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1. Introduction

In this paper, we generalize some of the results already presented in [33, 35],
where supermechanics (that is, variational problems defined for supercurves
σ: R1|1 → R1|1×(M,A) with (M,A) a supermanifold and R1|1 the parameter super-
space), is considered from the viewpoint of Poincaré–Cartan theory. Now, we intend
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to deal with superfield theory; that is, with first order variational problems defined
for superfields σ : (M,A) → (N,B) (here (M,A), (N,B) are supermanifolds).

The basic object in our study is the Poincaré–Cartan form, for which we present
an intrinsic construction in the context of Berezinian variational problems (intrinsic
up to a volume form on the base manifold, as we will see).

Let us recall that there are two kind of integration theories defined on super-
manifolds: the one associated to the Berezin integral and the other associated to
what is called the graded integral. The first one is more suitable to state physical
problems in the supermanifold setting, but it lacks from an associated theory of
Berezinian superdifferential forms. So, it is not possible to work directly with a
Poincaré–Cartan form and to develop a Hamilton–Cartan formalism from it.

The second theory of integration does not have a good physical interpretation
but, conversely, a consistent theory of differential forms is available and therefore,
it is possible to define a Poincaré–Cartan form and to develop the corresponding
Hamilton–Cartan formalism.

According to these two possibilities, variational problems can be stated using
either the Berezin integral or the graded integral; we call them Berezinian or graded
variational problems, respectively. However, there is a deep connection between
both problems. In brief, the relationship is based on the fact that to each first-order
Berezinian variational problem over a graded submersion p : (N,B) → (M,A) we
can associate a graded variational problem of order n + 1 over p, where (m|n) is
the dimension of (M,A) (see Sec. 4.4 below); we refer the reader to Theorem 4.1
for formal definitions and statement of this result, known as the Comparison The-
orem.

With the help of the Comparison Theorem, the way to build a Poincaré–Cartan
form and to develop a Hamilton–Cartan formalism for a first-order Berezinian
variational problem is clear: Firstly, we define the graded Poincaré–Cartan form for
the associated graded variational problem, now of order n + 1, and secondly we
translate, with the hint offered by the Comparison Theorem, this form to an object
which will play the role of Berezinian Poincaré–Cartan form for the Berezinian
variational problem. From this object, it is possible to obtain the Euler–Lagrange
superequations and a Noether Theorem.

A question arises at this point. In the classical case, it is well known that a canon-
ical Poincaré–Cartan form of higher order does not exist. Of course, objects which
can be called higher-order Poincaré–Cartan forms can be defined, but the prob-
lem is that they depend on some additional parameters (such as a connection, see
[12, 15]). Nevertheless, here we give a canonical formulation of the graded Poincaré–
Cartan form for higher-order graded variational problems; the key to understand
how this is achieved is to note that we deal with a special subclass of these problems:
those coming from first-order Berezinian variational ones through the Comparison
Theorem. Actually, our purpose is to solve these first order Berezinian problems,
so we could consider this feature as a byproduct.

Another very important consequence of this formalism in the classical case,
is the existence of a Noether Theorem, which is a basic tool in the study of the
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symmetries of a variational problem. We present here a generalization to the graded
setting.

In order to make the paper relatively self-contained, the first Sections contains
a review of previous results on jet bundles and calculus of variations on superman-
ifolds.

Finally, there are some worked out examples (the (m|2) field theory) and we
analyze a particular case of interest in Physics (supermechanics) showing the coin-
cidence with the results obtained by other methods [33, 35].

2. Basics of Supermanifold Theory

2.1. General definitions

For general references, we refer the reader to [43], [10, Chaps. 2 and 3], [27], [28],
[3] [29] and [45]. The basic idea underlying the definition of a graded manifold is
the substitution of the commutative sheaf of algebras of differentiable functions on
a smooth manifold by another sheaf in which we can accommodate some objects
with a Z2-grading (in what follows, all the gradings considered are assumed to be
Z2-gradings, unless otherwise explicitly stated.)

A graded manifold (or a supermanifold) of dimension (m|n) on a C∞-manifold
M of dimension m, is a sheaf A on M of graded R-commutative algebras — the
structure sheaf — such that,

1. There exists an exact sequence of sheaves,

0 → N → A ∼→ C∞(M) → 0, (2.1)

where N is the sheaf of nilpotents in A and ∼ is a surjective morphism of graded
R-commutative algebras.

2. N/N 2 is a locally free module of rank n over C∞(M) = A/N , and A is locally
isomorphic, as a sheaf of graded R-commutative algebras, to the exterior bundle∧

C∞(M)(N/N 2).

For any open subset U ⊂ M , from the exact sequence (2.1) we obtain the exact
sequence of graded algebras,

0 → N (U) → A(U) ∼→ C∞(U) → 0.

A section f of A is called a graded function (or a superfunction). The image of such
a graded function f ∈ A(U) by the structure morphism ∼ is denoted by f̃ .

The fact that A is a sheaf of graded R-commutative algebras induces a grading
on its sections, and we denote the degree of such an f by |f |.

From the very definition of a supermanifold the structure sheaf of (M,A) is
locally isomorphic to

∧
C∞(M)(N/N 2). An important theorem (known as Batchelor

Theorem [4, 5], but also see [16]), guarantees that in the C∞ category this holds
not only locally, but also globally, although this is no longer true in the complex
analytic category. Thus, for any smooth supermanifold (M,A) there exists a vector



June 20, 2006 20:35 WSPC/IJGMMP-J043 00137
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bundle E → M which is isomorphic to N/N 2 and such that A ∼=
∧

C∞(M)(E), but
this isomorphism is not canonical.

A splitting neighborhood of a supermanifold (M,A) is an open subset U in M

such that the bundle E = N/N 2 is trivial over U and

A|U ∼=
∧

C∞(U)

(E|U ).

If U is a splitting neighborhood, there exists a basis of sections for E|U , denoted
by (x−1, . . . , x−n), along with an isomorphism

A(U) ∼= C∞(U) ⊗R

∧
En, (2.2)

where En denotes the vector R-space generated by (x−1, . . . , x−n). Therefore, the
natural projection A(U) → C∞(U), f �→ f̃ , admits a global section of R-algebras,
σ : C∞(U) ↪→ A(U). If U is a splitting neighborhood, a family of superfunctions
(xi, x−j), 1 ≤ i ≤ m, 1 ≤ j ≤ n, |xi| = 0, |x−j | = 1, is called a graded coordinate
system (or a supercoordinate system) if,

1. xi = σ(x̃i), 1 ≤ i ≤ m, where (x̃1, . . . , x̃m) is an ordinary coordinate system
on U ,

2. {x−1, . . . , x−n} is a basis of sections of E|U ; i.e., x−1, . . . , x−n ∈
∧

En and∏n
j=1 x−j �= 0.

A morphism of graded manifolds φ : (M,A) → (N,B) is a pair of mappings (φ̃, φ∗)
where φ̃ : M → N is a differentiable mapping of smooth manifolds and for every
open subset U ⊂ N , φ∗ : B(U) → (φ̃∗A)(U) = A(φ̃−1(U)) is an even morphism of
graded algebras compatible with the restrictions, and all such that the diagram

B(U) φ∗
−→ A(φ̃−1(U))

|
↓

|
↓

C∞(U) −→̃
φ∗

C∞(φ̃−1(U))

commutes.
Throughout this paper, we assume that M is connected and oriented by a volume

form η. We confine ourselves to consider coordinate systems adapted to this volume
form; i.e.,

η = dx̃1 ∧ · · · ∧ dx̃m.

We refer all our constructions to this volume, but we simply call “intrinsic con-
structions” those results which are independent of η, in order to avoid continuous
mention to η. Note that, by Batchelor’s Theorem (see [4]), the natural projection
A(M) → C∞(M) admits a global section σ : C∞(M) → A(M). Thus, once a sec-
tion σ has been fixed, every ordinary volume form η on M induces a graded volume
ηG on (M,A).
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Let F ,G be sheaves on a topological space X . For any open subset U subset M ,
Hom(F|U ,G|U ) denotes the space of morphisms between the sheaves F|U and G|U ;
this is an abelian group in a natural way. The sheaf of homomorphisms is the sheaf
Hom(F ,G) given by Hom(F ,G)(U) = Hom(F|U ,G|U ) with the natural restriction
morphisms.

The sheaf of left A-modules of derivations of a graded manifold (M,A) is the
subsheaf of EndR(A) whose sections on an open subset U ⊆ M are R-linear graded
derivations D : A|U → A|U . This sheaf is denoted by DerR(A) or simply Der(A),
and its elements are called graded vector fields (or supervector fields) on the graded
manifold (M,A). The notation XG(M) is also often used.

Let U be a coordinate neighborhood for a graded manifold (M,A) with graded
coordinates (xi, x−j), 1 ≤ i ≤ m, 1 ≤ j ≤ n. There exist even derivations
∂/∂x1, . . . , ∂/∂xm and odd derivations ∂/∂x−1, . . . , ∂/∂x−m of A(U) uniquely char-
acterized by the conditions

∂xj

∂xi
= δj

i ,
∂x−j

∂xi
= 0,

∂xj

∂x−i
= 0,

∂x−j

∂x−i
= δj

i

(negative indices running from −n to −1, positive ones from 1 to m) and such that
every derivation D ∈ DerA(U) can be written as

D =
m∑

i=1

D(xi)
∂

∂xi
+

m∑
j=1

D(x−j)
∂

∂x−j
.

In particular, Der(A(U)) is a free right A(U)-module with basis

∂

∂x1
, . . . ,

∂

∂xm
;

∂

∂x−1
, . . . ,

∂

∂x−m
.

If U ⊆ M is an open subset, the algebraic dual of the graded A-module Der(A(U))
is (DerA(U))∗ = HomA(Der(A(U)),A(U)), which has itself a natural structure of
graded A-module and it defines a sheaf U �→ (DerA(U))∗.

The sheaves of right A-modules of graded differential forms on (M,A) are the
sheaves

Ωp
G(M) =

p∧
(DerA)∗.

We also set ΩG(M) =
∑

p∈N
Ωp

G(M), with Ω0
G(M) = A.

The graded differential forms on (M,A) are simply called graded forms. The
three usual operators: insertion of a graded vector field, graded Lie derivative with
respect to a graded vector field and the graded exterior differential, are defined in
a similar way to the classical case (e.g., see [27]), and denoted by ιX , LG

X , and dG,
respectively.

2.2. Supervector bundles

Let GL(V ) be the general linear supergroup of a supervector space V = V0 ⊕ V1.
We set GL(p|q) = GL(Rp|q). For the definition of the graded structure of GL(p|q)



June 20, 2006 20:35 WSPC/IJGMMP-J043 00137
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as a super Lie group, we refer the reader to [3, I, Sec. 3], [7, Chap. 2, Sec. 1],
[8, Sec. 1.5], [10, Sec. 2.11], [11], [29, Chap. 4, Sec. 10], [38, Sec. 2.14], [39, Sec. 2], [42,
Sec. 4.19], and [44, Sec. 2.2.1].

Let (M,A) be an (m|n)-dimensional supermanifold. As is well known (e.g.,
see [10, Sec. 3.2], [42, 7.10]), a supervector bundle of rank (p|q) over (M,A) can
be described either (i) as a fiber bundle V over M with typical fiber Rp|q and
structure group GL(p|q), or (ii) as a locally free sheaf of A-modules V of rank (p|q).
The description in (ii) means that every point x ∈ M admits an open neigborhood
U ⊆ M such that V|U is isomorphic — as a sheaf of A|U -modules — to Ap|q|U =
Ap|U ⊕ ΠAq|U (direct sum of p copies of A and q copies of ΠA), where Π denotes
the functor of change of parity; precisely, for every open subset O ⊆ U we have
V(O) ∼= Ap(O) ⊕ ΠAq(O).

More formally, we can state (see [37, 2.11 Theorem]): There is a one-to-one
(functorial) correspondence between the set of isomorphism classes of locally free
sheaves of (left) graded A-modules of rank (p|q) over M and the set of isomorphisms
classes of supervector bundles of rank (p|q) over the graded manifold (M,A). Also
see [42, Theorem 7.10.] for a slightly different approach.

We remark that the tangent and cotangent “supervector bundles” introduced
in [27] are not supervector bundles in the previous sense, as they are not locally
trivial. Because of this, we prefer to work with the supertangent bundle ST (M,A)
of (M,A) introduced by Sánchez-Valenzuela, which corresponds to the locally free
sheaf of A-modules of derivations, DerA. For our purposes, another important rea-
son to do this, is that the graded manifold of 1-jets of graded curves from R1|1 to a
graded manifold (M,A) is isomorphic to ST (M,A); i.e., J1

G(p)  ST (M,A), where
J1

G(p) is the graded manifold of graded 1-jets of sections of the natural projection
onto the first factor, p : R1|1 × (M,A) → R1|1.

Let π : (E, E) → (M,A) be a supervector bundle. For any x ∈ M , we denote by
π−1(x) the superfiber over x, i.e., the supermanifold whose underlying topological
space is π̃−1(x) and whose structure sheaf is

Ax = (E�Kx)|π̃−1(x),

where Kx is the subsheaf of E whose sections vanish when restricted to π̃−1(x).
For any x ∈ M , π−1(x) is isomorphic with the standard fiber of π.
A supervector bundle morphism from the vector bundle πE : (E, E) → (M,A)

to the vector bundle πF : (F,F) → (M,A) is a supermanifold morphism

H : (E, E) → (F,F)

such that πF ◦H = πE the restriction of which to each superfiber π−1
E (x) is super-

linear. The following consequence can be proved:

Proposition 2.1 [Proposition 3.3 in [37]]. Let (M,A) be a graded manifold,
let K,L be two locally free sheaves of graded A-modules of ranks (p|q) and (r|s),
respectively, and let πE : (E, E) → (M,A), πF : (F,F) → (M,A) be the supervector
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bundles that K and L give rise to, respectively. Each morphism ψ : K → L of
sheaves of graded A-modules over M defines a morphism

Hψ : (E, E) → (F,F)

such that πF ◦Hψ = πE and it restricts to a superlinear morphism over each fiber.

