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THE POINCARE-BENDIXSON THEOREM AND

ARATIONAL FOLIATIONS ON THE SPHERE

by Igor NIKOLAEV (*)

Introduction.

The Poincare-Bendixson theorem is an elementary and important
statement regarding the structure of a- and o;-limit sets of orbits of flows
on the 2-sphere. It says that on the 2-sphere the long-time behavior of

trajectories of any C°° flow with a finite number of equilibria/1^ must be
regular. Namely, the a- and c^-limit set of every trajectory is necessarily a
(separatrix) cycle or an isolated equilibrium point. This remarkable fact is

purely topological and can be extended to a very few surfaces. ^ There
are no analogies of the Poincare-Bendixson theorem on the higher genus
surfaces, since the non-trivial recurrent motions complicate the structure
of the respective limit sets, see [33].

It is known also, that if one formally replaces 'trajectories5 by 'leaves5

and 'C
00 flow5 by 'C°° foliation5 (for definitions see the section below),

then a word-by-word analogy of the Poincare-Bendixson theorem on the 2-

sphere will fail. For warming-up examples, the paper of H. Rosenberg [36] is

recommended where various smooth labyrinths in the disc are constructed.
(A labyrinth is a singular foliation C in the disc with a leaf which is dense in

some region U of the disc. Clearly, the disc can be compactified to a sphere
with the corresponding labyrinth on it.)

Being a classical object in geometry, foliations are much akin to flows
on surfaces. As in the case of flows, foliations define a partition of a surface

(*) Freelance. Supported partially by the ISF grant RZAOOO.
Key words: Foliation - Two-dimensional manifold - Singular point - Invariant measure.
Math. classification: 57R30 - 58F10.

^ This claim cannot be omitted. A relevant counterexample is constructed in [4].
(2) Namely, a projective plane RP2 for which S

2 is a double covering surface. Aranson [2]
and, independently, Markley [27] proved it to the Klein bottle.
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into disjoint trajectories called leaves, this partition having a very simple
local structure: apart from the singularities it looks like a family of parallel
lines. Unlike flows, foliations may have non-orientable singularities, i.e.

singularities which cannot be thought of as a phase portrait of a vector
field. The presence of the latter in the labyrinth explains its complex
behavior.

Indeed, every non-orientable singularity can be rendered orientable
on an auxiliary Riemannian surface defined locally by a complex function
z ̂  z

2
. Globally, each (non-orientable) foliation F can be lifted to a 2-fold

covering surface, M, with a ramification set of index 2 in the points Sing.F,
see [8] for details. Usually, the genus of the covering surface is greater than
the genus of the underlying one. So even for a 2-sphere, the genus of M

is g > 1, and the corresponding (involutive) covering flow on M allows
non-trivial recurrent orbits. (As a relevant paradigm, one can think about a
'standard' foliation on S

2 with 4 thorns which can be lifted to T
2 = B^/Z2

with an irrational flow on it.)

Historically, different authors contributed to understanding of such
kind of phenomena. Nemytskii and Stepanov were the first to mention
'strange5 singularities in the book [32]. From the geometrical point of
view, singular foliations on surfaces were investigated by Thurston [37],
Rosenberg [36], Levitt [23], [24], [25], Levitt and Rosenberg [26],
Gutierrez [16], Langevin and Possani [22], Aranson and Zhuzhoma [5].
Structural stability of foliations was studied by Guinez [13], [14],
Gutierrez [15], Gutierrez and Sotomayor [17], [18] and Kadyrov [20].
(Ergodic properties of foliations were taken up by J. Hubbard, A. Katok,
M. Keane, H. Masur, E. Sataev, Ya. Sinai and others. Similar problems
in the one-dimensional dynamics have been investigated by V. I. Arnold,
M. Herman, M. Martens, W. de Melo, P. Mendes, S. van Strien, J.-C.
Yoccoz, see [31] for the bibliography.)

Consider now a C°° foliation on the 2-sphere with a finite number
of non-orientable singularities. It is unclear a priori whether it will have
non-trivial recurrent leaves, or not. We can ask: which extra conditions on
the foliation will provide its regular ('Poincare-Bendixson') behavior?

In the present paper this particular question is considered. A foliation
is supposed to have an (even) number of singular points of 'tripod', 'thorn'

or 'sun-set' type. All of them were proved to be structurally stable [8]. The
divergence of the foliation in the above singularities is introduced, and it is
proved that the non-positive values of the divergence at each singular point
will ensure 'regularity' of the foliation.
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In §1 of the paper the differentiability and other preliminary facts
on foliations are discussed. The main statement is formulated in §2 and is
proved in §3. §4 contains necessary analytical tools. In §5 the problem of
H. Rosenberg is discussed.

1. Differentiability of foliations.

This section is devoted to the basic facts of the general theory of
(singular) foliations on surfaces. More extended exposition can be found
in [31], see also [3], [8].

