

soft terms linear in CAB vanish for Poincaré generators which correspond to the ` = 0, 1

harmonics of the functions T,Φ,Ψ. This is because they are zero modes of the operator

∆(∆ + 2) in eq. (3.15).

According to our convention in (3.1a), the energy (divided by c) is canonically as-

sociated to T = 1 and the linear-momentum is canonically associated to T = ni. The
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flux-balance laws of energy and momentum read, respectively, as

Ė ≡ c ṖT=1 = − c3

8G

∮
S

(
ĊABĊ

AB +
32πG

c2
T̂uu

)
, (3.16a)

Ṗi ≡ ṖT=ni = − c2

8G

∮
S

(
ĊABĊ

AB +
32πG

c2
T̂uu

)
ni. (3.16b)

According to eqs. (3.1b) and (3.1c), the angular momentum and center-of-mass are

canonically associated to Φ = −ni and Ψ = ni respectively. Their flux-balance laws

explicitly read

J̇i ≡ J̇Φ=−ni = − c3

8G

∮
S
εAB∂Bni

(
−3T

(1)
A (Ċ, C) + 4T

(2)
A (Ċ, C)− 32πG

c2
T̄uA

)
,

(3.17a)

K̇i + u Ṗi = Ġi − Pi = − c2

4G

∮
S
γAB∂Bni

(
T

(1)
A (Ċ, C) +

16πG

c2
T̄uA

)
(3.17b)

where Ki ≡ KΨ=ni , Gi ≡ GΨ=ni . These ten Poincaré flux-balance laws will be expanded in

terms of symmetric tracefree radiative multipoles in section 4.2.

3.4 On the definitions of angular momentum and center-of-mass

Several definitions of angular momentum and center-of-mass of asymptotically flat space-

times have been proposed. Here, we summarize some of these definitions, relate them to

each other and discuss their properties. Let us define

J (α)
i ≡ −1

2

∮
S
εAD∂Dni

(
N̄A −

αc3

4G
CABDCC

BC

)
, (3.18a)

K(α,β)
i ≡ +

1

2

∮
S
γAD∂Dni

(
N̄A − u∂Am−

αc3

4G
CABDCC

BC − βc3

16G
∂A
(
CBCC

BC
))

,

(3.18b)

G(α,β)
i ≡ +

1

2

∮
S
γAD∂Dni

(
N̄A −

αc3

4G
CABDCC

BC − βc3

16G
∂A
(
CBCC

BC
))

, (3.18c)

with α, β arbitrary. Using eq. (3.2), our definition corresponds to α = β = 1, which

matches with the one of Barnich-Troessaert [10] and subsequently [3, 20, 30]. Instead, the

angular momentum and center-of-mass as defined by Pasterski-Strominger-Zhiboedov [58]

and subsequently [5] corresponds to α = β = 0. We can also compare our expression

for the angular momentum flux (3.17a) with equation eq. (4.11) of [29] derived from the

Landau-Lifshitz pseudo-tensor. Their expression for the flux of angular momentum is of the

form (3.15b), but with T
(1)
A (Ċ, C) = ĊBCDACBC and T

(2)
A (Ċ, C) = ĊBCDBCAC instead

of eq. (3.14). Their angular momentum flux coincides with J (α=3) in eq. (3.18).

For any α, one infers from eq. (3.15b) that the flux of angular momentum J (α)
i can

be written purely in terms of the radiative data, i.e., the shear and the news, and has no

explicit dependence on the Coulombic data, which agrees with [29].

In order to relate the angular momentum to the one defined by Dray and Streubel [35],

we need to recall the definition of the symplectic structure [34, 80, 81]. It is defined as
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ω(δ1g, δ2g) ≡ δ1Θ(δ2g)−δ2Θ(δ1g) where Θ(δg) is the boundary term obtained after varying

the Einstein-Hilbert Lagrangian. Expanding this symplectic structure close to null infinity,

and integrating over the sphere, one obtains the finite symplectic form at null infinity

ωI+(δ1g, δ2g) =
c3

8G

∮
S

(
δ1Ċ

ABδ2CAB − δ2Ċ
ABδ1CAB

)
. (3.19)

The action of the Lie derivative with respect to a supertranslation or Lorentz transfor-

mation on the metric LY,T g gives the induced action on the shear CAB and news ĊAB
given by

δT,Y CAB =

(
T +

u

2
DAY

A

)
ĊAB + LY CAB −

1

2
DCY

CCAB − 2DADBT + γAB∆T,

(3.20a)

δT,Y ĊAB =

(
T +

u

2
DAY

A

)
C̈AB + LY ĊAB. (3.20b)

After some algebra, one can then rewrite the flux of angular momentum (3.17a) associated

with the vector Y A = −εAB∂Bni without matter flux (T̄uA = 0) as

J̇i = − c3

16G

∮
S

(
ĊABLY CAB − LY ĊABCAB

)
= −1

2
ωI+(g,LY g). (3.21)

In the last step, we have used the fact that the following term vanishes for divergence-free

vectors including rotations, ∮
S
CABLY CAB = 0. (3.22)

The angular momentum flux (3.21) is precisely the one prescribed by Ashtekar and

Streubel [34]. The corresponding angular momentum surface charge [35, 82] thus cor-

responds to J (α=1)
i in eq. (3.18).

Covariant phase space or Hamiltonian charges [83–85] are well-known to be non-

integrable for radiating spacetimes. This leads to the necessity of a prescription to de-

fine the canonical charges. Such a prescription was proposed by Wald and Zoupas [36]

that uniquely leads to the Ashtekar-Dray-Streubel angular momentum [34, 35]. In sec-

tion 4, we will further show that the definition of angular momentum for α = 1 leads to

the angular momentum flux-balance law written in Thorne [33]. The angular momentum

prescriptions in this paper and [9, 10, 20, 30, 33–36] are therefore all equivalent to each

other (α = 1), while the angular momentum (and corresponding angular momentum flux)

prescribed in [5, 58] (α = 0) or [29] (α = 3) are distinct.

Let us conclude with a remark on the uniqueness. The motivation of [34–36] was to

obtain a definition of angular momentum as an integral of covariant fields over the celestial

sphere whose flux vanishes for non-radiative configurations. Now, it is clear that the

definitions (3.18) are all locally defined in terms of the metric fields in Bondi gauge for any α,
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β. In addition, for non-radiative configurations, the fluxes of J (α) and K(α,β) are vanishing

for any α, β, as will be clear from section 5. There is therefore (at least) a one-parameter

ambiguity in the definition of the angular momentum and a two-parameter ambiguity in the

definition of center-of-mass when one only imposes that these charges are built locally from

the Bondi fields and that their fluxes vanish for non-radiative configurations. Note that

the subleading soft graviton theorem [75] is obtained from quantizing the super-Lorentz

flux-balance laws, independently on how we shift the left and right-hand sides of the flux-

balance law. The existence of the subleading soft theorem, therefore, does not fix the

prescription either.

What is therefore the most convenient prescription? A natural requirement is that

the angular momentum should transform in the standard fashion under translations in

non-radiative regions. Translations do not affect the shear, δT=njCAB = 0, and therefore

the transformation law of J (α)
i is independent of α. For non-radiative configurations the

Bondi angular momentum aspect N̄A defined from eq. (2.2) changes as

N̄A 7→ N̄A + 3
m

c
DAT +

T

c
∂Am, (3.23)

as can be deduced from, e.g., eq. (2.24) of [20]. The transformation of the angular mo-

mentum under a translation in non-radiative regions is then given by

δT=njJ
(α)
i = PT ′′ , T ′′ = −Y A∂AT = εjiknk, (3.24)

where Y A = −εAB∂Bni. This leads to the standard Poincaré commutator [Pj ,Ji] = εjikPk,
independently of the prescription for α. One other natural requirement is to impose the sim-

plest transformation property under supertranslations. For non-radiative configurations,

the transformation law of N̄A under supertranslations does not admit linear terms in the

shear, while all other prescriptions do since the shear transforms under supertranslations.

This leads to the preferred choice α = β = 0 which is used in [5, 58]. Alternatively, one

could impose a natural requirement that the flux of angular momentum does not involve

mixed parity terms; see eq. (4.16) below. This fixes instead α = 1 as in [9, 10, 20, 30, 33–36].

In conclusion, we do not see any convincing argument to prefer either prescription.

It is also appealing to define an intrinsic angular momentum which is independent

from supertranslations. Such an intrinsic angular momentum was defined in [86] using an

implicit dressing procedure; see also [87, 88] for another construction. We will provide the

explicit definition of the supertranslation-invariant intrinsic angular momentum in terms of

Bondi fields in section 5 for non-radiative configurations. The catch is that this definition

is non-local in terms of the Bondi fields, as anticipated in [86].

4 Multipole expansion of the BMS flux-balance laws

Solving the binary problem in General Relativity requires a precise accounting of the energy

and angular momentum fluxes radiated by the binary. Building upon the work of [63, 89],

Thorne [33] summarized the flux-balance law for energy, momentum and angular momen-

tum obtained using either pseudo-tensorial methods or expansions in radiative multipole
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moments after averaging over oscillations and restricting to sources in the rest frame. The

purpose of this section is the provide the multipole expansion of the BMS flux-balance

laws (3.15) in terms of radiative multipole moments. This derivation allows to obtain the

instantaneous form of the flux-balance laws independently of the nature of the sources in

the bulk of spacetime. We will explicit both the Poincaré flux-balance laws (3.16)–(3.17)

and the proper supermomentum, super-angular momentum and super-center-of-mass flux-

balance laws. For simplicity, we will drop the contribution of the matter stress-tensor to

the flux-balance laws in this section.

4.1 Multipole expansion of the radiation field

Multipole expansions can be expressed in two equivalent ways: either in terms of spherical

harmonics or in terms of symmetric tracefree (STF) tensors. In this work, we will use STF

tensors; see appendix D and [33] for conversion formulae to spherical harmonics. We use

the convention that STF tensors are written in bold font. The capital index L refers to a

set of ` indices, i.e., TL = Ti1···i` . We denote by NL the symmetric product of ` unit vectors

ni. We will write the STF projection of a tensor Ti1···i` as T〈i1···i`〉, as in eq. (1.8) of [33].

Since all flux-balance laws are expressed in terms of finite tensors tangent to the celestial

sphere at null infinity, we can re-express all quantities using the Euclidean embedding of the

unit sphere.7 We define the transverse projector Pij and the traceless transverse projector

Pijkl as

Pij = δij − ninj , Pijkl = PikPjl −
1

2
PijPkl. (4.1)

For any pair of vectors XA and YA defined on the unit sphere, we can re-express Y AXA =

YiPijXj and εABXAYB = niεijkXjYk using the Euclidean embedding of the unit 2-sphere.

We can also use the tangential derivative on the unit sphere,

∂̂i = rPik∂k = Pil
∂

∂nl
. (4.2)

This allows to write the integrands of the flux-balance laws (3.15) in Cartesian notation.

The BMS symmetry parameters can be expanded as

T (xA) =
∞∑
`=0

TLNL , Φ(xA) =
∞∑
`=1

1

`
SLNL , Ψ(xA) =

∞∑
`=1

1

`
KLNL (4.3)

where TL, SL and KL are STF tensors. The Cartesian expressions for the superrotations

of parameter SL and superboosts of parameter KL are respectively(
Y S
)
i

= −εijkNjL−1 SkL−1 , (superrotation); (4.4a)(
Y K
)
i

= NL−1KiL−1 −NiLKL . (superboost). (4.4b)

In particular, for ` = 1 and Sk = δki we get the usual generator of rotation on the unit

sphere around the i-th axis.