Another construction which we will use is the pull-back (or inverse image) of
a supervector bundle along a graded submersion, which is a particular case of the
pull-back of modules over ringed spaces. For our purposes, it suffices the following
description.

Let p : (N,B) → (M,A) be a graded submersion, and let K be a sheaf of
graded A-modules over M with projection π. The pull-back p∗K is the sheaf of
p∗A-modules over N where to each open V ⊂ N , it corresponds

p∗K(V ) = {(k, y) ∈ K(p̃(V )) × V : π(k) = p̃(y)}.

It is customary to write p∗K = K×(M,A)(N,B). Note that if we consider the super-
vector bundle on (M,A) given by K, then p∗K gives a supervector bundle on (N,B).

3. Graded Jet Bundles

3.1. Notations and definitions

For the details of the construction of graded jet bundles associated to a graded
submersion p : (N,B) → (M,A), we refer the reader to [21, 22, 26, 30, 31]. We also
note that other approaches to superjet bundles of interest in Physics are possible,
see [19].

We denote by

pk :
(
Jk

G(p),AJk
G(p)

)
→ (M,A)

the graded k-jet bundle of local sections of p, with natural projections

pkl :
(
Jk

G(p),AJk
G(p)

)
→

(
J l

G(p),AJl
G(p)

)
, k ≥ l.

Remark 3.1. Sometimes we will write pk,l in order to avoid confusions, as in the
case of the projection pk,k−1 (of Jk

G(p) onto Jk−1
G (p)) and even we will employ pk

l

indistinctly.

Each section σ : (M,A) → (N,B) of the graded submersion p induces a closed
embedding of graded manifolds

jkσ : (M,A) →
(
Jk

G(p),AJk
G(p)

)
,

which is called the graded k-jet extension of σ.
We set (m|n) = dim(M,A), (m + r|n + s) = dim(N,B), and let

(xα), α = −n, . . . ,−1, 1, . . . , m,

(yµ), µ = −s, . . . ,−1, 1, . . . , r.

}
(3.1)
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be a fibered coordinate system for the submersion p : (N,B) → (M,A), defined
over an open domain V ⊆ N . This means that the graded functions (xα),
i = −n, . . . ,−1, 1, . . . , m, belong to p∗A(U), where U = p̃(V ).

System (3.1) induces a coordinate system for Jk
G(p) on (p̃k0)−1(V ), denoted

by yµ
IA, where µ = −s, . . . ,−1, 1, . . . , r, I = (i1, . . . , im) ∈ Nm, and A =

(−α1, . . . ,−αl) ∈ (Z−)l, for l = 0, . . . , n, is a strictly decreasing multi-index, such
that |I| + |A| ≤ k, with the assumption yµ

0∅ = yµ. This system of coordinates is
determined by the following equations:

(jkσ)∗yµ
IA =

∂i1

(∂x1)i1
◦ · · · ◦ ∂im

(∂xm)im
◦ ∂

∂x−αl
◦ · · · ◦ ∂

∂x−α1
(σ∗yµ),

for every smooth section σ : (U,A|U ) → (V,B|V ) of the given graded submersion.
Sometimes we will write expressions such as yµ

I,A instead of yµ
IA. This will be

done in order to avoid confusions involving positive and negative multiindices.
The parity of yµ

IA is the sum modulo 2 of the parity of yµ and |A|. In particular,
the parity of the coordinate system induced by (3.1) on J1

G(p) is explicitly given by

|yµ
i | = 0, i = −n, . . . ,−1, µ = −s, . . . ,−1

|yµ
i | = 1, i = 1, . . . , m, µ = −s, . . . ,−1

|yµ
i | = 1, i = −n, . . . ,−1, µ = 1, . . . , r

|yµ
i | = 0, i = 1, . . . , m, µ = 1, . . . , r


and we accordingly have,

dim
(
J1

G(p),AJ1
G(p)

)
= (m + r + mr + ns|n + s + ms + nr).

We also work with the inverse limit(
J∞

G (p) = lim← Jk
G(p),AJ∞

G (p) = lim→ AJk
G(p)

)
of the system

(
Jk

G(p),AJk
G(p); pkl, k ≥ l

)
, with natural projections

p∞ :
(
J∞

G (p),AJ∞
G (p)

)
→

(
M,A

)
,

p∞k :
(
J∞

G (p),AJ∞
G (p)

)
→

(
Jk

G(p),AJk
G(p)

)
.

Given the submersion p : (N,B) → (M,A), we denote by V(p) the vertical sub-
space of ST (N,B). In particular, this applies to the various pk and pkl submersions
derived from p, so we will write V(pk),V(pkl), etc.

In the following, we will work with differential operators acting on the spaces
Jk

G(p), and in order to deal with the multi-index notation (especially for negative
multi-indices) it will be useful to establish the following conventions.

1. We will denote positive multi-indices by the capital letters I, J, K, . . . and the
negative ones by A, B, C, . . . . An arbitrary multi-index (containing both positive
and negative indices) will be denoted P, Q, R, . . . . By In we will understand the
set In = {1, 2, . . . , n}.
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2. The multi-index ∅ amounts to take 0 within any expression in which it appears,
that is:

∂∅

∂x∅FIA = 0, GJ∅ = 0.

The multi-index (0) amounts to take the identity:

∂0

∂x0
FIA = FIA, GJ0 = GJ .

3. A negative multi-index A with length l in Jk
G(p) has the structure

A = (−α1, . . . ,−αl)

with l ≤ k, where αi ∈ In, dim(M,A) = (m|n), 1 ≤ i ≤ l. Each −αi gives the odd
coordinate of (M,A) with respect to which we are computing the derivative; that
is, the place occupied by −αi in the multi-index only expresses the order in which
the corresponding derivative appears from left to right. Thus, if dim(M,A) =
(3|6), we could consider J4

G(p) and A = (−3,−5,−2), then ∂|A|
∂xA would represent

∂|A|

∂xA
=

∂

∂x−3
◦ ∂

∂x−5
◦ ∂

∂x−2
.

4. If we are dealing with Jk
G(p), a negative multi-index A always has length l ≤ k.

By convention, if the length of A is l > k, then A = ∅. Note that if l > n, auto-
matically A = ∅. Generally, if a negative multi-index A contains two repeated
indices, A = ∅.

5. In principle, a negative multi-index does not need to be ordered, but nothing
prevents from having such ordered indices as the length 5 multi-index

B = (−9,−7,−4,−2,−1)

in J8
G(p), with dim(M,A) = (2|9).

6. For negative multi-indices, we define the operation of (non-ordered) juxtaposi-
tion. If A has length l and B has length q,

A = (−α1, . . . ,−αl) with αi ∈ In

B = (−β1, . . . ,−βq) with βj ∈ In,

then their juxtaposition is given by:

A � B =


(−α1, . . . ,−αl,−β1, . . . ,−βq) if l + q ≤ k and − ξi �= −ξj

being ξi ∈ {α1, . . . , αl, β1, . . . , βq}
∅ other case.

Note that A � B �= B � A. In particular, if A = (−j) and B = (−β1, . . . ,−βq),
then

A � B = (−j,−β1, . . . ,−βq)
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and that means
∂q+1

∂xA�B
=

∂

∂x−j
◦ ∂

∂x−β1
◦ · · · ◦ ∂

∂x−βq
,

provided 1 + q ≤ k and there are no repeated indices.
7. If we take a positive multiindex I and a negative one A (or a pair of positive

multiindices) their juxtaposition is analogously defined, but in this case it is a
commutative operation. To stress this fact we then write I + A, I + J , etc.

3.2. Graded contact forms

Let p : (M,A) → (N,B) be a graded submersion with (m|n) = dim(M,A),
(m + r|n + s) = dim(N,B). The graded manifold (Jk

G(p),AJk
G(p)) is endowed

with a differential system, which characterizes the holonomy of the sections of
pk : (Jk

G(p),AJk
G(p)) → (M,A). Precisely, a graded 1-form ω on (Jk

G(p),AJk
G(p)) is

said to be a contact form if (jkσ)∗ω = 0, for every local section σ of p. With the
same assumptions and notations as in Subsec. 3.1, the set of contact forms is a
sheaf of AJk

G(p)-modules locally generated by the forms

θµ
IA = dGyµ

IA −
m∑

h=1

dGxh · yµ
{h}�I,A −

n∑
j=1

ε(j, A)dGx−j · yµ
I,{−j}�A, (3.2)

where α = −s, . . . ,−1, 1, . . . , r, |I| + |A| ≤ k − 1.

These forms fit together in order to define a global (pk,k−1)∗V(pk)-valued 1-form
on (Jk

G(p),AJk
G(p)), called the structure form on the graded k-jet bundle, given by

θk = θµ
IA ⊗ ∂

∂yµ
IA

, (3.3)

which characterizes graded k-jet extensions of sections of p, as follows: a section
σ̄ : (M,A) →

(
Jk

G(p),AJk
G(p)

)
of pk coincides with the k-jet extension of a certain

section of p if and only if, σ̄∗θk = 0.

3.3. Graded lifts of vector fields

Consider a graded submersion p : (N,B) → (M,A). We will define liftings of graded
vector fields to superjet bundles Jk

G(p), 1 ≤ k ≤ ∞.

3.3.1. Horizontal lifts

Let X be a vector field on (M,A). The horizontal or total graded lift XH of X is the
vector field on

(
J∞

G (p),AJ∞
G (p)

)
uniquely determined by the following equations:

jk(σ)∗(XH(f)) = X(jk(σ)∗(f)), ∀ k ∈ N,

for all open subsets V ⊆ N , W ⊆ p−1
k0 (V ), every f ∈ AJk

G(p)(W ), and every smooth
section σ : (U,A(U)) → (V,B(V )) of p, with U = p̃(V ). A vector field X on
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J∞
G (p) is said to be horizontal if vector fields X1, . . . , Xr on (M,A) and functions

f1, . . . , fr ∈ AJ∞
G (p) exist, such that X = f i(Xi)H .

If (xα, yµ) is a fibered coordinate system for the submersion p, then the expres-
sion for the horizontal lift of the basic vector field ∂/∂xα in the induced coordinate
system, is

d

dxα
=
(

∂

∂xα

)H

=
∂

∂xα
+ yµ

{α}�Q

∂

∂yµ
Q

. (3.4)

The map X �→ XH is an A-linear injection of Lie algebras (cf. [30, 31]). Note that
XH is p∞-projectable onto X . Moreover, we can consider AJk+1

G (p) as a sheaf of
AJk

G(p)-algebras via the natural injection

p∗k+1,k : AJk
G(p) → AJk+1

G (p),

and, for every k ∈ N, XH induces a derivation of AJk
G(p)-modules,

XH : AJk
G(p) → AJk+1

G (p).

Let Ωk
G(J∞

G (p)) be the space of graded differential k-forms on J∞
G (p). We denote

by Hs
r (J∞

G (p)) the module of (r + s)-forms on J∞
G (p) that are r-times horizontal

and s-times vertical; that is, such that they vanish when acting on more than s

p∞-vertical vector fields or more than r p∞-horizontal vector fields.
Let dG be the exterior differential, and let

D : Hs
r (J∞

G (p)) → Hs
r+1(J

∞
G (p))

∂ : Hs
r (J∞

G (p)) → Hs+1
r (J∞

G (p))

be the horizontal and vertical differentials, respectively. We have

dG = D + ∂,

D2 = 0,

∂2 = 0,

D ◦ ∂ + ∂ ◦ D = 0.

We can make a local refinement of the bigrading above, which depends on the chart
chosen, but we will make use of it only when computing in local coordinates. Let
(W,AJ∞

G (p)(W )) be an open coordinate domain in J∞
G (p). Since(

∂

∂xi
,

∂

∂x−j

)
1≤i≤m,1≤j≤n

is a basis of vector fields for (M,A), we can define Hs
r1,r2

(W ) to be the submodule
of differential forms in Hs

r1+r2
(W ) such that they vanish when acting on more than



June 20, 2006 20:35 WSPC/IJGMMP-J043 00137
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r1 vector fields among the ∂/∂xi, or when acting on more than r2 vector fields
among the ∂/∂x−j. Therefore,

Hs
r (W ) =

⊕
r1+r2=r

Hs
r1,r2

(W ),

with projections πr1,r2 : Hs
r (W ) → Hs

r1,r2
(W ). Considering the action of D on a

fixed Hs
r1,r2

(W ), we define

D0 = πr1+1,r2 ◦ D,

D1 = D − D0.

3.3.2. Infinitesimal contact transformations

Let p : (M,A) → (N,B) be a graded submersion. A homogeneous vector field Y on
(Jk

G(p),AJk
G(p)) is said to be a k-order graded infinitesimal contact transformation if

an endomorphism h of AJk
G(p)⊗B DerA(B) — considered as a left AJk

G(p)-module —
exists such that,

LG
Y θk = h ◦ θk,

where θk is the structure form (recall (3.3)).

Theorem 3.2 [26]. Let p : (N,B) → (M,A) be a graded submersion. For every
graded vector field X on (N,B), there exists a unique k-order graded infinitesimal
contact transformation X(k) on (Jk

G(p),AJk
G(p)) projecting onto X.

