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We empirically explore the, accuracy of an easily computed approximation for long run, average 

performance measures such as expected delay and probability of delay in multiserver queueing 

systems with exponential service times and periodic (sinusoidal) Poisson arrival processes. The 

pointwise stationary approximation is computed by integrating over time (that is taking the 

expectation of) the formula for the stationary performance measure with the arrival rate that 

applies at each point in time. This approximation, which has been empirically confirmed as a 

tight upper bound of the true value, is shown to be very accurate for a range of parameter values 

corresponding to a reasonably broad spectrum of real systems. 
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Introduction 

Most actual queueing systems do not have constant arrival rates; indeed, it is quite 

common to find systems in which there are predictable and often cyclic patterns by which 

demand varies with time. Computer systems, telecommunications networks, banks, air- 

ports, toll booths, and emergency systems are just a few examples of facilities with such 

time-varying demand processes. Yet, the bulk of literature in queueing theory deals with 

stationary arrival processes. Although practitioners and engineers have fashioned ad hoc 

methods to deal with nonstationarity, there is only a modest amount of theory dealing 

with time-varying arrival processes, and there are no known general formulas for com- 

puting performance measures such as expected delay, for even the simplest of single 
server nonstationary Markovian systems. 

Of course, any nonstationary system with known parameter values can be studied 

using simulation or, if Markovian, by numerical integration of the differential equations 
which describe its dynamics (see e.g., Koopman 1972, Clarke 1956, and Luchak 1956). 

However, these methods are usually very costly in computational effort. Several methods 

have been proposed to reduce the computational burden by approximating the solution 

to the infinite set of equations of a Markovian system using closure techniques that 
require a relatively small number of equations. For example, see Rider ( 1976), Rothkopf 

and Oren (1979) and Clark (1981) . More recently, similar approximation methods have 

been used to reduce the number of equations necessary for large finite capacity systems 
(see Taafe and Ong 1987, 1988, 1989). Other solution techniques include diffusion 

approximations, first presented in the pioneering work of Newell (1968 and 1971), and 
more recently used by Duda (1986) for studying computer-communications systems. 

Gaver (1966) and Kotiah (1978) suggested the use of transform approximation methods. 

Techniques based on approximating the actual time-varying arrival rate by a surrogate 

arrival rate generated by a stationary Markov process have been suggested by Neuts 

(1978), Rolski (1987), and Gelenbe and Rosenberg (1990), all for single server systems. 
Massey (1985) analyzed a single server Markovian queue by uniformly accelerating the 

time dependent arrival and service rates for a fixed time interval and examining the 

asymptotic behavior of the queue length process. 
Most of the above work has focused on obtaining estimates for the time-varying behavior 

of the system. However, in many applications, such as those involving design decisions 
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about how much fixed capacity is needed, composite performance measures such as long 
run average expected waiting time in the system are appropriate and sufficient, at least 

for an initial analysis. (At later stages more detailed time dependent behavior may be 
required.) Until the present, there appeared to be agreement among some theoreticians 

and practitioners that for such broad uses, the nonstationarity could be ignored and a 

standard stationary analysis could be used if the time-varying fluctuations were "mild" 

(see e.g., Rothkopf and Oren 1979). Yet, in a recent paper, Green, Kolesar and Svoronos 
(1991) showed that a stationary model can seriously underestimate delays even when 

the arrival rate is only modestly nonstationary (for example, when the amplitude of the 
arrival process is only 10% of its average). This finding raises serious concerns about the 
use of a simple stationary model for almost any real system. Of course, variants on the 

simplest stationary approximation such as peak hour analysis or segmenting the time 

period and using a series of stationary models based on the average arrival rates for each 

segment can also be employed (see, for example, Kolesar et al. 1975). Yet, there has not 
been a general exploration of the accuracy of these methods. (Our current research builds 
on the results reported here and will focus on these issues.) 