Roughly speaking, foliations can be defined as flows which admit a
finite number of non-orientable singularities/3^ As it was mentioned earlier,
it is impossible to produce a foliation given on one surface with the help
of a flow on the same surface. Nevertheless, this goal can be achieved on
some auxiliary 2-dimensional manifold, M, which covers the initial surface
twice, being ramified over non-orientable singularities. In defining foliations
below, an axiomatic approach is chosen.

DEFINITION 1.1. — Let M be a compact orientable 2-dimensional

manifold. A foliation T of differentiabilty class C
7
' is denned to be a triple

(M,7r*,0), where TT* : M x R -^ M is a ^-smooth now; 0 : M -^ M,
O

2 === idM is an involution on M which satisfies the following axioms:

(i) 0 preserves the orbits 0(x) = {^(x) \ t € R} of the Sow TT*, that is

\/xeM, o(e(x))=e(p(x)\,

(ii) 0 fixes a finite even number of points W = {pi, ...,p2fc} on M,

( x , ifxeW,
e(x)nx={v / 10, ifxeM\W',

(iii) ifW = 0, then M consists of two connected components N-^ U N^ so

that the involution 6 : M —» N^ is a homeomorphism between them.

A foliation T = (M, TT*, 0) is called orientable, ifW = 0. Otherwise it

is called non-orientable.

^ In fact, also a global non orientabilty (Reeb components, e.g.) may have place.
However, we assume only a local non orientability, passing if necessary to a non-ramified
double covering surface.
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(Prove that all points x € W are equilibria of the flow TT*. Show also

that the forward orbit {^(x) \ t > 0} through a point x C M goes by 6

to the backward orbit {7^
t
(0{x)) \ t < 0} through the point 0(x), and

vice versa. In particular, a(0(x)) = 0{uj(x})^ where a and uj are limit sets
of the corresponding orbits.)

Clearly, if a triple F = (M, 71-*, 0) is given and W ^ 0, then factorizing
with respect to 0, one obtains a non-orientable foliation F = 7^

t
/0 on the

surface M/0. It is a remarkable fact that the converse is also true. Let F

be a foliation on a surface N with 2k non-orientable singularities and q

orientable singularities.

LEMMA 1.1 (Hurwitz). — Let W = {pi,...,p2fc} be an even number

of points on a compact orientable surface N. Then there exists a unique

two-fold ramified covering compact orientable surface^ M, with a covering

mapping p : M —> N and ramification points of index 2 at W. Moreover,

there exists a homeomorphism 0 : M —> M which fixes points p~1 (W) {and

only them) and such that 02 = id.M- For surface N it holds that N = M/0.

LEMMA 1.2 (Riemann-Hurwitz formula). — Denote by QM the genus

of surface M, which covers twice a surface N of genus pjv, with ramification

set W = {pi, ...,p2fc}- Then the following formula is valid:

(1) 9M = 2^v + k - 1.

LEMMA 1.3. — Foliation F on the surface N can be written as a

triple (M, TT*, 0), where flow TT* has 2(p + q) singularities (all of them being

orientable).

Proof. — See [19], [8], [31]. D

DEFINITION 1.2. — Let T = (M, TT*, 0) be a foliation of the class C^.

Then, the factor-foliation 7'/0 of the factor-surface M/0 is said to be

^-smooth.

Differentiability class of a foliation F in the points x C M\ Sing F is
well understood. This class is supposed to be C^ in the point x if there
exists a C^-diffeomorphism bringing the foliated neighborhood U of x to
the box f(u,v) [ —- <: u <: - — < v ^ -}, foliated by the family of

parallel lines v = (7, — ^ < C < ^ .

The situation will change dramatically if one tries to extend the

definition of differentiability to the set Sing.F. First H. Rosenberg [36]
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noticed that there is a lot of freedom here. (Of course, if the singularity is

orientable, i.e. given by a flow, then the differentiability class of F coincides

with the differentiability class of the flow in the point of singularity. But

not all singularities are orientable.) Let F be a non-orientable foliation on

an underlying surface N. One can impose 'local models' at the fc-prong

singularity, as proposed by Levitt and Rosenberg in [26] with regard to the

measured foliations. A foliation F is of the class C
7
' in the point p, if there

exists a C^-diffeomorphism bringing F D Oe(p) to the A;-prong saddle, given
by the level set of the complex function [Re^72!. Another definition of

differentiability is due to Levitt [25] and uses the 'transversal structure' of
foliations. A foliation F is said to be ̂  -smooth in the singularity p if the

monodromy mapping between any pair of transversal segments which hit

nearby separatrices ofp can be extended to a mapping of the class C^.

In the above cited definitions, differentiability is introduced directly,
via foliations -F at the underlying surface N. Being non-orientable, F

cannot carry a 'tangential structure5. From our point of view, this is what is
responsible for differentiabilty of F (at least it is so when F is embeddable
into a flow). Further the differentiabilty is defined in terms of its covering
flow, as proposed by Definition 1.2.