Moreover, for every k > l, the vector field X(k) projects onto X(l) via the natural
map pkl : (Jk

G(p),AJk
G(p)) → (J l

G(p),AJl
G
(p)).

4. Berezinian Sheaves

4.1. The Berezinian sheaf of a supermanifold

The Berezinian sheaf is a geometrical object designed to make possible an integra-
tion theory in supermanifolds, tailored to the needs coming from Physics. A global
description of it can be given as follows (see [25, 30], cf. [29]).

Let (M,A) be a graded manifold, of dimension (m|n), and let Pk(A) be the
sheaf of graded differential operators of A of order k. This is the submodule of
End(A) whose elements P satisfy the following conditions:

[. . . [[P, a0], a1], . . . , ak] = 0, ∀ a0, . . . , ak ∈ A.

Here the element a ∈ A is identified with the endomorphism b �→ ab. The sheaf
P k(A) has two essentially different structures of A-module: For every P ∈ P k(A)
and every a, b ∈ A,

1. the left structure is given by (a · P )(b) = a · P (b); and
2. the right structure is given by (P · a)(b) = P (a · b).
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This is important as the Berezinian sheaf is considered with its structure of right
A-module.

One has that if (xi, x−j), 1 ≤ j ≤ n, 1 ≤ i ≤ m, are supercoordinates for a
splitting neighborhood U ⊂ M , Pk(A(U)) is a free module (for both structures,
left and right) with basis(

∂

∂x1

)α1

◦ · · · ◦
(

∂

∂xm

)αm

◦
(

∂

∂x−1

)β1

◦ · · · ◦
(

∂

∂x−n

)βn

,

α1 + · · · + αm + β1 + · · · + βn ≤ k.


Let us consider the sheaf P k(A, Ωm

G ) = Ωm
G (M) ⊗A P k(A), of m-form valued dif-

ferential operators on A of order k, and for every open subset U ⊂ M , let Kn(U)
be the set of operators P ∈ Pn(A(U), Ωm

G (U)) such that, for every a ∈ A(U) with
compact support, there exists an ordinary (m − 1)-form of compact support, ω,
satisfying

P̃ (a) = dω.

The idea is to take the quotient of Pn(A, Ωm
G ) by Kn; in this way, when we later

define the integral operator, two sections differing in a total differential will be
regarded as equivalent (Stokes Theorem). Having this in mind, we observe that Kn

is a submodule of Pn(A, Ωm
G ) for its right structure, so we can take quotients and

obtain the following description of the Berezinian sheaf, Ber(A):

Ber(A)  Pn(A, Ωm
G )�Kn.

We write this as an equivalence because there are other definitions of the Berezinian
sheaf. For us, however, this is the definition.

According to this description, a local basis of Ber(A) can be given explicitly: If
(xi, x−j), 1 ≤ j ≤ n, 1 ≤ i ≤ m, are supercoordinates for a splitting neighborhood
U ⊂ M , the local sections of the Berezinian sheaf are written in the form

Γ(U, Ber(A)) =
[
dGx1 ∧ · · · ∧ dGxm ⊗ ∂

∂x−1
◦ · · · ◦ ∂

∂x−n

]
· A(U), (4.1)

where [·] stands for the equivalence class modulo Kn.

4.2. Higher order Berezinian sheaf

Let p : (N,B) → (M,A) be a graded submersion. Given P ∈ Pl(A, Ωm
G ), let

PH : AJk
G(p) → H0

m(Jk
G(p))

be the first-order operator defined by the condition,

jk(σ)∗PHf = Pjk(σ)∗f,

for every f ∈ AJk
G(p) and every local section σ of p. We call PH the total or

horizontal lift of P . Let us denote by PH l(Ak, H0
m) (resp. KH l(Ak)) the sheaf of

those operators in

P l
(
AJk

G(p), H
0
m

(
Jk

G(p)
))
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that are horizontal lifts of operators of P l(A, Ωm
G ) (resp. Kl(A)). Then, the k-order

Berezinian sheaf is defined as

Berk(Ak) =
PH n(Ak, H0

m)
KH n(Ak)

⊗AJk
G(p).

According to this description, a local basis for Berk(Ak) can be given explicitly: If
(xi, x−j), 1 ≤ i ≤ m, 1 ≤ j ≤ n, are the graded A-coordinates for the coordinate
open domain (U,A(U)) and (V,B(V )) is a B-coordinate open domain with a suitable
V ⊆ p̃−1(U), then, if W is an open subset in Jk

G(p) such that W ⊆ p̃−1
k (U) we have

Γ(W, Berk(Ak)) =
[
dGx1 ∧ · · · ∧ dGxm ⊗ d

dx−1
◦ · · · ◦ d

dx−n

]
· AJk

G(p)(W ).

4.3. The Berezin integral

Given a supermanifold (M,A), the Berezin integral can be defined over the sections
of the Berezinian sheaf with compact support, by means of the formula∫

Ber

: Γc
U (Ber(A)) → R

[P ] �→
∫

U

P̃ (1).
(4.2)

In this expression, M is assumed to be oriented, and the right integral is taken with
respect to that orientation. In this sense, having a fixed volume form on M is not
a loss of generality.

4.3.1. An example

Let (M,A) = (Rm, C∞(Rm)⊗ Ω(Rn)) be the standard graded manifold. A section
of A is just a differential form ρ = fI(x1, . . . , xm)x−I , 0 ≤ |I| ≤ n, where (xi),
1 ≤ i ≤ m, are the coordinates of Rm and we write x−j = dxj for the odd
coordinates; thus

ρ = f0 + fjx
−j + · · · + f1...nx−1 · · ·x−n,

and we recover the formula for Berezin’s expression common in Physics textbooks
(except for a global sign); i.e., “to integrate the component of highest odd degree”
(see [6]): ∫

Ber

[
dGx1 ∧ · · · ∧ dGxm ⊗ ∂

∂x−1
◦ · · · ◦ ∂

∂x−n

]
· ρ

= (−1)(
n
2)
∫

Rm

f1...ndx1 · · ·dxm.

4.3.2. Lie derivative on the Berezinian sheaf

If X is a graded vector field, it is possible to define the notion of graded Lie derivative
of sections of the Berezinian sheaf with respect to X . This is the mapping

LG
X : Γ(Ber(A)) → Pn+1(A, Ωm

G )�Kn+1 = Γ(Ber(A)),
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given by

LG
X [ηG ⊗ P ] = (−1)|X||ηG⊗P |+1[ηG ⊗ P ◦ X ], (4.3)

for homogeneous X and ηG ⊗ P .
This Lie derivative has the properties that one could expect:

1. For homogeneous X ∈ Der(A), ξ ∈ Γ(Ber(A)) and a ∈ A,

LG
X(ξ · a) = LG

X(ξ) · a + (−1)|X||ξ|ξ · X(a).

2. For homogeneous X ∈ Der(A), ξ ∈ Γ(Ber(A)) and a ∈ A,

LG
a·X(ξ) = (−1)|a|(|X|+|ξ|)LG

X(ξ · a).

3. Given a system of supercoordinates (xi, x−j), 1 ≤ j ≤ n, 1 ≤ i ≤ m. If

ξxi,x−j =
[
dGx1 ∧ · · · ∧ dGxm ⊗ ∂

∂x−1
◦ · · · ◦ ∂

∂x−n

]
is the local generator of the Berezinian sheaf, then

LG
∂

∂xi
(ξxi,x−j) = 0,

LG
∂

∂x−j
(ξxi,x−j) = 0.

4.3.3. Berezinian divergence

We can now introduce the notion of Berezinian divergence. Let (M,A) be a graded
manifold whose Berezinian sheaf is generated by a section ξ. The graded function
divξ

B(X) given — for homogeneous X — by the formula

LG
X(ξ) = (−1)|X||ξ|ξ · divξ

B(X)

(and extended by A-linearity) is called the Berezinian divergence of X with respect
to ξ. When there is no risk of confusion, we simply write divB(X).

For example, if we consider the standard graded manifold of Example 4.3.1;
i.e., (M,A) = (Rm, C∞(Rm) ⊗ Ω(Rn)), then Ber(A) is trivial and generated by

ξ =
[
dGx1 ∧ · · · ∧ dGxm ⊗ ∂

∂x−1
◦ · · · ◦ ∂

∂x−n

]
,

and the Berezinian divergence of a graded vector field X = fi∂/∂xi + gj∂/∂x−j

with respect to ξ is given by

divB(X) =
m∑

i=1

∂fi

∂xi
+

n∑
j=1

(−1)|gj | ∂gj

∂x−j
. (4.4)

Having in mind the previous section, these notions can be carried over to higher
orders with the appropriate modifications.
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4.4. Graded and Berezinian Lagrangian densities

Let us introduce the notion of variational problems in terms of the Berezinian sheaf.
A Berezinian Lagrangian density of order k for a graded submersion p : (N,B) →

(M,A), is a section

[PH ] · L ∈ Γ(Berk(Ak)).

In particular, a first-order Berezinian Lagrangian density can locally be written as
ξ · L, where

ξ =
[
dGx1 ∧ · · · ∧ dGxm ⊗ d

dx−1
◦ · · · ◦ d

dx−n

]
and L ∈ AJk

G(p) is an element of the ring of graded functions on the graded bun-
dle of 1-jets (J1

G(p),AJ1
G(p)). In this paper, we only consider first-order Berezinian

Lagrangian densities and assume that M is oriented by an ordinary volume form η.
The variation of the Berezinian functional associated to ξ · L, along a section s

of p : (N,B) → (M,A), is the mapping

δsIBer(L): Vc(N) → R

Y �→
∫

Ber

(j1s)∗(LG
Y(1)

(ξ · L)),

where Vc(N) denotes the space of graded vector fields on (N,B), which are verti-
cal over (M,A) and whose support has compact image on M ; Y(1) is the graded
infinitesimal contact transformation associated to Y , and LG

Y(1)
(ξ · L) is defined by

means of (4.3), which makes sense as Y is p-projectable. A section s is called a
Berezinian extremal if δsIBer = 0.

Finally, we turn our attention to the relation between Berezinian and graded
variational problems. As we will see shortly, even restricting ourselves to first-
order Berezinian Lagrangian densities we must consider higher-order graded
Lagrangian ones.

A graded Lagrangian density of order k for a graded submersion p : (N,B) →
(M,A) is a section

ηG · L ∈ Ωm
G (M) ⊗A AJk

G(p),

where (m|n) = dim(M,A), ηG is a graded m-form on (M,A), and L is an element
of the graded ring AJk

G(p), of graded functions on the graded k-jet bundle Jk
G(p).

The variation of the functional associated to a graded k-order Lagrangian den-
sity ηG · L along a section s of p : (N,B) → (M,A), is the mapping

δsIkgrad(L) : Vc
G(N) → R

Y �→
∫

M

(jks)∗(LG
Y(k)

(ηG · L)),
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where Vc(N) is as before and Y(k) is the k-graded infinitesimal contact transforma-
tion prolongation of Y .

Berezinian and graded variational problems are related through the following
result (usually known as the Comparison Theorem):

Theorem 4.1 [26, 30]. Let p : (N,B) → (M,A) be a graded submersion, with
(m|n) = dim(M,A). Every first-order Berezinian Lagrangian density ξ · L for p is
equivalent to a graded Lagrangian density of order n+1 in the following sense: There
exists an element L′ in the graded ring AJn+1

G (p) of the graded (n + 1)-jet bundle

Jn+1
G (p) such that the Berezinian variation of the functional associated to ξ·L equals

the graded variation of the functional associated to ηG ·L′ = dGx1 ∧ · · · ∧dGxm ·L′;
that is,

(δsIBer(L))(Y ) =
(
δsI

n+1
grad(L′)

)
(Y ),

for every section s of p, and every graded p-vertical Y ∈ Vc(N,B).

5. The Jk Operators

As stated in the Introduction, our intention is to study the Cartan formalism for
variational problems and in this formalism a central object is the so-called Cartan
form for field theory, denoted ΘL

0 and locally given by

ΘL
0 =

m∑
i=1

r∑
µ=−s

(−1)m+idGx1 ∧ · · · ∧ d̂Gxi ∧ · · · ∧ dGxm

∧
(

dGyµ −
m∑

α=−n

dGxα · yµ
α

)
∂L

∂yµ
i

+ ηG · L. (5.1)

We will provide an intrinsic construction of ΘL
0 and we will develop from it a

consistent theory of the first-order calculus of variations on supermanifolds. The
idea is the same as those used in the formulation of mechanics (see [20, 41]), but
with some new details that arise because this time we deal with fields (for an
interesting discussion of the classical formalism in this case see also [17] and [18]);
let us describe it very briefly.

The graded generalization of the vertical endomorphism of the tangent bundle
used in classical mechanics would be (unlike the case of mechanics, note that J̃ is
not an endomorphism here):

J̃ .=
m∑

i=1

r∑
µ=−s

(−1)m+idGx1 ∧ · · · ∧ d̂Gxi ∧ · · · ∧ dGxm ∧ dGyµ ⊗ ∂

∂yµ
i

.

Also, for each α ∈ {−n, . . . ,−1, 1, . . . , m}, i ∈ {1, . . . , m}, the graded analogue of
the Liouville vector field would be

∆αi =
r∑

µ=−s

(−1)m+iyµ
α

∂

∂yµ
i

,
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and finally (by using Einstein’s convention, from now on we omit the summation
symbols),

J .= J̃ − dGx1 ∧ · · · ∧ d̂Gxi ∧ · · · ∧ dGxm ∧ dGxα ⊗ ∆αi.