7Alternatively, we could use the sphere of radius r but since we are working with finite quantities, we

find the use of r →∞ unnecessary.
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The symmetric and traceless Bondi shear CAB can be expressed in terms of the two sets

of radiative multipole moments UL (parity-even) and VL (parity-odd) following [33, 90] as

Cij = Pijklχkl = χij − 2n(iχj) +
1

2
(δij +Nij)χ (4.5)

where χij , χi ≡ niχij and χ ≡ niχi are respectively given by

χij =
+∞∑
`=2

a`

(
NL−2 UijL−2 −

b`
c
NaL−2 εab(iVj)bL−2

)
, (4.6a)

χi =

+∞∑
`=2

a`

(
NL−1 UiL−1 −

b`
2c
NaL−1 εabiVbL−1

)
, (4.6b)

χ =

+∞∑
`=2

a` NL UL, (4.6c)

with the coefficients a` and b` given by

a` ≡
4G

c`+2`!
, b` ≡

2`

`+ 1
. (4.7)

The Bondi shear was expressed in terms of the parity-even and parity-odd polariza-

tions, respectively, C+ and C−, in eq. (3.10). These two polarizations are respectively

given as a function of UL and VL as

C+ = −
∞∑
`=2

a`
2`(`− 1)

ULNL + X̄(0) + X̄
(0)
i ni, (4.8a)

C− = −
∞∑
`=2

a`b`
2c`(`− 1)

VLNL + X̃(0) + X̃
(0)
i ni (4.8b)

where X̄(0), X̄
(0)
i , X̃(0), X̃

(0)
i are arbitrary because they are zero modes of the differential

operators (3.10) and they do not appear in the metric.

In the post-Minkowskian formalism [45, 48, 64], the radiative multipole moments can

be expressed in terms of the auxiliary canonical multipole moments ML, SL and source

multipole moments IL, JL as

UL =
(`)

ML +O
(
G

c3

)
=

(`)

I L +O
(
G

c3

)
, (4.9a)

VL =
(`)

SL +O
(
G

c3

)
=

(`)

J L +O
(
G

c3

)
(4.9b)

where the superscript (`) denotes ` derivatives with respect to u. Explicit formulae beyond

the leading term can be found in eqs. (95)–(98) of [90].

4.2 Poincaré flux-balance laws

We will now derive the multipole expansion of the Poincaré flux-balance laws derived in

the previous section 3.3.
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Energy-momentum flux-balance laws. Let us start by deriving the multipolar ex-

pansion of the flux of energy and linear-momentum (3.16). The computation consists in

substituting the quadratic expression ĊABĊAB = ĊijĊij , provided in eq. (B.6), and using

the explicit integrals in eq. (C.17). After some algebra, we obtain the exact multipolar

expansion of the energy-momentum flux-balance laws in terms of the radiative multipoles

Ė = −
+∞∑
`=2

G

c2`+1
µ`

{
U̇LU̇L +

b`b`
c2
V̇LV̇L

}
, (4.10a)

Ṗi = −
+∞∑
`=2

G

c2`+3

{
2(`+ 1)µ`+1

(
U̇iLU̇L +

b`b`+1

c2
V̇iLV̇L

)
+σ` εijkU̇jL−1V̇kL−1

}
(4.10b)

where we recall that b` ≡ 2`
`+1 and we defined

µ` ≡
2

`!`!

(
m`−2 − 2m`−1 +

1

2
m`

)
=

(`+ 1)(`+ 2)

(`− 1)``!(2`+ 1)!!
, (4.11a)

σ` ≡
4b`
`!`!

(
m`−1

`− 1
− m`

`

)
=

8(`+ 2)

(`− 1)(`+ 1)!(2`+ 1)!!
, (4.11b)

with m` defined in (C.5). Explicitly,

Ė = −
+∞∑
`=2

G

c2`+1

{
(`+ 1)(`+ 2)

(`− 1)``!(2`+ 1)!!
U̇LU̇L +

4`(`+ 2)

c2(`− 1)(`+ 1)!(2`+ 1)!!
V̇LV̇L

}
, (4.12a)

Ṗi = −
+∞∑
`=2

G

c2`+3

{
2(`+ 2)(`+ 3)

`(`+ 1)!(2`+ 3)!!
U̇iLU̇L +

8(`+ 3)

c2(`+ 1)!(2`+ 3)!!
V̇iLV̇L

+
8(`+ 2)

(`− 1)(`+ 1)!(2`+ 1)!!
εijkU̇jL−1V̇kL−1

}
. (4.12b)

These final expressions agree with eq. (4.17) of [69], after using eq. (4.9), and with eq. (4.14)

and eq. (4.20) of [33], after using eq. (4.9) and averaging over wavelengths. Here, we

provided a covariant derivation of these flux-balance laws that only relies on the leading

radiative behavior of the gravitational field. The result is exact at all orders in c and G,

while the derivations of [69] used canonical multipole moments in intermediate steps which

hinders to prove that the result is in fact exact in terms of radiative multipole moments.

While the result of [33] required an average over wavelengths, our result shows that this

average is not necessary: the right-hand side can be evaluated locally.

At lowest post-Newtonian order, we can use eq. (4.9) to recover the standard formu-

lae [89, 91, 92]

Ė = −G
c5

(
1

5
I

(3)
ij I

(3)
ij

)
− G

c7

(
1

189
I

(4)
ijkI

(4)
ijk +

16

45
J

(3)
ij J

(3)
ij

)
+O

(
c−9
)
, (4.13a)

Ṗi = −G
c7

(
2

63
I

(4)
ijkI

(3)
jk +

16

45
εijkI

(3)
jl J

(3)
kl

)
+O

(
c−9
)
. (4.13b)

The term of order G/c5 in Ė is the Einstein’s quadrupole formula.
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Angular momentum and center-of-mass balance laws. We now turn our attention

to the angular momentum and center-of-mass flux-balance laws (3.17). The computation

consists of substituting the quadratic expressions (B.7) and (B.9) in the quadratic bilinear

operators (3.14), and using the integrals provided in appendix C. We obtain

J̇i = −εijk
+∞∑
`=2

G

c2`+1
`µ`

{
UjL−1U̇kL−1 +

b`b`
c2
VjL−1V̇kL−1

}
, (4.14a)

K̇i+u Ṗi = −
+∞∑
`=2

G

c2`+3
(`+ 1)2µ`+1

{
U̇LUiL −ULU̇iL +

b`b`
c2

(
V̇LViL − VLV̇iL

)}
. (4.14b)

After the manipulation of the integration coefficients, the Lorentz flux-balance laws read

explicitly as

J̇i = −εijk
+∞∑
`=2

G

c2`+1

{
(`+ 1)(`+ 2)

(`− 1)`!(2`+ 1)!!
UjL−1U̇kL−1

+
4`2(`+ 2)

c2(`− 1)(`+ 1)!(2`+ 1)!!
VjL−1V̇kL−1

}
, (4.15a)

K̇i + u Ṗi = −
+∞∑
`=2

G

c2`+3

{
(`+ 2)(`+ 3)

` `!(2`+ 3)!!
(U̇LUiL −ULU̇iL)

+
4(`+ 3)

c2`!(2`+ 3)!!
(V̇LViL − VLV̇iL)

}
. (4.15b)

The result is exact to all orders in G and c in terms of the radiative multipoles.

As it turns out from the computation above, there are neither parity-odd combinations

ULVL′ nor total u-derivatives in the right-hand side of the flux-balance laws for angular

momentum and center-of-mass. It is sometimes stated in the literature that this follows

from parity arguments. However, such terms do appear in the super-angular momentum

flux-balance law; see (4.38) below. Instead, this non-trivial property is rooted in the

definition of the Bondi angular momentum aspect (3.2). Furthermore, if one instead defines

the angular momentum using a different prescription such as (3.18) with α 6= 1, the angular

momentum flux will be complemented with a parity-odd term,

J̇ (α)
i = J̇ (α=1)

i + (α− 1)
+∞∑
`=2

G

c2`+3
(`+ 1)2µ`+1

d

du
(b`UiLVL − b`+1ULViL) . (4.16)

While the angular momentum flux-balance law (4.15a) matches with the final result

of [33] in its range of validity, our derivation is more general than mentioned in [33]. There,

the fluxes are expressed in terms of source multipole moments with the restriction that the

source lies in the rest frame and the computation is based upon pseudo-tensors at leading

order in the G expansion. Here, the result holds for arbitrary configurations without any

restriction (except that Einstein’s equations are obeyed!) and the result is exact at all

orders in G and c in terms of the radiative multipoles. Such multipoles can be expressed

in terms of the source multipoles using eq. (4.9).
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Our derivation contrasts with the recent derivation of the angular momentum flux-

balance law in [69]. There, formally divergent (when r → +∞) terms combines into

a total time derivative and vanish after angular integration when the source is at rest,

but persist when the source is moving with respect to the asymptotic rest-frame. These

persisting total time derivatives amount to a redefinition of the angular momentum. In

our derivation, the angular momentum is finite and uniquely defined as (3.1b)–(3.2) and

Einstein’s equations (2.4b) uniquely determine the finite angular momentum fluxes in terms

of the radiative multipole moments as (4.15a).

Our result for the center-of-mass flux-balance law differs from the one proposed by

Blanchet and Faye [69]. After a closer examination, one can match our respective expres-

sions after relating our center-of-mass charges as Ki = K(BF)
i + δKi. However, δKi cannot

be written as a covariant expression in terms of the metric on the sphere and the shear.

Indeed, the only covariant term that one could add to the definition of NA (3.2), that does

not affect the angular momentum, is a term proportional to c3

G ∂A(CBCC
BC). Such a term

however does not have the required structure to match δKi. More precisely, we find

K̇(α=1,β)
i = K̇(α=1,β=1)

i − (β − 1)

∞∑
`=2

G

c2`+2

d

du

[
(`+ 1)µ`+1

(
UiLUL +

b`b`+1

c2
ViLVL

)
+

1

2
σ`εijkUjL−1VkL−1

]
. (4.17)

We conclude that the definition of K(BF)
i violates covariance with respect to the metric

structure of the celestial sphere, while our definition of Ki, given by eq. (3.1c), is covariant.

Instead, the center-of-mass flux (4.15b) identically agrees at leading and subleading order

in the multipolar expansion with eq. (31) of [76] after using their dictionary eqs. (41)-(44).

At lowest post-Newtonian order, we can use eq. (4.9) to obtain the fluxes in terms of

the source moments,

J̇i = −G
c5

(
2

5
εijkI

(2)
jl I

(3)
kl

)
− G

c7

(
1

63
εijkI

(3)
jlmI

(4)
klm +

32

45
εijkJ

(2)
jl J

(3)
kl

)
+O

(
c−9
)
, (4.18a)

Ġi = Pi −
G

c7

[
1

21

(
I

(3)
jk I

(3)
ijk − I

(2)
jk I

(4)
ijk

)]
+O

(
c−9
)
, (4.18b)

which match with those found by other methods in [76, 89].

We can also compare our expression (4.15b) with the center-of-mass flux obtained

in [28]. Using the conversion between STF tensors and spherical harmonics as detailed in

appendix D we obtain

K̇x+u Ṗx=
1

64π

+∞∑
`=2

∑̀
m=−`

G

c2`+3
a`

[
b

(+)
`m

(
F

(+)
`m −G

(+)
`m

)
− b

(−)
`m

(
F

(−)
`m −G

(−)
`m

)]
, (4.19a)

K̇y+u Ṗy=− i

64π

+∞∑
`=2

∑̀
m=−`

G

c2`+3
a`

[
b

(+)
`m

(
F

(+)
`m +G

(+)
`m

)
+ b

(−)
`m

(
F

(−)
`m +G

(−)
`m

)]
, (4.19b)

K̇z+u Ṗz=
1

32π

+∞∑
`=2

∑̀
m=−`

G

c2`+3
a`c`m

[
Ū
`m

U̇
`+1m−

(
Ū
`+1m

U̇
`m
)

+
1

c2

(
V̄
`m

V̇
`+1m−V̄

`+1m
V̇
`m
)]

(4.19c)
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where

a` ≡

√
(`− 1)(`+ 3)

(2`+ 1)(2`+ 3)
, (4.20a)

b
(±)
`m ≡

√
(`±m+ 1)(`±m+ 2), (4.20b)

c`m ≡
√

(`+m+ 1)(`−m+ 1), (4.20c)

F
(±)
`m ≡ U̇

`m
Ū
`+1m±1

+
1

c2
V̇
`m

V̄
`+1m±1

, (4.20d)

G
(±)
`m ≡ Ū

`m
U̇
`+1m±1

+
1

c2
V̄
`m

V̇
`+1m±1

. (4.20e)

The expressions (4.19a)–(4.19b)–(4.19c) exactly reproduce eq. (2.42) of [28] after converting

to the convention of fluxes of opposite signs K̇(GW)
i = −K̇i, Ṗ(GW)

i = −Ṗi (see footnote 7

of [28] for the motivation of this sign flip convention).8

4.3 Supermomentum flux-balance law

The general BMS flux-balance laws are obtained by taking the symmetry parameter to

be an arbitrary combination of spherical harmonics, e.g. T = TL′′NL′′ . Note that we use

`′′ to label the symmetry parameter as `, `′ are reserved to label the radiative multipoles.