In this paper, we discuss an easy-to-compute approximation for determining long run 

average performance measures for multiserver Markovian queues with periodic arrival 
rates. This approximation is obtained by computing the expectation of the performance 

measure over the period using the stationary formula with the arrival rate that corresponds 
to each point in time. For this reason, we call it the pointwise stationary approximation 
(PSA). The PSA is, in effect, a limiting version of the segmentation approach discussed 
in the previous paragraph. It is a rather intuitive concept that most likely has been em- 
ployed earlier. Rothkopf and Oren ( 1979) appear to suggest something of the kind. Yet 
in searching the literature after our rediscovery, we found no references before the work 
of Grassman ( 1983), who first conjectured that the PSA is an upper bound for the 

expected number of customers in queue as a consequence of his result that the mean 

queue size is convex with respect to the arrival rate. This was confirmed by Rolski ( 1986) 
for the case of single server systems. 

In Green et al. (1991), we showed by numerical comparisons that when the PSA exists, 
it is an upper bound of the actual value. For probability of delay or probability of all 

servers busy, it always exists. For expected delay or expected number in system, etc., it 

results in a finite value only for systems in which the maximum traffic intensity is strictly 
less than one. Green et al. also empirically demonstrated that for Markovian multiserver 

systems with sinusoidal arrival rate, the simple stationary approximation, i.e., computed 

using the time average arrival rate as if it were constant over the entire period, results in 

a lower bound for the usual overall measures of performance-expected delay, expected 
number in system, probability of delay, etc. Therefore, since the PSA produces an upper 

bound, we have a pair of simple computations that bound actual results and the errors 
produced by any approximation technique. Moreover, we demonstrate that in a broad 

range of systems, the PSA produces reasonably accurate estimates of the actual perfor- 
mance measures. There are, however, parameter values for which the PSA is not a good 

approximation. 
Our findings are based on extensive numerical investigation of multi-server exponential 

queueing systems with sinusoidal Poisson input. This class of models was chosen because 
the exact differential equations for the steady-state probabilities can be readily solved 
numerically and because this easily parameterized arrival process captures the essence 
of many actual periodic arrival processes. However, as discussed in Green et al., there is 
no reason to believe that the PSA would not result in an upper bound for other periodic 
Poisson arrival processes or more general service distributions. Similarly, as will be dis- 
cussed, there is good reason to believe that the findings reported in this paper are generally 
applicable to other nonstationary systems. 
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In ? 1, we briefly describe our research methodology. In ?2, we discuss some charac- 

teristics of the PSA and present examples of its usefulness for decision-making as compared 
with the strictly stationary approximation. The accuracy of the PSA is systematically 

explored in ?3 and we present a summary of our conclusions in ?4. 

1. Definitions and Methodology 

We consider an M(t)/M/s system where X(t) is the arrival rate at time t (which we 

assume varies according to a sinusoid), ,u is the service rate and s is the number of servers. 

We will assume that 

X = T X (t)dt < sA, (1) 

where T is the period of the sinusoid, also called its cycle length. Thus, the system will 

develop a periodic steady-state behavior (see Heyman and Whitt 1984). 
Let p,(t) be the periodic steady-state probability of n customers in the system at time 

t. Our numerical results were obtained by solving the following standard set of differential 

equations: 

po(t) = -X(t)po(t) + Ap1(t), 

pt1(t) = X(t)pn-l(t) + (n + I )Upn+l (t)- (X(t) + n1u)p,,(t), 1 < n < s, 

pn(t) = X(t)p,1-(t) + SApn+l(t)- (X(t) + SOt)p(t), n s. (2) 

The details of the numerical integration methodology are described in Green 

etal. (1991). 

For convenience, assume that the period of the arrival rate process, T, is 24 hours. 

Let Lq, Wq, Pd and Pb be the daily average queue length, the daily expected delay, the 

daily probability of delay and the daily probability of all servers being busy, respectively. 