Let us evaluate LG
J (L). It will be useful to bear in mind the developed expression

for J :

J = (−1)m+idGx1 ∧ · · · ∧ d̂Gxi ∧ · · · ∧ dGxm ∧
(
dGyµ − dGxα · yµ

α

)
⊗ ∂

∂yµ
i

. (5.2)

Note that

ι ∂

∂y
µ
i

(dGL) = ι ∂

∂y
µ
i

(
dGxα · dL

dxα
+ dGyν · ∂L

∂yν
+ dGyν

α · ∂L

∂yν
α

)
=

∂L

∂yν
i

.

We then have

LG
J (L) = ιJ (dGL)

= (−1)m+idGx1 ∧ · · · ∧ d̂Gxi ∧ · · · ∧ dGxm

∧
(
dGyµ − dGxα · yµ

α

)
· ι ∂

∂y
µ
i

(dGL)

= (−1)m+idGx1 ∧ · · · ∧ d̂Gxi ∧ · · · ∧ dGxm

∧
(
dGyµ − dGxα · yµ

α

)
· ∂L

∂yµ
i

= ΘL
0 − dGx1 ∧ · · · ∧ dGxm · L,

so that

ΘL
0 = LG

J (L) + ηG · L.

Thus, to have ΘL
0 intrinsically defined, there remains to prove that this is the case

for J . Notice that J is the graded analogue of the (1, m)-tensor field Sη that
appears in [41] (for arbitrary m, see pp. 156–158). We will now study the intrinsic
construction of these objects in the graded context, but the generalization is not
straightforward, as the classical point constructions are not applicable now.

5.1. Algebraic preliminaries

Let p : (N,B) → (M,A) be a graded submersion. Consider the cotangent super-
vector bundle ST ∗(M,A) → (M,A), and its pull-back p∗ST ∗(M,A) to (N,B).
Furthermore, let V(p) ⊂ ST (N,B) be the vertical sub-bundle of p. This is the
supervector bundle on (N,B) defined by the short exact sequence

0 → V(p) → ST (N,B)
p∗−→ p∗ST (M,A) → 0. (5.3)

We can thus construct the tensor product supervector bundle

π : p∗ST ∗(M,A) ⊗ V(p) → J0
G(p)  (N,B).
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From a homological point of view, we have a natural identification

p∗ST ∗(M,A) ⊗ V(p)  Hom (p∗ST (M,A),V(p)) ,

and within this algebraic setting, we can obtain a representation for J1
G(p) by

considering the short exact sequence (5.3) and thinking of J1
G(p) as being the space

of its splittings.

Proposition 5.1. Let p : (N,B) → (M,A) be a graded submersion with dimensions
(m|n) = dim(M,A), (m + r|n + s) = dim(N,B). A unique isomorphism

p∗10(p
∗ST ∗(M,A) ⊗ V(p))  V(p10), (5.4)

exists, which is given by

dGxi ⊗ ∂

∂yµ
�→ ∂

∂yµ
i

, (5.5)

on every fibered coordinate system (3.1).

Proof. As the formula (5.5) completely determines isomorphism (5.4), we need
only to prove that the isomorphism is independent of the fibered coordinate system
chosen. This reduces to compute how the tensor fields in formula (5.5) transform
under a change of fibered coordinates, from

(xα), α = −n, . . . ,−1, 1, . . . , m,

(yµ), µ = −s, . . . ,−1, 1, . . . , r,

}
(5.6)

to

(x̄β), α = −n, . . . ,−1, 1, . . . , m,

(ȳν), ν = −s, . . . ,−1, 1, . . . , r,

}
(5.7)

and the corresponding change in J1
G(p). From the very definition of yρ

γ as a coordi-
nate in J1

G(p) (e.g. see [24, Section 1]), we can compute

dGȳν ⊗ ∂

∂x̄β
=
(

dGxα ∂ȳν

∂xα
+ dGyµ ∂ȳν

∂yµ

)
⊗ ∂xσ

∂x̄β

∂

∂xσ

= (−1)α(α+ν+σ+β) ∂ȳν

∂xα

∂xσ

∂x̄β
dGxα ⊗ ∂

∂xσ

+ (−1)µ(µ+ν+σ+β) ∂ȳν

∂yµ

∂xσ

∂x̄β
dGyµ ⊗ ∂

∂xσ
.

By passing to coordinates in J1
G(p) this tells us the following:

ȳν
β = (−1)α(ν+β) ∂ȳν

∂xα

∂xα

∂x̄β
+ (−1)µ(µ+ν+σ+β) ∂ȳν

∂yµ

∂xσ

∂x̄β
yµ

σ . (5.8)
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With this expression in mind, we are going to compute the graded 1-form dGȳν
β .

Initially, we should have

dGȳν
β = dGxγ

∂ȳν
β

∂xγ
+ dGyµ

∂ȳν
β

∂yµ
+ dGyµ

α

∂ȳν
β

∂yµ
α

,

so that we should consider each term separately, but, in fact, as we will compute
∂/∂ȳν

β by applying duality, we need only to compute the coefficient of dGyµ
α, which

is given by (5.8):

∂ȳν
β

∂yµ
α

=
∂

∂yµ
α

{
(−1)ρ(ρ+ν+σ+β) ∂ȳν

∂yρ

∂xσ

∂x̄β
yρ

σ

}
= (−1)ρ(ρ+ν+σ+β)+(µ+α)(ρ+ν+σ+β) ∂ȳν

∂yρ

∂xσ

∂x̄β
δρ
µδα

σ

= (−1)α(µ+ν+α+β) ∂ȳν

∂yµ

∂xα

∂x̄β
.

We can then write

dGȳν
β = dGxγAν

βγ + dGyµBν
βµ + (−1)α(µ+ν+α+β)dGyµ

α

∂ȳν

∂yµ

∂xα

∂x̄β
, (5.9)

where Aν
βγ , Bν

βµ are coefficients whose explicit expression is not needed.
We also remark 

dGȳν = dGxα ∂ȳν

∂xα
+ dGyµ ∂ȳν

∂yµ
,

dGx̄β = dGxα ∂x̄β

∂xα
.

(5.10)

Next, we consider the expression for ∂/∂ȳµ
γ as a tangent vector on J1

G(p). Initially,
we should have

∂

∂ȳµ
γ

= Kσ ∂

∂xσ
+ Lη ∂

∂yη
+ P ρτ

σγ

∂

∂yτ
γ

,

and we can compute the action of the basic differentials (5.9) and (5.10) on it. This
gives

0 =
〈

∂

∂ȳµ
γ

; dGx̄β

〉
= Kσ ∂x̄β

∂xσ
,

0 =
〈

∂

∂ȳµ
γ

; dGȳν

〉
= Lη ∂ȳν

∂yη
,

δρ
νδβ

σ =
〈

∂

∂ȳµ
γ

; dGȳν
β

〉
= (−1)α(µ+ν+α+β)P ρµ

σα

∂ȳν

∂yµ

∂xα

∂x̄β
,
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and from these equations, we obtain
Kγ = 0,

Lµ = 0,

P ρµ
σα = (−1)α(µ+ν+α+β) ∂x̄σ

∂xα

∂yµ

∂ȳρ
.

Hence, the law of transformation for ∂/∂ȳρ
σ is

∂

∂ȳρ
σ

= (−1)α(µ+ρ+α+σ) ∂x̄σ

∂xα

∂yµ

∂ȳρ

∂

∂yµ
α

.

This coincides with the law of transformation for dGx̄σ ⊗ ∂/∂ȳρ. Indeed,

dGx̄σ ⊗ ∂

∂ȳρ
= dGxα ∂x̄σ

∂xα
⊗ ∂yµ

∂ȳρ

∂

∂yµ

= (−1)α(α+σ+ρ+µ) ∂x̄σ

∂xα

∂yµ

∂ȳρ
dGxα ⊗ ∂

∂yµ
.

Thus, the isomorphism in the statement of the proposition is well defined.

5.2. Intrinsic construction of J
Let p : (N,B) → (M,A) be a graded submersion. On the module of the graded
vector fields on the graded 1-jet bundle (J1

G(p),AJ1
G(p)), a V(p10)-valued mapping

acting upon m arguments, is defined as follows:

J (D1, . . . , Dm) = (−1)j+mιD(̂)

(
p∗1(d

Gx1 ∧ · · · ∧ dGxm)
)
⊗ θ(Dj), (5.11)

where ιD(̂) = ιDm ◦ · · · ◦ ι̂Dj ◦ · · · ◦ ιD1 and

θ = (dGyµ − dGxα · yµ
α) ⊗ ∂

∂yµ
, (5.12)

is intrinsically defined in [22, Theorem 1.7], and dGx1 ∧ · · · ∧ dGxm comes from a
volume form η on M , η = dx1 ∧ · · · ∧ dxm, so that J is an intrinsic object.

Proposition 5.2. The operator J defined by (5.11) is a graded m-form.

Proof. First, multilinearity is a consequence of that of θ and the properties of the
insertion operator,

ια·DΛ = α ∧ ιDΛ,

ιD1+D2Λ = ιD1Λ + ιD2Λ,

for all D ∈ XG(J1
G(p)), α ∈ AJ1

G(p), Λ ∈ Ω1
G(J1

G(p)). Second, we have skew symme-
try, which is rather obvious in view that ιD1ιD2 = −ιD2ιD1 .

Now, we must check if the local expression for J obtained from (5.11) gives the
expression we want (5.2). Because of the term p∗1(d

Gx1 ∧ · · · ∧ dGxm), we just need
to evaluate

J
(

∂

∂x1
, . . . ,

∂

∂xm

)
, J

(
∂

∂x1
, . . . ,

∂̂

∂xi
, . . . ,

∂

∂xm
,

∂

∂x−j

)
,
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and

J
(

∂

∂x1
, . . . ,

∂̂

∂xi
, . . . ,

∂

∂xm
,

∂

∂yν

)
,

where i ∈ {1, . . . , m}, ν ∈ {−s, . . . ,−1, 1, . . . , r}. Now, we have

(−1)m−1J
(

∂

∂x1
, . . . ,

∂

∂xm

)
= (−1)j−1ι ∂

∂xm
◦ · · · ◦ ι̂ ∂

∂xj
◦ · · · ◦ ι ∂

∂x1
p∗1(d

Gx1 ∧ · · · ∧ dGxm) ⊗ θ

(
∂

∂xj

)
= (−1)j−1ι ∂

∂xm
◦ · · · ◦ ι̂ ∂

∂xj
◦ · · · ◦ ι ∂

∂x1
p∗1(d

Gx1 ∧ · · · ∧ dGxm) ⊗
(
−yµ

j

∂

∂yµ

)
= (−1)mdGxj ⊗ yµ

j

∂

∂yµ

= (−1)mdGxj · yµ
j ⊗ ∂

∂yµ

 (−1)myµ
j

∂

∂yµ
j

,

where the last identification comes from (5.5). Also,

(−1)m−1J
(

∂

∂x1
, . . . ,

∂̂

∂xi
, . . . ,

∂

∂xm
,

∂

∂x−j

)
= (−1)m−1ι ∂

∂xm
◦ · · · ◦ ι̂ ∂

∂xi
◦ · · · ◦ ι ∂

∂x1
p∗1(d

Gx1 ∧ · · · ∧ dGxm) ⊗ θ

(
∂

∂x−j

)
= (−1)m−1(−1)m−idGxi ⊗ θ

(
∂

∂x−j

)
= −(−1)idGxi ⊗

(
−yµ

−j

∂

∂yµ

)
= (−1)idGxi · yµ

−j ⊗
∂

∂yµ

= (−1)iyµ
−jd

Gxi ⊗ ∂

∂yµ

 (−1)iyµ
−j

∂

∂yµ
i

.

Moreover, by noting that each term ι ∂
∂yγ

p∗1(d
Gx1 ∧ · · · ∧dGxm) vanishes, we obtain

(−1)m−1J
(

∂

∂x1
, . . . ,

∂̂

∂xi
, . . . ,

∂

∂xm
,

∂

∂yν

)
= (−1)m−1ι ∂

∂xm
◦ · · · ◦ ι̂ ∂

∂xi
◦ · · · ◦ ι ∂

∂x1
p∗1(d

Gx1 ∧ · · · ∧ dGxm) ⊗ θ

(
∂

∂yν

)
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= (−1)i−1dGxi ⊗ ∂

∂yν

 (−1)i−1 ∂

∂yν
i

.

Thus, we conclude that the local expression for J is

(−1)m−1J = (−1)mdGx1 ∧ · · · ∧ dGxm ⊗ yµ
i

∂

∂yµ
i

+ (−1)idGx1 ∧ · · · ∧ d̂Gxi ∧ · · · ∧ dGxm ∧ dGx−j ⊗ yµ
−j

∂

∂yµ
i

+ (−1)i−1dGx1 ∧ · · · ∧ d̂Gxi ∧ · · · ∧ dGxm ∧ dGyν ⊗ ∂

∂yν
i

= (−1)idGx1 ∧ · · · ∧ d̂Gxi ∧ · · · ∧ dGxm ∧ dGxi · yµ
i ⊗ ∂

∂yµ
i

+ (−1)idGx1 ∧ · · · ∧ d̂Gxi ∧ · · · ∧ dGxm ∧ dGx−j · yµ
−j ⊗

∂

∂yµ
i

+ (−1)i−1dGx1 ∧ · · · ∧ d̂Gxi ∧ · · · ∧ dGxm ∧ dGyµ ⊗ ∂

∂yµ
i

= (−1)idGx1 ∧ · · · ∧ d̂Gxi ∧ · · · ∧ dGxm ∧
(
dGxα · yµ

α − dGyµ
)
⊗ ∂

∂yµ
i

.