Denote by ^(M) a space of all C^-smooth foliations (M, 71^,0)
defined on a surface M and endow it with the uniform C

7
' topology. Let

^1,^2 e ̂ (M) be elements of the space ̂ (M).

DEFINITION 1.3. — Ji = (M, 71 ,̂ 0) and ̂  = (M, TT^, 0) are said to be

topologically conjugate (this equivalence relation is written as £ : T\ ~ ^2)
if there exists a homeomorphism h: M —> M which takes orbits of7r{ into

orbits of7r^, preserving their orientation, and such that ho0 = 0 oh for all

x e M. An element F € ^(M) is called structurally stable if there exists

a neighborhood V oiT such that for all Q e U, the relation Q ~ F holds.

The germs of structurally stable orientable singularities q G Sing^7

are well investigated: it is classical that they are topologically (and,

beyond resonances, even analytically) equivalent to their 1-jets, and the
configuration of leaves near such points looks either like a 4-separatrix
saddle, or like a node or, else, a focus. Suppose that p € Sing.F is a
non-orientable singularity. Then in the point p the germ w of vector field

obeys a Za-symmetry W with respect to an involution 0 and has either of

(4) Namely, w(0(x)) = -w(x),w(0) = 0, where 6 : x ̂  -x is a rotation through the
angle TT.
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two 'normal forms5:
r\

(2) w(u, v) = [au2 + {(3 - l)uv + (f>(u, v)] —
Qu

Q_

9v
+ [(a - l)uv + (3v2 + ̂ (n, v)] —

if a/3(a + (3 - 1) 7^ O, and
0

(3) w(n, v) = [au2 + /3m; - v2 + < ,̂ v)] o-

Q

+ [(a + l)uv + /3^2 + '0(n, v)} —

if a[/32 + (a + I)2] 7^ 0, where <^ and ^ consist of higher order monomials of

even degrees.

DEFINITION 1.4. — Let p € Sing.77 be a non-onentable singularity of

{oliation (M, TT*, 0) in projection to the surface M/6. Denote by H, P and E,
respectively^ hyperbolic^ parabolic and elliptic sectors of p. The following

terminology is adopted:

Sectors Singularity Index Form Conditions

HHH tripod 4 (2) a(3(a + (3 ~ 1) < 01

(a- l ) ( /?- l ) (Q+^)>0

HP sun-set +^ (2) a/?(a +/3 - 1) > 0

H thorn +5 (3) a < 0

EP , 3 (2) a/3(a+/3- l )<o?

apple +j (a- l ) ( /3- l ) (a+/3)<0

E (3) a > 0___________

The proposition below yields a complete list of structurally stable
singularities, being the main result of the local theory of surface foliations.

THEOREM 1.1 (Local stability). — Let J^ be a space of C7' smooth

foliations on a surface M. The list of generic non-orientable singularities

of foliations T C J^ is exhausted by those mentioned in Definition 1.4.
Moreover, they and only they are structurally stable.

As well as in the case of flows, local structural stability of foliation
does not imply its global structural stability (the converse being certainly
true). The following statement proved in [8] is a generalization of the
well-known stability theorem [I], [34] to the case of foliations.
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THEOREM 1.2 (Andronov-Pontryagin-Peixoto). — Let M be an

orientable surface. In the space ^(M) of all C
7
'-smooth foliations on M

there exists an open and dense subspace ̂  which consists of structurally

stable foliations. These foliations are called Morse-Smale, and admit the

following geometrical description:

(i) foliations from J^ has but finitely many orientable singularities and

closed orbits, they all being hyperbolic {i.e. saddles, nodes or foci, or else

hyperbolic cycles);

(ii) the set of non-orientable singularities is also finite and is exhausted

by five structurally stable singularities mentioned in Definition 1.4;

(iii) every leaf of T e T^ distinct from critical elements of items (i)
and (ii) tends to the critical elements;

(iv) there are no separatrix connections between critical elements (i.e.

there are no leaves tending to singular points p and q, being separatrix for

both p and q', the case p = q is not excluded).

2. Main result.

Below we are interested in the case N = S
2
. (The 2-dimensional sphere

as an underlying surface.) Moreover, the set SingF of a C°° foliations on
N is fixed by an even number of non-orientable singularities of the thorn,
sun-set or tripod type, described by Theorem 1.1.

DEFINITION 2.1. — If a Morse-Smale foliaton F e J^ has no cycles

(closed 1-leaves), it is called a regular^ foliation. (In other words, all leaves

ofF are compact and tend from a singularity to a singularity.)

DEFINITION 2.2. — Foliation F is called arational if it has no compact

1-leaves.

We introduce a class, an Aclass, of foliations on the 2-sphere which

are produced from a 'standard foliation with 4 thorns on 525 by a finite
number of homotopy operations of an 'opening of a leaf and 'deformation
of a thorn into a sun-set5.