Specifically, 

CT 
oo 

Lq = Z(2 (n- S)Pn(t))dt, 

Wq= Lq/l, 

Pd =JtJ-X(t) I 3PMt))dt, and 
AT on=O 

g T n=sI 

We denote L ', Woo, p0f and p? as the pointwise stationary approximations (PSAs) for 
Lq, Wq, Pd and Pb and define them as follows: 

00=^I Lq()X(t))dt, (3) 

1 C0 
q= - X(t)Wq(X(t))dt, (4) 

q XT J 

P= dX (t)pd(X(t))dt, and (5) 

Pb =Tj Pb(X(t))dt, (6) 
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where Wq( X (t)), Lq ( X(t)), Pd(X (t)) and Pb(X (t)) are given by the formulae for expected 
delay expected queue length, probability of delay and probability of all servers busy in 

a stationary M/M/s with an arrival rate of X(t) and ,u and s as given. It is important 

to note that even for X(t) > su, Pd((t) ) = Pb(X(t)) iS computed from the stationary 

MIMIs delay formula (see Kleinrock 1975, equation 3.40), although this formula will 

result in a value greater than one in this case. In Green et al. (1991), we determined 

empirically that when the maximum traffic intensity is less than one, that is, when 

Pmax sup- < 1, (7) 
t s/I 

then 

Wq-' Wq and Lq-L . 

This result was substantiated for over 250 models we examined with widely varying 

parameter values (See Green and Kolesar (1990) for the data that support our findings.) 

These empirical findings extended an analytical result by Rolski (1986) which established 

that (4) holds for single server systems with doubly stochastic Poisson arrivals. (Rolski's 

result also holds for general service time distributions in which case Wq(X(t)) is the 

expected delay for the corresponding MIGI 1 system.) We also found that p7f and pb 

result in a finite upper bound even when the maximum traffic intensity exceeds one. 

(Occasionally the computed value exceeds one which, of course, should be interpreted 

as producing an upper bound of one.) 

The goal of this paper is to establish under what conditions the PSA gives reasonable 

estimates of the actual performance measure. In particular, the objective of our work 
was to determine how the accuracy of the PSA varies as a function of the parameters of 

our generic model which assumes that there are s identical exponential servers, each 

serving a rate ,u, and a time dependent Poisson arrival process with rate given by 

X(t) X + A cos (2wxt/24), (8) 

where X is the daily average arrival rule, and A (>0) is the amplitude. Without loss of 

generality, the period T, is assumed to be 24 hours. In the specific model instances we 

investigated, we selected parameter values such that 

to assure the existence of a limiting distribution, and with the relative amplitude 

Relative Amplitude (RA) = A/ X < 1, (10) 

so that X(t) ' 0 for all t. 

Aside from these constraints, our choices of experimental models were governed by 

three major considerations-correspondence to actual service systems, a desire to be as 

general as possible, and computational feasibility. 
Based on our previous work (Green et al. 1991), we formulated some conjectures on 

how the accuracy of the PSA would vary with parameters such as the amplitude and 

frequency of the input. Out experimental strategy was to confirm each conjecture first 

at a "central case," and if confirmed there, then to determine its validity in a region 

surrounding the central case by perturbing each of the key parameters. 
The resulting models span a fairly broad spectrum of parameter values: the number 

of servers ranges from 1 to 12, the service rate varies from .2 to 20, average traffic intensities 

range between .25 and .75 and relative amplitudes between .1 and 1.0. Yet, in some 

specific tests of a hypothesis, we were further constrained in the range of one or more of 

the parameters due to theoretical constraints such as equations (9) and (10), or to 
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computational limitations arising from either the time necessary to achieve steady-state 
behavior (when the frequency of events is very low, this can be extremely long) or from 
the computational effort required to accurately estimate the solution to the differential 
equations at peak congestion epochs for systems with high traffic intensities, high service 
rates and many servers. However, in all we have solved over 300 models in this corrob- 
oration effort. The data are available in Green and Kolesar (1990). 

2. The Pointwise Stationary Approximation 

In Green et al. ( 1991), we observed that not only is L an upper bound whenever 
the maximum traffic intensity was less than one, but that it is asymptotically approached 
as the frequency of events per period increased, i.e., as X(t) and ,u increased simultaneously 
so that both p = X / s, and the relative amplitude (RA = A / X) remained fixed. This is 
illustrated in Figure 1 where we use a semi-log plot of expected queue length against 
frequency as measured by X. 