Hence,

J = (−1)m−1ι ∂

∂xi
ηG ∧ θµ ⊗ ∂

∂yµ
i

,

where θµ = dGyµ−dGxα ·yµ
α is the horizontal differential of yµ, and this is precisely

(5.2) written in a more compact form.
In this way, we have constructed a canonical V(p10)-valued m-form J for any

graded submersion p : (N,B) → (M,A). This is appropriate for the case of graded
mechanics, but if we want to study graded fields, we must go on to higher-order jet
bundles; let us see how to extend the previous construction to Jk

G((N,B), (M,A)) ≡
(Jk

G(p),AJk
G(p)) for any k.

5.3. Intrinsic construction of Jk

Consider the following submersion playing the rôle of p in previous sections: pk−1 :
Jk−1

G (p) → (M,A). Then, the preceding construction tells us that we have defined
a J on the graded bundle J1

G((Jk−1
G (p),AJk−1

G (p)), (M,A)) .= J1
G(pk−1), which is a

graded m-form with values on V((pk−1
1 )10) that will be denoted Jk (here, pk−1

1 is
defined by pk−1

1 : J1
G(pk−1) → (M,A), and (pk−1

1 )10 : J1
G(pk−1

1 ) → J1
G(pk−1) the

target projection).
If (xα, yµ, zµ

Q), 1 ≤ |Q| ≤ k − 1, is a system of coordinates for Jk−1
G (p), then

(xα, yµ, zµ
Q, wµ

R) (with 1 ≤ |R| ≤ k, 1 ≤ |Q| ≤ k − 1, recall that Q, R denote
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The Poincaré–Cartan Form in Superfield Theory 799

arbitrary multi-indices) is a system for J1
G(pk−1), and we have the local expression

(with 1 ≤ i ≤ m a positive index)

Jk = (−1)m−1ι ∂

∂xi
ηG ∧

(
θyµ ⊗ ∂

∂yµ
i

+ θzµ
Q ⊗ ∂

∂zµ
i+Q

+ θwµ
R ⊗ ∂

∂wµ
i+R

)
(5.13)

(it must be noted that we are using the canonical identification (5.5) in writing
∂

∂wµ
i+R

, also, note that the sum ι ∂

∂xi
ηG ∧ θwµ

R ⊗ ∂
∂wµ

i+R
only runs up to |R| = k − 1),

where θzµ
Q = dGzµ

Q − dGxα · zµ
α�Q and so on. Now, we observe that there exists a

canonical graded immersion Jk
G(p)

Ψ
↪→ J1

G(pk−1), which expressed through its action
on coordinates, reads (here, (xα, yµ, vµ

Q), 1 ≤ |Q| ≤ k, is a system of coordinates
for Jk

G(p)):

Ψ∗(xα) = xα

Ψ∗(yµ) = yµ

Ψ∗(zµ
Q) = vµ

Q

Ψ∗(wµ
R) = vµ

R

 . (5.14)

Of course, when acting upon jet extensions of sections σ, this action reads

Ψ∗(j1(jk−1(σ))) = jk(σ).

Now, it is clear that (as Ψ∗ commutes with dG),

Ψ∗(ι ∂

∂xi
ηG

)
= (−1)i−1Ψ∗(dGx1 ∧ · · · ∧ d̂Gxi ∧ · · · ∧ dGxm)

= ι ∂

∂xi
ηG,

Ψ∗(θyµ

) = Ψ∗(dGyµ − dGxα · yµ
α)

= dGyµ − dGxα · yµ
α

= θµ,

Ψ∗(θzµ
Q) = Ψ∗(dGzµ

Q − dGxα · zµ
α�Q)

= dGyµ
Q − dGxα · yµ

α�Q

= θµ
Q,

and so on. We can apply Ψ∗ to (5.13) to obtain a graded m-form on Jk
G(p); according

to the preceding observations, the only terms that represent some problem are those
duplicated in ∂/∂zµ

i+Q and ∂/∂wµ
i+R (see (5.14)). But these terms are precisely the

ones coming from a single supervector on Jk
G(p) through (5.14); to be more precise,

let us study Ψ∗(∂/∂vµ
i+Q). We would like to see that

Ψ∗

(
∂

∂vµ
i+Q

)
=

∂

∂zµ
i+Q

+
∂

∂wµ
i+Q

,

as an extreme case we have |Q| = k, but then this reduces to

Ψ∗

(
∂

∂vµ
i+Q

)
=

∂

∂wµ
i+Q

,
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and as we have the canonical identification (5.5), what we really want is to prove

Ψ∗

(
∂

∂vµ
Q

)
=

∂

∂zµ
Q

+
∂

∂wµ
Q

,

for an arbitrary multiindex Q.
Thus, consider the action of

Ψ∗

(
∂

∂vµ
Q

)
.

We have

Ψ∗

(
∂

∂vµ
Q

)
(zν

R) =
∂

∂vµ
Q

(Ψ∗(zν
R))

=
∂

∂vµ
Q

vν
R

= δν
µδR

Q,

Ψ∗

(
∂

∂vµ
Q

)
(wν

R) =
∂

∂vµ
Q

(Ψ∗(wν
R))

=
∂

∂vµ
Q

vν
R

= δν
µδR

Q,

and this is precisely the action of ∂/∂zµ
Q + ∂/∂wµ

Q, as wanted.
As a consequence, we have the following result (see [1, 2] for a classical

version):

Theorem 5.3. On Jk
G(p) (for any k) there is defined a canonical graded m-form

with values on V((pk)10) ⊂ V((pk−1
1 )10), which we denote by Jk, and whose local

expression is

Jk = (−1)m−1ι ∂

∂xi
ηG ∧ θµ

Q ⊗ ∂

∂yµ
i+Q

(1 ≤ i ≤ m = dim M),

being 0 ≤ |Q| ≤ k − 1, with the usual convention θµ
Q = θµ when |Q| = 0.

Remark 5.4. In the statement of the theorem, we are writing collectively θµ
Q

instead of θzµ
Q and θwµ

R (it is a shorthand for (5.13)).

Generalizing the classical expression (see, for instance [41, Theorem 5.5.2]), for
any L ∈ AJk

G(p), we define the graded m-form (the so called Poincaré–Cartan form
of order k)

Θ̃L = LG
Jk

(L) + ηG · L.

Let us make a remark. Let A ∼→ C∞(M) be the structural morphism and
C∞(M) σ→ A a global section of it. Then, to every volume form η on M we can
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associate a graded volume form ηG = σ(η) on (M,A). On the other hand, note
that a graded Lagrangian density is an m-form of the type

ηG · L, L ∈ AJk
G(p).

Thus, if we change the volume form η on M to a form µ = η · f where f is a
differentiable function on M , f ∈ C∞(M), we will have a induced change in the
Lagrangian:

ηG · f · L.

Moreover, recall that from the local expression of the Jk morphism (5.13) it is clear
that replacing η for µ amounts to passing from Jk to f · Jk. Putting these observa-
tions together we get (introducing temporarily an obvious notation to distinguish
which graded volume form is in use):

Θ̃L
µ = LG

Jµ
k
(L) + µG · L

= LG
f ·J η

k
(L) + ηG · f · L

= LG
J η

k
(f · L) + ηG(f · L),

where in the last step use has been made of the fact that f ∈ C∞(M) is not
affected by the derivative on the fiber coordinates, carried on by LG

Jµ
k
. If we denote

f · L ∈ AJk
G(p) by Lf , what we have obtained is

Θ̃L
µ = Θ̃Lf

η ,

so the graded Poincaré–Cartan form Θ̃L is well behaved under the decomposition
“graded Lie derivative plus graded Lagrangian density”.

6. Equivalence between Graded and Berezinian Variational
Problems

Let us make some remarks about the correspondence between Berezinian and
graded variational problems. It is well known how to obtain the equations of the
solutions to a graded variational problem (see [22]); on the contrary, for Berezinian
problems an intrinsic formulation in Cartan’s spirit has been not available up until
now. What does exist, is a way (based on the Comparison Theorem) to associate to
each graded problem a Berezinian one and to establish a correspondence between
their solutions. The basic idea is as follows: given a Lagrangian L ∈ AJ1

G(p), let ξL

be the first-order Berezinian density that it determines, which is given by[
dGx1 ∧ · · · ∧ dGxm ⊗ d

dx−1
◦ · · · ◦ d

dx−n

]
· L,

and let

λξL = dGx1 ∧ · · · ∧ dGxm · dnL

dx−1 · · · dx−n
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be the corresponding graded Lagrangian density. In [22], to each first order
graded Lagrangian density λ a canonical graded m-form is associated, the graded
Poincaré–Cartan form for the Lagrangian density λξL . Here, we denote by ΘL

0 the
graded Poincaré–Cartan form corresponding to −λL; in local coordinates, it is given
by expression (5.1) and, as we have proved, it can be constructed as an intrinsic
object. Now, as

λξL = LG
d

dx−1
◦ · · · ◦ LG

d

dx−n
(dGx1 ∧ · · · ∧ dGxm · L),

it is natural to consider the graded m-form

ΘL = LG
d

dx−1
◦ · · · ◦ LG

d
dx−n

ΘL
0 (6.1)

as the graded Poincaré–Cartan form for the Berezinian density ξL. But we could
as well follow other way to define ΘL: Instead of taking the first-order Lagrangian
density dGx1 ∧ · · · ∧ dGxm · L, construct ΘL

0 = LG
J (L) + ηG · L and then apply

LG
d

dx−1
◦ · · · ◦ LG

d

dx−n
,

we could have considered the Lagrangian density, of order (n + 1), dnL
dx−1···dx−n and

apply LG
Jn+1

to obtain

Θ̃L = LG
Jn+1

(
dnL

dx−1 · · ·dx−n

)
+ ηG · dnL

dx−1 · · · dx−n
.

The first procedure is designed to take benefit of the graded variational calculus,
but has the handicap of presenting an expression like (6.1), with the factors

LG
d

dx−1
◦ · · · ◦ LG

d

dx−n

destroying, at a first glance, covariance. On the other hand, once a volume form
η = dx1∧· · ·∧dxm has been fixed on the base, the second one proceeds intrinsically
to obtain

dnL

dx−1 · · · dx−n

from the Berezinian density ξL and then Θ̃L, thus developing a Cartan formalism
in an analogous manner to the classical tangent bundle formulation. Nevertheless,
it would be desirable the convergence of the two ways, in the sense that ΘL = Θ̃L

for any L ∈ AJ1
G(p); indeed, this is the case as we will see in Theorem 6.5.

We will need some notations and technical lemmas that also will be useful later.

6.1. Preliminaries

Let B ∈ (Z−)k be a strictly decreasing multi-index. For every b ∈ B, we define p(b),
q(b) as follows:

p(b) = ((position of b in B) − 1) mod 2,

q(b) = (position of b in B) mod2.
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For example, if B = (−1,−5,−7,−8), then p(−7) = 0, q(−7) = 1. The symbol
B−{b} denotes the (|B|−1)-multi-index obtained by removing b from B; e.g., in the
previous example we have B − {−5} = (−1,−7,−8). We also set |Z|2 = |Z|mod2,
for every multi-index Z. For any pair of multi-indices

Q = (i1, . . . , i|Q|) ∈ Z|Q|, B = (b1, . . . , b|B|) ∈ (Z−)|B|,

such that |B| ≥ |Q|, we define ϕ(Q, B) as follows:

ϕ(Q, B) =
|I|∑

k=1

ikϕk(bk),

where

ϕk(b) =

{
p(b), if k ≡ 1 mod 2

q(b), if k ≡ 0 mod 2

and ϕ(Q, B) = 0, if |Q| = 0.
Finally, as usual, the symbol �, applied to a pair of multi-indices, means

juxtaposition.
In what follows, we denote by d

dxα the graded horizontal lift of ∂/∂xα to J∞
G (p),

whose local expression is given in formula (3.4).

Lemma 6.1. For any strictly decreasing multi-index B ∈ (Z−)k, we have[
∂

∂yµ
,
d|B|

dxB

]
= 0,

when acting on AJr
G(p).

Lemma 6.2. Let k be a positive integer. Given i0 ∈ Z and j ∈ {1, . . . , n}, for every
Q ∈ Zk, we have [

∂

∂yµ
{i0}�Q

,
d

dx−j

]
= δ−j

i0

∂

∂yµ
Q

,

both sides acting on AJr
G
(p).

Note ∂/∂yµ
{i0}�Q vanishes on AJr

G
(p) whenever |Q| > r. In particular, for every

L ∈ AJ1
G(p) we have

∂

∂yµ
α

(
dL

dx−j

)
= δ−j

α

∂L

∂yµ
,

∂

∂yµ
αβ

(
dL

dx−j

)
= δ−j

α

∂L

∂yµ
β

,

but
∂

∂yµ
Q

(
dL

dx−j

)
= 0, for |Q| > 2.

Lemma 6.3. For any strictly decreasing multi-index B ∈ (Z−)k, we have[
∂

∂yµ
α

,
d|B|

dxB

]
=
∑
b∈B

(−1)µ(|B|2+1)+α·p(b)δα
b

d|B|−1

dxB−{b}
∂

∂yµ
,
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when acting on AJr
G(p), where it is assumed

d0F

dx∅ = F, ∀F ∈ AJr
G(p).

In particular, we have

∂

∂yµ
i

d|B|F
dxB

= (−1)µ|B|2 d|B|

dxB

∂

∂yµ
i

, ∀ i > 0.