• Standard foliation of S
2
. — Consider a 2-dimensional torus T2 as a

covering surface M of a sphere with the ramification set in 4 (distinct) points

(5) Or, gradient like, see [29]
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(apply the Riemann-Hurwitz formula (1) for k = 2). Take an irrational flow
TT* : T2 x R —> T2 on T2 such that chosen points lie on the different
recurrent orbits. These points are declared the equilibria (two-separatrix
saddles) of the flow TT*. Clearly, the flow TT* on T

2 covers a (non-orientable)
foliation, F4, on S

2 such that Sing Fi consists of 4 thorns. All 1-leaves of F^

are recurrent and we call it a 'standard foliation with 4 thorns5. (Further
we deal with a covering representation of F^ which is given by the triple

^=^2,^,0).)

• Opening of a leaf. — Take a recurrent leaf, 7, which is not a
separatrix leaf of a foliation produced from F^. Making an infinite cut along
7 with the banks 74. and 7-, we 'open5 7 and then we glue-up between 74-
and 7- an infinite narrow stripe Fy. Then one attaches sun-set and tripod
singularities to 7+ and 7-, foliating Fy as it is shown in Fig. 1.

Figure 1

• Deformation of a thorn into a sun-set. — Take a thorn singularity
of F4 and produce an infinite cut along it separatrix 7. One 'opens5 7
and then one glues-in between the banks of the cut a parabolic (nodal)
sector. Clearly, one obtains a foliation on the sphere with an extra sun-set

singularity instead of a thorn.

Fix a natural metric on S
2
. The 'tongues5 which appear as a result

of the above homotopy operations can follow two different patterns at the
infinity. They either 'expand5, covering more and more area on 52, so that
each separatrix of an A-foliation is 'catched5 by a parabolic (nodal) sector
of a sun-set. Or else, the tongues can be squeezed sufficiently fast, so that
no one separatrix of an ^-foliation goes to a sun-set. (Note that by the

irrationality of F^ A-foliations admit no cycles.)

COROLLARY 2.1. — A-foliations are either arational or regular.

(Class A is an important class, which includes the Rosenberg
labyrinths in the disc and annulus [36], the (generalized) measured
foliations [37] and the Ply kin attractors on the sphere [35], etc.)
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Let F be a C
00 A-foliation on the 2-sphere. Let F -==• (M, TT, 0) be a

covering representation of F on the surface M of genus g = L
 \ Sing F\ - 1.

For every p e Sing T one defines a divergence of T in p as follows.

DEFINITION 2.3. — Denote by E^ and E^ the now boxes of a thorn

and a sun-set which has been obtained by a deformation of a thorn. Denote

by £3 a (cylindric) flow box which contains a tripod and a sun-set, obtained

by a homotopy of the opening of a leaf. (All of them are shown in Fig. 2
next page. Shaded regions correspond to the orbits which enter or emerge

from the nodal sectors of the respective singularities.) The divergence in

the above singularities is given by the table.

Singularity

thorn

sun-set

tripod

sun-set

Flow box

Ei

E^

Es

E3

Normal form

(3)

(2)

(2)

(2)

Divergence

divp.F=0

divp^= |a-/?[

divp T = f3 - a

divp T = /3 - a

The 'eigenvalues' a, (3 of the singularities in the flow box E^ are chosen

such that the in-going (into E^) separatrix always corresponds to an

a-eigenvalue, while out-going separatrix corresponds to a ^-eigenvalue.

(The above defined divergence of an .4-foliation at the singular points
has the same meaning as those of a Cherry flow on torus, considered in
[28].)

THEOREM 2.1. — Let F be a C°° A-foliation on the 2-sphere with

at least one sun-set singularity. If in every point p e Sing.F the inequality

divp T < 0 holds, then all leaves ofT are compact.

3. Proof.

Proof will consist of two parts. First we will show that for .A-foliations
there exists a global cross-section such that the corresponding return map
does not admit interval exchange transformations (IET), see [21] for the
definition. Next we will prove that under the restrictions, imposed on
the divergence of the foliation in singular points, there exists an ergodic

measure, invariant under the return map (or, what is the same, there are
no 'wandering intervals'). So far, the theorem will follow.
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Ei E^

Let F be an A-foliation on the 2-sphere.

LEMMA 3.1. — There exists a simple closed curve S
1
 which is

transversal to F and each orbit of F {except for the singularities and

the compact separatrices) hits S
1
. Moreover, the return mapping induced

on S
1
 by the orbits off preserves the order of the intervals of continuity.

Proof. — By the definition, ^t-foliations can be obtained from
^4 = (T2, TT*, 0) by a finite number of homotopies.

(i) Since TT* : T2 x R —^ T2 is an irrational flow on torus, one can easily
construct a global cross-section, S1, of TT* (as such one of the meridians of T2

can be chosen). The return mapping ( j ) : S
1 -^ 51, induced by the orbits of

TT*, is defined everywhere except for 4 distinct points P = {pi \ i = 1,..., 4}
in which the separatrices of the 2-saddles hit S1

. The set P splits S1 into 4
disjoint intervals. However, the permutation i ̂  7r(i) defined by (f) is trivial
(i.e. it keeps the orientation and the cyclic order of the intervals on S

1
).