The intuition that led us to this observation is that as X and ,u grow larger together, 
the number of both arrivals and departures during any given small interval At becomes 
so large that the system approaches steady-state behavior during At and for any t' as 
At -* 0, X(t) for t E (t', t' + At) will be almost constant. Thus, we reason that as event 
frequency goes to infinity, the overall expected queue length approaches the expectation 
over time of the expected queue length in a system which at every time t behaves like a 

stationary MIMI s with arrival rate X ( t). 
Another important observation, that is illustrated in Figure 1 (which has a logarithmic 

scale), is that the rate of increase of the expected queue length is quite sharp so that even 
at moderate arrival rates, actual behavior is close to that predicted by the upper bound 
(PSA). This led us to believe that the PSA might be a good approximation for many 
real systems. 

Another finding in Green et al. ( 1991 ) was that the simple stationary approximation 

obtained by using the overall mean arrival rate in the stationary MIMIs model, results 
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in a lower bound for any performance measure. This confirmed a general conjecture first 
made by Ross ( 1978) and proved by Rolski ( 198 1 ) specifically for the M(t)/ G/ 1 system. 
More importantly, we found that the completely stationary approximation sutbstantially 

underestimates the actual delay in most cases. Therefore, the "obvious" simple approx- 
imation for estimating overall performance measures for systems with nonstationary 

arrivals fails, even when the degree of nonstationarity is quite modest. 
Table 1 gives two examples for which the completely stationary approximation seriously 

underestimates the delays, but the PSA (where it exists) is quite good. These examples 
were constructed to imitate arrival and service time parameters of police patrol operations 
in New York City. Calls for police service in New York's 911 emergency telephone 

system arrive in a periodic daily pattern and behave very much like a time-varying Poisson 
process. This arrival process is strongly unipeaked and it is not uncommon for the max- 

imum arrival rate to be twice the daily average (see Green and Kolesar 1989). Service 

times are very close to exponential and, in most precincts, average about thirty minutes. 
Table 1A illustrates predicted probabilities of delay and expected delays for all "reason- 

able" staffing levels in a precinct with a "light" demand level averaging one arrival per 
hour, while Table 1 B corresponds to a precinct with a "heavy" demand of six calls per 
hour on average. The stationary delays were obtained from the stationary MIMIs model, 
the "actual" delays resulted from numerical integration of the differential equations given 
by (2) with X(t) given by (8), and the PSA predictions were calculated using equations 
(4) and (5). 

One unmistakable conclusion to be drawn from this table is that the stationary ap- 
proximation fails miserably in both precincts and at all staffing levels. Decisions on the 

capacity required to meet a given performance standard would, if based on such estimates, 
be quite erroneous. In contrast, the PSA estimates are, in almost all instances, very close 
to the actual delays and would result in reliable capacity decisions. The obvious exceptions 
are cases where the PSA for the expected delay does not exist because the maximum 
traffic intensity exceeds one. Interestingly, the PSA for the probability of delay in these 

TABLE 1 

2, RA 1.0 

A. X =1 

Probability of Delay Expected Delay 

s Stationary Actual PSA Stationary Actual PSA 

1 .5000 .6748 .7500 .5000 1.131 - 

2 .1000 .2137 .2180 .0333 .0936 .0977 

3 .0152 .0519 .0527 .0030 .0123 .0125 

4 .0018 .0155 .0107 .0003 .0017 .0017 

B. X 6 

Probability of Delay Expected Delay 

s Stationary Actual PSA Stationary Actual PSA 

6 .0991 .4815 .5446 .0165 .2539 - 

7 .0376 .2951 .3139 .0047 .0894 .1166 

8 .0129 .1650 .1717 .0013 .0329 .0363 

9 .0040 .0860 .0888 .0003 .0125 .0132 

10 .0012 .0420 .0434 .0001 .0048. .0050 

11 .0003 .0193 .0200 .0000 .0018 .0019 
12 .0001 .0084 .0087 .0000 .0007 .0007 
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instances exists and is still reasonably accurate. Another useful observation is that the 

accuracy of the PSA appears to improve as the number of servers increases and thus the 
PSA seems to be particularly useful for identifying staffing levels that would keep delays 
"reasonable." We discuss this phenomenon and its application further in the next section. 