Proposition 6.4. For every L ∈ AJ1
G(p), every strictly decreasing B ∈ (Z−)k, and

every Q ∈ Zr such that k ≥ 2, 1 ≤ r ≤ k, we have

∂

∂yµ
{i}�Q

d|B|L
dxB

=
∑

−bc1>···>−bc|Q|
bc1 ,...,bc|Q|∈B

(−1)µ(|B|2+|Q|2)+ϕ(Q,B)δi1
bc1

· · · δi|Q|
bc|Q|

d|B|−|Q|

dx
B−{bc1 ,...,bc|Q|}

∂L

∂yµ
i

.

The proof of these results is a lengthy induction, but only involving standard
computations.

6.2. The main theorem

In this subsection, as announced in the Introduction, we study the equivalence
between first-order Berezinian variational problems and higher-order graded varia-
tional problems. As the computations are rather cumbersome, we will illustrate the
general situation by considering the case n = 2 (that is, a base manifold of graded
dimension (m|2)).

Theorem 6.5. Let ξL be a first-order Berezinian density,

ξL =
[
dGx1 ∧ · · · ∧ dGxm ⊗ d

dx−1
◦ · · · ◦ d

dx−n

]
· L, L ∈ AJ1

G(p), (6.2)

and let

λξL = dGx1 ∧ · · · ∧ dGxm dnL

dx−1 · · ·dx−n
.

Let ΘL
0 be the graded Poincaré–Cartan form corresponding to −λξL , and let us set

ΘL = LG
d

dx−1
◦ · · · ◦ LG

d

dx−n
ΘL

0

and

Θ̃L = LG
Jn+1

(
dnL

dx−1 · · ·dx−n

)
+ ηG · dnL

dx−1 · · · dx−n
.

Then, we have

ΘL = Θ̃L.

Proof. Let T be the totally odd multi-index T = (−1, . . . ,−n), so that |T | = n.
We also write ε = (−1)µ(|B|2+|Q|2)+ϕ(Q,B). By applying the preceding proposition,
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we obtain

Θ̃L − ηG · dnL

dxT
= LG

Jn+1

(
dnL

dxT

)
=

∑
0≤|Q|≤n

(−1)m−1ι ∂

∂xi
ηG ∧ θµ

Q · ∂

∂yµ
i+Q

dnL

dxT

=
∑

0≤|Q|≤n

(−1)m−1ι ∂

∂xi
ηG ∧ θµ

Q

·


∑

−bc1>···>−bc|Q|
bc1 ,...,bc|Q|∈B

εδi1
bc1

· · · δi|Q|
bc|Q|

dn−|Q|

dx
T−{bc1 ,...,bc|Q|}

∂L

∂yµ
i


=

∑
0≤|Q|≤n

(−1)m−1ε · ι ∂

∂xi
ηG ∧ θµ

i1···i|Q|

dn−|Q|

dxT−{i1,...,i|Q|}
∂L

∂yµ
i

= LG
d

dx−1
◦ · · · ◦ LG

d

dx−n

(
(−1)m−1ι ∂

∂xi
ηG ∧ θµ ⊗ ∂L

∂yµ
i

)
= ΘL − ηG · dnL

dxT
.

6.3. (m|2)-superfield theory

As the use and notations for multi-indices are rather cumbersome, let us analyze a
specific case in detail, that of supermanifold with m even and 2 odd coordinates.
We start with a Berezinian density

ξL =
[
dGx1 ∧ · · · ∧ dGxm ⊗ d

dx−1
◦ d

dx−2

]
· L,

where L ∈ AJ1
G(p); i.e., L = L(xα, yµ, yµ

α). The associated graded Lagrangian
density is

dGx1 ∧ · · · ∧ dGxm · d2L

dx−1dx−2
.

Next, from L we can obtain, by applying

J1 = (−1)m−1ι ∂

∂xi
ηG ∧ θµ ⊗ ∂

∂yµ
i

(1 ≤ i ≤ m = dimM),

the graded form

ΘL − ηG · d2L

dx−1dx−2
= LG

d

dx−1
◦ LG

d

dx−2
LG
J1

L

= LG
d

dx−1
◦ LG

d

dx−2

(
(−1)m−1ι ∂

∂xi
ηG ∧ θµ · ∂L

∂yµ
i

)
= (−1)m−1LG

d

dx−1

(
ι ∂

∂xi
ηG ∧

(
θµ
−2 ·

∂L

∂yµ
i

+ (−1)µθµ · d

dx−2

∂L

∂yµ
i

))
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= (−1)m−1ι ∂

∂xi
ηG ∧

(
θµ
−1,−2 ·

∂L

∂yµ
i

+ (−1)µ+1θµ
−2 ·

d

dx−1

∂L

∂yµ
i

+ (−1)µθµ
−1 ·

d

dx−2

∂L

∂yµ
i

+ θµ · d

dx−1

d

dx−2

∂L

∂yµ
i

)
. (6.3)

Moreover, we can apply the V((p3)10)-valued m-form J3 on J3
G(p) to the

superfunction

d2L

dx−1dx−2
∈ AJ3

G(p),

the result being

Θ̃L − ηG · d2L

dx−1dx−2
= LG

J3

d2L

dx−1dx−2

= (−1)m−1ι ∂

∂xi
ηG ∧

(
θµ · ∂

∂yµ
i

d2L

dx−1dx−2

+ θµ
α · ∂

∂yµ
αi

d2L

dx−1dx−2
+ θµ

αβ · ∂

∂yµ
αβi

d2L

dx−1dx−2

)
. (6.4)

The factor

d2L

dx−1dx−2

can be evaluated in two different ways:

d2L

dx−1dx−2
=

d

dx−1

(
dL

dx−2

)
=

d

dx−1

(
∂L

∂x−2
+ yν

−2

∂L

∂yν
+ yν

−2,α

∂L

∂yν
α

)
=

d

dx−1

∂L

∂x−2
+ yν

−1,−2

∂L

∂yν
− (−1)νyν

−2

d

dx−1

∂L

∂yν

+ yν
−1,−2,α

∂L

∂yν
α

+ (−1)ν+α+1yν
−2,α

d

dx−1

∂L

∂yν
α

, (6.5)

or else,

d2L

dx−1dx−2
= − d

dx−2

(
dL

dx−1

)
= − d

dx−2

(
∂L

∂x−1
+ yν

−1

∂L

∂yν
+ yν

−1,α

∂L

∂yν
α

)
= − d

dx−2

∂L

∂x−1
− yν

−2,−1

∂L

∂yν
+ (−1)νyν

−1

d

dx−2

∂L

∂yν

− yν
−2,−1,α

∂L

∂yν
α

− (−1)ν+α+1yν
−1,α

d

dx−2

∂L

∂yν
α

. (6.6)
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In any case, neither the factors of ∂L/∂yµ, ∂L/∂x−i nor d/dx−i(∂L/∂yµ) contain
3-derivatives of the kind yν

−1,−2,α. Thus, by using (6.5), we have

∂

∂yµ
−j−ki

d2L

dx−1dx−2
=

∂

∂yµ
−j−ki

(
yν
−1,−2,α

∂L

∂yν
α

)
= δ−1

−j δ−2
−k

∂L

∂yµ
i

.

Also, there are no terms like yµ
ij in L ∈ AJ1

G(p), neither in d2L/dx−1dx−2 (as d/dx−1,
d/dx−2 just introduce derivatives with respect to odd indices), so that

∂

∂yµ
iα

d2L

dx−1dx−2
=

∂

∂yµ
−ji

d2L

dx−1dx−2
.

Now, comparing (6.3) and (6.4), we see that proving ΘL = Θ̃L reduces to see
whether

ι ∂

∂xi
ηG ∧ θµ

−j ·
∂

∂yµ
−ji

d2L

dx−1dx−2

= ι ∂

∂xi
ηG ∧

(
(−1)µθµ

−1 ·
d

dx−2

∂L

∂yµ
i

+ (−1)µ+1θµ
−2 ·

d

dx−1

∂L

∂yµ
i

)
,

or, developing the left-hand side,

ι ∂

∂xi
ηG ∧

(
θµ
−1 ·

∂

∂yµ
−1,i

+ θµ
−2 ·

∂

∂yµ
−2,i

)
d2L

dx−1dx−2

= (−1)µι ∂

∂xi
ηG ∧

(
θµ
−1 ·

d

dx−2

∂L

∂yµ
i

− θµ
−2 ·

d

dx−1

∂L

∂yµ
i

)
.

What we are going to see is

∂

∂yµ
−1,i

d2L

dx−1dx−2
= (−1)µ d

dx−2

∂L

∂yµ
i

∂

∂yµ
−2,i

d2L

dx−1dx−2
= −(−1)µ d

dx−1

∂L

∂yµ
i

 . (6.7)

To prove the first formula in (6.7), we use (6.5). It is clear that the only terms
containing factors like yµ

−1,i, yµ
−2,i are those indicated:

∂L

∂yµ
−1,i

=
∂

∂yµ
−1,i

d2L

dx−1dx−2

=
∂

∂yµ
−1,i

(
yν
−1,α

∂2L

∂yν
α∂x−2

− (−1)νyν
−2y

ξ
−1,α

∂2L

∂yξ
α∂yν

− (−1)ν+αyν
−2,αyξ

−1β

∂2L

∂yξ
β∂yν

α

)
=

∂2L

∂yµ
i ∂x−2

+ (−1)µ(ν+1)yν
−2

∂2L

∂yµ
i ∂yν

+ (−1)µ+µ(ν+α)yν
−2,α

∂2L

∂yµ
i ∂yν

α
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= (−1)µ

(
∂

∂x−2
+ yν

−2

∂

∂yν
+ yν

−2,α

∂

∂yν
α

)
∂L

∂yµ
i

= (−1)µ d

dx−2

∂L

∂yµ
i

.

To prove the second formula in (6.7), one has just to repeat the preceding compu-
tations but using (6.6).

Remark 6.6. The proof of the lemmas and the proposition in Subsec. 6.1 is just a
generalization (by induction) of the computations leading to equations (6.5), (6.6)
and (6.7).

Thus, once a volume form has been chosen on the base manifold M , we have
constructed a Poincaré–Cartan form,

ΘL = LG
Jn+1

(
dnL

dx−1 · · · dx−n

)
+ ηG · dnL

dx−1 · · ·dx−n

out of intrinsically defined objects. Moreover, we have proved the equivalence with
the alternative expression

ΘL = LG
d

dx−1
◦ · · · ◦ LG

d

dx−n
ΘL

0 ,

which, as it does not involve higher-order operators, could be more appropriate for
explicit computations.

7. Deduction of the Euler–Lagrange Equations from
the Poincaré–Cartan Form

7.1. The exterior derivative of the Poincaré–Cartan form

According to the previous section, we have a well-defined procedure to obtain the
Euler–Lagrange superequations for a superfield theory described by a first-order
Berezinian density

ξL =
[
dGx1 ∧ · · · ∧ dGxm ⊗ d

dx−1
◦ · · · ◦ d

dx−n

]
· L, L ∈ AJ1

G(p),

in a similar way to that of the classical case: First, we must consider the Poincaré–
Cartan form ΘL, then its differential dGΘL and finally study the insertion of vertical
superfields. The idea is to obtain a decomposition of dGΘL as the product of the
Euler–Lagrange operator by the graded contact 1-forms and/or their derivatives
plus other terms, as expressed in the following proposition.

We make use of the decomposition dG = D + ∂, where

D = D0 + D1

= dGxα ⊗ LG
d

dxα

is the graded horizontal differential (given as a sum of the horizontal differential
with respect to even and odd coordinates on the base manifold) and ∂ = dG − D
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is the graded vertical differential, which differentiates with respect to the fiber
coordinates (recall Subsec. 3.3).

Proposition 7.1. For every L ∈ AJ1
G(p), we have

dGΘL = LG
d

dx−1
◦ · · · ◦ LG

d

dx−n
(αL + �L + D1(ΘL

0 − ηG · L) + ∂(ΘL
0 − ηG · L)),

where �L and αL are the (m + 1)-forms on J2
G(p), defined by

�L = (−1)mηG ∧
(

θµ

(
∂L

∂yµ
− d

dxi

∂L

∂yµ
i

)
+ θµ

−i

∂L

∂yµ
−i

)
αL = (−1)mηG ∧ dGxα ·

(
2

dL

dxα
− ∂L

∂xα

)
.

Proof. From the preceding section, recalling that the operators LG
d/dx−1 and dG

commute, we obtain

dGΘL = LG
d

dx−1
◦ · · · ◦ LG

d

dx−n
dGΘL

0

= LG
d

dx−1
◦ · · · ◦ LG

d
dx−n

(D0(ΘL
0 − ηG · L)

+ D1(ΘL
0 − ηG · L) + ∂(ΘL

0 − ηG · L)

+ (−1)mηG ∧ dGL).

Let us concentrate in the terms D0(ΘL
0 − ηG · L) + (−1)mηG ∧ dGL. On the one

hand, we have

D0(ΘL
0 − ηG · L) = dGxi ∧ LG

d

dxi
(ΘL

0 − ηG · L)

= (−1)m−1ηG ∧
(

θµ
i

∂L

∂yµ
i

+ θµ d

dxi

∂L

∂yµ
i

)
,

and, on the other,

ηG ∧ dGL = ηG ∧
(

dGxα · dL

dxα
+ dGyµ · ∂L

∂yµ
+ dGyµ

α · ∂L

∂yµ
α

)
.