(ii) Let now a homotopy of the deformation of a thorn into a sun-set
be applied to one of the singularities of ^4. It means that in the above
mentioned set P a point p € P must be replaced by a closed segment
Ap € S'1, on which the mapping 0 is not defined. (It corresponds to the
substitution Ei —> £'2 of the flow boxes, shown in Fig. 2.) Clearly, the
Ap e
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cross-section S
1 remains the same. Moreover, by the arguments of (i), (/>

does not permute the continuity intervals on S
1
.

(in) Let, finally, the homotopy of the opening of a leaf be applied to
an ^4 foliation. (The general case of an arbitrary Afoliation is treated
similarly and can be included, with slight modifications, in the below
scheme.) Let 7 be a recurrent orbit of a C°° irrational flow TT* different
from the separatrices of the 2-saddles. Let us 'open' 7 to a narrow stripe
7e = 7 x

 £ ' Notice that the cross-section S
1 for a such flow will remain the

same, as well as the continuity intevals at 5'1 will preserve their order with
regard to the ^-actions.

Now split 7e into two parts, 7^ U 7g~, and move aside the banks of
the cut. This procedure yields us a torus with a hole, Dy which breaks the
stripe 7e.

Let 0 : T
2

 —> T
2 be an involution, defined by the triple ^4 =

(T2,71-^0). Denote by 7 a recurrent orbit, which stays in the involution
with 7. Likewise, let 75,7^ and 7^ be the respective stripes on the torus.
Denote by D a hole which breaks the stripe 7g. (All the above construction
for the case of torus is pictured in the Fig. 3. Clearly, it is also valid for an
arbitrary compact orientable surface with an involution.)

Figure 3

What remains to be done is to glue-up a 'handle5 into T2 which
connects D and D. The handle must contain a pair of singularities covering
the tripod and the sun-set and equivalent to the flow box £"3 shown
in Fig. 2. We claim that the above surface, T^T2, is a double covering
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representation surface for a 'standard5 foliation on S
2 with one leaf opening.

(In Fig. 3 it is shown how to glue-up the relevant handle. Shaded regions
must be pasted together.)

Indeed, all the orbits in the stripe 7^ enter the stable parabolic sector
of the singularity in the flow box £'3. All orbits in the stripe 77 emerge from
the unstable sector of the same singularity. Clearly, the above operations

does not change the position of the global cross-section S
1
. And, as it was

noticed at the top of this item, the continuity intervals on S
1 will preserve

their cyclic order under the ^-actions of the flow on T^T2. Lemma is

proved. D

Figure 4

Remark 3.1. — It is tempting to consider also the 'leaf openings5

shown in the Fig. 4. However, if we consider the representation of these leaf

openings at the covering surface M, it will yield, in general, the interval

exchange mappings over the global cross-section S'1. In this case Lemma 3.1

fails. (Problem: find all 'admissible openings5 of the standard foliation -F4.)

Let ( / ) : S
1

 —>- S
1 be a return mapping defined by an ^-foliation on a

cross-section S
1
. As it was mentioned earlier (f) is defined on S

1
 \ |j A^,

kCK

where Ajc are closed sets in <S'1. The set Ajc is either an isolated point or a

segment which corresponds to the points where orbits that go to (go out)
a sink (source) section of a saddle-node type singularity representing the

sun-set, hit S1
. Our nearest purpose is to extend (f) to the set |j A^.

k^K
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(i) Suppose a separatrix of a 2-saddle hits 5'1, as given by the flow-box
E\ shown in Fig. 2. According to Lemma 4.1, the transition map <^o in the
neighborhood of 2-saddle is y w e^^/^x + • • •. Since 0 = 0j? o ̂ o, where (f)p

is a diffeomorphism along 'regular' part of the flow, the diffeomorphism (/)

near Ak = p has the form x i—> ao e^^^x 4- • • • . We extend (j> in an evident
way:

(4) (j>{p) = 0.

(ii) Suppose that Ajc is a segment in S
1, where 'blind5 orbits of the flow

in the flow-box E^ hit S'1. The transition mapping (J)Q near the saddle-node
type singularity is proven (see §4) to have the form y w \x\

0
'^ + • • • . By

the condition divp T < 0 one gets immediately a = (3. Taking advantage of
the regular component, the diffeomorphism (f> near the ends of Ak is given
by \x\ ^-> a,o\x\ + • • • . Note that by the symmetry of the flow CLQ has the
same value for the 'right' and 'left5 ends of Ak. Therefore we extend (f> to
Ak linearly:

(5) (f) = OQX, x e Ak.