So far, we limited ourselves to the lowest `′′ = 0, 1 harmonics for the function T and

the vector fields Y A that generate the Poincaré subgroup of supertranslation and super-

Lorentz charges (3.1). In what follows, we will derive the remaining flux-balance laws,

starting with the supermomenta. We shall use the convention that all supertranslations

have the same dimensions as the spatial translations. Indeed, it was shown in [4] that, with

the exception of the time translation generated by the constant harmonic `′′ = 0, all other

supertranslations can be understood as spatial transformations in the bulk of spacetime.

As a result, all supermomenta will have the same dimensions as the linear momentum.

The flux-balance law of Bondi supermomentum (3.15a) can be expanded in STF har-

monics using eq. (4.3). This gives, schematically,

ṖTL′′ −
[
ṖTL′′

]
soft

=
[
ṖTL′′

]
hard

. (4.21)

The soft contribution is easily computed. It is non-vanishing only for `′′ ≥ 2 and gives[
ṖTL′′

]
soft
≡ − c3

4G

∮
S
NL′′TL′′(∆ + 2)∆Ċ+ =

Θ`′′−2

c`′′−1

(`′′ + 2)(`′′ + 1)

2(2`′′ + 1)!!
TL′′U̇L′′ , (4.22)

after using eq. (4.8a), the property that ∆ = −`(`+1) when acting on a harmonic function

of order ` and upon integration using (C.5). There is no parity-odd contribution (i.e.,

proportional to V̇L′′). The soft supertranslation term has a well-understood interpretation.

When considering a process which is non-radiative in the far future u → +∞ and far

past u → −∞, the difference of the radiative multipoles UL′′ |u→∞ − UL′′ |u→−∞ is the

8For this match, two sign errors were corrected, one in [28], see the upcoming Erratum, and one in the

first arXiv version of this paper. We thank D. Nichols for helping obtaining this match.
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displacement memory field [26], up to an overall normalization. We will further comment

about this around eq. (5.3a).

In order to compute the hard contribution, we first expand it into radiative multipoles,

which is performed in eq. (B.6). We can then use the integration formulae (C.23), detailed

in appendix C, to obtain the result. It is useful to separate the hard contribution in two

terms: one contribution consisting of parity-even terms of the form UU and V V and

denoted with the superscript +, and a second contribution consisting of parity-odd terms

of the form UV and denoted with the superscript −. In formulae,

[
ṖTL′′

]
hard
≡ − c2

8G

∮
S
NL′′TL′′ ĊABĊ

AB =
[
ṖTL′′

]+

hard
+
[
ṖTL′′

]−
hard

. (4.23)

The parity-even contribution is given by

[
ṖTL′′

]+

hard
= −

∞∑
`,`′=2

G

c`+`′+2
µP,+`,`′,`′′TL1L2

(
U̇L1L3U̇L2L3 +

b`b`′

c2
V̇L1L3V̇L2L3

)
δ`,`′,`′′ . (4.24)

The delta symbol δ`,`′,`′′ is defined in eq. (C.9), which constrains `1, `2, `3 defined in eq. (C.8)

to integer values. We can explicitly solve these constraints by taking |`′ − `| = `′′ − 2k for

k ranging from 0 to either b `′′2 c or b `′′−1
2 c; see eq. (C.22b). The constrained sum over `, `′

can then be replaced by a sum over `, k as follows

[
Ṗ
T
′′
L

]+

hard
= −

b `
′′
2
c∑

k=0

+

b `
′′−1
2
c∑

k=0

 ∞∑
`=max(2,k)

G

c2(`−k)+2+`′′
µP,+`,`+`′′−2k,`′′

× TL1L2

(
U̇L1L3U̇L2L3 +

b`b`+`′′−2k

c2
V̇L1L3V̇L2L3

)
. (4.25)

Here, |L1| = `′′ − k, |L2| = k and |L3| = `− k. The coefficients are given by

µP,+`,`′,`′′ =
2

`!`′!

(
m`−2,`′−2,`′′ − 2m`−1,`′−1,`′′ +

1

2
m`,`′,`′′

)
. (4.26)

For `′′ = 0, only the first term with k = 0 is non-vanishing. The coefficient then reads as

µP,+`,`,0 =
(`+ 1)(`+ 2)

(`− 1)``!(2`+ 1)!!
, (4.27)

and it correctly reproduces the coefficient of the energy flux-balance law (4.10a) with the

identification P∅ = E/c. For `′′ = 1, both terms with k = 0 add up. The coefficient

2µP,+`,`+1,1 =
2(`+ 2)(`+ 3)

`(`+ 1)!(2`+ 3)!!
(4.28)

reproduces the correct coefficient of the linear-momentum flux-balance law (4.10b).
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The parity-odd contribution reads as9

[
Ṗ
T
′′
L

]−
hard

= −
b `
′′−1
2
c∑

k=0

∞∑
`=max(2,k)

G

c2(`−k)+2+`′′
µP,−`+`′′−2k−1,`,`′′εimnTiL1L2U̇mL1L3V̇nL2L3

−
b `
′′−2
2
c∑

k=0

∞∑
`=max(2,k)

G

c2(`−k)+2+`′′
µP,−`,`+`′′−2k−1,`′′εimnTiL1L2U̇mL2L3V̇nL1L3 .

(4.29)

Here, L′′ = iL1L2 with |L1| = `′′ − 1 − k, |L2| = k, |L3| = ` − 1 − k. These terms only

exists for `′′ ≥ 1. The coefficients are

µP,−`,`′,`′′ =
8`′`′′

(`′ + 1)`!`′!

(
m`−2,`′−2,`′′−1

`+ `′ + `′′ − 2
−
m`−1,`′−1,`′′−1

`+ `′ + `′′

)
. (4.30)

For `′′ = 1, only the first terms of eq. (4.29) exists for k = 0 and

µP,−`,`,1 =
8(`+ 2)

(`− 1)(`+ 1)!(2`+ 1)!!
(4.31)

reproduces the correct coefficient of the momentum (4.10b). This provides nontrivial cross-

check of our formulae. As a final remark, note also that both coefficients µP,±`,`,1 are symmetric

under `↔ `′.

Post-Newtonian analysis. Let us first discuss the PN order of the parity-even

part (4.25). In our convention, the supermomentum with `′′ = 1 is exactly the linear

momentum Pi which appears at 3.5PN order. The PN order of each UU term in the

parity-even contribution is `−k+1+ `′′

2 = |L3|+1+ `′′

2 ≥ 3PN. The dominant (lowest) PN

term is determined by the maximal number k or, equivalently, by the minimal number of

internal contractions |L3| ≥ 0. Since ` ≥ 2, terms without contractions (|L3| = `− k = 0)

are realized only for `′′ ≥ 4, terms with one contraction (|L3| = 1) are realized for `′′ ≥ 2,

while two contractions (|L3| = 2) are achieved for any `′′ ≥ 0. For the parity-odd contri-

bution (4.29), the PN order of each term is `− k + 1 + `′′

2 = |L3|+ 2 + `′′

2 . Terms without

contractions (|L3| = 0) are realized only for `′′ ≥ 3, terms with at least one contraction

(|L3| ≥ 1) are realized for `′′ ≥ 1. This leads to the following dominant PN orders for the

parity-even term

l′′-pole leading PN order

0, 2, 4 3

1, 3, 5 3.5

`′′ ≥ 6 `′′/2 + 1 ≥ 4

In particular the energy balance law `′′ = 0 is 3PN due to our convention P∅ = E/c,

but it is restored to 2.5PN order after dropping on each side of the flux-balance law an

9Note that we can freely exchange the upper limit b `
′′−1
2
c of the first sum with the upper limit b `

′′−2
2
c of

the second sum. They differ only when `′′ = 1 + 2q, q ∈ N and in that case |L1| = |L2| and the coefficients

of each terms are both µP,−`,`,`′′ and therefore agree. See appendix C for a derivation.
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overall c factor which allows to recognize the left-hand side as the energy flux. Also,

the momentum flux-balance law `′′ = 1 is 3.5PN both for the UU and UV terms as

it should, and one recovers eq. (4.13b). It is remarkable that the supermomentum flux-

balance law for both the quadrupole (`′′ = 2) and hexadecapole (`′′ = 4) are 3PN order,

which is just intermediate between the energy and the momentum flux-balance laws. In

addition, the `′′ = 3, 5 flux-balance laws are just 3.5PN which is of the same order as that

of linear momentum.

Explicitly, the first leading flux-balance laws (4.21), ordered by the leading PN order

of their quadratic fluxes up to 3.5PN, read as

Ṗij −
2

5c
U̇ij = +

G

c6

[
4

35

(
U̇ikU̇jk −

1

3
δijU̇klU̇kl

)]
+O(c−8), (4.32a)

Ṗijkl −
1

63c3
U̇ijkl = −G

c6

(
2

315
U̇〈ijU̇kl〉

)
+O(c−8), (4.32b)

Ṗijk −
2

21c2
U̇ijk = +

G

c7

(
2

63
U̇l〈ijU̇k〉l +

8

105
εmn〈iU̇j|m|V̇k〉n

)
+O(c−8), (4.32c)

Ṗijklm −
1

495c4
U̇ijklm = −G

c7

(
4

2079
U̇〈ijU̇klm〉

)
+O(c−8). (4.32d)

By keeping the soft term in the above equations on the left-hand side and the rest on the

right-hand side, one obtains non-trivial equations for the radiative multipoles by rewrit-

ing the right-hand side in terms of source multipoles using eq. (4.9) and using the dic-

tionary between supermomenta and source multipoles (discussed around eq. (4.52)). In

the first equation, the quadrupole-quadrupole interaction responsible for the nonlinear

gravitational-wave memory effect arises at 2.5PN, as obtained in [47, 50, 57]. Similarly,

in the third equation, the octupole radiative mass multipole is sourced by the right-hand

side of eq. (4.32c) which arises at 2.5PN. Interestingly, for higher multipoles `′′ ≥ 4, the

quadratic terms associated with non-linear memory arise even earlier at 1.5PN with respect

to the corresponding radiative multipole moment.

4.4 Super-angular momentum flux-balance law

We now compute the super-angular momentum flux-balance laws by expanding eq. (3.15b)

using the relevant expressions in appendix B and C. The total super-angular momentum

flux contains a soft (linear) contribution, as well as a hard (non-linear) contribution, which

are both parity-odd. The hard contribution can be split in two sectors: a combination

(denoted by +) of parity-even quantities of the form UU and V V contracted with the

Levi-Civita symbol, and another combination (denoted by −) of parity-odd quantities of

the form UV .

J̇SL′′ −
[
J̇SL′′

]
soft

=
[
J̇SL′′

]
hard

=
[
J̇SL′′

]+

hard
+
[
J̇SL′′

]−
hard

. (4.33)

The soft term, appearing on the left-hand side of eq. (3.15b), can be easily computed

substituting C− from eq. (4.8b), Φ = 1
`′′NL′′SL′′ , using the fact that ∆(NLAL) = −`(` +
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1)(NLAL), and the integration formula (C.5) to obtain[
J̇SL′′

]
soft
≡ u c

4

8G

∮
S

∆Φ(∆ + 2)∆Ċ− =
Θ`′′−2

c`′′−1

`′′(`′′ + 1)(`′′ + 2)

2(2`′′ + 1)!!
uSL′′V̇L′′ . (4.34)

Now we turn to the more involved hard contribution[
J̇SL′′

]
hard
≡ c3

8G

∮
S
εAB∂BΦ

(
−3T

(1)
A (Ċ, C) + 4T

(2)
A (Ċ, C)

)
. (4.35)

The + sector of the hard contribution reads as[
J̇SL′′

]+

hard
= εkpq

∞∑
`,`′=2

G

c`+`′+1
µJ,+`,`′,`′′

× SqL1L2

(
U̇pL2L3UkL1L3 +

b`b`′

c2
V̇pL2L3VkL1L3

)
δ`−1,`′−1,`′′−1 (4.36)

where `1,2,3 are constrained by the delta function at the end of the above expression.