Thus, substituting,

D0

(
ΘL

0 − ηG · L
)

+ (−1)mηG ∧ dGL

= (−1)mηG ∧
(
−θµ

i

∂L

∂yµ
i

− θµ d

dxi

∂L

∂yµ
i

+ dGxα · dL

dxα
+ dGyµ · ∂L

∂yµ
+ dGyµ

α · ∂L

∂yµ
α

)
= (−1)mηG ∧

(
−θµ

i

∂L

∂yµ
i

− θµ d

dxi

∂L

∂yµ
i

+ dGxα · dL

dxα

+
(
θµ + dGxα · yµ

α

) ∂L

∂yµ
+
(
θµ

α + dGxβ · yµ
βα

) ∂L

∂yµ
α

)
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= (−1)mηG ∧
(

θµ
−i

∂L

∂yµ
−i

+ θµ

(
∂L

∂yµ
− d

dxi

∂L

∂yµ
i

)
+ dGxα · dL

dxα
+ dGxα · yµ

α

∂L

∂yµ
+ dGxβ · yµ

βα

∂L

∂yµ
α

)
= (−1)mηG ∧

(
θµ
−i

∂L

∂yµ
−i

+ θµ

(
∂L

∂yµ
− d

dxi

∂L

∂yµ
i

)
+ dGxα ·

(
2

dL

dxα
− ∂L

∂xα

))
= �L + αL.

We should also remark that for every vector field X on J2
G(p) vertical over

(M,A), we have ιXαL = 0.
Now, we would like to extract the Euler–Lagrange superequations of field

theory from the decomposition of the previous proposition. To this end, we
first need the following technical lemma, whose proof reduces to a simple
computation:

Lemma 7.2. Let Σ−n denote the group of permutations of {−1, . . . ,−n}. For any
A, B ∈ ΩG(J1

G(p)), we have

LG
d

dx−1
◦ · · · ◦ LG

d

dx−n
(A ∧ B)

=
∑

σ=σ1∪σ2∈Σ−n

0≤|σ|≤n

(−1)|σ2||A|+τ

(
LG

d

dxσ1(−1)
◦ · · · ◦ LG

d

dxσ1(−|σ1|)
A

)

·
(
LG

d

dxσ2(−|σ1|+1)
◦ · · · ◦ LG

d

dxσ2(−n)
B

)
,

where τ is the number of transpositions needed to reorder (σ1(−1), . . . , σ2(−n)).

Proposition 7.3. With the preceding notations, we have

LG
d

dx−1
◦ · · · ◦ LG

d

dx−n
(�L)

=
∑

σ=σ1∪σ2∈Σ−n

0≤|σ2|≤n
|σ2|µ+τ

(−1)|σ2|µ+τ+mηG ∧ θµ
σ1(−1)···σ1(−|σ1|)

d|σ2|E(L)
dxσ2(−|σ1|−1) · · ·dxσ2(−n)

,

where E is the Euler–Lagrange operator,

E(L) =
∂L

∂yµ
− d

dxi

∂L

∂yµ
i

− (−1)µ d

dx−i

∂L

∂yµ
−i

.

Proof. Let us write

�L = (−1)mηG ∧
(

θµωµ + θµ
−i

∂L

∂yµ
−i

)
,

where

ωµ =
∂L

∂yµ
− d

dxi

∂L

∂yµ
i

.
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Then, we have

LG
d

dx−1
◦ · · · ◦ LG

d

dx−n
(�L)

= (−1)mηG ∧ LG
d

dx−1
◦ · · · ◦ LG

d

dx−n

(
θµωµ + θµ

−i

∂L

∂yµ
−i

)
,

and by applying Lemma 7.2, we obtain

LG
d

dx−1
◦ · · · ◦ LG

d

dx−n

(
θµωµ + θµ

−i

∂L

∂yµ
−i

)
=

∑
σ=σ1∪σ2∈Σ−n

0≤|σ2|≤n

(
(−1)|σ2|µ+τ

(
LG

d

dxσ1(−1)
◦ · · · ◦ LG

d

dxσ1(−|σ1|)

)
θµ

·
(
LG

d

dxσ2(−|σ1|+1)
◦ · · · ◦ LG

d

dxσ2(−n)

)
ωµ

+ (−1)|σ2|(µ+1)+τ

(
LG

d

dxσ1(−1)
◦ · · · ◦ LG

d

dxσ1(−|σ1|)
θµ
−i

)
·
(
LG

d

dxσ2(−|σ1|+1)
◦ · · · ◦ LG

d

dxσ2(−n)

∂L

∂yµ
−i

))
=

∑
σ=(σ1∪σ2)∈Σ−n

0≤|σ2|≤n

(
(−1)|σ2|µ+τθµ

σ1(−1)···σ1(−|σ1|)
d|σ2|

dxσ2(−|σ1|−1) · · ·dxσ2(−n)
ωµ

+ (−1)|σ2|(µ+1)+τθµ
σ1(−1)···σ1(−|σ1|),−i

d|σ2|

dxσ2(−|σ1|−1) · · ·dxσ2(−n)

∂L

∂yµ
−i

)
=

∑
σ=(σ1∪σ2)∈Σ−n

0≤|σ2|≤n

(−1)|σ2|µ+τθµ
σ1(−1)···σ1(−|σ1|)

(
d|σ2|

dxσ2(−|σ1|−1) · · ·dxσ2(−n)
ωµ

− (−1)µ d|σ2|

dxσ2(−|σ1|−1) · · · dxσ2(−n)

d

dx−i

∂L

∂yµ
−i

)
=

∑
σ=σ1∪σ2∈Σ−n

0≤|σ2|≤n

(−1)|σ2|µ+τθµ
σ1(−1)···σ1(−|σ1|)

d|σ2|

dxσ2(−|σ1|−1) · · ·dxσ2(−n)
(E(L)).

7.2. An example

Again, let us clarify the notation by working out the example of (m|2)-superfield
theory. Here we have

LG
d

dx−1
LG

d

dx−2

(
θµ

(
∂L

∂yµ
− d

dxi

∂L

∂yµ
i

)
+ θµ

−1

∂L

∂yµ
−1

+ θµ
−2

∂L

∂yµ
−2

)
= LG

d

dx−1

(
θµ
−2

(
∂L

∂yµ
− d

dxi

∂L

∂yµ
i

)
+ (−1)µθµ d

dx−2

(
∂L

∂yµ
− d

dxi

∂L

∂yµ
i

)
+ θµ

−2,−1

∂L

∂yµ
−1

− (−1)µθµ
−1

d

dx−2

∂L

∂yµ
−1

− (−1)µθµ
−2

d

dx−2

∂L

∂yµ
−2

)
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= θµ
−1,−2

(
∂L

∂yµ
− d

dxi

∂L

∂yµ
i

)
− (−1)µθµ

−2

d

dx−1

(
∂L

∂yµ
− d

dxi

∂L

∂yµ
i

)
+ (−1)µθµ

−1

d

dx−2

(
∂L

∂yµ
− d

dxi

∂L

∂yµ
i

)
+ θµ d

dx−1

d

dx−2

(
∂L

∂yµ
− d

dxi

∂L

∂yµ
i

)
+ (−1)µθµ

−2,−1

d

dx−1

∂L

∂yµ
−1

+ θµ
−1

d

dx−1

d

dx−2

∂L

∂yµ
−1

− (−1)µθµ
−1,−2

d

dx−2

∂L

∂yµ
−2

+ θµ
−2

d

dx−1

d

dx−2

∂L

∂yµ
−2

.

Next, grouping common factors of the contact 1-forms,

LG
d

dx−1
LG

d

dx−2

(
θµ

(
∂L

∂yµ
− d

dxi

∂L

∂yµ
i

)
− θµ

−1

∂L

∂yµ
−1

− θµ
−2

∂L

∂yµ
−2

)
= θµ

−1,−2

(
∂L

∂yµ
− d

dxi

∂L

∂yµ
i

− (−1)µ d

dx−1

∂L

∂yµ
−1

− (−1)µ d

dx−2

∂L

∂yµ
−2

)
+ θµ

−1

(
(−1)µ d

dx−2

(
∂L

∂yµ
− d

dxi

∂L

∂yµ
i

)
+

d2

dx−1dx−2

∂L

∂yµ
−1

)
− θµ

−2

(
(−1)µ d

dx−1

(
∂L

∂yµ
− d

dxi

∂L

∂yµ
i

)
+

d2

dx−1dx−2

∂L

∂yµ
−2

)
+ θµ

(
d2

dx−1dx−2

(
∂L

∂yµ
− d

dxi

∂L

∂yµ
i

))
,

and an algebraic rearrangement finally gives,

LG
d

dx−1
LG

d

dx−2

(
θµ

(
∂L

∂yµ
− d

dxi

∂L

∂yµ
i

)
− θµ

−1

∂L

∂yµ
−1

− θµ
−2

∂L

∂yµ
−2

)
= θµ

−1,−2

(
∂L

∂yµ
− d

dxi

∂L

∂yµ
i

− (−1)µ d

dx−j

∂L

∂yµ
−j

)
+ (−1)µθµ

−1

(
d

dx−2

(
∂L

∂yµ
− d

dxi

∂L

∂yµ
i

)
− (−1)µ d

dx−2

d

dx−j

∂L

∂yµ
−j

)
− (−1)µθµ

−2

(
d

dx−1

(
∂L

∂yµ
− d

dxi

∂L

∂yµ
i

)
− (−1)µ d

dx−1

d

dx−j

∂L

∂yµ
−j

)
+ θµ

(
d2

dx−1dx−2

(
∂L

∂yµ
− d

dxi

∂L

∂yµ
i

− (−1)µ d

dx−j

∂L

∂yµ
−j

))
=
(
θµ
−1,−2 + (−1)µθµ

−1 − (−1)µθµ
−2 + θµ

)
E(L).

7.3. The Euler–Lagrange equations

In view of Proposition 7.3, the term �L alone already gives us the Euler–Lagrange
equations, so we must study the vanishing of the terms

D1

(
ΘL

0 − ηG · L
)

+ ∂
(
ΘL

0 − ηG · L
)
.
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The Poincaré–Cartan Form in Superfield Theory 813

Lemma 7.4. With the preceding notations, we have

∂ = θµ ∧ LG
∂

∂yµ
+ θµ

α ∧ LG
∂

∂y
µ
α

− dGθµ ∧ ι ∂
∂yµ

− dGθµ
β ∧ ι ∂

∂y
µ
β

.

Proof. From the very definition we have

dG = dGxβ ∧ LG
∂

∂xβ
+ dGyµ ∧ LG

∂
∂yµ

+ dGyµ
α ∧ LG

∂

∂y
µ
α

,

and also from the definition, ∂ = dG − D, where D is the horizontal differential.
Therefore,

∂ = dG − D

= dG − dGxγ ∧ LG
d

dxγ

= dGxβ ∧ LG
∂

∂xβ
+ dGyµ ∧ LG

∂
∂yµ

+ dGyµ
α ∧ LG

∂

∂y
µ
α

− dGxγ ∧ LG
d

dxγ
.

Furthermore, as

d

dxγ
=

∂

∂xγ
+ yµ

γ

∂

∂yµ
+ yµ

γα

∂

∂yµ
α

,

taking the properties of the graded Lie derivative into account, we obtain

∂ = dGyµ ∧ LG
∂

∂yµ
+ dGyµ

α ∧ LG
∂

∂y
µ
α

− dGxα ∧ LG
yµ

α
∂

∂yµ
− dGxα ∧ LG

yµ
αβ

∂

∂y
µ
β

= dGyµ ∧ LG
∂

∂yµ
+ dGyµ

α ∧ LG
∂

∂y
µ
α

− dGxα ∧
(
dGιyµ

α
∂

∂yµ
+ ιyµ

α
∂

∂yµ
dG

)
− dGxα ∧

(
dGιyµ

αβ
∂

∂y
µ
β

+ ιyµ
αβ

∂

∂y
µ
β

dG
)

= dGyµ ∧ LG
∂

∂yµ
+ dGyµ

α ∧ LG
∂

∂y
µ
α

− dGxα · yµ
α ∧ LG

∂
∂yµ

− dGxα · yµ
αβ ∧ LG

∂

∂y
µ
β

− dGxα ∧ dGyµ
α ∧ ι ∂

∂yµ
− dGxα ∧ dGyµ

αβ ∧ ι ∂

∂y
µ
β

.

Finally, by grouping the correct terms and by noting that

dGθν
Q = dGxα ∧ dGyν

α�Q,

we arrive at the statement of the lemma.

Lemma 7.5. For every vector field X on Jn+1
G (p), vertical over (M,A), and for

any local section s of p, we have

(jn+1s)∗
(
ιX

(
LG

d

dx−1
◦ · · · ◦ LG

d

dx−n
(D1(ΘL

0 − ηG · L) + ∂(ΘL
0 − ηG · L))

))
= 0.

Proof. As

D1 = dGx−i ∧ LG
d

dx−i
,

it is clear that

LG
d

dx−1
◦ · · · ◦ LG

d

dx−n
◦ D1 = 0
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(one of the d
dx−i factors appears twice). Now, let us see that

(jn+1s)∗
(
ιX

(
LG

d

dx−1
◦ · · · ◦ LG

d

dx−n
(∂(ΘL

0 − ηG · L))
))

= 0.

The bidegree of ∂ is (1, 0), so we have

∂(ΘL
0 − ηG · L) = ∂

(
(−1)m−1ι ∂

∂xj
ηG ∧ θµ ∂L

∂yµ
j

)
= ι ∂

∂xj
ηG ∧

(
∂θµ · ∂L

∂yµ
j

− θµ ∧ ∂

(
∂L

∂yµ
j

))
.