Are there situations in which the stationary approximation is better than the PSA? 

The examples given in Table 2 show that while there are situations where the stationary 

approximation is better, in such cases it is not necessarily good enough to be useful. In 

the example in Table 2A, the stationary approximation is quite good, at least at low 

staffing levels, and is much better than the PSA. But the frequency of events is very low- 

average service times are five hours and arrivals average fewer than one every six hours. 
The nonstationarity appears to be significant since the relative amplitude is one, yet with 

such infrequent arrivals, it would be difficult to diagnose. (An observer would have to 

collect data over a very long time to verify the nonstationary when events are this infre- 

quent.) As we showed in Green et al. ( 1991 ) as the event frequency decreases the stationary 
approximation improves, and in the limit, the system converges to the corresponding 
stationary one. Since the PSA is the limiting behavior in the opposite direction, it is not 

surprising to see that the PSA is quite bad for the example in Table 2A. However, it is 

important to note that the stationary approximation also becomes very inaccurate as the 

number of servers increases. 
Table 2B shows a system for which neither the stationary approximation nor the PSA 

are good. Though service times are again very long, and the relative amplitude is not 

very high, the average arrival rate of one per hour, though still low, is not low enough 
for the system to behave in a manner that is closely approximated by its stationary 

counterpart. 
Examples such as those in Table 1 led us to believe that the PSA would provide a 

potentially valuable and practical basis for decision making for many actual systems with 

time-varying arrivals. In the next section we systematically explore how the accuracy of 

the PSA varies as a function of the system parameters. We focus on the performance 
measures of daily expected delay, expected queue length and the probability of delay 

since these are the most common measures for managing systems. The results for 

TABLE 2 

,u=.2 

A. X =.15 RA- 1.0 

Proability of Delay Expected Delay 

s Stationary Actual PSA Stationary Actual PSA 

1 .7500 .7731 1.125 15.000 15.697 - 

2 .2045 .2578 .4267 .818 1.099 3.294 

3 .0441 .0743 .1405 .098 .1790 .4262 

B. A= I RA = 1.0 

Probability of Delay Expected Delay 

s Stationary Actual PSA Stationary Actual PSA 

8 .1673 .2188 .3871 .2788 .4109 2.2927 

9 .0805 .1214 .2298 .1006 .1740 .5962 
10 .0361 .0639 .1305 .0361 .0738 .2226 

11 .0151 .0318 .0708 .0126 .0306 .0903 

12 .0059 .0149 .0365 .0042 .0122 .0373 
13 .0021 .0066 .0180 .0013 .0047 .0153 
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probability that all servers are busy are generally similar to those described for probability 

of delay though the PSA appears to be more accurate for probability busy. In fact, for 

the special case of single server systems, the PSA given by (6) is exact. However, so is 

the stationary approximation. This is easily proven by noting that from Little's formula 

P (server busy) = X X E (service time) = XIAi 

for both the stationary and nonstationary system. Equation (7) results in 

p d 1 if A(t) dt = 

3. Accuracy of the Pointwise Stationary Approximation 

In this section, we systematically explore how the accuracy of the PSA changes with 
the parameters of the system. Our goal is to determine general conditions under which 
the PSA produces reasonable estimates of expected delay, expected queue length and 
probability of delay. 

For this purpose we define a relative error measure as follows: 

Actual value - PSA 
Relative error = 

Actual value 

Note that by Little's formula, the relative error of expected delay will be identical to 

the relative error of expected queue length, and thus we will use these measures inter- 

changeably. 
The hypotheses we tested resulted from numerical results that were generated during 

our previous work on the effects of nonstationarity, and from the nature of the PSA itself. 
Two premises guided our work. The first is based on an interpretation of the PSA as the 

expected performance measure for a system that at every instant t behaves like a stationary 
M/M/s with arrival rate X(t) in steady-state. Thus, we would expect that the PSA improves 
as system conditions better approximate this situation. Secondly, for expected delay, we 

know that the integral expression for the PSA diverges whenever the traffic intensity is 

greater than or equal to one. Therefore we expected that the PSA for expected delay, at 

least, would deteriorate as the maximum traffic intensity increases. The specific tests for 
these conjectures are detailed below. 