Explicitly, `1,2,3 = `1,2,3(` − 1, `′ − 1, `′′ − 1), which means that in eq. (C.8), `, `′ and `′′

are decreased by 1. We don’t further expand the sum above as we did in eq. (4.25). The

integration over the 2-sphere leads to the numerical factor

µJ,+`,`′,`′′ =
1

`! `′!

{
(`′ − 2)m̂+

`−1,`′−1,`′′−1 − 2(`′ + 1)m̂−`−1,`′−1,`′′−1

}
+
(
`↔ `′

)
(4.37)

where the functions m̂+
`,`′,`′′ , m̂

−
`,`′,`′′ are defined in eqs. (C.26)–(C.27) in terms of m̂`,`′,`′′ in

eq. (C.13). The − sector of the hard contribution, instead, reads as[
J̇SL′′

]−
hard

=
∞∑

`,`′=2

G

c`+`′+2
b`′ SL1L2

[
µJ,−`,`′,`′′

(
UL2L3V̇L1L3 − U̇L2L3VL1L3

)
+ σ`,`′,`′′

d

du

(
UL2L3VL1L3

)]
δ`,`′,`′′ (4.38)

where

µJ,−`,`′,`′′ =
1

`! `′!

{
(`′ − 2)m`−2,`′−3,`′′−1 − (`+ 2`′)m`−1,`′−2,`′′−1 + (`+ 1)m`,`′−1,`′′−1

− (`− 2)m`−2,`′−2,`′′ + 3`m`−1,`′−1,`′′ − (`+ 1)m`,`′,`′′

}
+
(
`↔ `′

)
,

(4.39)

and the coefficient of the total time u-derivative is given by

σ`,`′,`′′ =
1

`! `′!

(
3α`,`′,`′′ − (`′′ − 1)β`,`′,`′′

)
(4.40)

where

α`,`′,`′′ =
{

(`′ − 2)m`−2,`′−3,`′′−1 − (`+ 2`′ − 4)m`−1,`′−2,`′′−1 + (`+ `′ − 1)m`,`′−1,`′′−1

+ `
(
m`−2,`′−2,`′′ −m`−1,`′−1,`′′

)}
−
(
`↔ `′

)
; (4.41a)

β`,`′,`′′ =m`−2,`′−2,`′′−2 + 2m`−1,`′−1,`′′−2 +m`−2,`′−2,`′′ + 2m`−1,`′−1,`′′

+m`−2,`′,`′′−2 +m`,`′−2,`′′−2 − 2m`−1,`′−2,`′′−1 −m`−2,`′−1,`′′−1

− 4m`−1,`′,`′′−1 − 2m`,`′−1,`′′−1. (4.41b)
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For the case of rotations, i.e., `′′ = 1, the flux-balance law for angular momentum

Ji (see eq. (4.15a), which agrees with [33]) is recovered upon taking Sq = δqi. Note that

µJ,−`,`+1,1 = 0 = σ`,`+1,1 and hence the angular momentum flux (4.15a) has no mixed UV

term unlike the general super-angular momentum flux.

Post-Newtonian analysis. Let us derive the leading PN order of each super-angular

momentum flux-balance law. The PN order of the UU contribution is given by 1
2 min(`+

`′+ 1), which can be found by taking into account all the constraints, namely that `, `′ ≥ 2

and those implied by δ`−1,`′−1,`′′−1. The PN order of the UV contribution is instead
1
2 min(` + `′ + 2) with the constraints that `, `′ ≥ 2 and those implied by δ`,`′,`′′ . We find

that, for the leading PN order is given by the following table

l′′-pole leading PN order

1, 3 2.5

2, 4 3

5 3.5

`′′ ≥ 6 `′′/2 + 1 ≥ 4

It is remarkable that the octupole (`′′ = 3) super-angular momentum flux-balance law is

at the same PN order as the angular momentum flux-balance law (`′′ = 1). The first few

balance laws, ordered by the leading PN order of their quadratic fluxes up to 3.5PN, read as

J̇ijk −
2

7c2
u V̇ijk = −G

c5

(
6

35
εpq〈i U̇j|p|Uk〉q

)
+
G

c7
εpq〈i

[
− 32

105
V̇j|p|Vk〉q

+
2

567
U̇j|pl|Uk〉ql +

1

189

(
U̇|pl|Ujk〉ql + U̇|pl|jk〉Uql

)]
+

G

35c7

[
43

12
U̇m〈kVij〉m −

19

4
Um〈kV̇ij〉m

− 106

27
Um〈ijV̇k〉m +

94

27
U̇m〈ijVk〉m

]
+O(c−8), (4.42a)

J̇ij −
4

5c
u V̇ij = +

G

c6

[
29

630
εpq〈i

(
U̇j〉pmUqm +Uj〉qmU̇pm

)
− 46

63
Uk〈iV̇j〉k +

202

315
U̇k〈iVj〉k

]
+O(c−8), (4.42b)

J̇ijkl −
4

63c3
u V̇ijkl = −G

c6

[
11

378
εpq〈i

(
U̇|p|lUjk〉q + U̇|p|jlUk〉q

)
+

8

63

(
U〈ijV̇kl〉 + 2U̇〈ijVjl〉

)]
+O(c−8), (4.42c)

J̇ijkls −
1

99c4
u V̇ijkls = −G

c7

{
2

2079
εpq〈i

[
5U̇|p|jkUls〉q + 4

(
U̇|p|jUkls〉q + U̇|p|jklUs〉q

)]
+

[
58

1155
U̇〈ijV̇kls〉 +

2

77
U〈ijV̇kls〉 +

16

693
U〈ijkV̇ls〉

+
464

10395
U̇〈ijkVls〉

]}
+O(c−9). (4.42d)
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For the quadrupole, the hard (non-linear) contribution is 2.5PN higher than the soft

(linear) contribution, while for `′′ ≥ 3 the hard contribution is only 1.5PN with respect

to the soft one. In particular, our analysis confirms that the leading gravitational-wave

flux that generates the spin memory is at 2.5PN order with respect to the super-angular

momentum charge and arises for the ` = 3 STF harmonics as analyzed in [27].

These flux-balance laws remain to be compared with the PN/post-Minkowskian

formalism.

4.5 Super-centre-of-mass flux-balance law

The super-center-of-mass flux-balance law (3.15c) can be expanded in radiative multipoles

using the relevant expressions in appendices B and C, along the same line of the previous

subsections. In this case, using eq. (4.3) we can write schematically both

K̇KL′′ =
[
K̇KL′′

]
soft

+
[
K̇KL′′

]
hard

, (4.43)

K̇KL′′ +
`′′ + 1

2
uṖKL′′ =

[
K̇KL′′ +

`′′ + 1

2
uṖKL′′

]
hard

. (4.44)

The soft contribution reads as[
K̇KL′′

]
soft
≡ −`

′′ + 1

2
u
[
ṖKL′′

]
soft

= −Θ`′′−2

c`′′−1

(`′′ + 2)(`′′ + 1)2

4(2`′′ + 1)!!
uKL′′U̇L′′ , (4.45)

after using eq. (4.8a), the STF decomposition of Ψ in eq. (4.3) and the property that

∆ = −`(`+ 1) when acting on a harmonic function of order ` and upon integration using

eq. (C.5).

The hard contribution to K̇KL′′ involves the hard contribution to the supermomentum

which we already computed. Instead, we will simply compute[
K̇KL′′ +

`′′ + 1

2
uṖKL′′

]
hard

≡ − c2

4G

∮
S
γAB∂BΨ T

(1)
A (Ċ, C). (4.46)

In order to expand it in radiative multipoles, we substitute the STF decomposition of Ψ and

we expand the quadratic operator T
(1)
A (defined in eq. (3.14)) by using eq. (B.7). Finally,

we use the results of the appendix C to perform the integration over the 2-sphere. For the

+ sector of the hard contribution, we arrive at[
K̇KL′′ +

`′′ + 1

2
uṖKL′′

]+

hard

=

∞∑
`,`′=2

G

c`+`′+2
µK,+`,`′,`′′

×KL1L2

(
UL2L3U̇L1L3 +

b`b`′

c2
VL2L3V̇L1L3

)
δ`,`′,`′′ (4.47)

where the discrete delta function δ`,`′,`′′ constraints `1, `2, `3 given by eq. (C.8). The

coefficient is given by the following expression

µK,+`,`′,`′′ =
1

`! `′!

{
(`′ − 2)

(
m+
`,`′,`′′ −m

+
`,`′−1,`′′−1

)
− 2m−`,`′−1,`′′−1

}
−
(
`↔ `′

)
(4.48)

where m+
`,`′,`′′ and m−`,`′,`′′ are defined in eq. (C.24) in terms of m`,`′ `′′ in eq. (C.10). It is

easy to check that the coefficient reduces to the center-of-mass balance law for the special
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case `′′ = 1 by noting (C.11). The − sector of the hard contribution turns out to be[
K̇KL′′ +

`′′ + 1

2
uṖKL′′

]−
hard

=
∞∑

`,`′=2

G

c`+`′+3
b` µ

K,−
`,`′,`′′εkpqKqL1L2 (4.49)

×
(
U̇pL1L3VkL2L3 −UpL1L3V̇kL2L3

)
δ`−1,`′−1,`′′−1

where `1,2,3 = `1,2,3(`− 1, `′ − 1, `′′ − 1) and

µK,−`,`′,`′′ =
1

`!`′!

{
m̂`−2,`′−2,`′′−1 − m̂`−1,`′−1,`′′−1 − `

(
m̂`−2,`′−2,`′′−1 − m̂`−1,`′−1,`′′−1

)
+ (`− 2)m̂`−3,`′−2,`′′−2 − (`− 3)m̂`−2,`′−1,`′′−2

}
−
(
`↔ `′

)
. (4.50)

For `′′ = 1 the last two terms in the second line vanish by definition of m̂`,`′,`′′ , while it is

easy to check using eq. (C.15) that the remaining terms in the first line add up to zero.

Thus, we recover the result that the flux-balance associated with Lorentz boosts does not

display any mixed term UV ; see eq. (4.15b) above.

Post-Newtonian analysis. Now we turn to the PN analysis of most leading super-

center of mass flux-balance laws. The analysis is computationally similar to the previous

case of super-angular momentum flux-balance law, so we omit the details here. We find

that the PN order of the flux of the superboost charge of rank `′′ reads

l′′-pole leading PN order

1, 3, 5 3.5

2, 4, 6 4

`′′ ≥ 7 `′′/2 + 1 ≥ 4.5

The explicit expressions for the most leading balance laws, ordered by the PN order of

their fluxes up to 4PN order, read as

K̇ijk +
4

21c2
u U̇ijk = +

G

c7

[
1

63

(
U̇m〈ijUk〉m − U̇m〈iUjk〉m

)]
+O(c−9), (4.51a)

K̇ijkls +
1

165c4
u U̇ijkls = −G

c7

[
2

3465

(
U̇〈ijkUls〉 −U〈ijkU̇ls〉

)]
+O(c−9) , (4.51b)

K̇ij +
3

5c
u U̇ij = +

G

c8

{[
− 1

216
U̇ijmnUmn+

1

42
εpq〈i

(
4

3
U̇j〉pmVqm−

3

2
Vj〉qmU̇pm

)]
− dot inverted

}
+O(c−9), (4.51c)

K̇ijkl +
5

126c3
u U̇ijkl = +

G

c8

{[
1

330
U̇m〈ijkUl〉m−

1

315
εpq〈i

(
4

3
U̇|p|jkVl〉q−

3

2
U̇|p|lVjk〉q

)]
− dot inverted

}
+O(c−9). (4.51d)

These flux-balance laws remain to be compared with the PN/post-Minkowskian

formalism.10

10Also note that the right-hand side of eqs. (4.51a)–(4.51b) can be compared with eqs. (4.33a)-(4.33b)

of [28]. Up to a positive overall factor, our eq. (4.51a) and his eq. (4.33a) agree while there is a sign

mismatch between our eq. (4.51b) and eq. (4.33b). That sign mismatch is resolved by a correction in [28]

(Nichols, private communication).
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4.6 BMS flux-balance laws as constraints on source evolution

Let us consider the gravitational radiation emitted by a compact binary merger. It is

well-known, since the seminal papers by Peters and Mathews [93, 94], that at the lowest

PN order, the energy and angular momentum flux-balance laws can be used as evolution

equations to compute the secular change of the major axis and the eccentricity of compact

binary systems. More fundamentally, the energy and angular momentum flux-balance laws

inform upon the radiation-reaction force of the source which starts at 2.5PN order beyond

Keplerian motion [95–112].