From Lemma 7.4, we know the explicit expression for ∂. Making use of it, along
with the formulas

LG
∂

∂yµ
θν = 0,

LG
∂

∂y
µ
α

θν = −(−1)α(µ+α)dGxαδν
µ,

ι ∂
∂yµ

θν = δν
µ,

ι ∂

∂y
µ
α

θν = 0,

we obtain

∂(ΘL
0 − ηG · L)

= ι ∂

∂xj
ηG ∧

(
dGxα ∧ θµ

α

∂L

∂yµ
j

− dGθµ ∂L

∂yµ
j

− θν ∧ θµ ∂2L

∂yµ∂yν
j

− θν ∧ θµ
α

∂2L

∂yµ
α∂yν

j

)
,

and remarking that

dGxα ∧ θµ
α − dGθµ = −dGxα ∧ dGxβ · yµ

βα,

we deduce

∂
(
ΘL

0 − ηG · L
)

= −ι ∂

∂xj
ηG ∧

(
dGxα ∧ dGxβ · yµ

βα + θν ∧ θµ ∂2L

∂yµ∂yν
j

+ θν ∧ θµ
α

∂2L

∂yµ
α∂yν

j

)
.

Here, the first term in the right-hand side vanishes when a vertical vector field is
inserted. The other two, when the pull-back (jn+1s)∗ is taken, as a contact form
θµ remains even after the insertion of the vertical field.

As a consequence of these results, we can see that the Euler−Lagrange equations
for a superfield are those expected.

Theorem 7.6. A local section s of p is a critical section for the Berezinian density
ξL = [dGx1 ∧ · · · ∧ dGxm ⊗ d

dx−1 ◦ · · · ◦ d
dx−n ]L with L ∈ AJ1

G(p), if and only if the
following equations holds:

(jn+1s)∗
(
ιXdGΘL

)
= 0, (7.1)

for every vector field X on Jn+1
G (p) vertical over (M,A).
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Proof. As we have seen, Eq. (7.1) is equivalent to the Euler–Lagrange equations

(jn+1s)∗
(

∂L

∂yµ
− d

dxi

∂L

∂yµ
i

− (−1)µ d

dx−j

∂L

∂yµ
−j

)
= 0,

and these are the well-known conditions on s to be a critical section (see [30,
Theorem 6.3]).

8. Some Applications

8.1. Noether theorem

Next, we consider the infinitesimal symmetries of Berezinian densities. The basic
idea is to study under which conditions we can interchange ιX with dG in (7.1) to
obtain the equation

dG(jn+1s)∗(ιXΘL) = 0,

giving us an invariant, ιXΘL. In classical mechanics, this is the case when the
Lagrangian is invariant under the action of some group whose infinitesimal generator
is precisely X ; this observation motivates the following definitions.

A p-projectable vector field X on (N,B) is said to be an infinitesimal supersym-
metry of the Berezinian density

ξL =
[
dGx1 ∧ · · · ∧ dGxm ⊗ d

dx−1
◦ · · · ◦ d

dx−n

]
· L, L ∈ AJ1

G(p),

if

LG
X(n+1)

ξL = 0,

where X(n+1) is the (n + 1)-jet extension of X by graded contact infinitesimal
transformations.

Now, the desired interchange amounts to have LG
X(n+1)

ΘL = 0. A basic result
in this direction is the infinitesimal functoriality of the Poincaré–Cartan form, a
concept which requires a previous definition.

A graded vector field X ′ on (M,A) is said to have a graded divergence with
respect to a graded volume m-form ηG on (M,A) if there exists a function f ∈ A
such that,

LG
X′ηG = ηGf.

In this case, we put f = divG(X ′). A graded vector field X on (N,B) is said to
have graded divergence if it is p-projectable and if its projection X ′ has graded
divergence.

Theorem 8.1 [Infinitesimal functoriality of ΘL, [23]]. Let ηG ·L be a graded
Lagrangian density on p : (N,B) → (M,A) (L ∈ A) and ΘL the corresponding
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graded Poincaré–Cartan form. For every vector field X on (N,B) with divergence,
we have

LG
X(n+1)

ΘL = ΘL′
, (8.1)

where L′ = X(n+1)(L) + divG(X ′) · L.

According to this result, what we want (LG
X(n+1)

ΘL = 0) is equivalent to

ΘL′
= 0, that is, to L′ = 0. Let us see under which conditions this is true for an

infinitesimal supersymmetry. Let us write the Berezinian density as ξL = [ξ]L and
assume that X is such a supersymmetry. Then

0 = LG
X(n+1)

ξL =
(
LG

X(n+1)
[ξ]
)
L + (−1)|X(n+1)||ξ|[ξ]X(n+1)(L). (8.2)

As the Berezinian module plays a rôle akin to that of the volume forms (at least
with respect to integration), we can use the concept of Berezinian divergence (see
Sec. 4.3.3). We recall that if X ′ is a graded vector field on (M,A) and ξ is a
Berezinian density on (M,A), we have LG

X′ [ξ] = (−1)|X
′||ξ|[ξ] · divB(X ′).

Note that the graded divergence of a given graded vector field on (M,A),

X ′ = (X ′)i ∂

∂xi
+ (X ′)−j ∂

∂x−j
,

does not necessarily exist. Indeed, the existence of the graded divergence requires,

∂(X ′)i

∂x−j
= 0,

for any i,−j. On the other hand, the Berezinian divergence always exists.
If X on (N,B) is p-projectable, we write

LG
X [ξ] = (−1)|X||ξ|[ξ] · divB(X).

This makes sense as long as X is projectable (with projection X ′); then, if the
Berezinian is given by [ξ] = [η ⊗ P ] for some graded form η ∈ ΩG((M,A)) and
some differential operator P ∈ D(A), we extend the previous definition to

LG
X [ξ] = (−1)|X||ω⊗P |+1[η ⊗ P ◦ X ′]

= LG
X′ [ξ].

In other words, the graded Lie derivative of [ξ] with respect to X is that respect
to its projection. The same observation (and definition) applies to a graded vector
field on (Jk

G(p),AJk
G(p)) projectable onto (M,A).

Thus, Eq. (8.2) can be rewritten as

(−1)|X(n+1)||ξ|divB(X(n+1)) · L + (−1)|X(n+1)||ξ|X(n+1)(L)

= divB(X(n+1)) · L + X(n+1)(L)

= 0,

and this is the expression of L′ = 0 except for the fact that we have two different
divergences. In this way, we are led to the following result.
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Theorem 8.2 [Noether]. Assume X is an infinitesimal supersymmetry of the
Berezinian density

ξL =
[
dGx1 ∧ · · · ∧ dGxm ⊗ d

dx−1
◦ · · · ◦ d

dx−n

]
· L, L ∈ AJ1

G(p),

such that,

(1) The projection X ′ of X onto (M,A) has a divergence with respect to

dGx1 ∧ · · · ∧ dGxm,

(2) divB(X ′) = divG(X ′).

Then, for every critical section s of ξL we have

dG
[(

jn+1s
)∗(

ιX(n+1)Θ
L
)]

= 0.

Proof. If X is an infinitesimal supersymmetry of ξL, by (8.2) we have

divB(X(n+1)) · L + X(n+1)(L) = 0

and by (1), (2), L′ = divG(X(n+1)) · L + X(n+1)(L) = 0. Moreover, from (8.1), we
have

ΘL′
= 0 = LG

X(n+1)
ΘL.

Thus,

(jn+1s)∗(dGιX(n+1)Θ
L) + (jn+1s)∗(ιX(n+1)d

GΘL) = 0,

and since s is a critical section,

(jn+1s)∗(ιX(n+1)d
GΘL) = 0.

The statement now follows from the fact that dG commutes with pullbacks.

The superfunctions ιX(n+1)Θ
L appearing in the statement, are called Noether

supercurrents. Analogously, the graded vector fields X satisfying the condi-
tions of the theorem (and, in general, those leading to Noether supercurrents;
note that these conditions are sufficient, but not necessary) are called Noether
supersymmetries.

Corollary 8.3. Assume X is a p-vertical graded vector field which also is an
infinitesimal supersymmetry of the Berezinian density (6.2). Then, for every critical
section s of ξL we have

dG[(jn+1s)∗(ιX(n+1)Θ
L)] = 0.

Proof. If X is vertical, its projection is 0 and so divB(X ′) = divG(X ′) = 0.

8.2. The case of supermechanics

Consider the supermanifold R1|1 .= (R, Ω(R)) and the graded submersion

p : (N,B) → R1|1, (N,B) = R1|1 × R1|1,
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defined by the projection onto the first factor, which determines the graded bundle
of 1-jets (J1

G(p),AJ1
G(p)). This is the situation that would correspond to superme-

chanics (see [13,14,33,35]). If (t, s) and (t, s, y, z) are supercoordinates for R1|1 and
(N,B), respectively (even y and odd z), we have a system (s, t, y, z, yt, ys, zt, zs) for
(J1

G(p),AJ1
G(p)). These coordinates are defined through

(j1σ)∗t = σ∗(t) = t

(j1σ)∗s = σ∗(s) = s

(j1σ)∗y = σ∗(y) = ϕ(t)

(j1σ)∗z = σ∗(z) = ψ(t)s

(j1σ)∗yt =
∂

∂t
(j1σ)∗y = ϕ′(t)

(j1σ)∗ys =
∂

∂s
(j1σ)∗y = 0

(j1σ)∗zt =
∂

∂t
(j1σ)∗z = ψ′(t)s

(j1σ)∗zs =
∂

∂s
(j1σ)∗z = ψ(t)

for a section σ : R1|1 → (N,B) of p. Here, ϕ and ψ are just real functions. Note
the particularity of the coordinate ys, which evaluated on sections vanishes; this is
a special feature of the (1|1)-dimension.

The traditional (physics oriented) notation would write ∂y/∂t instead of
ϕ′(t) and so on. In this way, the preceding observation about ys is masked, so
we prefer ours.

A graded Lagrangian is an element L ∈ AJ1
G(p) (i.e., a “superfunction of

(s, t, y, z, yt, ys, zt, zs)”). We are interested in determining the class of Lagrangians
which admit a p-projectable graded vector field on (N,B), of the particular form

D = f
∂

∂t
+ g

∂

∂s
,

as a Noether supersymmetry.
A priori, we should have f = f(t, s) and g = g(t, s), but the fact that D must

be a supersymmetry imposes some restrictions which we now analyze. First of all,
divG(D) must exist, and this forces f = f(t); hence

∂f

∂s
= 0. (8.3)

Moreover, it is immediate from the definition of graded divergence that

divG(D) =
∂f

∂t
. (8.4)
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Secondly, divB(D) must coincide with divG(D); from expression (4.4) in Sec. 4.3.3,
we find that, necessarily,

∂g

∂s
= 0. (8.5)

With restrictions (8.3), and (8.5), the computation of the extension D(2) is
relatively easy, and the result is

D(2) = f
∂

∂t
+ g

∂

∂s
−
(

df

dt
yt +

dg

dt
ys

)
∂

∂yt
−
(

df

dt
zt +

dg

dt
zs

)
∂

∂zt

− df

dt
yst

∂

∂yst
−
(

d2f

dt2
yt +

d2g

dt2
ys + 2

df

dt
ytt + 2

dg

dt
yts

)
∂

∂ytt

− df

dt
zst

∂

∂zst
−
(

d2f

dt2
zt +

d2g

dt2
zs + 2

df

dt
ztt + 2

dg

dt
zts

)
∂

∂ztt
. (8.6)

Finally, the remaining condition for D to be a Noether supersymmetry is LG
D(2)

ξL =
0; that is,

divB(D) · L + D(2)L = 0,

or, in view of (8.4),

∂f

∂t
L + D(2)L = 0. (8.7)

As L ∈ AJ1
G(p), we have

∂L

∂ytt
=

∂L

∂yst
= 0

and
∂L

∂ztt
=

∂L

∂zst
= 0,

so the insertion of (8.6) into (8.7) gives

∂f

∂t
L + f

∂L

∂t
+ g

∂L

∂s
−
(

df

dt
yt +

dg

dt
ys

)
∂L

∂yt
−
(

df

dt
zt +

dg

dt
zs

)
∂L

∂zt
= 0.

Now, evaluating on a section σ we obtain

∂f

∂t
(j1σ)∗L + f(j1

Gσ)∗
(

∂L

∂t

)
+ g(j1σ)∗

(
∂L

∂s

)
−
(

df

dt
ϕ′(t)

)
(j1σ)∗

(
∂L

∂yt

)
−
(

df

dt
ψ′(t)s +

dg

dt
ψ(t)

)
(j1σ)∗

(
∂L

∂zt

)
= 0. (8.8)

Any L ∈ AJ1
G(p) solution to this equation, is a superlagrangian admitting D as a

Noether supersymmetry. Conversely, if we take a fixed L ∈ AJ1
G(p), any pair of real

functions, f = f(t, s) and g = g(t, s), satisfying (8.8) determines a graded vector
field D = f∂/∂t + g∂/∂s, which is a Noether supersymmetry for L.
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A trivial case is that of f = g ≡ 1. Then, Eq. (8.8) reduces to

∂L

∂t
+

∂L

∂s
= D(L) = 0,

that is: if L does not depend explicitly on (t, s), then the “supertime translation”
D = ∂/∂t + ∂/∂s is a Noether supersymmetry, as in the classical setting (see [35]).
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(Spain), 1993.

[33] ———, Hamiltonian formalism in supermechanics, Int. J. Theoret. Phys. 41(3)
(2002) 429–458.

[34] J. Monterde and O. A. Sánchez–Valenzuela, Calculus of variations in a simple super-
domain without the Berezinian integral, XXVIth National Congress of the Mexican
Mathematical Society (Spanish) (Morelia, 1993), pp. 313–318. Aportaciones Mat.
Comun., Vol. 14, Soc. Mat. Mexicana, México, 1994.
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