(iii) Finally, let us consider the flow-box E^. Suppose that the transition

map near the 6-saddle p\ is ^^ and near the saddle-node pa is <% •
According to Lemma 4.1, they have the form

4r)(a;)=Mal/ /31+••. and ^ = \x\^^ + ...,

where Q;i,/?i,Q!2,/?2 are the local values in the corresponding points. On

account of the regular components ao,&o? we prolong (j) to Ak = [0,1] as
follows:

ao\x-l\^/^, x>l,

-aol^-ll01/^, 1-d <x<l,

(6) <{>={ (j> € C°° and monotone, 63 < x < 1 — e:i,

ftoN027^2, 0 < X < € 2 ,

[-froM02^2, x<0.

By now, we have (j) extended to the entire S'1. Note that by Lemma 3.1

(f) is a homeomorphism and by the condition div^* < 0 it is also a
diffeomorphism of the circle.
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DEFINITION 3.1. — A diffeomorphism ( f ) : S
1

 —> S
1
 is said to have a

critical point x e S
1
 ifD(f)(x) = 0.

Clearly, there are no critical points of (f) in Ak defined by (4) and (5),
and there are exactly two critical points x{p\) = 0 and x(p^) = 1 of (j)

defined by (6).

DEFINITION 3.2. — Let I C S
1
 be an interval in S

1
. The interval I is

called a wandering interval if^^I) H ̂ (I) = 0, for all n^m.

LEMMA 3.2. — Let T be a C°°-smooth A-foliation with diVpJ^ <, 0
in each p € Sing T. Let (f>: S

1
 —> S

1
 be the corresponding return map on

the global cross-section 51, prolonged according to (4)-(6). Then (f) has no

wandering intervals.

Proof. — For the proof below we use the Denjoy arguments [11]
refined by the technique of Yoccoz [38]. Let I C S

1 be an interval in S
1

with the ends a and b and let |J| be the length of I . Suppose (f): S
1

 —> S
1

be an orientation preserving C^-homeomorphism with a finite set of critical
points K. Along with [38] we consider the function

M( ,̂ i) = [ W [^ww]-1/2 a^ ̂
[oo a.b^K.

The function M is multiplicative, M(<^o-0,J) = M{(f)^(I})M{(j),I). The
strategy one should follow now is to estimate M(^>, I ) from below. It will
be done step by step as follows.

(i) Suppose that I does not lie in the vicinity of K. By the Mean Value
Theorem, one has

M(^, I ) = D^) [Dcf>(a)D(f>(b)]
-1/2, $ e I .

By assumption, (f> is C^
6 and therefore the variation of D(f> on I is finite

M(0,J) > exp(-^Var{j}D^).

(ii) Let Xi C K be a critical point of (f). Suppose I C (^ — e, Xi) or
I C (xi.Xi +e).

(a) Let, in addition, xi ^ I . In the vicinity ofxi the diffeomorphism
(f) is given by (6):

(f>=±A\x\6, where A^a^,^}^, 6 e W/3J^i.
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Yoccoz [38] demands (Z)<^)~1/2 to be convex in I (or, what is the same,
S(f> ^ 0 on J, where S(f) = ^"/^ - J^V^)). We leave it to the reader
to check that the Schwarzian derivative S of (f) is non-positive. Then the
inequality M((/),!) >: 1 follows [38].

We give an independent estimate. Since D(J) = drA^a:^"1, we calculate
directly M2^,/) == (^/afr)6"1, where $ € I is the Mean Value Point. For
the convex functions ^ w - (a + b) and therefore M2^, J) > 1 (recall that
(5 ^ 1 by the assumption of the theorem). Hence, M(0,1) ^ 1.

(b) Suppose, finally, that xi € I. In this case [38] one has
0 < Xi — a < b — Xi. We denote I\ = [xi,b] and, in view of (6),
D(t)(a)D(f)(b) < A^lft-^l2^-1) and |0(Ji)| = f^D(f)(t)dt = 16-^.
Now it follows that

M^I)>^[DWDm}-^>^-

The last step to prove Lemma 3.2 is to establish the

PROPOSITION 3.1. — Let (f) be a homeomorphism of S
1
 specified in

lemma 3.2. Then there exists a positive constant C such that for all N > 1,
all 0 <, k < N and all I C 51, not degenerate to a point, the inequality

M(^,J) ̂ C holds.

Proof follows from the estimates above; we refer the reader to [38]. D

To finish the proof of Lemma 3.2, let us suppose the contrary: there
exists a wandering interval I C S

1 with the endpoints a and b. In particular,
it yields that lim 10^(^)1 = 0. On account of the order of points Ok^bk

k—>oo

on 5'1, it means that M^^, J) —> 0 as k —> oo. This is a contradiction with
Proposition 3.1 which proves Lemma 3.2. D

Proof of the Theorem 2.1. — Denote by A = (J Ajc a set of all points
k€K

x € 5'1 where the orbits going-out from the source section of a saddle node
k hit 5'1 first time, and by ^ = (J Q,k those points of re € S'1, where the

keK
orbits going-in a sink section of a saddle-node k hit S

1 first time. Take
a forward orbit 0(A) = {(^(A) | n\ G N} of A and a backward orbit

O(^) = {^-r^2(^) | us ^ N} of Q. It follows from Lemma 3.2 that there
exist a finite n\ and n^ such that 0(A) and 0(0.) cover S

1
 \ (A U fl).