A. The Effect of Event Frequency 

Since as shown in Figure 1, the expected queue length asymptotically approaches the 

PSA given by (5), as the event frequency increases, it follows that the relative error will 

decrease. To formally test this, we examined cases in which we fix the cycle length (at 
24 hours) and the number of servers while X(t) and A are simultaneously increased so 

that X/I (and hence the traffic intensity) and the relative amplitude (RA in the figures) 
are both constant. The results for our central case of average traffic intensity (rho) equal 
to .43, relative amplitude of 3 and 7 servers, is shown in Figure 2. The general result was 
confirmed for all of our surrounding cases which included systems with rho ranging from 
.25 to .75, relative amplitudes from .1 to 1.0 and from 1 to 12 servers. Note that the 

horizontal scale is measured in units of X and that the X = 0 point corresponds to the 
stationary system (see Green et al. 1991). 

Also consistent with our earlier findings, our tests for probability of delay confirmed 
that the relative error decreases as event frequency increases. 

Note that letting A(tt) and ,u increase proportionally is mathematically equivalent to 
increasing the cycle length T. For example, the system defined by s = 6, X = 100, 
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(p = 0.43, RA = 0.333, S= 7) 

50 X(t) ? 150, p = 20 and T = 24 is identical in performance to one defined by 
s = 6, X = 10, 5 X(t) - 15, = 2 and T = 240. Therefore, the results discussed in this 
section can also be stated as establishing that the accuracy of the PSA improves as the 
cycle length increases. 

B. The Effect of Service Rate 

Since our tests for event frequency involved increasing X(t) and A simultaneously, it 
is logical to determine whether increasing one of these while holding the other constant 
will have the same effect. We hypothesized that increasing the service rate ,u, would result 
in the PSA being more accurate since faster clearing of customers from the system should 
cause consecutive time intervals to be more independent of each other (which is consistent 
with approaching the limiting condition of the PSA). Our experiments confirmed that 

the relative error of expected delay decreases as ,u increases. This is illustrated by Figure 
3. In these tests, X(t) remained constant and the number of servers was decreased as ,u 
was increased so that s,u remained constant and hence the traffic intensity remained fixed. 

Not surprisingly, the same phenomenon was found to be true for probability of delay, 
as well. 

What is the effect of holding the service rate constant and increasing the arrival rate, 
while proportionally increasing the number of servers, so that all other parameters remain 

constant? We initially surmised that the PSA would improve under these circumstances 
since the increased arrival frequency would move the system closer to being in steady- 
state at every moment (implicit for the PSA). However, our tests produced no consistent 
effect. While increasing the arrival rate served to improve the PSA's accuracy when the 
service rate was large enough (e.g. ,u = 2) to result in small relative errors (i.e. less than 
10%), the opposite appeared to be true for every small service rates (e.g. A = .2) which 
resulted in large relative errors (e.g. over 50%). However, we did not pursue this line of 
testing enough to establish a definitive pattern. 
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C. The Effect of the Maximimn Traffi-c Intensity) 