The post-Newtonian/post-Minkowskian formalism (see e.g., [33, 63–65]) allows to re-

late the radiative multipoles to the source parameters {pi}, such as the binary masses,

relative distance, angular velocity, spins, finite size parameters, etc. The number of such

parameters can be infinite once one includes all the multipole structure of the sources,

e.g. neutron stars with specific internal dynamics. While this is beyond the scope of this

paper, one could find in principle the coordinate transformation between Bondi gauge and

de Donder gauge perturbatively in G, in order to find the map between, on the one hand,

the Bondi data m, NA and CAB and, on the other hand, the canonical multipole moments

defined in de Donder gauge. As an illustration, by consistency between (4.32a) and eq. (88)

of [90], we can infer the expression of the Bondi quadrupole supermomentum in terms of

the canonical multipole moments, which involves retarded integrals,

Pij = +
2

5c

(2)

M ij +
4GM

5c4

∫ ∞
0

dτ

[
ln

(
cτ

2r0

)
+

11

12

]
(4)

M ij (u− τ)

+
2G

5c6

[
1

7

(5)

Mk〈i Mj〉k −
5

7

(4)

Mk〈i
(1)

M j〉k −
2

7

(3)

Mk〈i
(2)

M j〉k +
1

3
εkl〈i

(4)

M j〉k Sl

]
+O

(
G2

c7

)
+O

(
G

c8

)
. (4.52)

In turn, the canonical multipole moments can be expressed in terms of the source

multipole moments, which can be themselves expressed in terms of the source parameters

{pi} in a PN expansion. Therefore, such a map defines the functions m({pi}) and NA({pi}),
up to residual gauge choices (choice of supertranslation and Lorentz frame, choice of de

Donder frame and choice of source coordinates).

The BMS flux-balance laws (2.4a)–(2.4b)–(3.2) or, equivalently, eqs. (3.15) can then

be rewritten as consistency constraints on the evolution of the source parameters in a fixed

residual gauge choice, ∑
i

∂m

∂pi
ṗi = Fu({pj}), (4.53a)

∑
i

∂NA

∂pi
ṗi = FA({pj}) (4.53b)

where the fluxes of m and NA (including the soft/memory terms) are written as Fu and

FA in terms of the source parameters in post-Newtonian/post-Minkowskian expansions.

These constraints are coupled non-linear integro-differential equations, which are equivalent
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to a subset of Einstein’s equations that have already been partially solved. Under the

assumption of no incoming radiation from past null infinity, these equations depend upon

retarded integrals. By construction, these equations only inform about the radiation-

reaction forces. In the small velocity approximation, retarded potentials can be expanded

in terms of Newtonian instantaneous expressions and at least at the lowest 2.5PN order,

the integro-differential equations can be rewritten as ordinary differential equations; see

a related discussion in [109]. At lowest 2.5PN order, the energy and angular momentum

flux balance laws lead to the Peters and Mathews differential equations [93, 94]. We saw

earlier that the octupole super-angular momentum flux-balance law (4.42a) also arises at

2.5PN order but it has not been used so far for constraining sources. At 4PN order, the

tails such as the one appearing in eq. (4.52) introduce a nonlocal-in-time dynamics of the

sources [45]. We leave the derivation of the explicit form of eqs. (4.53) for generic BMS

flux-balance laws for future work.

5 Global conservation laws for binary mergers

The BMS flux-balance laws describe the evolution of the Bondi mass and angular mo-

mentum aspects in any spherical direction and at any retarded time. For gravitational

systems evolving from a non-radiative state at early retarded time to a non-radiative state

at late retarded time, the BMS flux-balance laws can be integrated to relate the differ-

ence between initial and final BMS charges to the total gravitational and electromagnetic

radiation [3–5, 24, 26, 29, 31]. We will summarize these global constraints for each of

the BMS flux-balance laws and derive in particular the initial and final BMS charges for

binary black hole mergers. The specification of both the initial and final BMS charges re-

quires a choice of supertranslation and Lorentz frame, i.e. a fixation of the BMS asymptotic

symmetry group.

5.1 Conservation of Poincaré charges and proper BMS memories

Qualitatively, we need to distinguish the Poincaré conservation laws and the proper BMS

conservation laws. The Poincaré conservation laws are the global conservation of energy-

momentum, angular momentum and center-of-mass. These conservation laws allow, given

the data of an initial binary system and given the data of the fluxes of radiation, to deduce

the final energy, the final momentum (also called the velocity kick), the final angular

momentum and the final center-of-mass (also called the center-of-mass shift). These ten

global conservation laws take the form

Q|u2 −Q|u1 = Fluxes (5.1)

where u1 and u2 are the initial and final non-radiative final states, the charges Q are the ten

Poincaré charges (3.1a)–(3.1b)–(3.1c) (with T , Φ, Ψ a combination of ` = 0, 1 harmonics)

and the fluxes are detailed in eqs. (4.12a)–(4.12b)–(4.15a)–(4.15b). We will derive explicit

expressions for the Poincarè charges of an initial infinitely-separated black hole binary and

of a final black hole, i.e. the left-hand side of (5.1). This is a nontrivial task since the

Poincaré charges depend upon the choice of supertranslation and Lorentz frames.
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The (infinite set of) proper BMS global conservation laws have the qualitatively dis-

tinct form

Q|u2 −Q|u1 − Fluxes = Memory (5.2)

where u1 and u2 are the initial and final non-radiative final states, the charges Q are

the proper BMS charges (3.1a)–(3.1b)–(3.1c), whose fluxes are all terms in eqs. (3.15a)–

(3.15b)–(3.15c) either proportional to the matter stress-tensor or quadratic in the news

ĊAB or shear CAB and the memory term are all terms in eqs. (3.15a)–(3.15b)–(3.15c)

linear in the news or shear. More precisely, we define the displacement memory MP , the

spin memory MJ [27, 58, 60] and the center-of-mass memory MK [28] as

MP = − c3

4G
∆(∆ + 2)

∫ u2

u1

du ∂uC
+ = − c3

4G
∆(∆ + 2)

[
C+
]u=u2
u=u1

, (5.3a)

MJ = − c4

8G
∆2(∆ + 2)

∫ u2

u1

du u∂uC
−, (5.3b)

MK = +
c3

8G
∆2(∆ + 2)

∫ u2

u1

du u∂uC
+. (5.3c)

The transformation law of C+ under supertranslations and Lorentz transformations can

be found in eq. (3.22) of [20], δT,Y C
+ = T +Y ADAC

+− 1
2C

+DAY
A, while C− is invariant

under supertranslations. By construction, the memories are supertranslation-invariant

observables since such transformations equally shift the initial and final C+. The operators

∆(∆+2) and ∆2(∆+2) admit as a kernel the lowest 4 spherical harmonics. These operators

discard the arbitrary lowest 4 harmonics of C± that do not appear in the metric. For all

higher harmonics these operators are invertible.

The left-hand side of eq. (5.2) is therefore uniquely determined by the physical pa-

rameters of the initial binary system and the final stationary state. However, the charge

difference Q|u2 −Q|u1 and the fluxes also individually dependent upon the choice of super-

translation and Lorentz frames. The transformation laws of the charges and fluxes can be

found, e.g., in [10, 18, 28, 113]. The proper BMS global conservation laws can therefore be

used to provide the values of the memory fields as a function of the proper BMS charges

of the initial and final states in a given supertranslation and Lorentz frame, and as a func-

tion of the radiation fluxes in the same frame. We will provide in the following the initial

and final BMS charges for binary black hole mergers in an arbitrary supertranslation and

Lorentz frame.

5.2 The final boosted and supertranslated Kerr metric

The final state of collapse in General Relativity is described by the Kerr metric, up to a

diffeomorphism. In Bondi gauge, the residual diffeomorphisms form the extended BMS

group and are associated with nontrivial surface charges, as we reviewed in section 2.2.

While all supertranslations preserve asymptotic flatness, only the Lorentz subgroup of the

super-Lorentz group preserve asymptotic flatness. In this paper, we will only consider

physical processes that preserve asymptotic flatness and we therefore discard “cosmic”
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transitions that induce super-Lorentz transformations [19, 20]. The question that we need

to answer is: what is the value of the Bondi mass aspect m and angular momentum

aspect NA for the Kerr metric in Bondi gauge in an arbitrary supertranslation frame and

Lorentz frame?

It is well known that the Bondi mass aspect m, whose definition is universally accepted,

is invariant under supertranslations and rotations. In any given boosted frame determined

by the velocity ~v, it is given by [1]

m =
mrest

γ3

(
1− ~v

c
· ~n
)3 , γ(v) =

1√
1− v2

c2

, ~n · ~n = 1 (5.4)

where ~n = (sin θ cosφ, sin θ sinφ, cos θ) is the unit vector and mrest is the rest mass of the

system. We will rederive this expression in appendix A. The zeroth moment of the Bondi

mass aspect is the energy.11 The boosted energy
∮
Sm = γmrest agrees with the standard

special relativistic expression. The dipole moment is the momentum and the expression

again agrees with the relativistic expression,
∮
Smni = γmrestvi. The higher moments

(i.e., the supermomenta) are specific to General Relativity. For instance, the quadrupole

reads as

Pij =
1

c

∮
S
mn〈inj〉 =

3c2mrest

2γ3v3

[
arctanh

(v
c

)
− γ4v

c

(
1− 5

3

v2

c2

)](
vivj
v2
− 1

3
δij

)
=

4mrest

5c

(
vivj
c2
− v2

3c2
δij

)
+O(c−5). (5.5)

The angular momentum aspect NA in such an arbitrary frame has not yet been derived

in closed form, though it is implicit in the literature (see in particular [18, 34]). The angular

momentum aspect N̄A can be identified directly from the 1/r term of guA in the Bondi met-

ric expansion (2.2). This is the quantity that we need to compute. This quantity depends

upon the supertranslation frame, the Kerr energy Mc2 and angular momentum J = Mac

(where a has dimension of length), the angles θ, φ and the Lorentz boost parameter ~v.

In an arbitrary supertranslation frame at rest, the Bondi shear is given in terms of the

supertranslation field C(θ, φ) as [1, 25]

CAB = −2DADBC + γAB ∆C. (5.6)

In other words, in the decomposition (3.10), C+ = C(θ, φ) while C− = 0 (it cannot be

generated by a diffeomorphism). A related statement is that, out of the two polarizations of

the graviton, only one combination of the polarizations exists in the soft limit [26]. For the

Schwarzschild black hole equipped with the supertranslation field and at rest, the angular

momentum aspect N̄A is [4, 6]

N̄A = 3Mc∂AC. (5.7)

For the Kerr black hole, we have N̄A = −3Mac sin2 θ∂Aφ and the total angular momen-

tum associated with −∂φ is indeed J = Mac. For a Kerr black hole equipped with the

11Remember that the Bondi “mass” m has dimension of energy.
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supertranslation field and at rest, the angular momentum aspect is [3] (see their eq. (3.17)),

N̄A = 3Mc∂AC − 3Mac sin2 θ∂Aφ. (5.8)

We now need to consider a finite boost of velocity vi. As shown in [20], the Bondi shear is

now given by

CAB =

(
u+

C

c

)
Nvac
AB − 2DADBC + γAB ∆C (5.9)

where Nvac
AB = [1

2DAΦDBΦ − DADBΦ]TF . Here TF denotes the trace-free part and

Φ = −nivi. The final result for N̄A, obtained after a quite long computation outlined

in appendix A, reads as

N̄A =
2m

c
∂AC + ∂A

[
m

(
u+

C

c

)]
− 3J

c2γ2

(
1− ~v

c
· ~n
)2 sin2 θ′∂Aφ

′. (5.10)

Here, the Bondi mass aspect m is defined in eq. (5.4), where mrest = Mc2 is the energy of

Kerr at rest and J is the angular momentum at rest or intrinsic spin. The angles in the

Lorentz-transformed frame are denoted as (θ′, φ′); see eq. (A.10). The Kerr metric in an

arbitrary Lorentz and supertranslation frame labelled by ~v and C(θ, φ), and an arbitrary

rotation is finally given by eq. (2.2) with m, N̄A and CAB defined as in eqs. (5.4), (5.10)

and (5.9). Note that the final expression does not contain terms quadratic in the shear.