It means that each orbit of T^ different from the equilibria, goes from
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a source section of a saddle-node to a sink section of a saddle-node. In
particular, all leaves of F are compact.

Theorem is proven.

4. Appendix: The Dulac mapping.

Let X be a C^-smooth vector field with a singularity at 0 which
has a saddle section. Let pi and p2 be the points in W^(0) and 1^(0),
respectively. Furthermore, let Si and 52 be a C

2 curves through pi and p2
transversal to X.

DEFINITION 4.1. — The Dulac (or transition) mapping near the saddle

section of a singularity is called a map T : <Si —> S^ defined between 5i\pi

and fi2\p2.

4.1. C° normal forms.

As it was shown in [8], the Dumortier theorem [12] implies that a C°

change of coordinates and time brings the germs (2) and (3) to their 2-jets:

(7) w(u, v) = [au2 + (/? - M^ + [(^ - 1)^ + ̂ 2]^'

Q r\

(8) w(u, v) = [au2 4- f3uv - v2} — + [(a +1)^4- f3v2} -^-.
CJui CfV

Both (7) and (8) are integrable and admit the first integrals (see also [30])
given, respectively, by

(9) H^H^-i;!1-0-^^,
2

(10) i (a + 1) log "- + l| + /?arctan u + log |v| = C.
v~ I 'u

It is well-known that the germ T(0) of the transition mapping T : 5i —> S^

does not depend on the particular choice of 5i and 52. So far, we consider
5i = (-l,a;), 52 = (2/,1) for (9) and 5i = (-l,;r), S^ = (l,y) for (10).
The transition mapping y = T(x) is implicitly given by

(11) Wl + rrl1-0-^ = |̂ |1 + y^-^

(12) l(a+l)log|l+^2 | -/3arctan- --alog|d
x 1

= j (a +1) log l^^/2^ /3arctan- -alog|^/|.
C/
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It readily follows from (11) and (12) that the main part of T(0) for the
normal form (2) is

(13) ^M0/^-,

and for the normal form (3) is

(14) y w e7 ^^ a^|+•••.

Of course, the normalizing homeomorphism h which brings (2) and (3)
to (7) and (8) does not keep C

1 + 'bounded variation5 c± (71 "^-structure of

the foliation. Still it is clear that the restriction of transformations to the

class C1"1"6 will 'add' some higher degree monomials in the normal forms (7)

and (8), and these monomials will not influence much on the transition

mappings (13) and (14). This point of view will be formalized in the next
section.

4.2. C14"6 normal forms.

LEMMA 4.1. — Transition mappings T\ and T^ near the singular

points denned by the normal forms (2) and (3) are C
1
^-equivalent to the

transition mappings given by (13) and (14).

Proof. — Let T € ^(M) and let 0 be an equilibrium of F given in
some local charts by the normal form (2) or (3). If we look at 0(u, v), ^(n, v)

as at the formal series of monomials of even degrees, then, according to

the results of [9], after an appropriate change of coordinates and time, in
typical case (/) and '0 take the form

• (t)(u,v) = 0, ^(u,v) = Y, CmV2171 for (2) and
m==2

• 0M = E Cm^2771, ̂ v) == 0 for (3).
m=2

In fact, as it was proven in [10], the germs (2) and (3) are C1
^

finitely determined, so that there exists N such that (2) and (3) are
C^-equivalent to

Q

(15) w(n, v) = [au2 + (/3 - l)uv] —
• ^ ^9u

+ [(a - l)uv + (3v2 + ̂  Cm^} ̂

771=2
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(16)
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N- 1 " Q

w(u, v) = \au2 + l3uv - v2 + V^ C^2771] —
L 2-< J 9n

m=2
Q

+[(a+l)m;+/^2]—.
^

It is impossible to estimate directly the mapping T for the germs (15)
and (16), because unlike (7), (8) they are not integrable. However, T can be
evaluated after the blowing-up procedure [8] applied to (15) and (16), the
result of which is given in the charts (u, 77), (0, v), where T] == u/v, 0 = v / u ,

by the equations

dt
au + (/3 - l)w7,

(17)

(18)

for (15) and by

(19)

N
d?7

~dt

d0

dt

^=-»?+»72+EC"u2TO-vm

m=2

N
=-0+02_^^ ,,2m-2

m=2

Ndv

"d^
- = ̂  + (a - l)0z; + ̂  CmV2^-1

m=2

JV

— = au + /3u7y - n^2 + ̂  C^u2771"1^271

m=2

2m-2^2m4-l

_, N

^l^D+n3-^^
m=2

(20)