As mentioned previously, the PSA for expected delay does not produce a finite value 
when the maximum traffic intensity is greater than or equal to one. Furthermore, our 

previous work indicated that for maximum traffic intensities close to one, the PSA 
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significantly overestimated the actual expected delay. This is not surprising, since as can 

be seen from equation (4), the PSA for expected delay is most heavily weighted by the 

stationary expected delay for the highest values of X(t). Therefore, it is reasonable to 

conjecture that the PSA for expected delay becomes less accurate as the maximum traffic 

intensity increases. 
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We performed three sets of tests for this hypothesis. In the first, we raised the maximum 
traffic intensity by increasing the relative amplitude and keeping all other parameters 
fixed. Figure 4 illustrates our general finding that, as expected, the relative error increases 
as the relative amplitude increases. Figure 5 shows our central case for the second set of 
tests in which the relative amplitude was held constant, but the average arrival rate, X 

was increased. Thus, in these cases, both the average and maximum traffic intensities 
increase. Again, the result is that the PSA becomes less accurate. Finally, we examined 
the situation in which the number of servers increases while all other parameters are held 
constant. Observations of results such as those in Table 1 led us to conjecture that the 
PSA was increasingly accurate at higher staffing levels. Since increasing the number of 
servers also decreases the maximum traffic intensity, this conjecture is consistent with 
our general hypothesis. Our tests confirmed this and our central case is shown in Fig- 
ure 6. 

All of these findings regarding the effect of the maximum traffic intensity pertain only 
to expected delay and expected queue length. Tests of these hypotheses for probability 
of delay did not yield consistent results. 

4. General Conclusions 

Green, Kolesar and Svoronos ( 1991 ) established that the simple stationary approxi- 
mation is quite inaccurate for a large class of nonstationary Poisson queueing systems, 
even for many systems in which the nonstationarity is very modest, i.e. the relative 
amplitude is only 10%. The only instances in which ignoring the nonstationarity seems 
reasonably "safe" are those in which the frequency of events is very low (e.g. X 4 1 and 

,u 4 1) and the relative amplitude is not too high (e.g. RA-< .25 ). Since most real service 
systems have significant nonstationarity in their arrival processes, this finding indicates 
the criticality of some analysis beyond one based only upon a simple stationary approx- 
imation. 

The PSA is easy to compute and provides tight upper bounds on key performance 
measures. Furthermore, the results reported here indicate that, for many nonstationary 
Poisson service systems, the PSA provides good estimates for several key performance 
measures. We summarize these findings here: 

( 1 ) For expected delay, expected queue length, probability of delay and probability 
of all servers busy, the PSA improves as the frequency of events (or equivalently, the 

cycle length) increases. 

(2) For these same performance measures, the PSA becomes more accurate as the 

service rate increases. 

(3) For expected delay and expected queue length, the PSA worsens as the maximum 

traffic intensity increases. When the maximum traffic intensity is greater than or equal 
to one, the PSA does not produce finite values. 

So for probability of delay (or probability that all servers are busy), the accuracy of 
the PSA is primarily affected by the service rate. From our many observations, it is 

generally quite good for systems with service rates exceeding 2 per hour (assuming a 24 

hour cycle). 

The accuracy of the PSA for expected delay or expected queue length is primarily a 
function of both the service rate and the maximum traffic intensity. Our observations 
indicate that the PSA will produce reasonable estimates for systems in which the service 
rate is 2 or higher and the maximum traffic intensity is less than .83. For systems in 

which the service rate is considerably higher, e.g. ,u = 20, the estimates will be good at 
even higher maximum intensities. Thus, for service systems in which there are many 
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transactions per hour such as telecommunications systems, computer systems, banks, 
toll booths, and supermarkets, the PSA will generally produce very reliable estimates, 

particularly for identifying system capacity levels to keep long run average delays rea- 

sonable. 
It is important to note that although our findings are based on experimental models 

with sinusoidal arrival rates and exponential service times, there is nothing to indicate 

that they are not more generally applicable. Rolski's ( 1986) proof that (4) is an upper 
bound for the single server system with general service distribution and doubly stochastic 
Poisson arrival processes leads us to believe that the PSA for each of the performance 
measures is an upper bound in the multiple server case under the same broad assumptions. 

In a paper based on this one, Whitt ( 1991 ) has verified our conjecture that the PSA is 
asymptotically correct as the rates increase and has also extended it to include general 
time-dependent birth- and death-processes. Furthermore, since many of our findings on 

the accuracy of the PSA follow from an interpretation of it as the expectation over time 

of a pointwise stationary system, it is reasonable to believe they hold more generally. 
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