This property is not obeyed by alternative definitions of Bondi angular momentum aspect,

including eq. (3.2), which differ by quadratic terms in the shear CAB. Explicitly,

NA=− 3J sin2 θ′∂Aφ
′

c2γ2

(
1−~v

c
· ~n
)2 +

3m∂AC

c
+
C∂Am

c
− c3

4G
CABDCC

BC− c3

16G
∂A(CBCC

BC).

(5.11)

In the last stage of this work, we noticed [32] where a related expression is derived in

another formalism, which remains to be compared with eq. (5.11).

Let us comment on some physics that can be deduced from the expression (5.10).

First remember that under a supertranslation T (θ, φ), the supertranslation field changes

as C 7→ C + T while for non-radiative configurations the Bondi angular momentum aspect

changes as

N̄A 7→ N̄A + 3
m

c
DAT +

T

c
∂Am, (5.12)

as can be deduced from eq. (5.10) or, e.g., eq. (2.24) of [20]. The first ` = 0, 1 harmonics

of C do not contribute to the shear CAB and can be interpreted as reference spacetime

position X̄µ; see eq. (4.8). The ` ≥ 2 multipoles are specific to General Relativity. The

expression (5.10) suggests to define the intrinsic angular momentum aspect as

N
(intrinsic)
A (X̄) ≡ N̄A −

2m

c
∂AC|`≥2 − ∂A

[
m

(
u+

C|`≥2

c

)]
(5.13)
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and the intrinsic angular momentum and center-of-mass as

J (intrinsic)
Φ ≡

∮
S

1

2
εAB∂BΦN

(intrinsic)
A , (5.14a)

G(intrinsic)
Ψ ≡

∮
S

1

2
γAB∂BΨN

(intrinsic)
A . (5.14b)

For the Kerr black hole,

N
(intrinsic)
A = 3

m

c
DA(X̄ini) +

X̄0

c
∂Am−

3J

c2γ2

(
1− ~v

c
· ~n
)2 sin2 θ′∂Aφ

′. (5.15)

The intrinsic angular momentum is free from supertranslation ambiguities for non-

radiative configurations and it only transforms under the Poincaré group. In particular

the global angular momentum Jnz is equal to J where nz = ∂φ′ . The intrinsic angular

momentum aspect is defined as a non-local functional of the metric fields in Bondi gauge,

since C is non-local. It provides an explicit expression of the supertranslation-free definition

of angular momentum obtained from other methods in [86]. It would be interesting to

generalize our definition for radiating configurations.

5.3 The initial binary system of Kerr black holes

We consider as initial system at u → −∞ two Kerr black holes of respective rest mass,

rest spin, position and velocity with respect to the frame given by (m1, ~J1, ~x1, ~v1) and

(m2, ~J2, ~x2, ~v2). At u → −∞, we take a spatial distance L = | ~x2 − ~x1| → ∞. Since the

binding energy decreases as O(1/L), the total Bondi mass aspect of the system is given by

the sum of the two individual Bondi mass aspects. Using eq. (5.4), we have

m|init ≡
m1

γ3
1

(
1− ~v1 · ~n

c

)3 +
m2

γ3
2

(
1− ~v2 · ~n

c

)3 (5.16)

where γi = γ(vi). We will fix the initial supertranslation frame by setting C = C|init(θ, φ)

arbitrary and we define CAB
∣∣
init

= −2DADBC
∣∣
init

+ γAB∆C
∣∣
init

. As a consistency check,

we can compare the expression for the Bondi supermomentum quadrupole Pij , as obtained

from eq. (5.16), which is the sum of two terms of the form (5.5), and the expression (4.52)

evaluated at u → −∞. After using
(2)

M ij= 2
m1

c2
v1
i v

1
j + 2

m2

c2
v2
i v

2
j , the expressions match at

lowest PN order.

We now note that the angular momentum aspect N̄A as defined in eq. (2.2) leads to

an expression for a single black hole (5.10) which contains two parts: a quadratic part of

the form mC and a part linear in m or J . By linearity, the binary system will have the

part of the angular momentum aspect linear in m or J given by the linear sum of the

two individual bodies up to O(L−1) corrections that vanish in the limit u → −∞. The

quadratic part in mC will be given by the total Bondi mass and supertranslation frame,

consistently with the transformation law (5.12). Therefore, the total angular momentum
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aspect for the initial binary is

N̄A

∣∣
init
≡ 2m|init

c
∂AC|init + ∂A

[
m|init

(
u+

C|init

c

)]
− 3J1 sin2 θ1∂Aφ1

c2(γ1)2

(
1− ~v1

c
· ~n
)2 −

3J2 sin2 θ2∂Aφ2

c2(γ2)2

(
1− ~v2

c
· ~n
)2 (5.17)

where the angles θ1,2, φ1,2 are obtained from (θ, φ) by a rotation and boost (A.10) adjusted

to each intrinsic spin direction ~J1,2 and velocity ~v1,2. The spin magnitudes are denoted as

J1 =

√
~J1 · ~J1, J2 =

√
~J2 · ~J2. The initial Bondi angular momentum aspect (3.2) is finally

given by

NA|init = N̄A

∣∣
init
− u∂Am

∣∣
init
− c3

4G
CABDCC

BC
∣∣
init
− c3

16G
∂A
(
CBCC

BC
) ∣∣

init
. (5.18)

6 Conclusion

We obtained a simplified form for all BMS (supermomentum, super-angular momentum

and super-center-of-mass) flux-balance laws that are obtained from Einstein’s constraint

equations. While the asymptotic symmetry group of standard asymptotically flat space-

times is the BMS group, consisting of Lorentz transformations and supertranslations, the

BMS flux-balance laws are associated with the extended BMS group, consisting of both the

asymptotic symmetries and the outer symmetries, i.e., the superrotations and superboosts.

We derived the global constraints on black hole binary mergers that result from these flux-

balance laws by providing the initial and final BMS charges in an arbitrary Lorentz and

supertranslation frame. These global constraints can be used by numerical relativists or

gravitational wave data analysts as tools to determine the Poincaré charge balance as well as

the total displacement, spin and center-of-mass memories. We also derived the explicit and

exact expansion of all BMS flux-balance laws in terms of the two sets of radiative STF mul-

tipoles, which provides consistency constraints on the post-Newtonian/post-Minkowskian

formalism and on the radiation-reaction forces of compact binaries.

Partial radiation gauges are often used to infer the shear resulting from compact binary

sources and thereby obtaining the gravitational waveforms. Bondi gauge (or alternatively

Newman-Unti gauge) further allows to infer the Bondi mass and Bondi angular momentum

aspects which obey evolution laws. In this paper, we fully exploited these evolution laws to

derive the exact form of the Poincaré flux-balance laws in the radiation zone, independently

of the properties of the sources, and independently of the formalism used to study them.

Furthermore, we treated comprehensively both the Poincaré flux-balance laws and the

proper BMS flux-balance laws. We noted in particular that the octupole super-angular

momentum flux-balance law arises at the same 2.5PN order as the energy and angular

momentum flux-balance laws.

We discussed a two-parameter family of covariant prescriptions for the BMS charges

and, in particular, a one-parameter family of covariant prescriptions for the angular mo-

mentum, which all lead to vanishing BMS fluxes for non-radiative configurations. We
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obtained that the prescriptions used in [9, 10, 20, 30, 33–36] all agree. We showed that it

is the unique prescription within our class that leads to an angular momentum flux that

does not admit quadratic terms involving both the parity-odd and parity-even radiative

moments. The prescription used in [5, 58] instead provides the unique prescription such

that the transformation rule of the BMS charges under supertranslations does not involve

the shear for non-radiative configurations. We showed that the prescription used to de-

fine the center-of-mass in [69] is not covariant with respect to the metric on the celestial

sphere, which implies that this prescribed center-of-mass does not transform covariantly

under Lorentz asymptotic symmetries. Instead, we proposed a two-parameter prescription

for covariantly defining the center-of-mass, which leads to a new expression for the flux of

the center-of-mass to all orders in the radiative multipole expansion. Furthermore, we pro-

posed the supertranslation-invariant definition of Lorentz charges — the intrinsic Lorentz

charges — for non-radiative configurations, which provides an explicit realization of the

dressing procedure described in [86] (see also [87, 88]).

Let us conclude with some future directions. Favata [50] and Nichols [27, 28] derived the

BMS flux-balance laws using a spherical harmonic basis while we used a basis of symmetric

tracefree tensors. The complete comparison of our respective expressions remains to be

performed, though for the center-of-mass fluxes they were demonstrated to exactly match.

We derived the explicit expressions for the BMS charges for the initial and final states

u → ±∞ of black hole mergers in terms of Bondi quantities. A comparison with the

geometric expressions derived in [32] remains to be performed. We derived the BMS flux-

balance laws in terms of radiative multipole moments. The perturbative dictionary between

de Donder gauge and Bondi gauge is required in order to rewrite these radiative multipoles

in terms of canonical multipoles. The post-Newtonian/post-Minkowskian formalism or,

alternatively, the effective field theory approach could then be used to express the canonical

multipoles in terms of source parameters and rewrite the BMS flux-balance laws as integro-

differential constraints on source parameters. This would allow to fully exploit the infinite-

dimensional BMS group to constrain the dynamics of binary systems.

The consequences of the global super-Lorentz flux balance laws and their related spin

and center-of-mass memory effects remain to be exploited for numerical simulations of

compact binary mergers (see the latest SXS catalog [114] which can be analysed using

tools defined in Bondi gauge [115]). The Poincaré flux-balance laws allow to deduce the

final recoil and angular momentum [116] or allow to establish the balance of the center-of-

mass [117]. The detectability of displacement, spin and center-of-mass memory effects has

been partly analyzed but certainly deserves more attention, in particular for space-based

gravitational wave observatories. Finally, while there are only three types of memory effects

that are relevant for the BMS flux-balance laws, many more persistent gravitational wave

observables exist and remain to be classified and analysed for detectability [59, 118].
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A Construction of boosted supertranslated Kerr

We will explain here how to arrive to eq. (5.10). We proceed in three steps. First, we first

set the Kerr metric in Bondi gauge up to high enough order in the radial expansion:

ds2 =

(
−1 +

2m

r
− ma2(1 + 3 cos 2θ))

2r3
+
m2a2 sin2 θ

r4
+O(r−6)

)
du2

−2
(
1 +O(r−6)

)
dudr +

(
3ma2 sin 2θ

r2
+O(r−6)

)
dudθ

−
(

4ma sin2 θ

r
+
m2a3(17 + 23 cos 2θ) sin2 θ

2r4
+O(r−5)

)
dudφ

+

(
r2 − ma2 sin2 θ

r
+O(r−4)

)
dθ2 +

(
18
m2a3 cos θ sin3 θ

r3
+O(r−4)

)
dθdφ

+

(
sin2 θ r2 +

ma2 sin4 θ

r
+O(r−4)

)
dφ2. (A.1)

One can convert spherical coordinates (θ, φ) to stereographic coordinates (z, z̄) using φ =
i
2 log z̄

z , sin θ = 2
√
zz̄

1+zz̄ .