N
d0 ;m-2- l - ^ + ^ C ^ 2 —
dt

m=2

dv
—, = /3v + (a + l)(9z>

for (16). The basic idea now is to normalize (17), (18) and (19), (20) locally,
then integrate it and glue together the r-mappings, defined piecewise in
the vicinity of the blowing-up circle, see [8]. C°° orbital normal forms in
the neighborhood of the hyperbolic saddle are well understood [7]. They
are given in (re, ̂ -coordinates by

(21) ^^(^y^a^y^). |—-^,
where e = 0, if u> is not resonant and e = ±1, if uj = p / q is resonant,
p ,g , f ceN.
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Comparing (17), (18) and (19), (20) with (21), one finds that by an
orbital C°° transformation (17), (18) can be reduced to

f22)^- ^-^-^ -{ia}L
'23)^-'- .̂
and (19), (20) to

t24' t--. ^-,^-V- ^{^}^

<25) ̂  ^»-

Normal form (2).

• Step 1. a is not resonant. Then a ^ (2m - l)(2m - 2)~1 and
e = 0 for the normal form (22). The transition mapping T = Tp o Tf o Ta,

where Ta and T^ are the transition mappings near the saddle sections
defined by (22) and (23), while T( is the transition mapping along

the saddle connection which joins the saddle sections. Normal forms
(22), (23) are easily integrable, so that for Ta and T^ one obtains
Ta : \x\ \-^ [a;!0, Tp : \x\ ̂  \x\

1
^. Mapping Tt is the transition function in

the 'standard flow-box5 so that Tt:x\-> ao^+ • • •, where OQ 7^ 0. Finally, we
come to T : \x\ ̂  a^x}

0
'-^ + • • •, which differs from (13) only by a positive

multiplier.

• Step 2. a is resonant. In this case in (22) a = (2m - l)(2m - 2)~1

and e = ±1. Normal form (22) is still integrable with the first integral
given by

(26) _^l-2m^2-2m ^_ ̂ ^ _ ^ ̂ g ̂  ̂  ̂

It follows from (26) that the transition mapping Ta near the resonant saddle
is T^ : \x\ ̂  |a;|(2m-i)(2m-2)-1^ _ ^ _ . . .^ r^ mappings Tp and Tt remain

as before, so that in the resonant case one obtains

1 /2m-l\

T: \x\\—> aQ\x\^^-2) 4.....

It is evident now that T does not differ from (13) if we substitute
a=(2m-l)(2m-2)-1 .
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Normal form (3).

• Step 1. a is not resonant. In this case for the normal form (24) one
gets a -^ m(l - m)~1 and e = 0. The transition mapping T = T^ o Tf o Tc,,
where To, and Ta' are transitions near the saddle defined by (24), while T(
is a 'standard flow-box5 transition defined by (25). It is easy to see that
Ta : \x\ i-̂  l^l1/0,!^ : \x\ ̂  l^l01 and Tf : x ^ aox + • • • One comes to
T : \x\ \—r ao|.r| + • • ' , which coincides with (14) up to the choice of a positive
constant O,Q.

• Step 2. a = m(l — m)~"1 is resonant. This implies that in the normal
form (24) e = ±1. In this case (24) is integrable with the first integral

(27) _^-2m^2-2m ̂  ̂ (m - 1) log \U\ = C.

As an easy consequence of (27) one obtains the following estimates:

y^ m—i
T^ : \X\ I——> \X\m-l (1 + . . .), T^ : \X\ •——> \X\ m (1 + . . .).

The mapping Tf is as before and we obtain T : \x\ i—^ ao\x\ + • • • Note that
in the resonant case T coincides, up to a multiplier, with the expression
given by (14).

Now all cases are considered and therefore Lemma 4.1 is proven. D

5. Remark on the problem ofH. Rosenberg.

In the paper [36], p. 29, due to Harold Rosenberg, one finds a list of
open problems concerning labyrinths in discs and annuli (these are special
cases of ^4-foliations on 52, the simplest of which is an .4-foliation with 3
thorns and 1 sun-set singularity).

One of the proposed questions is to find a criterion to discern between
two possible types of behavior of leaves in the labyrinth: they can all be
compact or they can loose itself inside the labyrinth (being dense there).
It was conjectured also that such are the rotation numbers of the labyrinth.

Rotation numbers for labyrinths were introduced by Aranson and
Zhuzhoma [3] and serve well to discern between two transitive foliations
in disc: two of them are topologically equivalent if and only if their
rotation numbers (= homotopy rotation classes) coincide. However, rotation
numbers are not defined when all leaves of the labyrinth are compact (no
one leaf goes to the absolute [3]). So far, we propose here to use a divergence
of the foliation in singular points to separate these two cases.
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COROLLARY 5.1. — Let C be a Rosenberg labyrinth in a disc. Then

all leaves ofC are compact ifdiv C < 0 in all its singular points.
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