Second, we acted on this metric with a Lorentz transformation combined with a su-

pertranslation while remaining in Bondi gauge. In order to describe the Lorentz transfor-

mation, we denote as ni, i = 1, 2, 3, the unit Cartesian vector normal to the sphere,

ni =

 sin θ cosφ

sin θ sinφ

cos θ

 =
1

1 + zz̄

 z + z̄

i(z̄ − z)

zz̄ − 1

 (A.2)

and vi an arbitrary boost vector

vi =

 vx
vy
vz

 =
v

1 + zsz̄s

 zs + z̄s
i(z̄s − zs)
zsz̄s − 1

 . (A.3)
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In asymptotically flat spacetimes, a Lorentz transformation acts at leading order in

the radial expansion as in Minkowski spacetime. Under a proper Lorentz transformation,

the unit normal to the sphere transforms as

ni → n′i =
ni +

(
−γ + cγ−1

v2
~v · ~n

)
vi
c

γ
(

1− ~v
c · ~n

) +O(r−1). (A.4)

The action on the stereographic coordinates is exactly a SL(2,C) transformation,

z → z′ =
az + b

cz + d
+O(r−1) ≡ G(z) +O(r−1), ad− bc = 1, (A.5)

z̄ → z̄′ =
āz̄ + b̄

c̄z̄ + d̄
+O(r−1) ≡ Ḡ(z̄) +O(r−1) (A.6)

where ¯ denotes the complex conjugate. Explicitly,

a =
γ(vc + 1)− 1 + zsz̄s(1 + γ(vc − 1))

√
2
√
γ − 1(1 + zsz̄s)

, (A.7)

b = c̄ = −
√

2zs
√
γ − 1

1 + zsz̄s
, (A.8)

d =
γ(vc − 1) + 1 + zsz̄s(−1 + γ(vc + 1))

√
2
√
γ − 1(1 + zsz̄s)

. (A.9)

More generally, a rotation and boost is isomorphic to an arbitrary SL(2,C) transforma-

tion (A.5). The resulting angles on the sphere (θ′, φ′) are defined as

φ′ ≡ i

2
log

Ḡ(z̄)

G(z)
, sin θ′ =

2
√
G(z)Ḡ(z̄)

1 +G(z)Ḡ(z̄)
. (A.10)

Note the important relationship valid for an arbitrary SL(2,C) transformation (rotations

do not contribute):

1 +GḠ

(1 + zz̄)
√
∂zG∂z̄Ḡ

= γ

(
1− ~v

c
· ~n
)
. (A.11)

The leading order Lorentz transformation combined with a supertranslation can then be

extended to a 4-dimensional diffeomorphism defined in the radial expansion that enforce

Bondi gauge. The subleading components of the diffeomorphism are obtained by solving

algebraic constraints that are equivalent to enforcing Bondi gauge. The computation is

long but straightforward.

As a third and final step, we finally read off the resulting Bondi mass and angular

momentum aspects and simplify using eq. (A.11). The final result is exactly eq. (5.4) and

eq. (5.10).

B Multipole decomposition of the BMS fluxes

To compute the right-hand side of eq. (3.15), one can use two strategies. The first approach

is to rewrite the integrands by expanding the shear tensor CAB according to eq. (3.10) in
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terms of the two polarizations C±. Using the identities on the unit sphere of metric γAB,

[DA, DB]V C = RCDABV
D, RABCD = γACγBD − γADγBC and εABε

CD = δCAδ
D
B − δDA δCB , we

find

1

4
CABC

AB =

(
DADBC

+DADBC+ − 1

2
∆C+∆C+

)
− 2DADBC

+ε A
C DBDCC−

+

(
DADBC

−DADBC− − 1

2
∆C−∆C−

)
. (B.1)

Note that the terms quadratic in either C− or C+ follow the same pattern. The super-

angular momentum and super-center-of-mass flux-balance laws (3.15b) and (3.15c) can be

expanded similarly. We can then embed the sphere into R3 and expand the two functions

C± in terms of radiative multipoles according to eq. (4.8).

The second equivalent approach is to embed the sphere into R3 from the beginning

and to perform the multipolar expansion of the shear tensor (4.5) in terms of the radiative

multipole moments (4.6). Both computations are straightforward but lengthy. To write

down the result, it is convenient to first define the following three scalar quadratic operators

Q+(AL,BL′) ≡NL−2NL′−2AijL−2BijL′−2 − 2NL−1NL′−1AiL−1BiL′−1

+
1

2
NLNL′ALBL′ , (B.2a)

Q−(AL,BL′) ≡ εijkni (NL−2NL′−2AjlL−2BklL′−2 −NL−1NL′−1AjL−1BkL′−1) , (B.2b)

Q̂
+

(AL,BL′) ≡NL−1NL′−1AiL−1BiL′−1 −
1

2
NLNL′ALBL′ , (B.2c)

the two vector quadratic operators

Q+
k (AL,BL′) ≡ NL−2NL′−3 AijL−2 BijkL′−3 − 2NL−1NL′−2 AiL−1 BikL′−2

+
1

2
NLNL′−1 AL BkL′−1, (B.3a)

Q̂
+

k (AL,BL′) ≡ NL−2NL′−1AkiL−2BiL′−1 −NL−1NL′AkL−1BL′

+
1

2
NLNL′−1ALBkL′−1, (B.3b)

and the two tensor quadratic operators

Q+
ijk(AL,BL′) ≡ NL−2NL′−3AimL−2BjkmL′−3 −NL−1NL′−2AiL−1BjkL′−2, (B.4a)

Q−ijk(AL,BL′) ≡ εipqnpNL−2NL′−1AjqL−2BkL′−1. (B.4b)

They obey the following properties

nkQ
+
k = Q+, nkQ̂

+

k ≡ Q̂
+
, niQ−ijk = 0. (B.5)

The quadratic expression appearing in the hard contribution to the supermomentum

flux-balance equation reads as

ĊijĊij =

∞∑
`,`′=2

a`a`′

(
Q+(U̇L, U̇L′) +

b`b`′

c2
Q+(V̇L, V̇L′) +

2b`′

c
Q−(U̇L, V̇L′)

)
. (B.6)
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The first quadratic operator can then be written as

Ċij ∂̂kCij = Pkl

∞∑
`,`′=2

a`a`′

(
Q

(1,1)
l (U̇L,UL′) +

b`b`′

c2
Q

(1,1)
l (V̇L,VL′)

+
b`′

c
Q

(1,2)
l (U̇L,VL′) +

b`′

c
Q

(1,3)
l (UL, V̇L′)

)
(B.7)

where

Q
(1,1)
k (U̇L,UL′) ≡ (`′ − 2)Q+

k (U̇L,UL′)− 2Q̂
+

k (U̇L,UL′), (B.8a)

Q
(1,2)
k (U̇L,VL′) ≡ εkpq

[
Q+
pqm(U̇L,VL′)nm − npQ+

iqj(U̇L,VL′)ninj

]
+ (`′ − 2)εpijnpQ

+
ijk(U̇L,VL′)−Q−iki(U̇L,VL′), (B.8b)

Q
(1,3)
k (UL, V̇L′) ≡ εkpqnpQ+

iqj(UL, V̇L′)ninj

− (`− 2)εpijnpQ
+
ijk(V̇L′ ,UL) + Q−iki(V̇L′ ,UL). (B.8c)

The second quadratic operator reads as

Ċij ∂̂iCjk =

∞∑
`,`′=2

a`a`′Pkl

(
Q

(2,1)
l (U̇L,UL′) +

b`b`′

c2
Q

(2,1)
l (V̇L,VL′)

+
b`′

c
Q

(2,2)
l (U̇L,VL′) +

b`′

c
Q

(2,3)
l (UL, V̇L′)

)
(B.9)

where

Q
(2,1)
k (U̇L,UL′) ≡ (`′ − 2)Q+

k (U̇L,UL′) +
`′ − 2

2
Q̂

+

k (U̇L,UL′), (B.10)

Q
(2,2)
k (U̇L,VL′) ≡

1

2
Q−kjj(VL′ , U̇L)− 1

2
Q−iki(U̇L,VL′)−

1

2
εkpqQ

+
pqi(U̇L,VL′)ni

−`
′ − 2

2
εkpqnpQ

+
q (U̇L,VL′) +

`′ − 2

2
εpijnpQ

+
ijk(U̇L,VL′), (B.11)

Q
(2,3)
k (UL, V̇L′) ≡ −

`− 2

4
εkpqnpQ

+
iqj(UL, V̇L′)ninj − (`− 2)εpijnpQ

+
ijk(V̇L′ ,UL)

−`− 2

4
Q−iki(V̇L′ ,UL). (B.12)

Note that Q+
iqj(UL, V̇L′)ninj = Q+

qij(V̇L′ ,UL)ninj .

The right-hand sides of eq. (3.15) are combinations of these expressions smeared with

BMS symmetry parameters. To perform the integrals of these quantities over the unit

sphere, we will use the integrals introduced in appendix C.

C Integration of tensors on the sphere

We consider the integral

IL =

∮
S
NL (C.1)

over the unit sphere S, which is fundamental in order to integrate combinations of sym-

metric trace-free (STF) tensors on the sphere. It can be most easily computed using the

generating function
∮
S e
−ik·n = sin k

k . We deduce

IL = lim
k→0

i`
(
∂

∂k

)
L

(
sin k

k

)
(C.2)
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where
(
∂
∂k

)
L
≡ ∂`

∂ki1 ···∂ki` . Some algebra and combinatorics then gives IL = 0 for odd

` = |L|, while for even ` (see eq. (2.4) of [33])∮
S
NL =

1

`+ 1
δ(i1i2δi3i4 · · · δi`−1i`) (C.3)

=
1

(`+ 1)!!
(δi1i2δi3i4 · · · δi`−1i` + all ordered permutations) , (C.4)

where an ordered permutation {1, · · · , `} → {σ1, · · · , σ`} is defined as σ1 = 1, σ2 ∈
{2, . . . `}, σ3 smallest integer 6= {1, σ2}, σ4 ∈ {2, . . . `}\{σ2, σ3}, σ5 smallest integer

6= {1, σ2, σ3, σ4}, etc. As an example,
∮
S Nijmn = 1

15(δijδmn + δimδjn + δinδjm). Using

this fundamental equality, we obtain the following useful formulae. For any given pair of

STF tensors AL, BL′ , we have

ALBL′

∮
S
NLNL′ = δ`,`′m`ALBL, m` ≡

`!

(2`+ 1)!!
Θ`. (C.5)

The formula (C.5) was given in [33]. We also have

AiL−1BiL′−1

∮
S
NL−1NL′−1 = δ`,`′m`−1ALBL. (C.6)

Here, we introduced the discrete step function Θ` defined as 1 if ` ≥ 0 and 0 if ` < 0. It

implements the requirement that the right-hand side of eq. (C.5) is defined only for ` ≥ 0

and that of eq. (C.6) is defined only for ` ≥ 1.

For any given triplet of STF tensors AL, BL′ and CL′′ , we have

ALBL′CL′′

∮
S
NLNL′NL′′ = δ`,`′,`′′m`,`′,`′′AL2L3BL1L3CL1L2 . (C.7)

Here, the STF indices are split as L = L2L3, L′ = L1L3, L′′ = L1L2 where L1,2,3 are chains

of indices with the following ranks

`1 ≡
−`+ `′ + `′′

2
, `2 ≡

`− `′ + `′′

2
, `3 ≡

`+ `′ − `′′

2
. (C.8)

The symbol δ`,`′,`′′ is to ensure that these are integers, i.e., it is defined as

δ`,`′,`′′ =

{
1, `1, `2, `3 ∈ Z
0, otherwise

(C.9)

The integral then amounts to the normalization factor

m`,`′,`′′ ≡
`!`′!`′′!

`1!`2!`3!(`+ `′ + `′′ + 1)!!
Θ`1Θ`2Θ`3 (C.10)

where `1, `2, `3 are functions of `, `′, `′′, as defined in eq. (C.8). The normalization factor

is totally symmetric in its three indices. The step functions Θ` ensure that `1, `2, `3 are

non-negative.12 This formula was derived in a related form in eq. (C2) of [119]. A closely

12One could include these positivity conditions in the definition (C.9), but we need this separation for a

nice presentation of our results in section 4.
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related quantity C`(0, `′,m′, 0, `′′,m′′) appears in [27], itself based on eq. (2.20) of [120]; see

also [50]. Note that

δ`,`′,0m`,`′,0 = δ`,`′m`, (C.11a)

δ`,`′,1m`,`′,1 = m`δ`,`′+1 +m`′δ`′,`+1. (C.11b)

Another closely related type of integral that appears for parity odd expressions is the

following

εijk

∫
niNL+1NL′NL′′AL+1BjL′CkL′′ = δ`,`′,`′′ m̂`,`′,`′′ εijkAiL2L3 BjL1L3 CkL1L2 (C.12)

where δ`,`′,`′′ determines `1, `2, `3 according to eq. (C.8). The combinatoric function m̂ is

defined as

m̂ ` ,`′,`′′ ≡
`+ 1

`+ `′ + `′′ + 3
m`,`′,`′′ . (C.13)

The underlined argument determines the numerator of the coefficient on the right-hand

side. Note that due to the presence of εijk in eq. (C.12), ni can only contract with NL+1

and thereby leads to eq. (C.13). The following relation exists between m and m̂

m`,`′,`′′ = m̂ ` ,`′,`′′ + m̂`, `′ ,`′′ + m̂`,`′, `′′ . (C.14)

One can also check that

m̂`−1,`′−1,0 δ`,`′ = m` δ`,`′ , m̂`−1,`′−1, 0 δ`,`′ =
m`

`
δ`,`′ . (C.15)

Setting `′′ = 1 and Ci = 1 in (C.7), we obtain

ALBL′

∮
S
NLNL′ni = m`+1δ`+1,`′ALBiL +m`′+1δ`,`′+1AiL′BL′ . (C.16)

Using eq. (C.5) and eq. (C.16), the integrals over the sphere of the zeroth and first moment

of the two scalar quadratic patterns Q+ and Q− defined in eq. (B.2) are given by∮
S

Q+(AL,BL′) = δ`,`′m
+
` ALBL, (C.17a)∮

S
Q−(AL,BL′) = 0, (C.17b)∮

S
Q+(AL,BL′)ni = δ`′,`+1m

+
`+1ALBiL + δ`,`′+1m

+
`′+1AiL′BL′ , (C.17c)∮

S
Q−(AL,BL′)ni = δ`,`′

(
m`−1

`− 1
− m`

`

)
εijkAjL−1BkL−1 (C.17d)

where we defined

m+
` ≡ m`−2 − 2m`−1 +

1

2
m`. (C.18)
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Using eq. (C.16), we also obtain the integrals required to compute the angular momentum

flux-balance law∮
S
εikmnmQ+

k (U̇L,UL′) = −
∮
S
εikmnmQ+

k (UL′ , U̇L) = δ`,`′m
+
` εijkUjL−1U̇kL−1, (C.19a)∮

S
εikmnmQ̂

+

k (U̇L,UL′) = −
∮
S
εikmnmQ̂

+

k (UL′ , U̇L)

= −δ`,`′
(
m`−1 −

3

2
m`

)
εijkUjL−1U̇kL−1 (C.19b)

where it is useful to note

m`−1 −
3

2
m` =

`− 1

`+ 1
m+
` . (C.20)

We also obtain the integrals required to compute the centre-of-mass flux-balance law∮
S
PikQ

+
k (U̇L,UL′) = δ`+1,`′(m

+
` −m

+
`+1)U̇LUiL − δ`,`′+1m

+
` U̇iL−1UL−1, (C.21a)∮

S
PikQ̂

+

k (U̇L,UL′) = −1

2
δ`+1,`′(m` −m`+1)U̇LUiL + δ`,`′+1m

+
` U̇iL−1UL−1. (C.21b)

For `′′ ≥ 2, the delta function and measure are explicitly given by

δ`,`′,2m`,`′,2 = m`δ`,`′+2 +
2`

`+ 1
m`+1δ`,`′ +m`′δ`+2,`′ , (C.22a)

δ`,`′,3m`,`′,3 = m`δ`,`′+3 +
3(`− 1)

`+ 1
m`+1δ`,`′+1 +

3(`′ − 1)

`′ + 1
m`′+1δ`+1,`′ +m`′δ`+3,`′ ,

...

δ`,`′,`′′m`,`′,`′′ =

b `
′′
2
c∑

k=0

m`,`′,`′′δ`,`′+`′′−2kΘ`′−k +

b `
′′−1
2
c∑

k=0

m`,`′,`′′δ`′,`+`′′−2kΘ`−k. (C.22b)

Though the factor of Θ`′−k (respectively Θ`−k) is redundant with the term m`,`′,`′′

δ`,`′+`′′−2k (resp. m`,`′,`′′δ`′,`+`′′−2k), we want to emphasize that the term is vanishing if

`′ < k (resp. ` < k) as a result of the constraint `3 ≥ 0. This expression will be used within

a double sum
∑∞

`,`′=2 in the main text. The presence of this discrete theta function will

reduce the range of the final sum
∑∞

`′=2 (resp.
∑∞

`=2) to
∑∞

`′=max(2,k) (resp.
∑∞

`=max(2,k)).

The supermomentum flux-balance law requires the following integrals of Q± (B.2):∮
S

Q+(AL,BL′)NL′′CL′′ = δ`,`′,`′′m
+
`,`′,`′′AL2L3BL1L3CL1L2 , (C.23a)∮

S
Q−(AL,BL′)NL′′CL′′ = δ`−1,`′−1,`′′−1

(
m̂`−2,`′−2,`′′−1 − m̂`−1,`′−1,`′′−1

)
× εijk AjL3L2BkL1L3CiL1L2 (C.23b)

where we find it useful to define

m+
`,`′,`′′ ≡ m`−2,`′−2,`′′ − 2m`−1,`′−1,`′′ +

1

2
m`,`′,`′′ , (C.24a)

m−`,`′,`′′ ≡ m`−1,`′−1,`′′ −
3

2
m`,`′,`′′ . (C.24b)

From these results, one can recover eqs. (C.17a)–(C.17b)–(C.17c)–(C.17d) for `′′ = 0, 1.

– 41 –



J
H
E
P
1
0
(
2
0
2
0
)
1
1
6

The superboosts and superrotations flux-balance laws require the following integrals:∮
S

Q+
k (AL,BL′)NL′′CL′′ = δ`,`′−1,`′′m

+
`,`′−1,`′′AL2L3BkL1L3CL1L2 , (C.25a)∮

S
Q̂

+

k (AL,BL′)NL′′CL′′ = δ`,`′−1,`′′

[ (
m`−2,`′−1,`′′ −m`−1,`′,`′′

)
AkL2L3BL1L3CL1L2

+
1

2
m`,`′−1,`′′AL2L3BkL1L3CL1L2

]
. (C.25b)

In parallel with eq. (C.24a), we also define m̂+ through the function m̂

m̂+
`,`′,`′′ ≡ m̂`−2,`′−2,`′′ − 2m̂`−1,`′−1,`′′ +

1

2
m̂`,`′,`′′ , (C.26)

m̂−`,`′,`′′ ≡ m̂`−1,`′−1,`′′ −
3

2
m̂`,`′,`′′ . (C.27)

D Relating STF tensors to spherical harmonics

We denote as α`mL as defined in [90] or Y`mL as defined in [33] the STF tensors that relate

the standard orthonormal basis of spherical harmonics13 Y `m to the set of STF tensors

N̂L = N〈i1 . . . Ni`〉 (where brackets indicate the STF projection)

N̂L(θ, φ) =
∑̀
m=−`

α`mL Y `m(θ, φ) = 4πm`

∑̀
m=−`

Y∗`mL Y `m(θ, φ), (D.1)

Y `m(θ, φ) = Y`mL N̂L(θ, φ) =
1

4πm`
α∗`mL N̂L(θ, φ). (D.2)

We have α∗`,mL = (−1)mα`,−mL . Orthonormality of the spherical harmonics and eq. (C.5)

gives

α`mL α
∗`m′
L = 4πm` δm,m′ . (D.3)

We define the three vectors transforming under the representation 3 of SO(3)

ξ0 ≡ ez, ξ±1 ≡ ∓ 1√
2

(ex ± iey) . (D.4)

We denote as 〈`′′`′m′′m′|`m〉 the Clebsch-Gordan coefficients branching the irreducible

representations (2`′ + 1)⊗ (2`′′ + 1) 7→ (2`+ 1). We have (see (2.26b) of [33])

Y∗`mL Y`+1m+µ
iL =

1

4πm`+1

√
`+ 1

2`+ 3
〈1 ` µ m|`+ 1 m+ µ〉ξµi (D.5)

for µ = ±1, 0 and 0 otherwise with

〈1 ` 0 m|`+ 1 m〉 =

√
(`−m+ 1)(`+m+ 1)

(`+ 1)(2`+ 1)
, (D.6a)

〈1 ` ± 1 m|`+ 1 m± 1〉 =

√
(`±m+ 1)(`±m+ 2)

2(`+ 1)(2`+ 1)
. (D.6b)

13They are normalized as
∮
Y`mY

∗
`m = (4π)−1. They do include the (−1)m Condon-Shortley phase

(e.g. Y 11 = −
√

3
8π
eiφ sin θ) which matches with Arfken [121], Thorne [33] and Wolfram Mathematica’s

SphericalHarmonicY.

– 42 –



J
H
E
P
1
0
(
2
0
2
0
)
1
1
6

The triple integral of spherical harmonics is∮
Y `1m1Y `2m2Y `3m3 =

√
2`1 + 1

4π

2`2 + 1

4π

2`3 + 1

4π

(
`1 `2 `3
0 0 0

)(
`1 `2 `3
m1 m2 m3

)
(D.7)

where
(
`1 `2 `3
m1 m2 m3

)
is the Wigner 3j-symbol. It is the equivalent for spherical harmonics of

the triple integral of STF tensors (C.7).

The radiative mass and current moments in the spherical harmonic basis U`m, V`m

are related to the STF moments UL, VL as [90]

U`m = A` α
`m
L UL, A` ≡

4

`!

√
(`+ 1)(`+ 2)

2`(`− 1)
, (D.8a)

V`m = −b`A` α`mL VL, (D.8b)

or, conversely, UL = (A`)
−1Y`mL U`m, VL = −(A`b`)

−1Y`mL V`m. In the spin weighted

decomposition with the conventions of [90],

h+ − ih× =
∑
`,m

h`m −2Y`m, h`m = − G√
2c`+2r

(
U`m − i

c
V`m

)
+O(r−2). (D.9)

The relationship with the Bondi shear is given by [27] (since h in [27] is minus h in [90])

h+ − ih× = −1

r
CABm̄

Am̄B +O(r−2) (D.10)

where m̄A∂A = ∂θ − i csc θ∂φ.
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(1981) 537.

– 48 –

https://doi.org/10.1088/0264-9381/21/23/008
https://doi.org/10.1088/0264-9381/21/23/008
https://arxiv.org/abs/gr-qc/0209097
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0209097
https://doi.org/10.1103/PhysRevD.89.084009
https://arxiv.org/abs/1404.2475
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1404.2475
https://doi.org/10.1086/153561
https://doi.org/10.12942/lrr-2014-2
https://arxiv.org/abs/1310.1528
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1310.1528
https://doi.org/10.1103/PhysRev.128.2471
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C128%2C2471%22
https://doi.org/10.1086/152255
https://doi.org/10.1086/152255
https://inspirehep.net/search?p=find+J%20%22Astrophys.J.%2C183%2C657%22
https://doi.org/10.1103/PhysRev.131.435
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C131%2C435%22
https://doi.org/10.1103/PhysRev.136.B1224
https://doi.org/10.1103/PhysRev.136.B1224
https://doi.org/10.1086/150259
https://inspirehep.net/search?p=find+J%20%22Astrophys.J.%2C158%2C997%22
https://doi.org/10.1086/150170
https://doi.org/10.1086/150171
https://doi.org/10.1086/150414
https://doi.org/10.1007/BF00769986
https://doi.org/10.1111/j.1749-6632.1980.tb15936.x
https://doi.org/10.1111/j.1749-6632.1980.tb15936.x
https://doi.org/10.1007/BF00756177
https://doi.org/10.1007/BF00756528
https://doi.org/10.1007/BF00756528
https://doi.org/10.1007/BF01025468
https://inspirehep.net/search?p=find+J%20%22Gen.Rel.Grav.%2C13%2C335%22
https://doi.org/10.1007/BF00758216
https://doi.org/10.1016/0375-9601(81)90567-3
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CA87%2C81%22
https://doi.org/10.1007/BF00756922


J
H
E
P
1
0
(
2
0
2
0
)
1
1
6

[108] T. Damour, Problème des deux corps et freinage de rayonnement en relativité générale,
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